
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Adam Optimization with Adaptive Batch Selection

Anonymous authors
Paper under double-blind review

Abstract

Adam is a widely used optimizer in neural network training due to its adaptive
learning rate. However, because different data samples influence model updates
to varying degrees, treating them equally can lead to inefficient convergence. To
address this, a prior work proposed adapting the sampling distribution using a
bandit framework to select samples adaptively. While promising, both the orig-
inal Adam and its bandit-based variant suffer from flawed theoretical guarantees.
In this paper, we introduce Adam with Combinatorial Bandit Sampling (AdamCB),
which integrates combinatorial bandit techniques into Adam to resolve these issues.
AdamCB is able to fully utilize feedback from multiple actions at once, enhancing
both theoretical guarantees and practical performance. Our rigorous regret analy-
sis shows that AdamCB achieves faster convergence than both the original Adam and
its variants. Numerical experiments demonstrate that AdamCB consistently out-
performs existing Adam-based methods, making it the first to offer both provable
guarantees and practical efficiency for Adam with adaptive batch selection.

1 Introduction

Adam (Kingma & Ba, 2015) is one of the most widely used optimizers for training neural networks,
primarily due to its ability to adapt learning rates. Despite its popularity, the standard version of
Adam and its numerous variants treat each training sample equally by employing uniform sampling
over the dataset. In practice, however, different data samples can influence model updates to varying
degrees. Consequently, simply performing full dataset sweeps with equal weighting may lead to
inefficient convergence and unnecessary computational overhead.

To address these challenges, Liu et al. (2020) introduced a dynamic approach called AdamBS, which
adapts the sampling distribution during training using a multi-armed bandit (MAB) framework. In
this method, each training sample is treated as an arm in the MAB, allowing more important samples
to be selected with higher probability and having a greater influence on model updates. This approach
was intended to improve both the adaptability and efficiency of the optimization process, presenting
a promising direction for further advancements.

However, despite its potential benefits, critical issues remain: the analysis of both the original Adam
method (as identified by Reddi et al. (2018)) and its bandit-based extension, AdamBS (issues newly
discovered in this work), is technically flawed. The theoretical guarantees provided for the efficiency
and effectiveness of these methods are incorrect (see Sections 2.5.2 and 2.5.3). As a result, to the
best of our knowledge, there is no existing Adam-based method that can adaptively sample while
providing rigorous performance guarantees. This raises a critical question: is it possible to design an
algorithm that adaptively adjusts the sampling distribution while ensuring both provable guarantees
and practical performance improvements?

In this paper, we propose a new optimization method, Adam with Combinatorial Bandit Sampling
(AdamCB), which addresses the fundamental flaws in the analysis of AdamBS by incorporating a
combinatorial bandit approach into the sample selection process. In this approach, batch selection
is formulated as a combinatorial action, where multiple arms (samples) are selected simultaneously.
This combinatorial bandit framework can take advantage of feedback from multiple samples at once,
significantly enhancing the adaptivity of the optimizer. For the first time, we provide provable perfor-
mance guarantees for adaptive batch selection in Adam-based methods, leading to faster convergence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and demonstrating both theoretical and practical improvements over existing approaches. Our main
contributions are summarized as follows:

• We propose Adam with Combinatorial Bandit Sampling (AdamCB), a novel optimization
algorithm that integrates the Adammethod with a combinatorial bandit approach for sample
selection. To the best of our knowledge, AdamCB is not only the first algorithm to successfully
combine combinatorial bandit techniques with the Adam framework, but also the first to
correctly adapt any bandit techniques to Adam, significantly enhancing its adaptability.

• We provide a rigorous regret analysis of the proposed AdamCB algorithm, demonstrating
that it achieves a sharper regret bound compared to both the original Adam (which uses
uniform sampling) and its bandit-based variant, AdamBS (Liu et al., 2020). Additionally, we
correct the theoretical flaws in the analysis of AdamBS and present a revised regret bound
(see Table 1 for comparisons).

• We perform empirical evaluations across multiple datasets and models, showing thatAdamCB
consistently outperforms existing Adam-based optimization methods in terms of both con-
vergence speed and practical performance. Our results establish AdamCB as the first Adam-
based algorithm to offer both provable convergence guarantees and practical efficiency for
bandit-based Adam optimization methods.

2 Preliminaries

2.1 Notations

We denote by [n] the set {1, 2, . . . n} for a positive integer n. For a vector x ∈ Rd, we denote by
∥x∥ the vector’s Euclidean norm. For two positive sequences {an}∞n=1 and {bn}∞n=1, an = O(bn)
implies that there exists an absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1.
Similarly, an = o(bn) indicates that limn→∞

an

bn
= 0.

2.2 Expected Risk and Empirical Risk

Expected Risk. In many machine learning problems, the primary goal is to develop a model with
robust generalization performance. By generalization, we mean that while models are trained on a
finite sample of data points, we aim for them to perform well on the entire population of data. To
achieve this, we focus on minimizing a quantity known as the expected risk. The expected risk is the
average loss across the entire population data distribution, reflecting the model’s anticipated error if
it had access to the complete set of possible data samples. Formally, the expected risk is defined as:

E(x,y)∼P [ℓ(θ;x, y)] :=

∫
ℓ(θ;x, y)dP (x, y) (1)

where θ ∈ Rd is the model parameter, ℓ(θ;x, y) is the loss function that measures the error of the
model on a single data sample (x, y), and P is the true distribution of the data. The gold standard
goal is to find the θ that minimizes the expected risk in Eq.(1), ensuring that the model generalizes
well to all data drawn from P .

Empirical Risk. In practice, however, the true distribution P is typically unknown. Instead, we
only work with a finite dataset D consisting of n samples, which is denoted as D := {(xi, yi)}ni=1.
To approximate the expected risk, we use the empirical distribution P̂ derived from the dataset D.
For this empirical distribution P̂ to be a reliable approximation, we assume that the dataset D is
representative of the true distribution P . This requires that each sample in the dataset D is equally
likely and independently drawn from the true distribution P (i.e., the samples (xi, yi) are i.i.d.
according to P). The empirical distribution P̂ can be expressed as:

P̂ (x, y;D) = 1

n

n∑
i=1

δ(x = xi, y = yi) (2)

where δ is the Dirac-delta function. With the empirical distribution at hand, the empirical risk is the
average loss over the given finite dataset D. The empirical risk serves as an estimate of the expected

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

risk and is formally defined as:

E(x,y)∼P̂ [ℓ(θ;x, y)] :=

∫
ℓ(θ;x, y)dP̂ (x, y;D) = 1

n

n∑
i=1

ℓ(θ;xi, yi). (3)

However, if the dataset is non-uniformly distributed, some samples may be over-represented or under-
represented, leading to a biased estimate of the expected risk. To address this issue, one can use
importance sampling (Katharopoulos & Fleuret, 2018), which adjusts the sample weights to ensure
the empirical risk remains an unbiased estimate of the expected risk. This method assigns a weight
to each sample to correct for distributional imbalances.

2.3 Objective Function and Mini-Batches

Objective Function. In the context of optimizing machine learning models, the objective function
f(θ;D) is often the empirical risk in Eq.(3). Given a dataset D = {(xi, yi)}ni=1, the objective
function f(θ;D) is defined as, f(θ;D) := 1

n

∑n
i=1 ℓ(θ;xi, yi). As studied in the relevant literature

of Adam optimization (Duchi et al., 2011; Tieleman & Hinton, 2012; Zeiler, 2012; Kingma & Ba,
2015; Dozat, 2016; Reddi et al., 2018), we focus on the problem setting where f is convex (i.e., ℓ is
convex). Then, the goal of the optimization problem is to find a parameter θ∗ ∈ Rd that minimizes
the objective function f(θ;D). This problem is known as empirical risk minimization (ERM):

θ∗ ∈ argmin
θ∈Rd

f(θ;D) .

The gradient of the objective function f with respect to θ is denoted by g := ∇θf(θ;D) = 1
n

∑n
i=1 gi,

where gi := ∇θℓ(θ;xi, yi) is the gradient of the loss based on the i-th data sample in D. When
the dataset D = {(xi, yi)}ni=1 is very large, computing the gradient over the full dataset D for
each optimization step can be computationally expensive in each iteration. To make this process
more efficient, we use mini-batches, which are smaller subsets of the full dataset, reducing the
computational load and allowing for faster updates to the model parameters.

Mini-Batches. Consider the sequence of mini-batches D1,D2, . . . ,DT ⊆ D used for training,
with corresponding objective functions ft := f(θ,Dt) for each t ∈ {1, . . . , T}. Let K be the
size of the mini-batch Dt for all t, then Dt := {(xJ1

t
, yJ1

t
), (xJ2

t
, yJ2

t
), . . . , (xJK

t
, yJK

t
)}, where

Jt := {J1
t , J

2
t , . . . , J

K
t } ⊆ [n] is the set of indices of the samples in the mini-batch Dt. The

objective function f(θ;Dt) for the mini-batchDt is defined as the expected risk over this mini-batch:

f(θ;Dt) :=

∫
ℓ(θ;x, y)dP̂ (x, y;Dt) (4)

where P̂ (x, y;Dt) is the empirical distribution derived from the mini-batch Dt. The gradient of the
objective function ft with respect to θ is denoted as gt := ∇θft.

Note that the sequence of mini-batches {Dt}Tt=1 can be either sampled stochastically or chosen
adaptively. Stochastic sampling involves selecting mini-batches randomly, while adaptive sampling
selects mini-batches based on specific criteria, such as the current state of the model or the importance
of the samples. The empirical distribution P̂ (x, y;Dt) depends significantly on how the mini-batch
Dt is selected from the full dataset D.

2.4 Regret Minimization

Cumulative Regret. An online optimization method can be analyzed within the framework of
regret minimization. Consider an online optimization algorithm π that generates a sequence of
model parameters θ1, . . . , θT over T iterations. Then, we can compare the performance of π with
the oracle’s optimal selection of the parameter θ∗ ∈ argminθ∈Rd f(θ;D) under the full dataset D.
The cumulative regret after T iterations is defined as:

Rπ(T) := E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]
(5)

where the expectation is taken with respect to any stochasticity in data sampling and parameter
estimation. For the algorithm π to converge, we want the cumulative regret Rπ(T) to grow slower
than the number of iterations T , specificallyRπ(T) = o(T).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Online Regret. It is important to note that the previous literature only focuses on regret minimiza-
tion over the sequence of mini-batch datasets {Dt}Tt=1, hence, for {ft}Tt=1. Specifically, the online
regret of the optimization algorithm π after T iterations is defined as:

Rπ
online(T) := E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
(6)

We will show in the proof of Theorem 1 that minimizing the cumulative regret Rπ(T) in Eq.(5)
reduces to minimizing the online regret Rπ

online(T) with respect to the sequence {ft}Tt=1 in Eq.(6).
Hence, focusing on minimizing the online regret is sufficient for achieving low cumulative regret.

2.5 Related Work: Adam and Technical Issues in Convergence Guarantees

2.5.1 Adam Optimizer

Adam (Kingma & Ba, 2015) is a widely used first-order gradient-based optimization method that
computes adaptive learning rates for each parameter by using both the first and second moment
estimates of the gradients. In each iteration t, Adam maintains the accumulated gradients mt ←
β1,tmt−1 + (1− β1,t)gt and the accumulated squared gradients vt ← β2vt−1 + (1− β2)g

2
t , where

gt is the gradient at iteration t and g2t represents the element-wise square of gradient gt. The hyper-
parameters β1, β2 ∈ [0, 1) control the decay rates of mt and vt, respectively. Since these moment
estimates are initially biased towards zero, the estimates are corrected as m̂t ← mt/(1 − βt

1) and
v̂t ← vt/(1 − βt

2). The Adam algorithm then updates the parameters using θt ← θt−1 − αt
m̂t√
v̂t+ϵ

,
where ϵ is a small positive constant added to prevent division by zero. The key characteristic of
Adam lies in its use of exponential moving average for both the gradient estimates (first-order) and the
element-wise squares of gradients (second-order). This approach has proven effective for optimizing
deep neural networks. The success of Adam has led to numerous follow-up works, such as Reddi
et al. (2018), Huang et al. (2019), Chen et al. (2020), Alacaoglu et al. (2020), and Chen et al. (2023).

2.5.2 Technical Issues in Adam-based Methods

Despite its widespread use in optimization of neural networks, the original version of Adam fails to
provide convergence guarantees. This issue has been identified and discussed by previous literature
such as Reddi et al. (2018) and Alacaoglu et al. (2020) (e.g., see Section 3 of Reddi et al. (2018)).
Although follow-up Adam-based methods (e.g., AMSGrad by Reddi et al. (2018)) have attempted to
address these technical issues, they still present errors that have not been corrected. For example, the
convergence proofs for these methods often rely on the condition that all components of the vector√
vt+1/(αt+1(1−β1,t+1))−

√
vt/(αt(1−β1,t)) are positive (refer to the proofs of Theorem 10.5 in

Kingma & Ba (2015); Theorem 4 in Reddi et al. (2018)). However, such a condition cannot be met
for all iterations, indicating that these methods might diverge. Similar issues exist in other related
works such as Huang et al. (2019) (Lemma A.2), Chen et al. (2020) (Lemma A.1), and Chen et al.
(2023) (Theorem C.10). More details are in Appendix C.

2.5.3 Technical Issues in Adam with Bandit Sampling (Liu et al., 2020)

The most closely related work to ours is Liu et al. (2020), which extends Adam using a bandit
approach, known as AdamBS. However, the fundamental technical issues about convergence in Adam-
based methods mentioned in the previous subsection still affect AdamBS. Furthermore, there are a
few shortcomings of this existing approach that we summarize as follows:

• AdamBS unfortunately fails to provide guarantees on convergence despite its claims,
both on the regret bound and on the effectiveness of the adaptive sample selection via the
bandit approach. Specifically, the claimed regret bound in Theorem 1 of Liu et al. (2020) is
incorrect. Specifically, Eq.(7) on Page 3 of the supplemental material of Liu et al. (2020) has
an error in the formula expansion.1 This technical error is crucial to their claim regarding
the convergence rate of AdamBS and its dependence on the mini-batch size K.

1Liu et al. (2020) use Jensen’s inequality when dealing with the expectation of the squared norm of the sum
of gradient estimates. However, the convexity assumption should be ensured to use Jensen’s inequality, but it
cannot be ensured.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Not only are the theoretical results incorrect in Liu et al. (2020), but also their problem
setting is limited and not practical even if the analysis were correct. The analysis was
performed only under the assumption that feature vectors follow a doubly heavy-tailed
distribution, which is a rather strong assumption and may not hold in practical scenarios.
No analysis was shown for bounded or sub-Gaussian (light-tailed) distributions, for example.

• Despite the claim on mini-batch selection of sizeK, their algorithm design leads to possibly
sampling the same sample multiple times in a given mini-batch since the bandit algorithm
utilized and analyzed in their work is based on single action selection (not a combinatorial
bandit). Hence, algorithmically their method does not perform what they have claimed.
Furthermore, because of this reason, their method fails to obtain performance gains with
respect to the mini-batch size K, which is contrary to their claim.

• Numerical evaluations (see Section 5) show poor performance of AdamBS algorithm.
An independent group also attempted to reproduce the results in Liu et al. (2020), but failed
to produce the same results (see Bansal et al. (2022)). To our best knowledge, Liu et al.
(2020) did not share their codebase publicly.

3 Proposed Algorithm: AdamCB

3.1 AdamCB Algorithm

Algorithm 1: Adam with Combinatorial Bandit Sampling (AdamCB)
Input: learning rate {αt}Tt=1, decay rates {β1,t}Tt=1, β2, batch size K, exploration parameter

γ ∈ [0, 1)
Initialize: model parameters θ0, first moment estimate m0 ← 0, second moment estimate

v0 ← 0, v̂0 ← 0, sample weights wi,0 ← 1 for all i ∈ [n]
1 for t = 1 to T do
2 Jt, pt, Snull,t ← Batch-Selection(wt−1,K, γ) (Algorithm 2)
3 Compute unbiased gradient estimate gt with respect to Jt using Eq.(8)
4 mt ← β1,tmt−1 + (1− β1,t)gt
5 vt ← β2vt−1 + (1− β2)g

2
t

6 v̂1 ← v1, v̂t ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2

7 θt+1 ← θt − αt
mt√
v̂t+ϵ

8 wt ← Weight-Update(wt−1, pt, Jt, {gj,t}j∈Jt , Snull,t, γ) (Algorithm 3)

We present our proposed algorithm, Adam with Combinatorial Bandit Sampling (AdamCB), which
is described in Algorithm 1. The algorithm begins by initializing the sample weights w0 :=
{w1,0, w2,0, . . . , wn,0} uniformly, assigning an equal weight of 1 to each of n training samples. At
each iteration t ∈ [T], the current sample weights wt−1 = {w1,t−1, w2,t−1, . . . , wn,t−1} are used to
determine the sample selection probabilities pt := {p1,t, p2,t, . . . , pn,t}, where these probabilities
are controlled with the exploration parameter γ (Line 2). A subset of samples, denoted by Dt ⊆ D,
is chosen based on these probabilities. The set of indices for samples chosen in the mini-batch Dt is
denoted by Jt := {J1

t , J
2
t , . . . , J

K
t } ⊆ [n]. Using this mini-batchDt, an unbiased gradient estimate

gt is computed (Line 3). The algorithm then updates moments estimates mt, vt, and v̂t following
the Adam-based update rules (Lines 4–6). The model parameters θt are subsequently updated based
on these moment estimates (Line 7). Finally, the weights wt−1 are adjusted to reflect the importance
of each sample, improving the batch selection process in future iterations (Line 8).

The following subsections describe the detailed process for deriving the sample probabilities pt and
selecting the mini-batch Dt = {(xj , yj)}j∈Jt

from the sample weights wt−1 utilizing our proposed
combinatorial bandit sampling.

3.2 Batch Selection: Combinatorial Bandit Sampling

Incorporating a bandit approach, we treat each sample as an arm. Since we select multiple arms
(samples) for a mini-batch, we extend the sample selection process to handle multiple arms. There

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

are two ways to sample multiple arms: with or without replacement. The previous method AdamBS
(Liu et al., 2020) samples multiple arms with replacement. In contrast, our newly proposed method,
AdamCB, uses a combinatorial bandit algorithm to sample multiple arms without replacement. This
is achieved by the Batch-Selection algorithm described in Algorithm 2.

Algorithm 2: Batch-Selection
Input: Sample weights wt−1, batch size K, exploration parameter γ ∈ [0, 1)

1 Set C ← (1/K − γ/n)/(1− γ)
2 if maxi∈[n] wi,t−1 ≥ C

∑n
i=1 wi,t−1 then

3 Let w̄t−1 be a sorted list of {wi,t−1}ni=1 in descending order
4 Set S ←

∑n
i=1 w̄i,t−1

5 for i = 1 to n do
6 Compute τ ← C · S/(1− i · C)
7 if w̄i,t−1 < τ then break, else update S ← S − w̄i,t−1

8 Set Snull,t ← {i : wi,t−1 ≥ τ} and wi,t−1 = τ for i ∈ Snull,t

9 else
10 Set Snull,t ← ∅

11 Set pi,t ← K
(
(1− γ)

wi,t−1∑n
j=1 wj,t−1

+ γ
n

)
for all i ∈ [n]

12 Set Jt ← DepRound(K, (p1,t, p2,t, . . . , pn,t)) (Algorithm 7)
13 return Jt, pt, Snull,t

Algorithm 2 comprises the following steps:

Weight Adjustment (Lines 2–10). Unlike AdamBS, where the expected total number of sample
(arm) selections is only 1, i.e,

∑n
i=1 pi,t = 1, AdamCB adapts to mini-batch training by setting∑n

i=1 pi,t = K, where K is the mini-batch size. This design ensures that the sampling probabilities
align directly with the number of samples required in each batch.2 However, this scaling can result
in some individual probabilities pi,t exceeding 1, which is not valid in probability terms. To address
this, we cap the sample weights at a threshold τ . If a weight wi,t−1 exceeds τ , the index i is added
to the set Snull,t, and the excess weight is redistributed across the remaining samples. wt−1 is sorted
in descending order during this process, which has a computational complexity of O(n log n).

Probability Computation (Line 11). After adjusting the weights, the probabilities pt for selecting
each sample are computed using the adjusted weights wt−1 and the exploration parameter γ. This
computation balances the need to exploit samples with higher weights (more likely to provide useful
gradients) and explore other samples. The inclusion of K in the scaling ensures that the sum of
probabilities matches the batch size:

∑n
i=1 pi,t = K.

Mini-batch Selection (Line 12). The final selection of K distinct samples for the mini-batch is
achieved using the DepRound (Algorithm 7) (originally proposed in Gandhi et al. (2006); also adapted
in Uchiya et al. (2010)). DepRound efficiently selects K distinct samples from the set of n samples,
ensuring each sample i is selected with probability pi,t. DepRound only requires computational
complexity of O(n), which is much more efficient compared to a naive approach that would require
considering all possible combinations of K samples from n, which has a complexity of at least

(
n
K

)
.

3.3 Computing Unbiased Gradient Estimates

Given the mini-batch data Dt = {(xj , yj)}j∈Jt
from Algorithm 2, we define the corresponding

online objective function at iteration t as ft := f(θ;Dt). Since the dataset D is distributed non-
uniformly with sample selection probabilities pt, and Dt is selected according to pt, we use an

2Setting
∑n

i=1 pi,t = K ensures that the selection probabilities are consistent with the batch size K.
Constraining

∑n
i=1 pi,t = 1, as in single-sample selection methods like AdamBS, would necessitate additional

rescaling operations or repeated sampling to meet the batch size, increasing complexity. By scaling the
probabilities directly to K, AdamCB avoids this issue and maintains efficiency while adhering to the principles
of combinatorial bandit sampling.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

importance sampling technique to compute the empirical distribution P̂ for Dt:

P̂ (x, y;Dt) :=
1

K

∑
j∈Jt

δ(x = xj , y = yj)

npj,t
(7)

where δ is the Dirac-delta function. This formulation ensures that the empirical distribution P̂ for
the mini-batch Dt closely approximates the original empirical distribution P̂ (x, y;D) defined over
the full dataset D, as expressed in Eq.(2). According to the empirical distribution P̂ (x, y;Dt) in
Eq.(7) and the online objective function ft corresponding to the mini-batch Dt in Eq.(4), we obtain:

ft = f(θ;Dt) =

∫
ℓ(θ;x, y)dP̂ (x, y;Dt) =

1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

This implies that the gradient gt := ∇θft obtained from the mini-batchDt at iteration t is computed
as follows:

gt = ∇θft = ∇θf(θ;Dt) =
1

K

∑
j∈Jt

∇θℓ(θ;xj , yj)

npj,t
=

1

K

∑
j∈Jt

gj,t
npj,t

(8)

Here, we denote the gradients for each individual sample in the mini-batch Dt as {gj,t}j∈Jt , where
Jt is the set of indices for Dt. In stochastic optimization methods like SGD and Adam, it is crucial to
use an unbiased gradient estimate when updating the moment vectors. We can easily show that gt is
an unbiased estimate of the true gradient g over the entire dataset by taking the expectation over pt,
i.e, Ept

[gt] = g. The unbiased gradient estimate gt in Eq.(8) is then used to update the first moment
estimate mt and the second moment estimate vt in each iteration of the algorithm.

3.4 Update of Sample Weights

The final step in each iteration of Algorithm 1 involves updating the sample weights wt. In the
context of the adversarial semi-bandit setting, our partial feedback consists only of the gradients
{gj,t}j∈Jt

. The loss ℓi,t occurred when the i-th arm is pulled is computed based on the norm of the
gradient ∥gi,t∥. Specifically, the loss ℓi,t is always non-negative and inversely related to ∥gi,t∥. This
means that a sample with a low gradient norm is assigned a low weight, whereas samples with larger
gradient norms are more likely to be chosen in future iterations.

Algorithm 3: Weight-Update
Input: wt−1, pt, Jt, {gj,t}j∈Jt

, Snull,t, γ ∈ [0, 1)
1 for j = 1 to n do
2 Compute loss ℓj,t = p2

min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
if j ∈ Jt; otherwise ℓj,t = 0

3 if j /∈ Snull,t then
4 wj,t ← wj,t−1 exp (−Kγℓj,t/n)

5 return wt

4 Regret Analysis

In this section, we present a regret analysis for our proposed algorithm, AdamCB. We first start by
introducing the standard assumptions that form the basis of our analysis.
Assumption 1 (Bounded gradient). There exists L > 0 such that ∥gi,t∥ ≤ L for all i ∈ [n] and
t ∈ [T].
Assumption 2 (Bounded parameter). There exists D > 0 such that ∥θs−θt∥ ≤ D for any s, t ∈ [T].

Discussion of Assumptions. Both Assumptions 1 and 2 are the standard assumptions in the relevant
literature that studies the regret bounds of Adam-based optimization (Kingma & Ba, 2015; Reddi
et al., 2018; Luo et al., 2019; Liu et al., 2020; Chen et al., 2020). A closely related work (Liu et al.,
2020) relies on the additional stronger assumption of a doubly heavy-tailed feature distribution. In
contrast, the regret bound for AdamCB is derived using only these two standard assumptions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1 Regret Bound of AdamCB

Theorem 1 (Regret bound of AdamCB). Suppose Assumptions 1-2 hold, and we run AdamCB for a
total T iterations with αt =

α√
t

and with β1,t := β1λ
t−1, λ ∈ (0, 1). Then, the cumulative regret of

AdamCB (Algorithm 1) with batch size K is upper-bounded by

O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

)1/4
)
. (9)

Discussion of Theorem 1. The cumulative regret bound ofAdamCB is sub-linear inT , i.e.,Rπ(T) =
o(T). Hence, AdamCB is guaranteed to converge to the optimal solution. The first term in the regret
bound, d

√
T , which is commonly shared by the results in all Adam-based methods (Kingma & Ba,

2015; Reddi et al., 2018; Liu et al., 2020). The second term, (
√
d/n3/4) ((T/K) ln (n/K))

1/4,
illustrates the impact of the number of samples n as well as the batch size K on regret. As the
number of samples n increases, this term decreases, suggesting that having more data generally
helps in reducing regret (hence converging faster to optimality). Similarly, increasing the batch size
K also decreases this term, reflecting that larger mini-batches can reduce the variance in gradient
estimates, thus improving the performance.

4.2 Proof Sketch of Theorem 1

In this subsection, we present the proof sketch of Theorem 1. The proof start by decomposing
the cumulative regret Rπ(T) into two primary parts: the cumulative online regret Rπ

online(T) and
additional terms. The decomposition is given by:

Rπ(T) = Rπ
online(T) + E

[
T∑

t=1

(f(θt;D)− f(θt;Dt))

]
︸ ︷︷ ︸

(A)

+E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
︸ ︷︷ ︸

(B)

(10)

We now prove the following two key lemmas to bound the online regretRπ
online(T).

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K, which
is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative online
regretRπ

online(T) over T iterations,

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

where ρ1, ρ2, and ρ3 are constants (See Appendix B.2).

Lemma 1 provides an upper bound for the cumulative online regret over T iterations. This lemma
shows that pt affect the theoretical upper bound of Rπ

online(T), so we wish to choose pt that could
lead to minimizing the upper bound. The following key lemma shows that it can be achieved by
combinatorial semi-bandit method, adapted from EXP3 (Auer et al., 2002b).

Lemma 2. Suppose Assumptions 1-2 hold. If we set γ = min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection

(Algorithm 2) and the weight update rule (Algorithm 3) following AdamCB (Algorithm 1) implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

Lemma 2 bounds the difference between the expected cumulative loss of the chosen mini-batch
and the optimal mini-batch, showing sub-linear growth in T with dependence on the batch size K.
Combining Lemma 1 and Lemma 2, we can bound the cumulative online regretRπ

online(T), which also
grows sub-linearly in T . Proofs of Lemma 1 and Lemma 2 are in Appendix B.2 and Appendix B.3,
respectively. The discrepancy terms (A) and (B) in Eq.(10) capture the difference between the full
dataset D and the mini-batches {Dt}Tt=1, and are also bounded sub-linearly in T (See Lemma 11 in
Appendix B.4). Since the cumulative regretRπ(T) is decomposed into the online regretRπ

online(T)
with additional sub-linear terms, we obtain the cumulative regret bound for AdamCB.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Comparison of Convergence Rates

Optimizer Convergence Rate

Adam (Kingma & Ba, 2015) (corrected†) O
(
d
√
T +

√
d

n1/2

√
T
)

AdamBS (Liu et al., 2020) (corrected†) O
(
d
√
T +

√
d

n3/4 (T lnn)
1
4

)
AdamCB (Ours) O

(
d
√
T +

√
d

n3/4

(
T
K ln n

K

) 1
4

)
† Note that the original results and proofs in both Kingma & Ba (2015) and Liu et al. (2020) are incorrect.
Hence, their claimed regret bounds in both works are invalid. However, we newly derive the corrected versions
of the regret bounds for Kingma & Ba (2015) and Liu et al. (2020) in Theorems 2 and 3, which can be of
independent interest.

4.3 Comparisons with Adam and AdamBS

In this subsection, our goal is to demonstrate that the convergence rate of AdamCB (Algorithm 1)
is provably more efficient than Adam (Kingma & Ba, 2015) which employs uniform sampling and
AdamBS (Liu et al., 2020) which utilizes (non-combinatorial) bandit sampling. Note that the original
proofs in Kingma & Ba (2015) and Liu et al. (2020) are incorrect as explained in Sections 2.5.2
and 2.5.3. Hence, their claimed regret bounds in both works are invalid. However, we newly
derive the corrected versions of the regret bounds for Kingma & Ba (2015) and Liu et al. (2020) in
Theorems 2 and 3, respectively, which we believe are independent contributions.

To facilitate comparisons with corrected results of Kingma & Ba (2015) and Liu et al. (2020), we
additionally introduce the following assumption:
Assumption 3 (Bounded variance of gradient). There exists σ > 0 such that Var(∥gi,t∥) ≤ σ2 for
all i ∈ [n] and t ∈ [T]

Assumption 3 is commonly used in the previous literature (Reddi et al., 2016; Nguyen et al., 2018;
Zou et al., 2019; Patel et al., 2022). It is important to note that Assumption 3 is not required for our
analysis of our algorithm in Theorem 1. Rather, we employ the assumption to fairly compare with
corrected results for the existing Adam-based methods (Kingma & Ba, 2015; Liu et al., 2020).

Under Assumptions 1, 2, and 3, the convergence rate for (corrected) Adam using uniform sampling
is given by O

(
d
√
T +

√
d

n1/2

√
T
)

(Theorem 2 in Appendix D), while the convergence rate for
(corrected) Adam using bandit sampling isO

(
d
√
T +

√
d

n3/4 (T lnn)1/4
)

(Theorem 3 in Appendix E)
when Assumptions 1 and 2 hold. The convergence rates are outlined in Table 1.

Faster convergence of AdamCB. In the case of uniform sampling in Adam, the second term in the
convergence rate exhibits a dependence on n−1/2, which implies that regret decreases as the dataset
size increases. However, this reduction in regret occurs at a slower rate compared to bandit-based
sampling methods. Both AdamBS (corrected) and AdamCB achieve an improved n−3/4 dependency,
resulting in a faster convergence. When comparing the two bandit-based sampling methods, AdamCB
surpasses AdamBS (corrected) in terms of convergence rate, particularly by the factor of the batch size
K. That is, AdamBS does not benefit from multiple samples in batch while our AdamCB enjoys faster
convergence. Hence, AdamCB is not only the first algorithm with correct performance guarantees
for Adam with adaptive batch selection, but to our best knowledge, also the method with the fastest
convergence guarantees in terms of regret performance.

5 Numerical Experiments
Experimental Setup. To empirically evaluate the proposed algorithm, AdamCB, we conduct ex-
periments using deep learning models, including multilayer perceptrons (MLP) and convolutional
neural networks (CNN), on three benchmark datasets: MNIST, Fashion MNIST, and CIFAR10. We
compare AdamCB to Adam and AdamBS. All experiments are implemented in PyTorch. Performance
is assessed by plotting training and test losses over epochs, with training loss calculated using the full
dataset. Results represent the average over five runs with different random seeds, including standard
deviation. We use the same hyper-parameters for all methods: β1 = 0.9, β2 = 0.999, γ = 0.4, K = 128,
and α = 0.001. Experimental details and additional experiments are in Appendix G.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 2 4 6 8 10
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

ni
ng

 L
os

s

(b) Fashion MNIST

0 2 4 6 8 10
Epochs

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ai

ni
ng

 L
os

s

(c) CIFAR-10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Te
st

 L
os

s

Adam AdamBS AdamCB (ours)

Figure 1: Performances with MLP model on MNIST, Fashion MNIST, and CIFAR10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s

(b) Fashion MNIST

0 2 4 6 8 10
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Tr
ai

ni
ng

 L
os

s

(c) CIFAR-10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Te
st

 L
os

s

Adam AdamBS AdamCB (ours)

Figure 2: Performances with CNN model on MNIST, Fashion MNIST, and CIFAR10

Results. Figures 1 and 2 demonstrate that AdamCB consistently outperforms Adam, showing faster
reduction in both training and test losses across all datasets. The results suggest that combinatorial
bandit sampling is more effective than uniform sampling for performance optimization. When at-
tempting to replicate the results of AdamBS from Liu et al. (2020), we observe inconsistent outcomes,
with significant fluctuations in the losses, suggesting potential instability and divergence. In con-
trast, AdamCB consistently converges across all datasets, highlighting that AdamCB not only achieves
superior performance but also provides practical efficiency compared to Adam and AdamBS.

6 Conclusion

In this work, we introduced AdamCB, an optimization algorithm that integrates combinatorial ban-
dit sampling with the Adam method. Through rigorous theoretical analysis, we demonstrated that
AdamCB achieves a superior convergence rate compared to existing Adam-based algorithms. Further-
more, extensive numerical experiments validated the practical advantages of AdamCB, showing its
effectiveness across various datasets. Thus, AdamCB offers both provable convergence guarantees
and practical efficiency, addressing the limitations of previous Adam-based methods. We believe our
results provide a strong foundation for future research on adaptive optimization methods using bandit
techniques and their broader applications in machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 Reproducibility Statement

For each theoretical result, we present the complete set of assumptions in the main paper (see
Section 4) and the detailed proofs of the main results are provided in the appendix, along with
experimental details and additional experiments in Appendix G to reproduce the main experimental
results.

References
Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret

analysis for adam-type algorithms. In International conference on machine learning, pp. 202–
210. PMLR, 2020.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th annual foundations of
computer science, pp. 322–331. IEEE, 1995.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002b.

Aman Bansal, Shubham Anand Jain, and Bharat Khandelwal. Bag of tricks for faster & stable image
classification. CS231n Course Project Report, 2022. URL https://cs231n.stanford.edu/
reports/2022/pdfs/122.pdf.

S Bock, J Goppold, and M Weiß. An improvement of the convergence proof of the adam-optimizer.
arXiv preprint arXiv:1804.10587, 2018.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020.

Yineng Chen, Zuchao Li, Lefei Zhang, Bo Du, and Hai Zhao. Bidirectional looking with a novel
double exponential moving average to adaptive and non-adaptive momentum optimizers. In
International Conference on Machine Learning, pp. 4764–4803. PMLR, 2023.

Timothy Dozat. Incorporating nesterov momentum into adam. International Conference on Learning
Representations, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding
and its applications to approximation algorithms. Journal of the ACM (JACM), 53(3):324–360,
2006.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. Pmlr, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Haiwen Huang, Chang Wang, and Bin Dong. Nostalgic adam: weighting more of the past gradi-
ents when designing the adaptive learning rate. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pp. 2556–2562, 2019.

11

https://cs231n.stanford.edu/reports/2022/pdfs/122.pdf
https://cs231n.stanford.edu/reports/2022/pdfs/122.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Rui Liu, Tianyi Wu, and Barzan Mozafari. Adam with bandit sampling for deep learning. Advances
in Neural Information Processing Systems, 33:5393–5404, 2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Hongseok Namkoong, Aman Sinha, Steve Yadlowsky, and John C Duchi. Adaptive sampling
probabilities for non-smooth optimization. In International Conference on Machine Learning, pp.
2574–2583. PMLR, 2017.

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. Advances in neural information processing systems, 27,
2014.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin
Takác. Sgd and hogwild! convergence without the bounded gradients assumption. In International
Conference on Machine Learning, pp. 3750–3758. PMLR, 2018.

Vivak Patel, Shushu Zhang, and Bowen Tian. Global convergence and stability of stochastic gradient
descent. Advances in Neural Information Processing Systems, 35:36014–36025, 2022.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pp.
314–323. PMLR, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent methods.
Optimization Letters, 10:1233–1243, 2016.

Robert E Schapire. Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir
N. Vapnik, pp. 37–52. Springer, 2013.

Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its
recent magnitude. coursera: Neural networks for machine learning. COURSERA Neural Networks
Mach. Learn, 17, 2012.

Phuong Thi Tran et al. On the convergence proof of amsgrad and a new version. IEEE Access, 7:
61706–61716, 2019.

Taishi Uchiya, Atsuyoshi Nakamura, and Mineichi Kudo. Algorithms for adversarial bandit problems
with multiple plays. In International Conference on Algorithmic Learning Theory, pp. 375–389.
Springer, 2010.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss
minimization. In international conference on machine learning, pp. 1–9. PMLR, 2015.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-
gences of adam and rmsprop. In Proceedings of the IEEE/CVF Conference on computer vision
and pattern recognition, pp. 11127–11135, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Auxiliary Lemmas 13

B Proof for AdamCB Regret Bound 14
B.1 Auxiliary Lemmas for Lemma 1 . 14
B.2 Proof for Lemma 1 . 17
B.3 Proof for Lemma 2 . 22
B.4 Proof for Theorem 1 (AdamCB Regret Bound) 24

C Problematic in Convergence Proof of Adam-based Optimizers 29

D Proof for Convergence Rate when using Uniform Sampling 32

E Correction of AdamBS (Liu et al., 2020) 34

F Additional Algorithm 38
F.1 DepRound Algorithm . 38

G More on Numerical Experiments 39
G.1 Details on Experimental Setup . 39
G.2 Additional Experiments . 41

H Additional Related Works 43

A Auxiliary Lemmas

Definition 1. A function f : Rd → R is convex if for all u, v ∈ Rd, and all λ ∈ [0, 1],
λf(u) + (1− λ)f(v) ≥ f(λu+ (1− λ)v)

Lemma 3. If a function f : Rd → R is convex, then for all u, v ∈ Rd,
f(v) ≥ f(u) +∇f(u)T(v − u)

where (−)T denotes the transpose of (−).
Lemma 4 (Cauchy-Schwarz inequality). For all n ≥ 1, ai, bi ∈ R, (1 ≤ i ≤ n),(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
Lemma 5 (Taylor series). For α ∈ R, and 0 ≤ α ≤ 1,∑

t≥1

αt =
1

1− α
and

∑
t≥1

tαt−1 =
1

(1− α)2

Lemma 6 (Upper bound for the harmonic series). For N ∈ N,
N∑

n=1

1

n
≤ lnN + 1 and

N∑
n=1

1√
n
≤ 2
√
N

Lemma 7. For all n ∈ N, and ai, bi ∈ R such that ai ≥ 0 and bi > 0 for all i ∈ [n],∑n
i=1 ai∑n
j=1 bj

≤
n∑

i=1

ai
bi

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B Proof for AdamCB Regret Bound

In this section, we provide proofs of key lemmas, Lemma 1 and Lemma 2. They are needed to prove
Theorem 1, which shows the regret bound for AdamCB. In the last of this section, we present the
proof for Theorem 1.

B.1 Auxiliary Lemmas for Lemma 1

In this subsection, we present auxiliary lemmas and proofs for Lemma 1. Our proofs basically follow
arguments as in Tran et al. (2019). For the sake of completeness, all lemmas from Tran et al. (2019)
are restated with our problem setting.
Lemma 8. For all t ≥ 1, we have

v̂t = max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t

}
, (11)

where v̂t is in AdamCB (Algorithm 1).

Proof. Prove by induction on t. Recall that by the update rule on v̂t, we have v̂1 ← v1, v̂t ←
max

{
(1−β1,t)

2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2. Thus,

v̂2 = max

{
(1− β1,2)

2

(1− β1,1)2
v̂1, v2

}
= max

{
(1− β1,2)

2

(1− β1,1)2
v1, v2

}
= max

{
(1− β1,2)

2

(1− β1,s)2
vs, 1 ≤ s ≤ 2

}
which we proved for the case when t = 2 in Eq.(11). Now, assume that

v̂t−1 = max

{
(1− β1,t−1)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

}
,

and Eq.(11) holds for all 1 ≤ j ≤ t− 1. By the update rule on v̂t,

v̂t = max

{
(1− β1,t)

2

(1− β1,t−1)2
v̂t−1, vt

}
= max

{
(1− β1,t)

2

(1− β1,t−1)2

(
max

{
(1− β1,t−1)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

})
, vt

}
= max

{
max

{
(1− β1,t)

2

(1− β1,t−1)2
(1− β1,t−1)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

}
,

(1− β1,t)
2

(1− β1,t−1)2
vt

}
= max

{
max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t− 1

}
,

(1− β1,t)
2

(1− β1,t−1)2
vt

}
= max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t

}

which ends the proof.

Lemma 9. For all t ≥ 1, we have √
v̂t ≤

L

γ(1− β1)
(12)

where v̂t is in AdamCB (Algorithm 1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. By Lemma 8,

v̂t = max

{
(1− β1,t)

2

(1− β1,s)2
vs, for all 1 ≤ s ≤ t

}
Therefore, there is some 1 ≤ s ≤ t such that v̂t = (1−β1,t)

2

(1−β1,s)2
vs. Recall that by the update rule on vt,

we have vt ← β2vt−1 + (1− β2)g
2
t . This implies

vt = (1− β2)

t∑
k=1

βt−k
2 g2k

Hence,

√
v̂t =

√
(1− β1,t)2

(1− β1,s)2
vs

=
√

1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2 g2k

≤
√
1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2 (max

1≤r≤s
∥gr∥)2

Recall the unbiased gradient estimate gt in Eq.(8),

gt =
1

K

∑
j∈Jt

gj,t
npj,t

By the triangle inequality property of norms and the fact that pi,t ≥ γ/n and ∥gi,t∥ ≤ L for all
i ∈ [n] and t ∈ [T] from Assumption 1, the unbiased gradient estimate is bounded by L/γ, i.e,
∥gt∥ ≤ L/γ. Therefore,

√
v̂t ≤ (L/γ)

√
1− β2

(
1− β1,t

1− β1,s

)√√√√ s∑
k=1

βs−k
2

≤ (L/γ)
√

1− β2

(
1− β1,t

1− β1,s

)
1√

1− β2

= (L/γ)

(
1− β1,t

1− β1,s

)
≤ L

γ(1− β1)

which ends the proof.

Lemma 10. For the parameter settings and conditions assumed in Lemma 1, we have

T∑
t=1

m2
t,u√
tv̂t,u

≤
√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

Proof. Recall that by the update rule on mt, vt, we have mt ← β1,tmt−1 + (1 − β1,t)gt and
vt ← β2vt−1 + (1− β2)g

2
t . This implies

mt =

t∑
k=1

(1− β1,k)

(
t∏

r=k+1

β1,r

)
gk, vt = (1− β2)

t∑
k=1

βt−k
2 g2k

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Since for all t ≥ 1, v̂t,u ≥ vt,u by Lemma 8, we have

m2
t,u√
tv̂t,u

≤
m2

t,u√
tvt,u

=

[∑t
k=1(1− β1,k)

(∏t
r=k+1 β1,r

)
gk,u

]2
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤

(∑t
k=1(1− β1,k)

2
(∏t

r=k+1 β1,r

))(∑t
k=1

(∏t
r=k+1 β1,r

)
g2k,u

)
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤

(∑t
k=1 β

t−k
1

)(∑t
k=1 β

t−k
1 g2k,u

)
√
(1− β2)t

∑t
k=1 β

t−k
2 g2k,u

≤ 1

(1− β1)
√
1− β2

∑t
k=1 β

t−k
1 g2k,u√

t
∑t

k=1 β
t−k
2 g2k,u

where the second inequality is by Lemma 4, the third inequality is from the fact that β1,k ≤ 1
and β1,k ≤ β1 for all 1 ≤ k ≤ T , and the fourth inequality is obtained by applying Lemma 5 to∑t

k=1 β
t−k
1 . Therefore,

m2
t,u√
tv̂t,u

≤ 1

(1− β1)
√
1− β2

√
t

∑t
k=1 β

t−k
1 g2k,u√∑t

k=1 β
t−k
2 g2k,u

≤ 1

(1− β1)
√
1− β2

√
t

t∑
k=1

βt−k
1 g2k,u√
βt−k
2 g2k,u

=
1

(1− β1)
√
1− β2

√
t

t∑
k=1

βt−k
1√
βt−k
2

|gk,u|

=
1

(1− β1)
√
1− β2

√
t

t∑
k=1

ηt−k|gk,u|

where the second inequality is by Lemma 7 and we define η := β1√
β2

. Therefore,

T∑
t=1

m2
t,u√
tv̂t,u

=
1

(1− β1)
√
1− β2

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| (13)

It is sufficient to consider
∑T

t=1
1√
t

∑t
k=1 η

t−k|gk,u|. Firstly, this can be expanded as:

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| = η0|g1,u|

+
1√
2

[
η1|g1,u + η0|g2,u|]

]
+

1√
3

[
η2|g1,u + η1|g2,u|+ η0|g3,u|]

]
+ · · ·

+
1√
T

[
ηT−1|g1,u + ηT−2|g2,u|+ · · ·+ η0|gT,u|]

]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Changing the role of |g1,u| as the common factor, we obtain,
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| = |g1,u|
(
η0 +

1√
2
η1 +

1√
3
η2 + · · ·+ 1√

T
ηT−1

)
+ |g2,u|

(
1√
2
η0 +

1√
3
η1 + · · ·+ 1√

T
ηT−2

)
+ |g3,u|

(
1√
3
η0 +

1√
4
η1 + · · ·+ 1√

T
ηT−3

)
+ · · ·

+ |gT,u|
1√
T
η0

In other words,
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| =
T∑

t=1

|gt,u|
T∑

k=t

1√
k
ηk−t

Moreover, since
T∑

k=t

1√
k
ηk−t ≤

T∑
k=t

1√
t
ηk−t =

1√
t

T∑
k=t

ηk−t =
1√
t

T−t∑
k=0

ηk ≤ 1√
t

(
1

1− η

)
where the last inequality is by Lemma 5, we obtain

T∑
t=1

1√
t

t∑
k=1

ηt−k|gk,u| ≤
T∑

t=1

|gt,u|
1√
t

(
1

1− η

)
=

1

1− η

T∑
t=1

1√
t
|gt,u|

Furthermore, since
T∑

t=1

1√
t
|gt,u| =

√√√√(T∑
t=1

1√
t
|gt,u|

)2

≤

√√√√ T∑
t=1

1

t

√√√√ T∑
t=1

g2t,u ≤ (
√
lnT + 1)∥g1:T,u∥

where the first inequality is by Lemma 4 and the last inequality is by Lemma 6, we obtain
T∑

t=1

1√
t

t∑
k=1

ηt−k|gk,u| ≤
√
lnT + 1

1− η
∥g1:T,u∥

Hence, by Eq.(13),
T∑

t=1

m2
t,u√
tv̂t,u

≤
√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

which ends the proof.

B.2 Proof for Lemma 1

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K,
which is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative
online regretRπ

online(T) over T iterations,

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

where ρ1, ρ2, and ρ3 are defined as follows:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these
conditions: (a) αt = α√

t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T], λ ∈ (0, 1), (c)
η = β1/

√
β2 ≤ 1, and (d) γ ∈ [0, 1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. Recall Lemma 3.
Since ft : Rd → R is convex, we have, ft(θ∗)− ft(θt) ≥ gT

t (θ
∗ − θt). This means that

ft(θt)− ft(θ
∗) ≤ gT

t (θt − θ∗) =

d∑
u=1

gt,u(θt,u − θ∗,u)

From the parameter update rule presented in Algorithm 1,
θt+1 = θt − αtmt/

√
v̂t

= θt − αt

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

gt

)
We focus on the u-th dimension of the parameter vector θt ∈ Rd. Substract the scalar θ∗,u and square
both sides of the above update rule, we have,

(θt+1,u − θ∗,u)
2 = (θt,u − θ∗,u)

2 − 2αt

(
β1,t√
v̂t,u

mt−1,u +
(1− β1,t)√

v̂t,u
gt,u

)
(θt,u − θ∗,u) + α2

t

(
mt,u√
v̂t,u

)2

We can rearrange the above equation

gt,u(θt,u − θ∗,u) =

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)

+
αt

2(1− β1,t)

m2
t,u√
v̂t,u
− β1,t

(1− β1,t)
mt−1,u(θt,u − θ∗,u) (14)

Note that,

Rπ
online(T) = E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
= E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
where θ∗ ∈ argminθ∈Rd

∑T
t=1 ft(θ) is defined as the optimal parameter that minimizes the cumu-

lative loss over given T iterations. Hence,

Rπ
online(T) = E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
≤ E

[
T∑

t=1

gT
t (θt − θ∗)

]
= E

[
T∑

t=1

d∑
u=1

gt,u(θt,u − θ∗,u)

]
(15)

Combining Eq.(14) with Eq.(15), we obtain

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]
+ E

[
d∑

u=1

T∑
t=2

β1,t

(1− β1,t)
mt−1,u(θ

∗
,u − θt,u)

]
On the other hand, for all t ≥ 2, we have

mt−1,u(θ
∗
,u − θt,u) =

(v̂t−1,u)
1/4

√
αt−1

(θ∗,u − θt,u)
√
αt−1

mt−1,u

(v̂t−1,u)1/4

≤
√
v̂t−1,u

2αt−1
(θ∗,u − θt,u)

2 + αt−1

m2
t−1,u

2
√
v̂t−1,u

where the inequality is from the fact that pq ≤ p2/2 + q2/2 for any p, q ∈ R. Hence,

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2

]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Since β1,t ≤ β1(1 ≤ t ≤ T), we obtain

d∑
u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2 ≤
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

Moreover, we have
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

=

d∑
u=1

T−1∑
t=1

β1,t+1αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1)

m2
t,u√
v̂t,u

where the last inequality is from the assumption that β1,t ≤ β1 < 1(1 ≤ t ≤ T). Therefore,

d∑
u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

+

d∑
u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

≤
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

and we obtain the bound forRπ
online(T) as:

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

(16)

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
(17)

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
(18)

Now, we start to bound each term: (16), (17), and (18).

Bound for the term (16). Let us rewrite the term (16) as

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

= E

[
d∑

u=1

√
v̂1,u

2α1(1− β1,1)
(θ1,u − θ∗,u)

2

]
+ E

[
d∑

u=1

T∑
t=2

√
v̂t,u

2αt(1− β1,t)
(θt,u − θ∗,u)

2

]

− E

[
d∑

u=1

T∑
t=2

√
v̂t−1,u

2αt−1(1− β1,t−1)
(θt,u − θ∗,u)

2

]
− E

[
d∑

u=1

√
v̂T,u

2αT (1− β1,T)
(θT,u − θ∗,u)

2

]

Omitting the last term and replacing αt = α/
√
t(1 ≤ t ≤ T), we obtain

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

≤ E

[
d∑

u=1

√
v̂1,u

2α(1− β1,1)
(θ1,u − θ∗,u)

2

]

+
1

2α
E

[
d∑

u=1

T∑
t=2

(θt,u − θ∗,u)
2

(√
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)

)]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Recall that by the update rule on v̂t, we have v̂t,u ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1,u, vt,u

}
. Therefore,

v̂t,u ≥ (1−β1,t)
2

(1−β1,t−1)2
v̂t−1,u, and hence

√
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)
≥

√
t

(1−β1,t)2

(1−β1,t−1)2
v̂t−1,u

(1− β1,t)
−
√

(t− 1)v̂t−1,u

(1− β1,t−1)

=

√
tv̂t−1,u

(1− β1,t−1)
−
√

(t− 1)v̂t−1,u

(1− β1,t−1)

> 0

Now by the positivity of the essential formula
√

tv̂t,u
(1−β1,t)

−
√

(t−1)v̂t−1,u

(1−β1,t−1)
, we obtain

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

≤ D2

2α

d∑
u=1

√
v̂1,u

(1− β1)
+

D2

2α
E

[
d∑

u=1

T∑
t=2

(√
tv̂t,u

(1− β1,t)
−
√
(t− 1)v̂t−1,u

(1− β1,t−1)

)]

≤ D2

2α

d∑
u=1

√
T v̂T,u

(1− β1,T)
≤ dD2L

2αγ(1− β1)2

√
T

where the last inequality is by Lemma 9.

Bound for the term (17).

E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
=

α

1− β1
E

[
d∑

u=1

T∑
t=1

m2
t,u√
tv̂t,u

]

≤ α

1− β1
E

[
d∑

u=1

√
lnT + 1

(1− β1)
√
1− β2(1− η)

∥g1:T,u∥

]

=
α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

where the last inequality is by Lemma 10.

Bound for the term (18). By Assumption 2 that ∥θm− θn∥ ≤ D for any m,n ∈ [T], αt = α/
√
t,

and β1,t = β1λ
t−1 ≤ β1 ≤ 1, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ D2

2α(1− β1)
E

[
d∑

u=1

T∑
t=2

β1,t

√
(t− 1)v̂t−1,u

]
Therefore, from Lemma 9, we obtain

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dD2L

2αγ(1− β1)2
E

[
T∑

t=2

β1,t

√
(t− 1)

]
Note that

T∑
t=2

β1,t

√
(t− 1) =

T∑
t=2

β1λ
t−1
√
(t− 1) ≤

T∑
t=2

β1

√
(t− 1)λt−1 ≤

T∑
t=2

β1tλ
t−1 ≤ β1

(1− λ)2

where the first inequality is from the fact that β1 ≤ 1, and the last inequality is from Lemma 5. Thus,
the bound for the term (18) is

E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
≤ dβ1D

2L

2αγ(1− β1)2(1− λ)2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We bounded for terms (16), (17), and (18).

Rπ
online(T) ≤

dD2L

2αγ(1− β1)2

√
T +

α
√
lnT + 1

(1− β1)2
√
1− β2(1− η)

d∑
u=1

E [∥g1:T,u∥]

+
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Hence,

Rπ
online(T) ≤ ρ1d

√
T + ρ2

d∑
u=1

E [∥g1:T,u∥] + ρ3 (19)

where ρ1, ρ2, and ρ3 are defined as the following:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Now, we consider
∑d

u=1 E [∥g1:T,u∥], which is in the right-hand side of Eq.(19).

d∑
u=1

E [∥g1:T,u∥] = d

d∑
u=1

1

d
E


√√√√ T∑

t=1

g2t,u

 ≤ d

√√√√ d∑
u=1

1

d
E

[
T∑

t=1

g2t,u

]
=
√
d

√√√√ T∑
t=1

E [∥gt∥2]

where the first inequality is due to the concavity of square root. Recall that the unbiased gradient
estimate is gt = 1

K

∑
j∈Jt

gj,t
npj,t

. Hence,

Rπ
online(T) ≤ ρ1d

√
T + ρ2

d∑
u=1

Ept
[∥g1:T,u∥] + ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√ T∑
t=1

Ept
[∥gt∥2] + ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√√√ T∑
t=1

Ept


∥∥∥∥∥∥ 1

K

∑
j∈Jt

gj,t
npj,t

∥∥∥∥∥∥
2
+ ρ3

The last inequality uses Jensen’s inequality to the convex function ∥ · ∥2. Therefore,

Rπ
online(T) ≤ ρ1d

√
T + ρ2

√
d

√√√√√√ 1

n2K2

T∑
t=1

Ept


∥∥∥∥∥∥
∑
j∈Jt

gj,t
pj,t

∥∥∥∥∥∥
2
+ ρ3

≤ ρ1d
√
T + ρ2

√
d

√√√√√ 1

n2K

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2
(pj,t)2

+ ρ3

where the last inequality is by Lemma 4. This completes the proof of Lemma 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.3 Proof for Lemma 2

Lemma 2. Suppose Assumptions 1-2 hold. If we set γ = min

{
1,
√

n ln (n/K)
(e−1)TK

}
, the batch selection

(Algorithm 2) and the weight update rule (Algorithm 3) following AdamCB (Algorithm 1) implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)

Proof. We set ℓj,t = p2
min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
in Algorithm 3. Since ∥gi,t∥ ≤ L and pi,t ≥ pmin

for all i ∈ [n] and t ∈ [T] by Assumption 1, we have ℓi,t ∈ [0, 1].
Let Wt :=

∑n
i=1 wt. Then, for any t ∈ [T],

Wt

Wt−1
=

∑
i∈[n]\Snull,t

wi,t

Wt−1
+

∑
i∈Snull,t

wi,t

Wt−1

=
∑

i∈[n]\Snull,t

wi,t−1

Wt−1
exp

(
−Kγ

n
ℓ̂i,t

)
+

∑
i∈Snull,t

wi,t−1

Wt−1

The last equality is by the weight update rule in Algorithm 3. From the probability computation in
Algorithm 2, we have

pi,t = K

(
(1− γ)

wi,t−1∑n
j=1 wj,t−1

+
γ

n

)
≥ Kγ

n

Thus, we obtain the following bound,

0 ≤ Kγ

n
ℓ̂i,t =

Kγℓi,t
npi,t

≤ ℓi,t ≤ 1

By the fact that e−x ≤ 1− x+ (e− 2)x2 for all x ∈ [0, 1], and considering Kγ
n ℓ̂i,t as x, we have

Wt

Wt−1
≤

∑
i∈[n]\Snull,t

wi,t−1

Wt−1

[
1− Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

+
∑

i∈Snull,t

wi,t−1

Wt−1

= 1 +
∑

i∈[n]\Snull,t

wi,t−1

Wt−1

[
−Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

= 1 +
∑

i∈[n]\Snull,t

pi,t

K −
γ
n

1− γ

[
−Kγ

n
ℓ̂i,t + (e− 2)

(Kγ

n
ℓ̂i,t
)2]

≤ 1− γ

n(1− γ)

∑
i∈[n]\Snull,t

pi,tℓ̂i,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]\Snull,t

pi,t(ℓ̂i,t)
2

≤ 1− γ

n(1− γ)

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]

ℓ̂i,t

The last inequality uses the fact that pi,tℓ̂i,t = ℓi,t ≤ 1 for i ∈ Jt and pi,tℓ̂i,t = 0 for i /∈ Jt. Taking
logarithms and using the fact that ln(1 + x) ≤ x for all x > −1 gives

ln
Wt

Wt−1
≤ − γ

n(1− γ)

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

∑
i∈[n]

ℓ̂i,t

By summing over t, we obtain

ln
WT

W1
≤ − γ

n(1− γ)

T∑
t=1

∑
i∈Jt\Snull,t

ℓi,t +
K(e− 2)γ2

n2(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

On the other hand, for the sequence {J∗
t }Tt=1 of batches with the optimal

∑T
t=1

∑
j∈Jt

ℓj,t among
all subsets Jt containing K elements,

ln
WT

W1
≥ ln

∑
j∈J∗

t
wj,T

W1
≥
∑

j∈J∗
t
lnwj,T

K
+ ln

K

n

= −γ

n

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t + ln
K

n

The first line above uses the fact that∑
j∈J∗

t

wj,T ≥ K(Πj∈J∗
t
wj,T)

1/K

and the second line uses wj,T = exp
(
−(Kγ/n)

∑
t:j /∈Snull,t

ℓ̂j,t

)
.

From combining results,

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t +
n

γ
ln

K

n
≤ 1

(1− γ)

T∑
t=1

∑
i∈Jt\Snull,t

ℓi,t +
(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

Since
∑

j∈J∗
t

∑
t:j∈Snull,t

ℓj,t ≤ 1
1−γ

∑T
t=1

∑
i∈Snull,t

ℓi,t trivially holds, we have

∑
j∈J∗

t

∑
t:j /∈Snull,t

ℓ̂j,t +
∑
j∈J∗

t

∑
t:j∈Snull,t

ℓj,t +
n

γ
ln

K

n
≤ 1

(1− γ)

T∑
t=1

∑
i∈Jt

ℓi,t +
(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓ̂i,t

Let LMIN-K(T) :=
∑T

t=1

∑
j∈J∗

t
ℓj,t and LEXP3-K(T) :=

∑T
t=1

∑
j∈Jt

ℓj,t. Taking the expectation
of both sides and using the properties of ℓ̂i,t, we obtain,

LMIN-K(T) +
n

γ
ln

K

n
≤ 1

(1− γ)
E[LEXP3-K(T)] +

(e− 2)Kγ

n(1− γ)

T∑
t=1

∑
i∈[n]

ℓi,t

This is because the expectation of ℓ̂j,t is ℓj,t from the fact that DepRound selects i-th sample with
probability pi,t. Since

∑T
t=1

∑n
i=1 ℓi,t ≤

nLMIN-K(T)
K , we have the following statement,

LMIN-K(T)− E[LEXP3-K(T)] ≤ (e− 1)γLMIN-K(T) +
n

γ
ln

n

K

Using the fact that LMIN-K(T) ≤ TK and choosing the input parameter as γ =

min

{
1,
√

n ln (n/K)
(e−1)TK

}
, we obtain the following,

LMIN-K(T)− E[LEXP3-K(T)] ≤ 2
√
e− 1

√
KnT ln

n

K
≤ 2.63

√
KnT ln

n

K

Therefore, considering the scaling factor, we have:
T∑

t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
=

L2

p2min

(LMIN-K(T)− E[LEXP3-K(T)])

≤ 2.63L2

p2min

√
KnT ln

n

K

= O
(√

KnT ln
n

K

)
This completes the proof of Lemma 2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.4 Proof for Theorem 1 (AdamCB Regret Bound)

In this subsection, we prove Theorem 1. Recall that the online regret only focuses on the minimization
over the sequence of mini-batch datasets {Dt}Tt=1. Thus, the online regret of the algorithm at the
end of T iterations is defined as

Rπ
online(T) := E

[
T∑

t=1

f(θt;Dt)− min
θ∈Rd

T∑
t=1

f(θ;Dt)

]
However, our ultimate goal is to find the optimal selection of the parameter under the full dataset.
Consider an online optimization algorithm π that computes the sequence of model parameters
θ1, . . . , θT . Then, we can compare the performance of π with the oracle’s optimal selection of the
parameter minθ∈Rd f(θ;D) under the full dataset. The cumulative regret after T iterations is

Rπ(T) := E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]
where the expectation is taken with respect to any stochasticity in data sampling and parameter
estimation. Before we prove Theorem 1, we first prove the following lemma.
Lemma 11. The cumulative regret Rπ(T) can be decomposed into sub-parts which includes the
cumulative online regretRπ

online(T) and additional terms that are sub-linear in T :

Rπ(T) = Rπ
online(T) +O(

√
T)

Proof. First, rewrite Rπ(T) by expanding the terms inside the expectations. We add and subtract
the sum

∑T
t=1 f(θt;Dt) inside the expectation:

Rπ(T) = E

[
T∑

t=1

f(θt;D)− T · min
θ∈Rd

f(θ;D)

]

= E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt) +

T∑
t=1

f(θt;Dt)− T · min
θ∈Rd

f(θ;D)

]

We also add and subtract the term minθ∈Rd

∑T
t=1 f(θ;Dt) inside the expectation. Then, we have

the following,

Rπ(T) = E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt) +

T∑
t=1

f(θt;Dt)− T · min
θ∈Rd

f(θ;D)

]

= E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]
+ E

[
T∑

t=1

f(θt;Dt)− min
θ∈Rd

T∑
t=1

f(θ;Dt)

]

+ E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
Since the second term of the right-hand side in above equation is equal the online cumulative regret
Rπ

online(T), we can rewriteRπ(T) as:

Rπ(T) = Rπ
online(T)

+ E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]
(20)

+ E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
(21)

Now, let us consider each term in detail.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Bound for the term (20). Recall the expression of f(θ;D) and ft; = f(θ;Dt):

f(θ;D) = 1

n

n∑
i=1

ℓ(θ;xi, yi), f(θ;Dt) =
1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

where Jt is the set of indices in the subset dataset (mini-batch) at iteration t, Dt ⊆ D. For any
θ ∈ Rd, we have

E[f(θ;Dt)] = E

 1

K

∑
j∈Jt

ℓ(θ;xj , yj)

npj,t

 =
1

K

∑
j∈Jt

E
[
ℓ(θ;xj , yj)

npj,t

]

=
1

K

∑
j∈Jt

n∑
i=1

ℓ(θ;xi, yi)

npi,t
pi,t =

1

n

n∑
i=1

ℓ(θ;xi, yi) = f(θ;D).

Note that, by linearity of expectation, we can interchange the expectation and the summation. Since
E[f(θ;Dt)] = f(θ;D), we have for the term (20) as:

(20) = E

[
T∑

t=1

f(θt;D)−
T∑

t=1

f(θt;Dt)

]

= E

[
T∑

t=1

[f(θt;D)− f(θt;Dt)]

]

=

T∑
t=1

E[f(θt;D)− f(θt;Dt)] = 0

Bound for the term (21). Let θ∗ be the parameter that minimizes the cumulative loss over the full
dataset D, i.e, θ∗ ∈ argminθ∈Rd f(θ;D). Since θ∗ is optimal for the full dataset, we have:

min
θ∈Rd

f(θ;D) = f(θ∗;D)

Similarly, denote the optimal parameter for the cumulative regret for mini-batch datasets by θ∗t :=

argminθ∈Rd

∑T
t=1 f(θ;Dt). Given these notations, we can write the term (21) as:

(21) = E

[
min
θ∈Rd

T∑
t=1

f(θ;Dt)− T · min
θ∈Rd

f(θ;D)

]
= E

[
T∑

t=1

f(θ∗t ;Dt)− T · f(θ∗;D)

]
We can add and subtract the term

∑T
t=1 f(θ

∗;Dt) inside the expectation.

E

[
T∑

t=1

f(θ∗t ;Dt)− T · f(θ∗;D)

]
= E

[
T∑

t=1

f(θ∗t ;Dt)−
T∑

t=1

f(θ∗;Dt)

]

+ E

[
T∑

t=1

f(θ∗;Dt)− T · f(θ∗;D)

]
Note that E[f(θ∗;Dt)] = f(θ∗;D) holds as we have shown when bounding the term (20). By the
linearity of expectation, we have

E

[
T∑

t=1

f(θ∗;Dt)

]
=

T∑
t=1

E[f(θ∗;Dt)] = T · f(θ∗;D)

Since E
[∑T

t=1 f(θ
∗;Dt)− T · f(θ∗;D)

]
= 0 holds, the term (21) reduces to

(21) = E

[
T∑

t=1

(f(θ∗t ;Dt)− f(θ∗;Dt))

]

= E

[
T∑

t=1

(ft(θ
∗
t)− ft(θ

∗))

]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

By the convexity of ft, we have:
ft(θ

∗
t)− ft(θ

∗) ≤ gT
t (θ

∗
t − θ∗)

Therefore,

E

[
T∑

t=1

(ft(θ
∗
t)− ft(θ

∗))

]
≤ E

[
T∑

t=1

gT
t (θ

∗
t − θ∗)

]
Using bounded gradients assumption (Assumption 1), i.e, ∥gt∥ ≤ L/γ (Proof in Lemma 9), and
Cauchy-Schwarz inequality (Lemma 4), we have

(21) ≤ E

[
T∑

t=1

gT
t (θ

∗
t − θ∗)

]
≤

T∑
t=1

E[∥gt∥∥θ∗t − θ∗∥] ≤ (L/γ)

T∑
t=1

E[∥θ∗t − θ∗∥]

Recall the parameter update rule, θt+1 ← θt − αtmt/(
√
v̂t + ϵ). Then

∥θ∗t+1 − θ∗∥ ≤ ∥θ∗t − θ∗∥+ αt

∥∥∥mt/(
√
v̂t + ϵ)

∥∥∥ (22)

Now, we claim that ∥mt∥ is bounded. The update rule for the first moment estimate:
mt ← β1,tmt−1 + (1− β1,t)gt

Then, the expression for mt is:

mt =

t∑
k=1

(1− β1,k)

(
t∏

r=k+1

β1,r

)
gk

where β1,t = β1λ
t−1 with β1 < 1 and λ < 1. Note that ∥gk∥ is bounded by L/γ for all k. This

implies that:

∥mt∥ ≤
t∑

k=1

|1− β1,k|

∣∣∣∣∣
t∏

r=k+1

β1,r

∣∣∣∣∣ ∥gk∥
≤ (L/γ)

t∑
k=1

|1− β1λ
k−1|

∣∣∣∣∣
t∏

r=k+1

β1λ
r−1

∣∣∣∣∣
≤ (L/γ)

t∑
k=1

βt−k
1 λ

t(t−1)−k(k−1)
2

≤ (L/γ)

t∑
k=1

βt−k
1

≤ L

γ(1− β1)

The last inequality is due to Lemma 5. Therefore, the step size in Eq.(22) is bounded by:
αt∥mt∥√
v̂t + ϵ

≤ αtL

ϵγ(1− β1)
=

αL√
tϵγ(1− β1)

We use the fact that αt = α/
√
t. By summing over T iterations, we obtain

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ αL

ϵγ(1− β1)

T∑
t=1

1√
t
≤ 2αL

√
T

ϵγ(1− β1)

The last inequality is by Lemma 6. Finally, we get

(21) ≤ (L/γ)

T∑
t=1

E[∥θ∗t − θ∗∥] ≤ 2αL2
√
T

ϵγ2(1− β1)
= O(

√
T)

In summary, the cumulative regretRπ(T) is decomposed by the following:
Rπ(T) = Rπ

online(T) + (20) + (21)

where (20) = 0 and (21) = O(
√
T). Thus, this completes the proof of Lemma 11, saying
Rπ(T) = Rπ

online(T) +O(
√
T)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Now, we prove the main Theorem 1.

Proof. From Lemma 11, we have shown that the cumulative regretRπ(T) can be decomposed into
the online regret Rπ

online(T) with the additional sub-linear terms. Hence, we are left to bound the
cumulative online regretRπ

online(T). Recall the first key lemma (Lemma 1):

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

Recall also the second key lemma (Lemma 2):
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O
(√

KnT ln
n

K

)
Let we denote M := minpt

∑T
t=1 Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
. Then by Lemma 2, we have

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = M + C

√
KnT ln

n

K

where C > 0 is a constant. By plugging above equation to Lemma 1, we obtain

Rπ
online(T) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + C

√
KnT ln

n

K
+ ρ3

≤ ρ1d
√
T + ρ2

√
d

n
√
K

√
M + ρ2

√
d

n
√
K

√
C

√
KnT ln

n

K
+ ρ3

= ρ1d
√
T +

ρ2
√
d

n
√
K

√
M +

ρ4
√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

We use the fact that
√
a+ b ≤

√
a+
√
b in the second inequality and we define ρ4 := ρ2

√
C.

Now, we should consider M . Using the tower property, we can express M as,

M = min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2


= min

pt

T∑
t=1

Ept

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2
| pt


= min

pt

T∑
t=1

Ept

 n∑
i=1

∑
j∈Jt

∥gi,t∥2

(pi,t)2
pi,t


= min

pt

T∑
t=1

Ept

∑
j∈Jt

[
n∑

i=1

∥gi,t∥2

pi,t

]
= Kmin

pt

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2

pi,t

]
For this minimization problem, it can be shown that for every iteration t, the optimal distribution
p∗t is proportional to the gradient norm of individual example. Formally speaking, for any t, the
optimal solution p∗t to the problem argminpt

∑T
t=1 Ept

[∑n
i=1

∥gi,t∥2

pi,t

]
is (pj,t)∗ =

∥gj,t∥∑n
i=1 ∥gi,t∥ for

all j ∈ [n]. By plugging this solution,

M = K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

By plugging M to the online regret bound expression,

Rπ
online(T) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

= ρ1d
√
T + ρ2

√
d

n
√
K

√√√√K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

= ρ1d
√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ4

√
d

n

(
nT

K
ln

n

K

)1/4

+ ρ3

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T]. Then, the second term in the right-hand side
of above inequality is bounded by Lρ2

√
dT , which diminishes by the first term that have order of

O(d
√
T). Hence, the online regretRπ

online(T) after T iterations is,

Rπ
online(T) ≤ O(d

√
T) +O

(√
d

n

(
nT

K
ln

n

K

)1/4)
Finally, by Lemma 11, we can bound the cumulative regret using the bound of the online regret as

Rπ(T) = Rπ
online(T) +O(

√
T) ≤ O(d

√
T) +O

(√
d

n

(
nT

K
ln

n

K

)1/4)
+O(

√
T)

= O

(
d
√
T +

√
d

n3/4

(
T

K
ln

n

K

) 1
4

)
This completes the proof of Theorem 1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C Problematic in Convergence Proof of Adam-based Optimizers

Adam (Kingma & Ba, 2015) is a widely used optimizer in practice. However, Reddi et al. (2018)
pointed out issues with the convergence proof of Adam and introduced a modified version called
AMSGrad to address the problem. Unfortunately, the convergence proof of AMSGrad also contains
errors. In this section, we highlight a specific issue in the convergence proof of AMSGrad, which
is similarly overlooked in the convergence proof of Adam. As a result, neither Adam nor AMSGrad
guarantees convergence, and they actually diverge under certain conditions.

Algorithm 4: AMSGrad
Input: θ1 ∈ Rd, {αt}Tt=1, {β1,t}Tt=1, β2

Initialize: m0 ← 0, v0 ← 0, v̂0 ← 0
1 for t = 1 to T do
2 gt = ∇ft(θt)
3 mt = β1,tmt−1 + (1− β1,t)gt
4 vt = β2vt−1 + (1− β2)g

2
t

5 v̂t = max{v̂t−1, vt} and V̂t = diag(v̂t)

6 θt+1 = θt − αtmt/
√
v̂t

Before presenting the convergence issue in the proof of AMSGrad, it is essential to first revisit and
establish the following inequality, as discussed in Reddi et al. (2018).
Lemma 12. Algorithm 4 achieves the following guarantee, for all T ≥ 1:

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

(23)

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]
(24)

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
(25)

Proof. Recall Lemma 3.

Since ft : Rd → R is convex, we have, ft(θ∗)− ft(θt) ≥ gT
t (θ

∗ − θt). This means that

ft(θt)− ft(θ
∗) ≤ gT

t (θt − θ∗) =

d∑
u=1

gt,u(θt,u − θ∗,u)

From the parameter update rule presented in Algorithm 4,

θt+1 = θt − αtmt/
√
v̂t

= θt − αt

(
β1,t√
v̂t
mt−1 +

(1− β1,t)√
v̂t

gt

)
We focus on the u-th dimension of the parameter vector θt ∈ Rd. Substract the scalar θ∗,u and square
both sides of the above update rule, we have,

(θt+1,u − θ∗,u)
2 = (θt,u − θ∗,u)

2 − 2αt

(
β1,t√
v̂t,u

mt−1,u +
(1− β1,t)√

v̂t,u
gt,u

)
(θt,u − θ∗,u) + α2

t

(
mt,u√
v̂t,u

)2

We can rearrange the above equation as

gt,u(θt,u − θ∗,u) =

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)

+
αt

2(1− β1,t)

m2
t,u√
v̂t,u
− β1,t

(1− β1,t)
mt−1,u(θt,u − θ∗,u) (26)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Note that,

Rπ
online(T) = E

[
T∑

t=1

ft(θt)− min
θ∈Rd

T∑
t=1

ft(θ)

]
= E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
where θ∗ ∈ argminθ∈Rd

∑T
t=1 ft(θ) is defined as the optimal parameter that minimizes the cumu-

lative loss over given T iterations. Hence,

Rπ
online(T) = E

[
T∑

t=1

[ft(θt)− ft(θ
∗)]

]
≤ E

[
T∑

t=1

gT
t (θt − θ∗)

]
= E

[
T∑

t=1

d∑
u=1

gt,u(θt,u − θ∗,u)

]
(27)

Combining Eq.(26) with Eq.(27), we obtain

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]
+ E

[
d∑

u=1

T∑
t=2

β1,t

(1− β1,t)
mt−1,u(θ

∗
,u − θt,u)

]
On the other hand, for all t ≥ 2, we have

mt−1,u(θ
∗
,u − θt,u) =

(v̂t−1,u)
1/4

√
αt−1

(θ∗,u − θt,u)
√
αt−1

mt−1,u

(v̂t−1,u)1/4

≤
√
v̂t−1,u

2αt−1
(θ∗,u − θt,u)

2 + αt−1

m2
t−1,u

2
√
v̂t−1,u

where the inequality is from the fact that pq ≤ p2/2 + q2/2 for any p, q ∈ R. Hence,

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2

]
Since β1,t ≤ β1(1 ≤ t ≤ T), we obtain

d∑
u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1,t)
(θ∗,u − θt,u)

2 ≤
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

Moreover, we have
d∑

u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

=

d∑
u=1

T−1∑
t=1

β1,t+1αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1,t+1)

m2
t,u√
v̂t,u

≤
d∑

u=1

T∑
t=1

αt

2(1− β1)

m2
t,u√
v̂t,u

where the last inequality is from the assumption that β1,t ≤ β1 < 1(1 ≤ t ≤ T). Therefore,
d∑

u=1

T∑
t=1

αt

2(1− β1,t)

m2
t,u√
v̂t,u

+

d∑
u=1

T∑
t=2

β1,tαt−1

2(1− β1,t)

m2
t−1,u√
v̂t−1,u

≤
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

and we obtain the bound forRπ
online(T) as:

Rπ
online(T) ≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

(
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
)]

+ E

[
d∑

u=1

T∑
t=1

αt

1− β1

m2
t,u√
v̂t,u

]

+ E

[
d∑

u=1

T∑
t=2

β1,t

√
v̂t−1,u

2αt−1(1− β1)
(θ∗,u − θt,u)

2

]
This completes the proof of Lemma 12.

Issue in the Convergence Proof of AMSGrad. The problem with the convergence proof of
AMSGrad arises when analyzing the term in Eq.(23) from Lemma 12.

E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1,t)

{
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
}]

≤ E

[
d∑

u=1

T∑
t=1

√
v̂t,u

2αt(1− β1)

{
(θt,u − θ∗,u)

2 − (θt+1,u − θ∗,u)
2
}]

Indeed, Reddi et al. (2018) used the fact that β1,t ≤ β1 in the above inequality, however, it is not
always valid because the term

(θt,u − θ∗,u)
2 − (θt+1,u − θ∗,u)

2

in Eq.(23) can be negative. Thus, the convergence rate of AMSGrad described in Theorem 4 of
Reddi et al. (2018) is incorrect, and AMSGrad does not guarantee convergence as well as Adam. The
same issue appears in the convergence proofs of other Adam-based algorithms, i.e, Theorem 10.5
in Kingma & Ba (2015), Theorem 4.4 in Bock et al. (2018), Theorem 5 in Luo et al. (2019), and
Theorem 4.2 in Chen et al. (2020).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D Proof for Convergence Rate when using Uniform Sampling

To compare the convergence rate between using uniform sampling and bandit sampling, we will
now prove the following Theorem 2. It is important to note that Theorem 2 includes an additional
condition—Assumption 3—which was not present in Theorem 1. This assumption plays a key role
in distinguishing the results between these two theorems.
Theorem 2. Suppose Assumptions 1,2, and 3 hold. The convergence rate for (corrected) Adam using
uniform sampling is given by:

O

(
d
√
T +

√
d

n1/2

√
T

)

Proof. We start the proof from the first key lemma (Lemma 1):

Lemma 1. Suppose Assumptions 1-2 hold. AdamCB (Algorithm 1) with a mini-batch of size K,
which is formed dynamically by distribution pt, achieves the following upper-bound for the cumulative
online regretRπ

online(T) over T iterations,

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3 (28)

where ρ1, ρ2, and ρ3 are defined as follows:

ρ1 =
D2L

2αγ(1− β1)2
, ρ2 =

α
√
1 + lnT

(1− β1)2
√
1− β2(1− η)

, ρ3 =
dβ1D

2L

2αγ(1− β1)2(1− λ)2

Note that d is the dimension of parameter space and the inputs of Algorithm 1 follows these
conditions: (a) αt = α√

t
, (b) β1, β2 ∈ [0, 1), β1,t := β1λ

t−1 for all t ∈ [T], λ ∈ (0, 1), (c)
η = β1/

√
β2 ≤ 1, and (d) γ ∈ [0, 1).

Consider the second term in the right-hand side of Eq.(28),

1

n2K

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 =
1

n2K

T∑
t=1

Ept

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2
| pt


=

1

n2K

T∑
t=1

Ept

 n∑
i=1

∑
j∈Jt

∥gi,t∥2

(pi,t)2
pi,t


=

1

n2K

T∑
t=1

Ept

∑
j∈Jt

[
n∑

i=1

∥gi,t∥2

pi,t

]
=

1

n2

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2

pi,t

]

The tower property is used in the first equality. Since
∑n

i=1
∥gi,t∥2

pi,t
is independent to j ∈ Jt, the

mini-batch size K is multiplied in the last equality. Therefore, we can express the cumulative online
regretRπ

online(T) as:

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

Ept

[
n∑

i=1

∥gi,t∥2
pi,t

]
+ ρ3

In the case when we select samples uniformly, we can set the probability distribution pt to satisfy
pi,t = 1/n for all t ∈ [T] and i ∈ [n]. By plugging it, we obtain

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n

T∑
t=1

[
n∑

i=1

∥gi,t∥2
]
+ ρ3

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Now, recall Assumption 3:
Assumption 3. There exists σ > 0 such that Var(∥gi,t∥) ≤ σ2 for all i ∈ [n] and t ∈ [T]

1

n

[
n∑

i=1

∥gi,t∥2
]
≤
(
1

n

n∑
i=1

∥gi,t∥
)2

+
σ2

n

Therefore, the online regret boundRπ
online(T) for uniform sampling is,

Rπ
online(T) = O(d

√
T) +O

√d
√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+
σ2

n
T


Applying the fact that

√
a+ b ≤

√
a+
√
b, we obtain,

Rπ
online(T) = O(d

√
T) +O

√d
√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2
+O

(
√
d

√
T

n

)

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T]. Then, the second term in the right-hand side
of above inequality is bounded by O(

√
dT), which diminishes by the first term that have order of

O(d
√
T). Hence, the online regretRπ

online(T) after T iterations is given by

Rπ
online(T) = O(d

√
T) +O

(√
d

n1/2

√
T

)

Finally, by Lemma 11, we can bound the cumulative regret using the online regret, which completes
the regret analysis for uniform sampling.

Rπ(T) = Rπ
online(T) +O(

√
T) = O(d

√
T) +O

(√
d

n1/2

√
T

)
+O(

√
T)

= O

(
d
√
T +

√
d

n1/2

√
T

)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E Correction of AdamBS (Liu et al., 2020)

This subsection introduces the corrected analysis for AdamBS (Liu et al., 2020). We use Algorithm 5
and Algorithm 6 for modified AdamBS.

Algorithm 5: (Corrected) Adam with Bandit Sampling (AdamBS)
Input: learning rate {αt}Tt=1, decay rates {β1,t}Tt=1, β2, batch size K, exploration parameter

γ ∈ [0, 1)
Initialize: model parameters θ0; first moment estimate m0 ← 0; second moment estimate

v0 ← 0, v̂0 ← 0; sample weights wi
0 ← 1 for all i ∈ [n]

1 for t = 1 to T do
2 Compute sample distribution pt for all j ∈ [n]
3

pj,t = (1− γ)
wj,t−1∑n
i=1 wi,t−1

+
γ

n

Select a mini-batch Dt := {(xj , yj)}j∈Jt
by sampling with replacement from pt

4 Compute unbiased gradient estimate gt with respect to the mini-batch Dt using Eq.(8)
5 mt ← β1,tmt−1 + (1− β1,t)gt
6 vt ← β2vt−1 + (1− β2)g

2
t

7 v̂1 ← v1, v̂t ← max
{

(1−β1,t)
2

(1−β1,t−1)2
v̂t−1, vt

}
if t ≥ 2

8 θt+1 ← θt − αtmt/(
√
v̂t + ϵ)

9 wt ← Weight-Update(wt−1, pt, Jt, {gj,t}j∈Jt
, γ) (Algorithm 6)

Algorithm 6: (Corrected) Weight-Update for AdamBS
Input: wt−1, pt, Jt, {gj,t}j∈Jt

, and γ ∈ [0, 1)
1 for j = 1 to n do
2 Compute loss ℓj,t = p2

min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
if j ∈ Jt, otherwise, ℓj,t = 0

3 Compute unbiased gradient estimate ℓ̂j,t =
ℓj,t

∑K
k=1 I(j=Jk

t)

Kpj,t

4 Update sample weights wj,t = wj,t−1 exp
(
−γℓ̂j,t/n

)
5 return wt

At iteration t ∈ [T], AdamBS chooses a mini-batch Dt = {(xj , yj)}j∈Jt of size K according to
probability distribution pt with replacement. We denote Jt as the set of indices for the mini-batch
Dt. Then, the algorithm receives the loss, regarding losses from all chosen samples in the mini-batch
D as one loss, is 1

K

∑
j∈Jt

ℓj,t, denote as ℓj,t ∈ [0, 1]. The unbiased estimate of the loss ℓ̂j,t is,

ℓ̂j,t =
ℓj,t
∑K

k=1 I(j = Jk
t)

Kpj,t

We have a following key lemma concerning the rate of convergence of AdamBS.
Lemma 13 (Corrected version of Lemma 1 in Liu et al. (2020)). Suppose Assumptions 1-2 hold. If we

set γ = min

{
1,
√

n lnn
(e−1)T

}
, the weight update rule (Algorithm 6) following AdamBS (Algorithm 5)

implies
T∑

t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O(K
√
nT lnn)

Proof. We set ℓj,t = p2
min

L2

(
−∥gj,t∥2

(pj,t)2
+ L2

p2
min

)
in Algorithm 6. Since, ∥gi,t∥2 ≤ L and pi,t ≥ pmin

for all t ∈ [T], i ∈ [n] by Assumption 1, we have ℓi,t ∈ [0, 1].

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

We use the following simple facts, which are immediately derived from the definitions,
n∑

i=1

pi,tℓ̂i,t =
1

K

∑
j∈Jt

ℓj,t := ℓJt
t (29)

n∑
i=1

pi,t(ℓ̂i,t)
2 =

n∑
i=1

pi,t

(
ℓi,t
∑K

k=1 I(i = Jk
t)

Kpi,t

)
ℓ̂i,t =

n∑
i=1

ℓi,t

∑K
k=1 I(i = Jk

t)

K
ℓ̂i,t ≤

n∑
i=1

ℓ̂i,t

(30)

Let Wt :=
∑n

i=1 wt. Then, for any t ∈ [T],

Wt

Wt−1
=

n∑
i=1

wi,t

Wt−1

=

n∑
i=1

wi,t−1

Wt−1
exp

(
−γ

n
ℓ̂it

)
The last equality is by the weight update rule in Algorithm 6. From the probability computation in
Algorithm 5, we have

pi,t = (1− γ)
wi,t−1∑n
j=1 wj,t−1

+
γ

n
≥ γ

n

Thus, we obtain the following bound,

0 ≤ γ

n
ℓ̂i,t =

γ

n

(
ℓi,t
∑K

k=1 I(i = Jk
t)

Kpi,t

)
≤ ℓi,t ≤ 1

By the fact that e−x ≤ 1− x+ (e− 2)x2 for all x ∈ [0, 1], and considering γ
n ℓ̂i,t as x, we have

Wt

Wt−1
≤

n∑
i=1

wi,t−1

Wt−1

[
1− γ

n
ℓ̂it + (e− 2)

(γ
n
ℓ̂it
)2]

=

n∑
i=1

pi,t − γ/n

1− γ

[
1− γ

n
ℓ̂it + (e− 2)

(γ
n
ℓ̂it
)2]

≤ 1− γ/n

1− γ

n∑
i=1

pi,tℓ̂
i
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

pi,t(ℓ̂i,t)
2

≤ 1− γ/n

1− γ
ℓJt
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

ℓ̂i,t

The last inequality uses Eq.(29) and Eq.(30). Taking logarithms and using the fact that ln (1 + x) ≤ x
for all x > −1 gives

ln
Wt

Wt−1
≤ − γ/n

1− γ
ℓJt
t +

(e− 2)(γ/n)2

1− γ

n∑
i=1

ℓ̂i,t

By summing over t, we obtain

ln
WT

W1
≤ − γ/n

1− γ

T∑
t=1

ℓJt
t +

(e− 2)(γ/n)2

1− γ

T∑
t=1

n∑
i=1

ℓ̂i,t

On the other hand, for any action j,

ln
WT

W1
≥ ln

wj,T

W1
= −γ

n

T∑
t=1

ℓ̂j,t − lnn

From combining results,
T∑

t=1

ℓJt
t ≥ (1− γ)

T∑
t=1

ℓ̂j,t −
n lnn

γ
− (e− 2)

γ

n

T∑
t=1

n∑
i=1

ℓ̂i,t

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

We next take the expectation of both sides with respect to probability distribution pt and since
Ept

[ℓ̂j,t] = ℓj,t, we have

Ept
[

T∑
t=1

ℓJt
t] ≥ (1− γ)

T∑
t=1

ℓj,t −
n lnn

γ
− (e− 2)

γ

n

n∑
i=1

T∑
t=1

ℓi,t

Since j ∈ Jt were chosen arbitrarily, we can choose the best J∗
t for every iteration t. Let LMIN(T) :=∑T

t=1

∑
j∈J∗

t
ℓj,t and LEXP3(T) :=

∑T
t=1

∑
j∈Jt

ℓj,t. Summing over j ∈ J∗
t , and using the fact

that
∑T

t=1

∑n
i=1 ℓi,t ≤

nLMIN(T)
K , we have the following statement,

E[LEXP3(T)] ≥ (1− γ)LMIN(T)−
nK lnn

γ
− (e− 2)γLMIN(T)

Then, we get the following,

LMIN(T)− E[LEXP3(T)] ≤ (e− 1)γLMIN(T) +
nK lnn

γ

Using the fact that LMIN(T) ≤ TK and choosing the input parameter as γ = min

{
1,
√

n lnn
(e−1)T

}
,

we obtain the following,

LMIN(T)− E[LEXP3(T)] ≤ 2
√
e− 1K

√
nT lnn ≤ 2.63K

√
nT lnn

Therefore, considering the scaling factor, we have:

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
−min

pt

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
=

L2

p2min

(LMIN(T)− E[LEXP3(T)])

≤ 2.63L2

p2min

K
√
nT lnn

= O
(
K
√
nT lnn

)

Theorem 3 (Corrected version of Theorem 4 in Liu et al. (2020)). Suppose Assumptions 1-2 hold.
The convergence rate for (corrected) AdamBS using bandit sampling is given by:

O

(
d
√
T +

√
d

n3/4
(T lnn)1/4

)

Proof. From Lemma 11, we have shown that the cumulative regretRπ(T) can be decomposed into
the online regret Rπ

online(T) with the additional sub-linear terms. Hence, we are left to bound the
cumulative online regretRπ

online(T). Recall the first key lemma (Lemma 1):

Rπ
online(T) ≤ ρ1d

√
T +
√
dρ2

√√√√ 1

n2K

T∑
t=1

Ept

[∑
j∈Jt

∥gj,t∥2
(pj,t)2

]
+ ρ3

We can apply Lemma 1 to AdamBS as AdamCB, since both AdamBS and AdamCB follow the same
model parameter update rule. However, we use the corrected lemma (Lemma 13) for AdamBS, rather
than applying the key lemma (Lemma 2) used for AdamCB. Recall Lemma 13:

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

−min
pt

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = O(K
√
nT lnn)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Let we denote M := minpt

∑T
t=1 Ept

[∑
j∈Jt

∥gj,t∥2

(pj,t)2

]
. Then by Lemma 13, we have

T∑
t=1

Ept

∑
j∈Jt

∥gj,t∥2

(pj,t)2

 = M + C ′K
√
nT lnn

where C ′ > 0 is a constant. By plugging above equation to Lemma 1, we obtain

Rπ
online(T) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + C ′K

√
nT lnn+ ρ3

≤ ρ1d
√
T + ρ2

√
d

n
√
K

√
M + ρ2

√
d

n
√
K

√
C ′K
√
nT lnn+ ρ3

= ρ1d
√
T +

ρ2
√
d

n
√
K

√
M +

ρ5
√
d

n
(nT lnn)

1/4
+ ρ3

We use the fact that
√
a+ b ≤

√
a+
√
b in the second inequality and we define ρ5 := ρ2

√
C ′.

Now, we should consider M . Using the tower property and applying the optimal solution for pt at
each iteration, we can express M as,

M = K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

This follows the same argument as in the proof of Theorem 1 (See B.4). Then, by plugging M to the
online regret bound expression,

Rπ
online(T) ≤ ρ1d

√
T + ρ2

√
d

n
√
K

√
M + ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

= ρ1d
√
T + ρ2

√
d

n
√
K

√√√√K

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

= ρ1d
√
T +
√
dρ2

√√√√ 1

n2

T∑
t=1

(
n∑

i=1

∥gi,t∥

)2

+ ρ5

√
d

n
(nT lnn)

1/4
+ ρ3

By Assumption 1, ∥gi,t∥ ≤ L for i ∈ [n] and t ∈ [T]. Then, the second term in the right-hand side
of above inequality is bounded by Lρ2

√
dT , which diminishes by the first term that have order of

O(d
√
T). Hence, the online regretRπ

online(T) after T iterations is,

Rπ
online(T) = O(d

√
T) +O

(√
d

n
(nT lnn)

1/4

)
Finally, by Lemma 11, we can bound the cumulative regret using the bound of the online regret as

Rπ(T) = Rπ
online(T) +O(

√
T) = O(d

√
T) +O

(√
d

n
(nT lnn)

1/4

)
+O(

√
T)

= O

(
d
√
T +

√
d

n3/4
(T lnn)

1/4

)
This completes the proof of Theorem 3.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

F Additional Algorithm

F.1 DepRound Algorithm

Algorithm 7: DepRound
Input: Natural number K(< n), sample distribution p := (p1, p2, . . . , pn) with

∑n
i=1 p

i = K
Output: Subset of [n] with distinct K elements

1 while there is an i with 0 < pi < 1 do
2 Choose distinct i, j with 0 < pi < 1 and 0 < pj < 1

3 Set α = min{1− pi, pj} and β = min{pi, 1− pj}
4 Update pi and pj as:

(pi, pj) =

{(
pi + α, pj − α

)
with probability β

α+β(
pi − β, pj + β

)
with probability α

α+β

5 return {i : pi = 1, 1 ≤ i ≤ n}

The DepRound (Gandhi et al., 2006) (Dependent Rounding) algorithm is used to select a subset of
elements from a set while maintaining certain probabilistic properties. It ensures that the sum of
probabilities is preserved and elements are chosen with the correct marginal probabilities.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

G More on Numerical Experiments

G.1 Details on Experimental Setup

We compared our method, AdamCB, with corrected Adam and corrected AdamBS. The experiments
measured training loss and test loss, averaged over five runs with different random seeds, and included
1-sigma error bars for reliability. Throughout the entire experiments, identical hyper-parameters are
used with any tuning as shown in Table 2.

Table 2: Hyper-parameters used for experiments

Hyper-parameter Value
Learning rate αt 0.001
Exponential decay rates for momentum β1,1, β2 0.9, 0.999
Decay rate for β1,1 for convergence guarantee λ 1-1e-8
ϵ for non-zero division 1e-8
Loss Function Cross-Entropy
Batch Size K 128
exploration parameter γ 0.4
Number of epochs 10

We trained MLP models on the MNIST, Fashion MNIST, and CIFAR-10 datasets. The detailed
architectures of the MLP models for each dataset are provided in Table 3.

Table 3: MLP Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Flatten (N, 28281) (N, 28281)
Dense + ReLU (N, 28281) (N, 512)
Dense + ReLU (N, 512) (N, 256)
Dense (N, 256) (N, 10)

Layer Type Input Output
Flatten (N, 32323) (N, 32323)
Dense + ReLU (N, 32323) (N, 512)
Dense + ReLU (N, 512) (N, 256)
Dense (N, 256) (N, 10)

We also trained CNN models on the same datasets. The detailed architectures of the CNN models
for each dataset are presented in Table 4.

Table 4: CNN Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Conv + ReLU (N, 1, 28, 28) (N, 32, 28, 28)
MaxPool (N, 32, 28, 28) (N, 32, 14, 14)
Conv + ReLU (N, 32, 14, 14) (N, 64, 14, 14)
MaxPool (N, 64, 14, 14) (N, 64, 7, 7)
Flatten (N, 64, 7, 7) (N, 3136)
Dense (N, 3136) (N, 128)
Dense + Softmax (N, 128) (N, 10)

Layer Type Input Output
Conv + ReLU (N, 3, 32, 32) (N, 64, 32, 32)
MaxPool (N, 64, 32, 32) (N, 64, 16, 16)
Conv + ReLU (N, 64, 16, 16) (N, 128, 16, 16)
MaxPool (N, 128, 16, 16) (N, 128, 8, 8)
Conv + ReLU (N, 128, 8, 8) (N, 256, 8, 8)
MaxPool (N, 256, 8, 8) (N, 256, 4, 4)
Flatten (N, 256, 4, 4) (N, 25644)
Dense (N, 25644) (N, 512)
Dense + Softmax (N, 512) (N, 10)

We also evaluated the original Adam optimizer and the AMSGrad optimizer on the CIFAR-10 dataset
using both MLP and CNN models. We also conducted an evaluation of the corrected AdamBS
algorithm (Algorithm 5). The results are presented in Figures 3 and 4. From these plots, it
is evident that our AdamCB algorithm outperforms the other Adam-based algorithms. To further
assess performance, we conducted experiments using the VGG model, which is a larger architecture
compared to the MLP and CNN models. The detailed structure of the VGG architecture is provided
in Table 5, and the results are shown in Figure 5.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 2 4 6 8 10
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

ni
ng

 L
os

s

(b) Fashion MNIST

0 2 4 6 8 10
Epochs

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ai

ni
ng

 L
os

s

(c) CIFAR-10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

1.4

1.6

1.8

2.0

2.2

Te
st

 L
os

s

Adam Adam (corrected) AMSGrad AdamBS AdamBS (corrected) AdamCB (ours)

Figure 3: Comparison of Adam-based optimizations on MLP model

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s

(b) Fashion MNIST

0 2 4 6 8 10
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Tr
ai

ni
ng

 L
os

s

(c) CIFAR-10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Te
st

 L
os

s

Adam Adam (corrected) AMSGrad AdamBS AdamBS (corrected) AdamCB (ours)

Figure 4: Comparison of Adam-based optimizations on CNN model

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s

(b) Fashion MNIST

0 20 40 60 80 100 120
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Tr
ai

ni
ng

 L
os

s

(c) CIFAR-10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Te
st

 L
os

s

0 20 40 60 80 100 120
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Te
st

 L
os

s

Adam Adam (corrected) AMSGrad AdamBS AdamCB (ours)

Figure 5: Comparison of Adam-based optimizations on VGG model

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 5: VGG Architecture for MNIST/Fashion MNIST (left) and CIFAR10 (right)

Layer Type Input Output
Conv + ReLU (N, 1, 28, 28) (N, 64, 28, 28)
Conv + ReLU (N, 64, 28, 28) (N, 64, 28, 28)
MaxPool (N, 64, 28, 28) (N, 64, 14, 14)
Conv + ReLU (N, 64, 14, 14) (N, 128, 14, 14)
Conv + ReLU (N, 128, 14, 14) (N, 128, 14, 14)
MaxPool (N, 128, 14, 14) (N, 128, 7, 7)
Conv + ReLU (N, 128, 7, 7) (N, 256, 7, 7)
Conv + ReLU (N, 256, 7, 7) (N, 256, 7, 7)
Conv + ReLU (N, 256, 7, 7) (N, 256, 7, 7)
MaxPool (N, 256, 7, 7) (N, 256, 3, 3)
Flatten (N, 256, 3, 3) (N, 2304)
Dense (N, 2304) (N, 512)
Dense (N, 512) (N, 512)
Dense (N, 512) (N, 10)

Layer Type Input Output
Conv + ReLU (N, 3, 32, 32) (N, 64, 32, 32)
Conv + ReLU (N, 64, 32, 32) (N, 64, 32, 32)
MaxPool (N, 64, 32, 32) (N, 64, 16, 16)
Conv + ReLU (N, 64, 16, 16) (N, 128, 16, 16)
Conv + ReLU (N, 128, 16, 16) (N, 128, 16, 16)
MaxPool (N, 128, 16, 16) (N, 128, 8, 8)
Conv + ReLU (N, 128, 8, 8) (N, 256, 8, 8)
Conv + ReLU (N, 256, 8, 8) (N, 256, 8, 8)
Conv + ReLU (N, 256, 8, 8) (N, 256, 8, 8)
MaxPool (N, 256, 8, 8) (N, 256, 4, 4)
Flatten (N, 256, 4, 4) (N, 4096)
Dense (N, 4096) (N, 512)
Dense (N, 512) (N, 512)
Dense (N, 512) (N, 10)

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

Te
st

 L
os

s

Adam AdamBS AdamCB (ours)

Figure 6: Comparison of Adam-based optimizations on the logistic regression model (MNIST)

G.2 Additional Experiments

To further evaluate the effectiveness of our proposed method, we conducted additional experiments
using logistic regression, ResNet-18 (He et al., 2016), ConvNeXt-Base (Liu et al., 2022), and
ConvNeXt-Large (Liu et al., 2022) networks. The logistic regression model was employed to assess
the performance of our algorithm in convex optimization settings.

For general non-convex optimization, we tested our method on the ResNet-18, ConvNeXt-Base,
and ConvNeXt-Large models. Notably, ResNet-18 (11.4 million parameters), ConvNeXt-Base
(89 million parameters), and ConvNeXt-Large (198 million parameters) are substantially larger
architectures compared to the simple MLP and CNN models evaluated in the previous section.
These experiments demonstrate the scalability and efficiency of our algorithm on larger, more
complex models.

In all experiments, our proposed algorithm, AdamCB, consistently outperformed existing methods,
reaffirming its effectiveness across both convex and non-convex optimization tasks and on models of
varying complexity.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

(b) Fashion MNIST

0 2 4 6 8 10
Epochs

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Tr
ai

ni
ng

 L
os

s

(c) CIFAR-10

0 2 4 6 8 10
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 L
os

s

0 2 4 6 8 10
Epochs

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Te
st

 L
os

s

Adam AdamBS AdamCB (ours)

Figure 7: Comparison of Adam-based optimizations on ResNet-18 model

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

Adam AdamBS AdamCB (ours)

Figure 8: Comparison of Adam-based optimizations on ConvNext-base model (CIFAR-10)

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

0 2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

Adam AdamBS AdamCB (ours)

Figure 9: Comparison of Adam-based optimizations on ConvNext-large model (CIFAR-10)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

H Additional Related Works

Importance sampling. Importance sampling methods have received significant attention in recent
years for their application in convex optimization problems. A study identified as Richtárik & Takáč
(2016) introduced a specialized coordinate descent algorithm that selects groups of coordinates
to enhance the rate of convergence. Subsequent research, referenced as Needell et al. (2014),
Zhao & Zhang (2015), delves into the variance in gradient estimates within stochastic gradient
descent, highlighting that the ideal sampling distribution should align with the per-sample gradient
norm. Another study, Namkoong et al. (2017), developed a method for adaptively sampling in
both block coordinate descent and stochastic gradient descent. This involves dividing parameters
into predetermined blocks for coordinate descent and organizing training samples into fixed batches
for stochastic gradient descent. Research denoted as Katharopoulos & Fleuret (2018) suggested
sampling a large batch in each iteration to create a distribution derived from the gradient norms of
these samples, followed by selecting a smaller batch from this large batch for updating parameters.
However, The potential for accelerating the convergence rate with this method remains uncertain.

Bandit methods. AdaBoost (Schapire, 2013) works with complete information, meaning it evalu-
ates each training instance through the current ensemble model to identify misclassified examples.
Our method, however, deals with limited information because we can only choose a small set of
examples in each step. This limitation requires finding a balance between exploring by selecting
diverse examples to collect more data and exploiting by choosing the best examples based on the
currently available information. The multi-armed bandit problem is a classic framework for under-
standing this trade-off between exploration and exploitation. This dilemma also arises in numerous
other scenarios (Auer et al., 1995; 2002a).

Improving batch selection. The adversarial bandit method known as EXP3 (Auer, 2002) is often
used as a standard in dynamic settings and has proven to be highly effective in the context of automated
curriculum learning. In ACL, the dynamic selection of tasks is guided by an algorithm, often relying
on reinforcement learning or bandit techniques. For example, Graves et al. (2017) have suggested
the use of a non-stationary bandit method, specifically EXP3, and their findings reveal that without
prior task knowledge, ACL can significantly enhance training efficiency when compared to uniform
sampling methods. Furthermore, a bandit algorithm is capable of identifying intricate sequences
and opportunities for effective knowledge sharing within an unorganized curriculum. While existing
research has predominantly concentrated on task-oriented ACL, the underlying concepts are equally
applicable to selecting instances and batches.

43

	
	Introduction
	Preliminaries
	Notations
	Expected Risk and Empirical Risk
	Objective Function and Mini-Batches
	Regret Minimization
	Related Work: Adam and Technical Issues in Convergence Guarantees
	Adam Optimizer
	Technical Issues in Adam-based Methods
	Technical Issues in Adam with Bandit Sampling

	Proposed Algorithm: AdamCB
	AdamCB Algorithm
	Batch Selection: Combinatorial Bandit Sampling
	Computing Unbiased Gradient Estimates
	Update of Sample Weights

	Regret Analysis
	Regret Bound of AdamCB
	Proof Sketch of Theorem 1
	Comparisons with Adam and AdamBS

	Numerical Experiments
	Conclusion
	Reproducibility Statement
	Appendix

	 Appendix
	Auxiliary Lemmas
	Proof for AdamCB Regret Bound
	Auxiliary Lemmas for Lemma 1
	Proof for Lemma 1
	Proof for Lemma 2
	Proof for Theorem 1 (AdamCB Regret Bound)

	Problematic in Convergence Proof of Adam-based Optimizers
	Proof for Convergence Rate when using Uniform Sampling
	Correction of AdamBS
	Additional Algorithm
	DepRound Algorithm

	More on Numerical Experiments
	Details on Experimental Setup
	Additional Experiments

	Additional Related Works

