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ABSTRACT

Semi-supervised learning (SSL) has achieved remarkable progress by leverag-
ing both limited labeled data and abundant unlabeled data. However, unlabeled
datasets often contain out-of-distribution (OOD) samples from unknown classes,
which can lead to performance degradation in open-set SSL scenarios. Current
approaches primarily address this issue by identifying outliers through OOD detec-
tion. Yet, methods relying solely on neural networks are constrained by the absence
of labeled OOD samples for supervision. To overcome this limitation, we pro-
pose a novel open-set OOD detection framework named SDM, which Synergizes
Dynamic Score Aggregation (DSA) and Matrix Contrastive Regularization (MCR).
Specifically, we formulate OOD detection as a semi-unbalanced optimal transport
(SemiUOT) problem and derive pseudo-labels by solving it. The DSA module
dynamically converts SemiUOT into a classical optimal transport (OT) formula-
tion. Unlike existing OT-based methods, DSA provides theoretically grounded
and more accurate pseudo OOD scores while avoiding the direct computation of
the transport plan. Meanwhile, the MCR module enhances feature discrimination
through contrastive learning, thereby improving overall performance. Empirical
results demonstrate the superiority of SDM. Additionally, we conduct extensive
analytical experiments to elucidate the properties of each component.

1 INTRODUCTION

Semi-supervised learning (SSL) is a pivotal machine learning paradigm that leverages abundant
unlabeled data alongside limited labeled data (Xiao et al., 2024; Berthelot et al., 2019; Zheng et al.,
2022; Kingma et al., 2014; Chen et al., 2024; Yang et al., 2024; Min et al., 2024). Traditional
SSL relies on the assumption that both labeled and unlabeled data share the same class space and
distribution (Li et al., 2023). However, this closed-world setting is often unrealistic. In real-world
open-set SSL scenarios, unlabeled data frequently contain out-of-distribution (OOD) samples from
unknown classes, which can severely degrade model performance if not properly handled.

To alleviate this problem, researchers begin to explore the identification of outliers (Qin et al., 2024;
Shen et al., 2024; Kaushik et al., 2024), namely OOD detection. While one possible solution is
to directly implement OOD detection during testing (Hendrycks & Gimpel, 2016; Liu et al., 2020;
Huang et al., 2021b; He et al., 2022; Ma et al., 2023), this approach only considers the testing phase
with the model trained on purely in-distribution (ID) data. In open-set SSL, the model must be jointly
optimized on both labeled and unlabeled data while ensuring the OOD detection module learns
effectively without compromising classification accuracy. Consequently, (Yu et al., 2020b; Guo et al.,
2020) propose to integrate OOD detection with semi-supervised learning during the training phase.
However. the absence of reliable OOD labels hinders effective learning and the joint optimization
framework risks sacrificing closed-set classification accuracy.

To address this challenge, recent works (Saito et al., 2021; Ren et al., 2024) introduce third-party
proxies into the training phase. For instance, (Saito et al., 2021) employs a one-vs-all (OVA) classifier
for OOD detection. However, this method requires training a separate classifier for each known class,
which is computationally inefficient. Although (Ren et al., 2024) proposes to train a neural binary
classifier using pseudo OOD scores obtained through entropy-regularized optimal transport (OT), the
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entropy regularization can compromise label accuracy, and the practice of artificially amplifying the
weights of unlabeled samples lacks a theoretical foundation.

To resolve this dilemma, we model the OOD detection task as a semi-unbalanced optimal transport
(SemiUOT) problem and propose a dynamic score aggregation (DSA) module. DSA dynamically
converts the SemiUOT problem into classical OT, eliminating the need for entropy regularization
or ad-hoc weight amplification. This allows it to produce more accurate pseudo OOD scores for
supervising the neural binary classifier. Furthermore, we introduce a matrix contrastive regulariza-
tion (MCR) module, which enhances feature discrimination through contrastive learning without
incurring inference-time overhead. Integrating these components, we propose SDM, a novel open-set
semi-supervised OOD detection framework that Synergizes DSA and MCR. Extensive experiments
demonstrate the superiority of SDM over existing methods.

The main contributions are listed as follows:

• We innovatively propose the DSA module, which dynamically converts the SemiUOT problem into
classical OT. This theoretically grounded approach yields more accurate pseudo-labels efficiently,
overcoming key limitations of existing OT based methods. Furthermore, we introduce a fast
approximation algorithm for DSA with a theoretically analyzed error bound.

• We design the MCR module as an auxiliary task based on self-supervised learning. MCR en-
hances feature discrimination without introducing inference latency. Integrating DSA and MCR,
we construct SDM, a novel framework that synergistically combines OT with self-supervised
regularization for open-set semi-supervised OOD detection.

• Extensive experiments on benchmark datasets demonstrate that SDM achieves competitive, and of-
ten superior, performance compared to state-of-the-art methods. Additional ablation and analytical
studies provide insights into the properties and individual contributions of each component.

2 RELATED WORKS

2.1 OPTIMAL TRANSPORT

OT quantifies the discrepancy or distance between two distributions by calculating the minimum
transport cost (Khamis et al., 2024). As a mathematical tool, recent advances have shown the
promising potential of OT for various machine learning tasks, such as natural language processing
(Cheng et al., 2024a; Sun et al., 2023; Cheng et al., 2024b), computer vision (Li et al., 2025; Lin
& Chan, 2023; Izquierdo & Civera, 2024; Chowdhury et al.), graph matching and representation
(Maretic et al., 2022; Zeng et al., 2023; 2024), generative models (Tong et al., 2023a;b; Li et al.,
2024; Hui et al., 2025; Choi et al., 2023), and reinforcement learning (Klink et al., 2024; Asadulaev
et al., 2024; Sun et al., 2025). Classical OT is the most basic form of OT theory, where both marginal
equality constraints on source and target distributions are preserved.

Definition 2.1 (Classical OT). Given two distributions α and β, each containing M and N units,a
and b are the weights vectors of them, and C ∈ RM×N

+ is the transport cost matrix. The classical
OT is to find the optimal transport plan π ∈ RM×N

+ in the feasible solution set Π.

min
π∈Π(α,β)

⟨C,π⟩F ,Π(α,β) :=
{
π ∈ RM×N

+ : π1N = a,πT1M = b
}
. (1)

Since classical OT is essentially a linear optimization process, it can be solved exactly using any
linear solver. However, when trying to make OT work in the real world, things are often trivial. If
one of the two marginal constraints is relaxed, SemiUOT is defined as follows.

Definition 2.2 (SemiUOT with KL-Divergence). SemiUOT is to find the optimal transport plan when
the target constraint on the source distribution is removed (Le et al., 2021), the formulation is,

min
π∈Π(α,β)

⟨C,π⟩F + τaKL(π1N∥a),Πs(α,β) :=
{
π ∈ RM×N

+ : πT1M = b
}
, (2)

where τa is the weight parameter. The divergence term KL is used to measure the discrepancy
between the marginal distribution of the transport plan and the source distribution.

A common approach to SemiUOT involves introducing an entropy regularization term and solving the
resulting objective with a Sinkhorn-like algorithm (Cuturi, 2013), which may compromise accuracy.
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2.2 RELATIONS BETWEEN OOD DETECTION AND OPTIMAL TRANSPORT

The motivation for the OT-based OOD detection is intuitive. For the probability distribution of both
the source and the target domain (e.g., the feature embedding of unlabeled and labeled data), the
common assumption is that they both obey the uniform discrete distribution. If we model OOD
detection problem as classical OT on this basis, it is difficult to distinguish ID samples from OOD
samples via the transport plan π . Thus, (Ren et al., 2024) enlarges the weights of the unlabeled data
to force the marginal constraint of target domain (i.e., πT1N = a) to be relaxed. The probability that
the sample with less total transmission quality is an OOD sample is greater, and vice versa. Then, the
pseudo OOD score obtained via the OT module can be computed as, S = 1

kπ1N , assuming that the
target domain is the feature embedding of unlabled data. Due to the mechanism above, it is unrealistic
to deploy it directly during testing. A more practical approach is to use S as the labels to train the
neural OOD detector. However, the redundant mass k based OOD detection lacks theoretical support
and the common Sinkhorn-like OT solvers risk producing unreliable pseudo OOD score. In this
paper, we directly model the OOD detection task as SemiUOT and tackle it in a more accurate way.

2.3 SELF-SUPERVISED REGULARIZATION FOR SEMI-SUPERVISED LEARNING

Common SSL strategies are pseudo-labeling and consistency regularization (Sohn et al., 2020; Li
et al., 2022b;a; Sosea & Caragea, 2023; Ihler et al., 2024). Slightly different from SSL, the data
for self-supervised learning is all unlabeled (Grill et al., 2020; Zbontar et al., 2021; Zhang et al.,
2023; Lu et al., 2024; Zhang et al., 2024). Interestingly, when self-supervised learning is used as an
auxiliary task for representation learning, performance improvement of semi-supervised learning can
be observed (Zhai et al., 2019). For example, (Lee et al., 2022) addresses the inefficiency of traditional
consistency regularization strategies in SSL by leveraging the contrastive learning mechanism of
unlabeled data. (Li et al., 2021) proposes contrastive graph regularization to jointly optimize class
probabilities and low-dimensional embeddings. Whether such strategy is effective in OOD tasks is
still an underexplored research topic. Based on contrastive learning, we design the MCR module to
further boost the performance of the model.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Source and target domain sample: The source domain sample Xu ∈ RM×H×W×CH is composed
of unlabeled data with known classes and unlabeled data with unknown classes (i.e., OOD sample),
where M is the batch size of the source domain sample and H ,W , CH are the height, width and
number of channels of the input image date respectively. The target domain sample is the labeled data
Xl ∈ RN×H×W×CH with known classes, where N is the batch size of the target domain sample.
Both the labeled sample and the unlabeled sample with known classes are called ID sample. Note
that M should be larger than N to comply with the setting of open-set SSL.

Open-set semi-supervised OOD detection: Given Xu and Xl, the open-set semi-supervised OOD
detection is to detect OOD samples in Xu with Xl as a reference and perform semi-supervised
learning over both Xu and Xl. This paper focuses on training neural networks to predict the OOD
probability Ŝ ∈ RM+N

+ under the supervision of pseudo labels obtained by OT and preserving the
closed-set classification accuracy through self-supervised regularization.

3.2 OVERVIEW

As shown in Figure 1, SDM is composed of three modules, namely the semi-supervised learning
module, the OOD detection module, and the MCR module. The closed-set classification module
g adopts the same architecture as (Sohn et al., 2020; Ren et al., 2024). For a batch of sample
from Xu and Xl, we perform weak augmentation once and strong augmentation twice on Xu to
obtain Xw,X

1
s,X

2
s ∈ RM×H×W×CH . The specific augmentation method is consistent with (Sohn

et al., 2020). The augmented source and target sample are mapped to their feature embedding
Z = f(X) ∈ Rd through feature encoder f , where d is dimension of feature embedding. The pseudo

3
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Figure 1: The left part of the figure depicts the overall framework of SDM and the right part of the
figure shows the details of the MCR (top) and DSA (bottom) module.”Tied” indicates weight sharing.

OOD scores S of the unlabeled samples are estimated by the DSA module and OOD loss is,

Lood =
1

M +N
∥Ŝ− S′∥22, (3)

where Ŝ = h(Xl ⊕Xw), S′ = S ⊕ 1N and ⊕ indicates the concat operation. By computing the
weighted sum of alignment loss and uniformity loss between X1

s and X2
s as Lmcr, the MCR module

works as an auxiliary task to enforce the feature encoder to learn better embedding. Putting all of
these together according to weight, the total loss is,

L = Lx + Lu + γ1Lood + γ2Lmcr, (4)

where Lx and Lu are supervised loss and unsupervised loss in Fixmatch (Sohn et al., 2020), whose
weight coefficients are γ1 and γ2 respectively. The detailed algorithm of SDM is shown in Section A.1.

3.3 DYNAMIC SCORE AGGREGATION

We propose the DSA approach to estimate pseudo OOD scores in a more accurate and efficient
manner, supported by theoretical guarantees. To further accelerate the computation, we introduce a
targeted approximation method. Theoretical analysis also establishes an approximation error bound.

Firstly, We adopt the formulation of SemiUOT as Equation (2) to model the OOD detection task as
the SemiOT problem, where α =

∑M
i=1

1
M δui ,β =

∑N
i=1

1
N δli are the distribution weight of source

samples and target samples respectively, and δ is the Dirac function. Given the feature embedding
of labeled sample Zl and that of strong augmented unlabeled sample Z1

s, we calculate the transport
cost from Z1

s to Zl as C = 1M×N − Z1
sZl

∥Z1
s∥2·∥Zl∥2

. Then, instead of directly solving the SemiUOT
problem via Sinkhorn-like approach, we have the following proposition to transform the SemiUOT
problem to classical OT and the problem can be tackled in a more accurate and efficient way.

Proposition 3.1 (Dynamic Score Aggregation with Exact SemiUOT Solver). Given SemiUOT with
KL-Divergence shown in Equation (2), we can rewrite its dual form as below:

min
u,v,s,ζ

J = τa

〈
a, exp

(
−u+ ζ

τa

)〉
− ⟨v − ζ, b⟩, s.t.ui + vj + sij = Cij , sij ≥ 0, (5)

where u, v, s, and ζ are dual variables. Equation (5) can be rewritten as classical OT:

min
π≥0

JS = ⟨C,π⟩, s.t.π1N = a⊙ exp

(
−u∗ + ζ∗

τa

)
,πT1M = b, (6)

where u∗ and ζ∗ are the optimal value of u and ζ . The detailed proof is in Section A.3. That is, if we
partially solve u and ζ, SemiUOT can be simplified to classical OT. Common exact solutions for u

4
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and ζ are L-BFGS (Liu & Nocedal, 1989) or FISTA (Beck & Teboulle, 2009). The key insight is
that solving the simplified classical OT for the OOD score using an exact OT solver is equivalent to
obtaining it directly from the source weight in Equation (6).

Since the above approach is to obtain the equivalent form of SemiUOT via dynamically reweighting
the weights of the source distribution, we name it dynamic score aggregation (DSA). By eschewing
the entropy regularization responsible for unreliable scores and the arbitrary amplification of source
weights, DSA achieves more accurate OOD detection without the computational burden of directly
solving the full optimal transport plan. However, if we review the exact SemiUOT equation:

min
u,ζ

JS = τa

M∑
i=1

ai exp

(
−ui + ζ

τa

)
−

N∑
j=1

[
inf

k∈[M ]
[Ckj − uk]− ζ

]
bj , (7)

although JS is convex and has unique solutions, the presence of inf(·) renders it a non-smooth
function, leading to inefficient optimization. Thus, to further accelerate the optimization process, we
turn to the approximate solution of DSA with the following proposition.

Proposition 3.2 (Accelerating DSA with approximation). We consider a smooth approximation to

replace inf(·) as infk∈[M ][Ckj−fk] ≈ −ϵ log[
∑M

k=1 e
fk−Ckj

ϵ ]. Note that ϵ > 0 denotes the balanced
hyperparameter among precision and smoothness of the function. Smaller ϵ (e.g., ϵ approaches
to 0) could lead to more accurate while less smooth solutions. Then we can obtain the proposed
Approximate SemiUOT Equation as ĴS by replacing inf(·) with the smoothness term for f̂ ,

min
u,ζ

ĴS = τa exp

(
− ζ

τa

) M∑
i=1

ai exp

(
−ui

τa

)
+

N∑
j=1

[
ϵ log

[
M∑
k=1

exp

(
uk − Ckj

ϵ

)]
+ ζ

]
bj . (8)

Then, ui can be iteratively updated as follows:

u
(l+1)
i =

τaϵ

τa + ϵ
log

(
ai exp

(
− ζ

τa

))
− τaϵ

τa + ϵ
log

 N∑
j=1

 exp
(
−Cij

ϵ

)
∑M

k=1 exp

(
u
(l)
k −Ckj

ϵ

)
 bj


=T (u

(l)
i ).

(9)

Meanwhile, ζ can be computed as,

ζ = τa

log( M∑
i=1

ai exp

(
−ui

τa

))
− log

 N∑
j=1

bj

 . (10)

With this approximation method, we can solve DSA more efficiently. The proof is in Section A.4. As
shown by the following proposition, the approximation error will become smaller with smaller ϵ.

Proposition 3.3 (Approximation error). We consider the analysis between optimal results of uo and
ûo and thus we set ζ = 0 in SemiUOT. Then we define Ep(u) = JS and Kp(û) = ĴS − ϵ logM .
Hence we have the following relationships: (1) KP (u

o) ≤ EP (u
o) ≤ EP (û

o) ≤ KP (û
o)+ ϵ logM ,

(2) KP (û
o) ≤ KP (u

o) ≤ EP (u
o) ≤ KP (u

o) + ϵ logM , and thus shows |KP (u
o) −KP (û

o)| ≤
ϵ logM . Moreover we have:

|EP (u
o)−KP (û

o)| ≤ |EP (u
o)−KP (u

o)|+ |KP (u
o)−KP (û

o)| ≤ 2ϵ logM. (11)

Therefore we can observe that u and ûo will get closer with smaller ϵ.

5
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Algorithm 1 Dynamic Score Aggregation for OOD Detection
Input :Optimization objective JS.
Output :Pseudo OOD score S′.
Initialize t = 0, u0 = ( 1

M , 1
M , · · · , 1

M ) and ζ = 0;
for t = 0, 1, 2, · · · , T do

Obtain the optimal solution on u(t+1) via Equation (9).
Optimize ζ by considering ∂JS

∂ζ = 0 via Equation (10).
end
Obtain the classical OT format ĴS via Equation (6).
The pseudo OOD score S of the unlabeled samples is computed as S = a⊙ exp

(
−u∗+ζ∗

τa

)
.

The pseudo OOD score of the labeled samples is set as 1N .
return S′ = S⊕ 1N .

The detailed computation process of the pseudo OOD scores based on approximation accelerated
DSA is provided in Algorithm 1, whose time complexity is O(MN). It is worth highlighting that
the DSA approach can directly obtain the OOD score from the source marginal distribution of ĴS,
thus avoiding the solution of π. With the supervision of S′, we train the OOD detection head h to
distinguish the OOD samples from the ID ones.

3.4 MATRIX CONTRASTIVE REGULARIZATION

To improve the overall performance of SDM, we leverage the advantage of contrastive learning and
propose the MCR module as an auxiliary task under the semi-supervised learning framework.

Given the feature embedding of the source domain sample from different strong augmented views, Z1
s

and Z2
s, their corresponding reconstructed feature embedding are denoted as Z1,Z2 = G(Z1

s),G(Z2
s),

where Z1,Z2 ∈ RM×d and G is the self-supervised learning head. We introduce the matrix informa-
tion theory (Zhang et al., 2023) into open-set SSL and leverage the alignment loss and uniformity
loss to construct the regularization term, guiding the feature encoder f to learn more effective feature
embedding and improve the performance of the other two branches,

Lalign(Z1,Z2) = − tr

(
1

B
Z1HBZ⊤

2

)
+ γ ·MCE

(
1

B
Z1HBZ⊤

1 ,
1

B
Z2HBZ⊤

2

)
,

Luni(Z1,Z2) = MCE

(
1

d
Id,

1

B
Z1HBZ⊤

2

)
,

(12)

where HB = IB − 1
B1B1

⊤
B. The computation of the MCE function is as follows:

MCE(P,Q) = tr(−P logQ+Q), (13)
where P,Q are two positive semi-definite matrices. The alignment loss aims to bring the positive
sample pairs closer in the feature domain, while the uniformity loss forces the representation to
be evenly distributed in the feature space, avoiding the aggregation of features in certain areas or
even NC. As shown in Equation (12), Luni tends to guide the centered sample covariance matrix
close to the unit matrix in terms of expression. That is, if Luni is minimized as much as possible,
different sample categories will be more evenly distributed in the feature space. Then, the contrastive
regularization term is,

Lmcr = Lalign(Z1,Z2) + Luni(Z1,Z2). (14)
The detailed algorithm is presented in Section A.2. With both MCR and DSA, a novel open-set OOD
detection framework SDM is constructed, which trains a neural OOD detector with the OOD scores
produced by DSA as the supervision and boosts the overall performance via the MCR module.

4 EXPERIMENTS

4.1 SETUP

Datasets. We build open-set OOD benchmarks based on CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) with different settings. By artificially dividing known classes as labeled samples, the

6
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Table 1: Top-1 accuracy and AUROC on CIFAR-10 benchmarks under different settings.To verify the
statistical significance of the results, we report both the mean and standard deviation of 5 experiments.

# of Labeled Classes 50 100 400

Metric Acc AUROC Acc AUROC Acc AUROC
MTCF 79.7±0.9 96.6±0.5 86.3±0.9 98.2±0.3 91.0± 0.5 98.9±0.1

T2T 88.2±0.7 75.5±0.5 89.0±1.0 77.2±0.2 90.3±0.5 82.3±0.2
OpenMatch 89.6±0.9 99.3±0.3 92.9±0.5 99.7±0.2 94.1±0.5 99.3±0.2

POT 92.1±0.2 99.7±0.1 92.9±0.2 99.5±0.1 93.6±0.1 99.4±0.1
SDM 92.5±0.4 99.6±0.2 93.1±0.1 99.5±0.2 94.2±0.1 99.4±0.3

Table 2: Top-1 accuracy and AUROC on CIFAR-100 benchmarks under different settings.To verify the
statistical significance of the results, we report both the mean and standard deviation of 5 experiments.

# of Known 55 80

# of Labeled 50 100 50 100

Metric Acc AUROC Acc AUROC Acc AUROC Acc AUROC
MTCF 66.5±1.2 81.2±3.4 72.1±0.5 80.7±4.6 59.9±0.8 79.4±2.5 66.4±0.3 73.2±3.5

T2T 72.2±1.4 60.4±1.6 73.1±0.8 59.8±1.4 63.5±1.2 55.0±1.8 66.8±0.7 55.4±1.5
OpenMatch 72.3±0.4 87.0±1.1 75.9±0.6 86.5±2.1 66.6±0.2 86.2±0.6 70.5±0.3 86.8±1.4

POT 78.7±0.1 88.4±0.1 81.1±0.1 89.5±0.3 75.4±0.1 88.1±0.3 78.1±0.1 88.0±0.1
SDM 78.9± 0.3 91.7±0.3 81.3±0.4 91.3±0.3 75.7±0.2 90.9±0.3 78.3±0.5 90.9±0.3

models need to detect OOD samples exist in Xu. Following the setup in (Sohn et al., 2020) and
(Ren et al., 2024), the complete training set is used as unlabeled data, while labeled data is randomly
extracted from the training set and the number of samples for each known class is set to different
values corresponding to different classification difficulties. We also evaluate SDM on the more
challenging ImageNet-30 (Hendrycks & Gimpel, 2017) dataset, where 20 classes are selected as the
known classes, with the remaining as the unknown classes.

Baselines. To demonstrate the superiority of our method on OOD detection benchmark, we compare
our proposed SDM with comprehensive baselines, including Fixmatch(Sohn et al., 2020), MTCF(Yu
et al., 2020a), T2T(Huang et al., 2021a), OpenMatch(Saito et al., 2021), and POT(Ren et al., 2024).
Since the semi-supervised classification module of SDM in this paper adopts the Fixmatch structure,
we consider it as a baseline. The maximum softmax prediction probability as the score function
is used to give Fixmatch the ability to perform OOD detection during testing. MTCF and T2T are
typical purely neural networks based methods. OpenMatch adopts a method based on OVA classifiers.
In addition, to prove the effectiveness of DSA, we also compare SDM with other OT-based method.

Metrics. To measure the OOD detection results, we calculate the area under the receiver operating
characteristic curve (AUROC) to observe the ability to identify OOD samples. In this paper, we
focus on image classification tasks in the presence of OOD samples, so we also report closed-set
classification accuracy. In scenarios where we focus on comparing the performance of different
methods, we report top-1 accuracy and AUROC, and in scenarios where we focus on analyzing the
change with different architectures or parameter settings, we report top-1 to top-5 accuracy to facilitate
comprehensive analysis. More settings and implementation details are provided in Section A.5.

4.2 RESULTS AND DISCUSSION

The experimental results on CIFAR-10, CIFAR-100, and ImageNet-30 are summarized in Table 1,
Table 2, and Table 3. Our analysis reveals a clear performance hierarchy. Methods relying solely
on neural networks perform poorly across all datasets, lagging significantly behind proxy-based
approaches. While OpenMatch shows competitive results on CIFAR-10, it falls short of OT-based
methods, particularly on CIFAR-100 where its closed-set accuracy is lower. Overall, SDM achieves
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Table 3: Top-1 accuracy and AUROC on ImageNet-30 benchmarks. 20 classes are selected as known
classes, and the remaining classes are unknown classes.

Method FixMatch MTCF T2T OpenMatch POT Ours
Top1Acc 91.7±0.5 86.4±0.7 87.8±0.9 89.6±1.0 92.0±0.3 92.1±0.4
AUROC 45.1±1.2 93.8±0.8 55.7±10.8 96.4±0.7 97.4±0.4 97.7±0.2

Table 4: Ablation study on CIFAR-10 benchmark. Fixmatch-OOD use the maximum softmax
prediction probability to give Fixmatch the ability to perform OOD detection during training phase.

# of Labeled Classes 50 100 400

Metric Acc AUROC Acc AUROC Acc AUROC
FixMatch-OOD 91.7±1.1 37.7±0.6 92.9±0.7 39.8±0.3 93.4±0.3 40.9±0.6
Fixmatch+DSA 92.2±0.3 99.6±0.1 93.0±0.3 99.5±0.2 94.1±0.2 99.4±0.1
Fixmatch+DSA+MCR 92.5±0.4 99.6±0.2 93.1±0.1 99.5±0.2 94.2±0.1 99.4±0.3

better performance than POT and maintains competitive performance on the more challenging
ImageNet-30 dataset with 224×224 resolution. The most significant advantage of SDM is observed
in AUROC on CIFAR-100, a gain potentially attributable to the larger number of classes, which
causes other methods to not be able to perform OOD detection well.

Table 5: Adaptation to different OT solvers. We report top-1 to top-5 accuracy and AUROC on
CIFAR-100 with 55 known classes and 50 labeled samples per known class, with POT as the baseline.

Metirc Solver Type Solution
Acc

AUROC
Top1 Top2 Top3 Top4 Top5

POT POT Partial OT Approximate 78.4 87.7 91.5 93.8 95.0 90.1
DSA(+EPW) EPW OT Approximate 79.0 88.1 91.8 93.7 95.0 91.0
DSA(+Sinkhorn) Sinkhorn OT Approximate 79.2 88.0 91.9 93.8 95.3 91.2
DSA(+EMD) EMD OT Exact 79.5 88.0 91.8 93.7 95.2 91.5

4.3 ADAPTATION TO DIFFERENT OT SOLVERS

Since DSA dynamically converts the SemiUOT from α to β in each batch into classical OT during
training, in theory any classical OT solver can be connected in series behind DSA. In order to verify
the adaptability of SDM to different OT solvers, we insert several OT solvers into SDM for trial,
including EMD, Sinkhorn and entropic partial wasserstein (EPW) (Cuturi, 2013). Besides, we also
report the results of POT as a baseline in Table 5. The SDM plugged into three different OT solvers
all outperformed POT in terms of metrics. Interestingly, when we directly connect modules similar to
those in POT in series to DSA, we can also observe performance improvements. Since EMD obtains
an exact solution, while others obtain approximate solutions, the OOD labels obtained based on DSA
and EMD are more reliable.

4.4 ANALYSIS AND ABLATION STUDY

1) Ablation study. Table 4 reports the overall performance of Fixmath-OOD, Fixmatch+DSA
and Fixmatch+DSA+MCR. Fixmatch itself cannot detect OOD samples accurately enough, even
when performing OOD detection based on predicted probabilities during inference. When training
OOD detector under the supervision of DSA, the AUROC metric which indicates the open-ser OOD
detection quality reach an impressively higher lever compared to Fixmatch-OOD. With the support
of MCR module as auxiliary task, we observe the improvement of the top-1 closed-set classification
accuracy without the sacrifice of AUROC. Performance improvement of the DSA method and the
MCR module does not come at the cost of testing latency because only Fixmatch and neural networks
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Figure 2: (a) The change of performance with γ1 when γ2 is fixed to 0.01. (b) The change of
performance with γ2 when γ1 is fixed to 0.01. (c) The change of performance with τa. (d) The
efficiency comparison of P.(POT), D.(DSA), and D.+M.(DSA+MCR). All results are on CIFAR-100
benchmark with 55 known classes and 50 labeled samples per known class.

that output ID probability are activated during the training phase. With MCR, we can observe an
improvement in closed-set accuracy or OOD detection quality without sacrificing the other metric.

Table 6: Quantitative analysis of the accuracy
of the pseudo labels on CIFAR-100.

# of Known 55 80

# of Labeled 50 100 50 100

POT(k = 1.25) 54.9 54.9 58.0 55.2
POT(k = 2.5) 59.2 58.7 60.0 57.9
DSA 59.7 59.2 60.1 58.3

2) Quantitative analysis of the pseudo labels. In
Table 6, We compare the AUROC of the pseudo lables
produced by DSA to that of POT with the additional
parameter set to 1.25 and 2.5 respectively. All the ex-
periments are conducted on test datasets with labeled
training samples as the target samples. The pseudo
labels produced by DSA are more accurate than POT.

3) Influence of Lood and Lmcr. Since SDM is a
multi-task learning framework, the coefficients of the
loss functions corresponding to different tasks are
important. Figure 2 (a) and (b) depict the changes of top-1 classification accuracy and OOD detection
quality with γ1 and γ2 corresponding to Lood and Lmcr respectively. Besides, when the value of γ1 is
too small, such as 0.01, the impact of Lood on the overall loss is too small to make the quality of OOD
detection worse. In other cases, SDM is stable enough to the changes of relevant core parameters.

4) Influence of τa. As we can see that, the larger value of τa in Equation (2) involves more data to
get matched. Figure 2 (c) reports the results with τa changes to check the influence of this property
on SDM. Given that τa is essentially a scaling factor, our experiments span a fairly large range from
0.001 to 1, where no significant increase or decrease in performance is observed. Thus τa does not
need to be overly fine-tuned to adapt to specific tasks and shows sufficient robustness.

5) Efficiency Analysis. To validate that the improvement of performance does not come at the
cost of significant delay, we count the execution rate of SDM and its variants (i.e., FixMatch+DSA)
compared with the baseline. The training rate and testing rate are calculated as the average rate
within 1024 iterations in Figure 2 (d). Owing to the acceleration approach of Proposition 3.2, the
training latency of DSA is modest compared to POT. The additional computational cost of MCR is
also acceptable. Consistent with the analysis in this paper, both DSA and MCR cause no test delay.
In addition, the training rate of SDM is 1.25s/iteration on the ImageNet-30 dataset, which means only
6.3× latency at 49× resolution compared to the case on CIFAR-10/100.

5 CONCLUSION

In summary, we propose a novel open-set semi-supervised OOD detection framework SDM, which
synergistically leverages the advantages of SSL, self-supervised learning, and OT. Through theoretical
derivation, we innovatively propose the accelerated DSA method that dynamically converts SemiUOT
into classical OT and provides reliable pseudo OOD lables for supervision. Using the MCR module
as an auxiliary task for semi-supervised classification and OOD detection, SDM comprehensively
surpasses all baselines on all benchmarks, especially dominating the open-set OOD detection bench-
marks based on CIFAR-100. Our proposal will further motivate future work to pursue more novel
and efficient learning paradigms or frameworks for open-set SSL.
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A APPENDIX

A.1 ALGORITHM OF SDM

Algorithm 2 Open-Set Out-of-Distribution Detection
Require: Data loader, weak augmentation method A, strong augmentation method A, encoder
network f(·), closed-set classification head g(·), OOD detection head h(·) and SSL head G(·).
for Xl,Xu in loader do

Augmentation:
Xw,X

1
s,X

2
s = A(Xu),A(Xu),A(Xu).

Encoding:
Zl,Zw,Z

1
s,Z

2
s = f(Xl), f(Xw), f(X

1
s), f(X

2
s).

OOD detection:
Compute the cosine similarity C between Zl and Z1

s.
Obtain OOD pseudo labels S′ via the DSA approach.
Obtain OOD predicted score Ŝ = h(Zl,Z

1
s).

Compute OOD loss Lood.
MCR:
Obtain Lmcr via Algorithm 3.
Self-supervised classification:
Obatin classification probability
Yl,Yw,Y1

s = g(Zl), g(Zw), g(Z
1
s).

Compute supervised loss Lx and unspervised loss Lu.
Total loss:
L = Lx + Lu + γ1Lood + γ2Lmcr.
Back propagation.

end

A.2 ALGORITHM OF MCR

Algorithm 3 Matrix Contrastive Regularization
Input: Batch of unlabeled sample Xu, strong augmentation method A, encoder network f(·) and
contrastive learning head G(·).
Output: MCR loss.
Augmentation: X1

s,X
1
s = A(Xu),A(Xu).

Encoding: Z1
s,Z

2
s = f(X1

s), f(X
2
s).

Projecting and predicting: Z1
s ,Z2

s = G(Z1
s),G(Z2

s).
Obtain LMatrix-Alignment and LMatrix-Uniformity via Equation (12).
MCR loss: Lmcr = LMatrix-Alignment + LMatrix-Uniformity.
Return Lmcr.

A.3 PROOF OF PROPOSITION 3.1

We can rewrite the SemiUOT problem as below:

min
π≥0

J = ⟨C,π⟩+ τaKL (π1N∥a)

s.t. (Constraint) : π⊤1M = b, (Optional) : π1N = α.

Note that we do not need to know the exact value of α beforehand. We adopt this optional constraint
only for simplifying the following deduction. The Lagrange multipliers of Semi-UOT with KL-
Divergence is given as:

max
s≥0,u,v,ζ

min
π≥0

J = τaKL (π1N∥a) + ⟨u+ ζ,π1N ⟩+ ⟨v − ζ, b⟩+ CSUOT,
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where CSUOT =
∑

i,j(Cij − ui − vj − sij)πij = ⟨C − u⊗ 1⊤
N − 1M ⊗ v⊤ − s,π⟩ and u, v and

ζ are dual variables. By taking the differentiation on πij we have:

∂J
∂πij

=

[
τa log

∑N
j=1 πij

ai
+ ui + ζ

]
+ (Cij − ui − vj − sij)

=Cij + τa log

∑N
j=1 πij

ai
+ ζ − vj − sij = 0.

Then we can obtain the results:{∑N
j=1 πij = ai exp

(
−ui+ζ

τa

)
∑M

i=1 πij = bj
⇒ Cij − ui − vj − sij = 0, sij ≥ 0.

Thus SemiUOT can be can be regarded as classic optimal transport problem:

min
π≥0

JS = ⟨C,π⟩

s.t.π1N = a⊙ exp

(
−u∗ + ζ∗

τa

)
,π⊤1M = b.

A.4 PROOF OF PROPOSITION 3.2

We first review the Exact SemiUOT Equation:

min
u,ζ

JS = τa

M∑
i=1

ai exp

(
−ui + ζ

τa

)
−

N∑
j=1

[
inf

k∈[M ]
[Ckj − uk]− ζ

]
bj .

Then we take the differentiation on ui to obtain:∥∥∥∥∂JS

∂ui

∥∥∥∥=
∥∥∥∥∥∥−ai exp

(
−ui + ζ

τa

)
+

N∑
j=1

δ

(
i = arg min

k∈[M ]
[Ckj − uk]

)
bj

∥∥∥∥∥∥
≤
∥∥∥∥ai exp(−ui + ζ

τa

)∥∥∥∥+
∥∥∥∥∥∥

N∑
j=1

δ

(
i = arg min

k∈[M ]
[Ckj − uk]

)
bj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
N∑
j=1

bj

∥∥∥∥∥∥+
∥∥∥∥∥∥

N∑
j=1

bj

∥∥∥∥∥∥
= 2

N∑
j=1

bj = L .

Therefore, it satisfies the Lipchitz constraints in gradient descend.

||JS(uy)− JS(ux)|| ≤ L ||uy − ux||.

Finally we can adopt SGD with step-size as η = 1
L for the optimization:

u
(new)
i = u

(old)
i − 1

L

 N∑
j=1

δ

(
i = arg min

k∈[M ]

[
Ckj − u

(old)
k

])
bj − ai exp

(
−u

(old)
i + ζ

τa

) .

Although JS is convex and has unique solutions, the presence of inf(·) renders it a non-smooth func-
tion, leading to inefficient optimization. To further accelerate the optimization process, we consider to

make a smooth approximation on replacing inf(·) as infk∈[M ][Ckj − fk] ≈ −ϵ log[
∑M

k=1 e
fk−Ckj

ϵ ] .
Note that ϵ > 0 denotes the balanced hyper parameters among the accuracy and function smoothness.
Smaller ϵ (e.g., ϵ approaches to 0) could lead to more accurate while less smooth solutions. Then
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we can obtain the proposed Approximate SemiUOT Equation as ĴS by replacing inf(·) with the
smoothness term for f̂ as below:

min
u,ζ

ĴS = τa exp

(
− ζ

τa

) M∑
i=1

ai exp

(
−ui

τa

)
+

N∑
j=1

[
ϵ log

[
M∑
k=1

exp

(
uk − Ckj

ϵ

)]
+ ζ

]
bj .

Take the differentiation on ui we can obtain:

∂ĴS

∂ui
= −ai exp

(
− ζ

τa

)
exp

(
−ui

τa

)
+ exp

(ui

ϵ

) N∑
j=1

 exp
(
−Cij

ϵ

)
∑M

k=1 exp
(

uk−Ckj

ϵ

)
 bj = 0.

To solve the above problem, we can obtain:

u
(l+1)
i =

τaϵ

τa + ϵ
log

(
ai exp

(
− ζ

τa

))
− τaϵ

τa + ϵ
log

 N∑
j=1

 exp
(
−Cij

ϵ

)
∑M

k=1 exp

(
u
(l)
k −Ckj

ϵ

)
 bj


=T (u

(l)
i ).

We can adopt Banach theorem to verify the convergence of the algorithm.

∂T (u
(l)
i )

∂u
(l)
i

= − τaϵ

τa + ϵ

∂

∂u
(l)
i

∑N
j=1

 exp
(
−

Cij
ϵ

)
∑M

k=1 exp

(
u
(l)
k

−Ckj
ϵ

)
 bj


∑N

j=1

 exp
(
−

Cij
ϵ

)
∑M

k=1 exp

(
u
(l)
k

−Ckj
ϵ

)
 bj

=
τa

τa + ϵ

∑N
j=1

 bj exp
(
−

Cij
ϵ

)
∑M

k=1 exp

(
u
(l)
k

−Ckj
ϵ

) ·
exp

(
u
(l)
i

−Cij
ϵ

)
∑M

k=1 exp

(
u
(l)
k

−Ckj
ϵ

)


∑N
j=1

 exp
(
−

Cij
ϵ

)
∑M

k=1 exp

(
u
(l)
k

−Ckj
ϵ

)
 bj

︸ ︷︷ ︸
≤1

≤ 1.

A.5 IMPLEMENTATION DETAILS

To be fair, we adopt Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) as the backbone, with
WRN-28-2 on CIFAR-10 and WRN-28-8 on CIFAR-100, consistent with the baseline. For each
batch, the size of Xu is twice that of Xl. Since Fixmatch is used in the closed-set semi-supervised
classification module of SDM in the experimental part, we set the temperature parameter of pseudo-
label to 1 and the threshold of pseudo-label to 0.95. The model is trained with a Nesterov SGD
optimizer with 0.9 momentum and 5 × 10−4 weight decay. We implement the cosine annealing
learning rate adjustment strategy and set the initial learning rate as 0.03. τa in Equation (2) is set
to 0.01 when comparing SDM with baselines. The selection of hyperparameters in MCR refers to
(Zhang et al., 2023). Putting all the components together, we set the balance factor of Lx and Lu as 1
while setting that of Lood and Lmcr as 0.01. For the ImageNet-30 dataset, We use ResNet-18 (He
et al., 2016) as the backbone, the experimental settings are the same as the case on CIFAR-10/100.

A.6 LIMITATIONS

The proposed method has two main limitations as follows:
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1) Tough the DSA aprroach does not lead to extra testing latency, the computation of OT or SemiUOT
in high-dimensional feature embedding is relatively high in training phase, placing demands on the
performance of computing devices. In future work, we will focus on further accelerating it via parallel
computing strategy and exploring dimension reduction to low-dimensional space for calculation.

2) The pseudo labels obtained during training phase is only used for the supervision of neural
networks to perform OOD detection. More efforts can be made to enhance the performance of
closed-set classification module via the pseudo labels (e.g., through a joint optimization framework).
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