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Abstract

To accelerate large language model (LLM) inference, pipeline parallelism parti-
tions model layers into sequential stages, each assigned to a different device for
concurrent execution. However, this method often suffers from pipeline bubbles
caused by imbalanced computation in the tail stage. While upstream stages focus
solely on layer-forward operations, the final stage must also handle additional
post-processing tasks like sampling, which introduces significant latency. This
discrepancy in workload leads to pipeline misalignment, forcing upstream stages to
idle and degrading overall performance. Existing frameworks typically distribute
layers evenly across stages without accounting for computational load differences.
To address this, we propose DynaPipe, a dynamic layer redistribution scheme
that adaptively balances computation by predicting execution latency in real time.
Moreover, we introduce an asynchronous key-value (KV) cache migration coordi-
nator to enable non-blocking layer redistribution during inference. Experiments
on representative LLMs demonstrate that DynaPipe reduces average end-to-end
request latency by 8% to 41% across diverse workloads, outperforming state-of-
the-art pipeline parallelism systems. Our implementation is publicly available at
https://github.com/xhx1022/DynaPipe.

1 Introduction

The rise of large language models (LLMs) [1, 2, 3] has become a cornerstone of modern artificial
intelligence, empowering a wide range of application fields, from conversational agents [4, 5] and
intelligent coding assistants [6, 7] to retrieval-augmented generation systems [8, 9, 10]. Despite their
impressive capabilities, deploying LLM at scale presents significant challenges, primarily due to
their immense computational and memory demands. As model sizes grow from billions to hundreds
of billions of parameters, inference costs rise exponentially, rendering single-device execution
impractical. This has spurred extensive researches and engineering efforts aimed at developing
efficient distributed inference strategies [11, 12, 13, 14, 15].

Among these strategies, Tensor Parallelism (TP) [12, 16, 17] and Pipeline Parallelism (PP) [18, 19, 20]
have emerged as two dominant methods, now widely adopted in industrial-scale LLM serving systems
[21, 22]. TP partitions the computation within each layer across multiple devices, but its scalability
can be often restricted by substantial inter-device communication overhead, particularly in bandwidth-
constrained scenarios. In contrast, PP divides the model layers into sequential stages, each assigned
to a different device. Thus, PP processes multiple micro-batches in a pipelined manner, improving
throughput by reducing communication overhead and enabling better overlap of computations across
stages.
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Figure 1: Illustration of pipeline bubbles during autoregressive decoding. Top: Conventional even
layer allocation leads to idle upstream stages due to tail-stage sampling delays. Bottom: Uneven layer
assignments to reduce idle time and improve hardware efficiency. "S0:15L" means stage 0 consists of
15 layers.

While PP has proven effective in low-bandwidth environment, it introduces a critical computational
overhead that has not been adequately addressed: the additional latency introduced by the sampling?
operation at the final stage of the pipeline. As shown in Figure 1, traditional pipeline systems typically
distribute model layers evenly across stages but fail to account for the workload imbalance caused
by sampling computation. In autoregressive generation, each decoding step strictly depends on
the previous one, meaning the next step can only begin after the current token is generated. This
dependency forces upstream stages to wait for the output from the final stage, resulting in significant
pipeline bubbles that reduce hardware utilization. As sampling becomes more time-consuming, it
bottlenecks the entire pipeline’s progress. The inherent stage dependency exacerbates this issue, as
each stage must wait for the previous one to complete. Consequently, the sampling latency propagates
through all stages, amplifying the bubble effect and degrading overall execution efficiency.

To address these challenges, we propose DynaPipe, a solution that dynamically reallocates model
layers across pipeline stages during runtime to optimize workload balance. As illustrated in the
bottom of Figure 1, DynaPipe redistributes some layers from the final stage to earlier pipeline stages,
thereby reducing computational imbalance and significantly minimizing pipeline bubbles. To achieve
this, DynaPipe continuously monitors the runtime status of each stage and dynamically adjusts the
layer-to-stage mapping to balance the forward computation and sampling load. Moreover, DynaPipe
avoids pipeline stalls during redistribution by introducing an asynchronous KV cache migration
mechanism, which enables seamless and non-blocking layer redistribution across devices.

In summary, the contributions of this paper are as follows:

* We identify a critical pipeline efficiency bottleneck in LLM inference that has been largely
overlooked. The sampling operation at the last stage creates severe pipeline bubbles and
significantly reduces GPU utilization.

* We propose DynaPipe, a dynamic layer redistribution scheme that adaptively optimizes
layer allocation across pipeline stages at runtime to balance forward computation and
sampling workloads. By introducing an asynchronous KV cache migration mechanism,
DynaPipe enables non-blocking pipeline adjustments for seamless execution.

* Our evaluation of DynaPipe across diverse data conditions demonstrates its consistent
superiority over state-of-the-art frameworks, reducing average end-to-end latency by 8-41%
while enhancing service-level objective (SLO) attainment.

3For convenience, we collectively refer to the calculation of logits and the sampling operation as "sample".



2 Background and Motivation

2.1 Transformer-based LLM Inference

LLMs based on the Transformer architecture [23] perform autoregressive generation by stacking
multiple decoder layers. Each decoder layer primarily comprises a self-attention mechanism and a
feed-forward network (FFN). During inference, each input token is first converted into a continuous
vector through an embedding layer and then passed sequentially through the decoder layers. Within
each layer, the model computes the query (Q), key (K), and value (V) vectors. The attention
mechanism calculates the similarity between Q and K via dot product, applies a softmax function
to obtain normalized weights, and uses them to compute a weighted sum over V, thereby capturing
dependencies between tokens at different positions. The FFN then applies fully connected layers
with non-linear activation to enhance the model’s representational capacity. The final hidden state is
then projected to logits, representing a probability distribution over the vocabulary. The next token is
sampled based on this distribution using strategies such as greedy decoding [24] or beam search [25].

To improve inference efficiency, modern LLM incorporates a KV cache mechanism. During autore-
gressive generation, a new Q attends to past K and V at each step. Since K and V remain unchanged,
caching them avoids redundant KV computation and improves inference efficiency. Let n denote
the number of tokens to be computed at the current step, L the total sequence length, and d the
dimension of the hidden states. The total computational complexity of the attention mechanism is
O(nd? + nLd), which includes the cost of computing Q, K, V and the attention operations. The
complexity of the FFN is O(nd?). By reusing cached K and V, the KV cache significantly reduces
the time and memory overhead of attention, especially in long-sequence generation tasks, thereby
improving inference speed and overall efficiency.

2.2 Parallelism in LLM Inference

To achieve efficient distributed inference for LLM, modern systems typically employ two mainstream
parallelization strategies: TP and PP. TP divides the large matrix operations within a model layer
and distributes them across multiple devices for parallel computation, overcoming the memory
limitations of a single GPU. However, this fine-grained parallel strategy requires frequent exchange
of intermediate activations during the model’s forward pass, leading to significant cross-device
communication overhead.

Alternatively, PP employs a coarse-grained model partitioning strategy, which divides the model
into sequential stages of consecutive layers, with each stage being assigned to different devices for
execution. During inference, input data is split into multiple micro-batches, which are fed into the
pipeline in a time-sequential manner and processed through each stage. Once completing computation
on a micro-batch, a pipeline stage asynchronously transmits the intermediate outputs to the next
stage, and immediately proceeds to process the next micro-batch. As micro-batches flow concurrently
across different stages, the system forms an efficient pipeline scheduling mechanism, significantly
improving computational resource utilization and overall throughput. Since PP only requires data
exchange between adjacent stages, it substantially reduce communication bandwidth pressure. As
a result, PP has become a core parallelization technique widely adopted in current industrial-grade
LLM inference systems.

2.3 Challenges in PP

Inspired by TD-Pipe [26] and gLLM [18], we find that although PP provides notable efficiency
benefits for LLM inference, its performance remains susceptible to inter-stage bubbles. These bubbles
typically arise from imbalanced computational workloads across different pipeline stages, leading to
inefficiencies and idle time. Specifically, while some stages are still processing time-consuming tasks,
others remain idle, waiting for results. Through detailed performance analysis, we have identified a
critical but previously overlooked bottleneck caused by the sampling latency at the end of each model
forward.

While most pipeline stages perform uniform forward computations, the final stage necessitates to
handle additional token sampling operation, which adds extra computational load. This imbalance
makes the final stage a potential performance bottleneck, as the additional sampling workload disrupts
the even distribution of computational tasks across stages. Although static layer redistribution
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Figure 2: The overhead analysis of sampling and forwarding.

can partially mitigate the sampling overhead, the dynamic nature of both sampling and forward
computation times makes a single static strategy unable to maintain balanced workloads under
dynamic workload conditions. The fundamental reason is that sampling overhead mainly depends on
the number of tokens to be sampled, which is determined by the number of decode requests, since
prefill tokens do not require sampling.

Figure 2 presents profiling results that analyze this overhead in detail. As shown in Figure 2(a),
sampling latency grows approximately linearly with the number of sampled tokens, indicating
that increased decode requests directly lead to higher sampling overhead. Meanwhile, Figure 2(c)
illustrates the relationship between the forward computation time of a single layer* and the total
number of tokens, showing that forward computation time is also dynamic and positively correlated
with the combined number of prefill and decode tokens in the batch. Consequently, the ratio of
sampling time to single-layer forward time is not constant, but varies with the composition of tokens
in each batch, reflecting the dynamic proportion of decode to prefill tokens. As shown in Figure 2(b),
this ratio approximately follows a normal distribution. Statistical results further indicate that, on
average, the sampling overhead is about 3.09x the latency of a single layer’s forward computation.
This finding highlights that the sampling operation is not a negligible terminal step but rather a
non-trivial performance factor that introduces substantial latency and significantly impacts the overall
efficiency of the pipeline.

In summary, current PP-based inference systems lack the ability to dynamically adapt to the fluctuating
workload introduced by sampling. Consequently, sampling-induced bottlenecks at the tail stage
can propagate upstream, negatively impacting overall system performance. To address this issue,
a dynamic workload balancing mechanism is needed that reallocates computational workloads to
reduce sampling-induced bubbles and improve overall efficiency of the pipeline.

3 Design

DynaPipe is a collaborative optimization framework designed to reduce pipeline bubbles caused
by tail-stage sampling. As illustrated in Figure 3, DynaPipe consists of three core components:
an execution time predictor, a bubble-aware scheduler, and a migration coordinator. The predictor
employs a lightweight predictive model to estimate the per-layer forward computation time and
the sampling latency. Using these estimates, the scheduler determines whether dynamic layer
redistribution is needed to balance the workload across pipeline stages. When migration is triggered,
the system asynchronously transfers KV cache across devices ensuring that the pipeline execution
continues without interruption. By tightly coordinating these components, DynaPipe dynamically
adapts to runtime workload variation, effectively minimizing pipeline inefficiencies and improving
hardware utilization.

3.1 Execution Time Predictor

As described in Section 2.3, the latency of forward and sampling computations in LLM inference
varies significantly at runtime. To develop an effective layer redistribution strategy, accurate estimation
of latency at each stage is essential. To this end, we construct two independent latency prediction
models. The first model estimates the forward computation time of a single Transformer layer based
on the number of tokens n processed per step and the sequence length L. The second model estimates

“With identical architecture and batch, per-layer forward time is uniform and serves as a standard measure
for sampling cost, guiding the subsequent determination of the number of layers to reallocate.
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Figure 3: Overall architecture and workflow of DynaPipe. "S/T" means source/target stage.

the sampling overhead, which increases approximately linearly with the number of sampled tokens,
as shown in Figure 2(a). Together, these models form our execution time predictor, capable of
dynamically estimating per-layer inference latency and sampling cost, enabling an accurate and
adaptive pipeline layer redistribution strategy.

To construct a latency prediction model with theoretical grounding, the analysis starts with the
computational characteristics of a single Transformer layer. As discussed in Section 2.1, the compu-
tation of a single layer primarily consists of the QKV projection, self-attention mechanism, and the
feed-forward network (FFN). Since the computational complexity of the QKV projection and FFN is
the same, they can be combined, simplifying the overall computational complexity of the layer as
O(nd? + nLd).

For practical deployment, we adopt a scheduling strategy known as chunked prefill[19], which
merges prefill and decode requests within the same computation chunk. The prefill phase is compute-
intensive, as it processes the full input sequence in a chunk. In contrast, the decoding step generates
one token at a time, relies heavily on KV cache access, and is thus constrained by memory bandwidth.
Despite their different computational characteristics, both phases are executed together in a unified
forward computation. This unified computational flow motivates a joint modeling approach to capture
the latency characteristics of both phases. Notably, in the decode phase, n represents the number of
tokens to be computed per forward pass, which is typically 1.

We model the total execution latency of a single Transformer layer over all requests within a chunk
as:

N

ﬂayer = Z ((blni + ¢2n1Lz + 6) (1)

i=1

Here, ¢1, ¢o and € are parameters fitted from profiling data. N denotes the number of requests
contained in the chunk. This formulation accounts for request-level computational costs, providing a
practical estimate of total layer latency under chunked execution.

In addition, to account for the sampling overhead in the tail stage of decoding, we introduce a separate
prediction model:

T’qamp]e = o Ngecode + 2

where Ngecoge denotes the number of decode requests in the chunk, and a, 3 are fitted coefficients
representing the growth rate and fixed overhead of sampling, respectively.



3.2 Bubble-Aware Scheduler

Building on the latency estimates provided by the execution time predictor, pipeline stages can be
assessed for potential imbalances during LLM inference. To address these imbalances, we design a
bubble-aware scheduler that dynamically adjusts layer allocation across stages. The scheduler aims to
minimize pipeline bubbles resulting from uneven execution times, thereby improving overall pipeline
efficiency and hardware utilization.

In particular, as the number of decode requests increases and more tokens need to be sampled, the
sampling overhead in the final pipeline stage becomes non-negligible. To ensure that this stage
maintains the same computation time as other stages and further to achieve pipeline alignment, we
reduce the number of layers assigned to this final stage. Let k& denotes the number of layers removed
from this stage and m denotes the number of stages received these layers. These removed layers are
evenly redistributed to the upstream pipeline stages to maintain workload balance.

To quantify the misalignment introduced by this adjustment, we define the following metric:

k
A= Tsample —k- Tlayer - a : Tlayer y M= min(k‘, NUMgtages — ]-) 3

This metric measures the difference in computation time between the final stage and the preceding
stages after layer redistribution. Ideally, when A ~ 0 and m = numsg.ges — 1, all pipeline stages
are aligned in execution time, leading to improved pipeline efficiency and resource utilization.

To further enhance the stability of the scheduling strategy and avoid the overhead caused by frequent
redistribution, we introduce a stability window threshold mechanism. A configuration is activated
only when it appears consistently across all positions within a sliding window, effectively filtering
out short-term fluctuations. This mechanism enhances scheduling robustness while ensuring smooth
and efficient scheduling during inference.

3.3 Migration Coordinator

During the initialization phase, the system pre-allocates memory and loads the weights for additional
layers that may be reassigned. This enables pipeline stages to quickly access these preloaded
parameters during redistribution. However, weight preloading alone does not complete the migration
process, as it also requires the transfer of the corresponding KV cache. To address this, we designed
and implemented a migration coordinator to manage and transfer KV cache during layer redistribution,
thereby enabling efficient collaboration across different pipeline stages.

As shown in Figure 3, when the scheduler triggers layer redistribution, the migration coordinator
minimizes disruption to ongoing inference, enabling a smooth transition and preserving overall system
performance. The core idea behind this design is to leverage pipeline parallelism and maximize
the overlap between computation and communication during the migration process. Specifically,
when the layer configuration of a stage changes, the system compares the current and adjusted layer
assignments to identify which layers need to be migrated or received, thereby determining the precise
migration scope. During migration, once the source stage completes computation for the layers to be
migrated, it asynchronously transmits the corresponding KV cache to the target stage. Meanwhile, the
target stage asynchronously receives the KV cache for the layers it is about to take over and continues
executing forward computations for the unaffected layers. The target stage only waits for the KV
cache when it reaches the newly assigned layers, and begins computation as soon as it receives the
cache for those layers. Since these KV cache are typically sent in advance by the source stage, the
target stage can complete reception promptly, avoiding prolonged stalls. This design achieves parallel
overlap of computation and communication, avoiding prolonged pipeline stalls caused by migration
operations and ensuring a quick switch in layer redistribution.

4 Evaluation

4.1 Experimental Setup

Implementation. We implement DynaPipe based on gLLM [18], a compact and efficient LLM
inference framework that outperforms existing production-level inference frameworks in pipeline
parallelism. The pipeline workers use ZeroMQ [27] for efficient inter-process communication,
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Figure 4: The average latency and SLO attainment rate of different LLM serving systems. DynaPipe
achieves the lowest average latency and the highest SLO compliance across all workloads.

ensuring smooth synchronization between stages, with each worker responsible for specific tasks. KV
cache migration is performed using NCCL [28] for high-performance cross-GPU communication,
optimizing synchronization and data transfer in multi-GPU environments. All experiments are
conducted on a system with four NVIDIA A100-PClIe-40GB [29] GPUs connected via PCle. For
DynaPipe, we set the window threshold size to 25 to strike a balance between performance and
overhead.

Datasets and models. We use the ShareGPT [30] and Azure-Conv [31] datasets to evaluate the
system’s performance. The ShareGPT dataset, which contains real-world conversational data between
users and ChatGPT [3], is widely used for evaluating dialogue systems. In contrast, the Azure-Conv
dataset, sourced from Azure’s production environment for dialogue inference services, typically
shows longer input lengths than output lengths. Table 1 summarizes the average input and output
lengths for both datasets. We perform experiments using two different model variants: Qwen2.5-14B
and Qwen2.5-32B [1].

Table 1: Input / Output length. Table 2: SLO requirements.

Dataset #Input  #Output Dataset Model TTFT (s) TPOT (ms)
P50 221 157 14B 1 100
ShareGPT — poy 637 332 ShareGPT — 35p 4 250
P50 514 192 14B 1 100
Azure-Conv P90 1008 412 Azure-Conv 3B 4 150

Baselines. We compare DynaPipe with several state-of-the-art LLM inference frameworks, includ-
ing vLLM (v0.8.5 V1) [21] and gLLLLM [18], both using pipeline operations, as well as SGLang
(v0.4.3.post2) [22], which employs tensor parallelism. All these systems use the chunk prefill
technique [19], with the maximum chunk size set to 2048, serving as the baseline for performance
evaluation.

Metrics. We evaluate system performance using two metrics: the average end-to-end latency per
request (E2EL) and the SLO compliance rate. E2EL refers to the total time from when a request
is issued to when the response generation is completed. The SLO compliance rate measures the
system’s stability under service-level constraints: a request is considered compliant if both its TTFT
and TPOT are below the thresholds listed in Table 2. TTFT is the time from request submission to
the generation of the first token; TPOT is the average time to generate each output token. The SLO
compliance rate is defined as the proportion of requests that meet both latency constraints.

4.2 Overall Performance

We conduct a comprehensive evaluation of DynaPipe across multiple datasets and model scales.
Experimental results demonstrate that DynaPipe consistently outperforms mainstream inference
frameworks under various workloads. As illustrated in Figure 4, the performance gap is particularly



notable when compared with vVLLM and SGLang, both of which fall significantly behind gLLM
due to architectural limitations. Specifically, SGLang relies solely on tensor parallelism, which
incurs substantial communication overhead under high-concurrency conditions, quickly becoming a
performance bottleneck. vLLM, while adopting pipeline parallelism to improve throughput, uses
fixed-size chunks that lead to pronounced inter-batch pipeline bubbles, resulting in suboptimal
hardware utilization. gLLLM mitigates these inter-batch bubbles via more adaptive scheduling but
overlooks the non-trivial overhead introduced by sampling, leading to inter-stage bubbles that further
constrain end-to-end performance.

In contrast, DynaPipe redistributes layers to enable sampling to overlap with the forward compu-
tation of extra layers in other stages. This design effectively fills idle phase in the pipeline and
alleviates structural pipeline bubbles, yielding a substantial performance boost. As shown in Figure 4,
DynaPipe consistently achieves superior performance under varying request loads, with especially
pronounced gains under high-throughput scenarios. This improvement stems from earlier completion
of the prefill phase at higher loads, resulting in an increased proportion of decode requests per batch.
Consequently, the sampling overhead becomes a more significant bottleneck, which DynaPipe is
well-positioned to mitigate.

Furthermore, experiments across different model sizes show that DynaPipe consistently reduces
end-to-end latency, highlighting its effectiveness in mitigating sampling overhead. On the ShareGPT
dataset, DynaPipe achieves up to a 40% reduction in E2EL, while on Azure-Conv, the reduction
reaches 34%. The relatively smaller gain on Azure-Conv is attributed to its higher input-output length
ratio, which leads to longer per-layer execution time in the prefill phase and reduces the relative
impact of sampling. Nevertheless, DynaPipe still delivers substantial improvements in this scenario,
highlighting its versatility and resilience under varying workload conditions and data distributions.

In the SLO attainment analysis, DynaPipe demonstrates significant advantages. Under the 90% SLO
attainment target, SGLang and vLLM struggle to meet the requirements at high request rates. In
contrast, DynaPipe maintains higher SLO compliance under high request rates. DynaPipe can also
sustain up to 19% higher request rates than gLLLM under 90% SLO attatinment.

4.3 Performance under Different Output-Input Length Ratios

The acceleration effect of DynaPipe is closely related to the output-input length (O:I) ratio. We
thus test various static redistribution strategies on a synthetic dataset, with the input length fixed
at 512 and the output length varying to form different O:I ratios. As shown in Figure 5, during
the prefill phase (output length = 1), sample overhead is minimal. In this case, static average
distribution achieves the lowest latency, with DynaPipe performing similarly. In contrast, other
static redistribution strategies are unnecessary at this case and instead introduce inappropriate layer
assignments, leading to inter-stage load imbalance and degraded performance. As the output length
increases, the decoding phase becomes significantly longer, leading to a gradual rise in sampling
overhead. In this scenario, static load-balancing strategies fail to address the resulting inter-stage
imbalance, ultimately causing a decline in hardware utilization. On the other hand, the performance
of other static layer redistribution strategies begins to improve, mainly because adding additional
layers helps offset the sample overhead, balancing the pipeline. However, the effectiveness of
different static layer redistribution strategies varies under different input and output length ratios. The
greater the proportion of sample overhead, the more layers are allocated, which is more beneficial.
Nevertheless, DynaPipe consistently outperforms other methods with the lowest latency, and its
adaptive capabilities make it especially effective in real-world scenarios where input and output
lengths fluctuate.
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4.4 Performance under Different Window Thresholds

Figure 6 normalizes the E2EL using the best static layer redistribution strategy on the ShareGPT
dataset as the baseline, illustrating the impact of the adjustment window threshold on the E2EL and
adjustment count for the 32B model. It can be observed that when the adjustment window threshold
is too small, the scheduler frequently triggers re-adjustments, leading to significant overhead, with
the end-to-end latency increasing by 35% compared to the best static redistribution strategy. On
the other hand, if the window threshold is too large, the scheduler fails to adjust in time to address
the overhead caused by sample operations, resulting in an increase in end-to-end latency. Setting
the window size to 25 strikes a good balance between these factors. As shown in the figure, on the
ShareGPT dataset, only 4 adjustments were made, but the end-to-end latency is comparable to the
best static layer redistribution strategy.

4.5 Performance under Multi-Node Setting
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Figure 7: The latency comparison between DynaPipe and gLLM on Qwen2.5-14B (4 nodes).

To emulate a realistic cross-node deployment scenario, we configure NCCL by setting
NCCL_SHM_DISABLE=1, NCCL_P2P_DISABLE=1, and NCCL_IB_DISABLE=1, thereby dis-
abling shared memory, peer-to-peer, and InfiniBand communication backends. This setup forces all
inter-GPU communication to go through the TCP stack, effectively simulating network latency and
bandwidth characteristics of distributed environments. All experiments are conducted on the Qwen-
14B model with four NVIDIA A100 GPUs. As shown in Figure 7, DynaPipe achieves significant
performance improvements compared to gLLM. Although cross-node communication introduces
additional KV Cache migration overhead, which slightly narrows the optimization margin compared
with the single-node scenario, the overall performance remains at a high level. This demonstrates
that the core mechanism of DynaPipe maintains strong effectiveness and scalability in cross-node
settings.

4.6 Effect of Execution Time Predictor
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Figure 8: Actual vs. predicted execution time distribution. "A/S" means Azure-Conv/ShareGPT.

We construct a synthetic dataset by randomly sampling input and output sequence lengths and
measured the offline execution times of the 14B and 32B models to fit the corresponding execution
time predictors. In Figure 8, we evaluate the accuracy of the predictors for both layer execution time
(Layer) and sampling execution time (Sample). The results show that the predicted values closely
align with the y=x line, indicating a high consistency between the predicted and actual execution
times. The average relative error for layer execution time is 4.95%, while the error for sampling
execution time is only 0.31%. This demonstrates that the predictors fitted for the same LLM maintain



high accuracy across different dataset scales, validating the generalization ability of our model.
Furthermore, the predictor takes only 0.5 microseconds per prediction, with negligible overhead.

5 Related Work

LLM inference optimization. Recent system-level research has increasingly concentrated on
enhancing the memory efficiency and throughput performance of LLM inference. Representative
efforts include vLLM [21], which alleviates GPU memory fragmentation through the PagedAttention
mechanism, and SGLang [22], which improves execution efficiency by exploiting structured execution
and KV cache reuse. In addition, several studies [32, 33] employ performance modeling to guide
scheduling strategies, thereby decoupling the prefill and decode phases to achieve higher GPU
utilization. Within distributed inference settings, Llumnix [34] and Seesaw [35] further address
load balancing through KV cache migration and adaptive re-sharding. Orthogonal to these works,
DynaPipe focuses on a previously underemphasized issue of stage imbalance in pipeline parallelism,
which adaptively mitigate stage imbalance at runtime and significantly improve overall inference
efficiency.

Pipeline Parallelism. Extensive pipeline parallelism research in LLM training has primarily focused
on communication latency optimization [36], memory balancing [37, 38, 39], pipeline bubble mit-
igation [38, 40, 41, 42], and activation checkpointing [37, 43]. Some studies have also identified
inter-stage imbalance issues, with approaches such as Skywork-MoE [42] and Megatron-LM [44]
employing static layer redistribution to alleviate this problem. However, such static strategies often
prove less effective under the dynamic workload conditions that are typical in model serving. In
addition, [41] proposes a Vocabulary Parallelism method designed for training scenarios to mitigate
bubbles caused by sampling overhead during training. Nevertheless, applying this method directly to
inference requires stricter synchronization, which significantly increases system design complexity
and synchronization overhead, making it less suitable for efficient serving deployment. In LLM
serving, several studies [19, 18, 26] have explored pipeline parallelism by tuning micro-batch size
and balancing workload to reduce pipeline bubbles. However, these approaches have not fully
addressed the inter-stage imbalance caused by uneven sampling overhead. DynaPipe complements
these efforts by dynamically adjusting layer distribution based on real-time workload conditions,
triggering redistribution only when significant changes occur. This design maintains relatively low
communication overhead and significantly improves the overall efficiency of inference serving.

6 Limitation and Future Work

This work employs deliberate design trade-offs to improve overall system performance. Although the
optimized runtime KV cache migration still incurs some communication overhead, it only results
in minor local performance fluctuations, while overall system performance remains improved. In
addition, to support potential future layer reallocations, extra GPU memory must be reserved for
storing incoming weights, which reduces memory utilization efficiency. To address these issues,
future work may incorporate compression techniques to reduce transfer overhead and leverage
offloading mechanisms to minimize memory waste, thereby improving overall system performance.
Furthermore, integrating vocabulary parallelism [41] into the inference pipeline is also a promising
direction for future exploration.

7 Conclusion

In this paper, we investigate a significant but insufficiently explored aspect: the pipeline inter-stage
bubble problem caused by sampling operations. We propose DynaPipe, a novel runtime dynamic
layer redistribution scheme to address this challenge effectively. By dynamically adjusting the
computational load across layers, DynaPipe achieves balanced task distribution among pipeline
stages, effectively aligning the pipeline and mitigating inter-stage imbalance. Compared to state-of-
the-art pipeline inference frameworks, DynaPipe delivers significant performance improvements.

10



Acknowledgements

We sincerely thank the anonymous reviewers for their valuable comments and suggestions, which
have greatly helped improve this work. This research is supported by the National Key R&D Program
of China (Grant No. 2023YFB3002202), the NSFC grants (#62472462, #62461146204), and is
sponsored by CCF-Tencent Rhino-Bird Open Research Fund (CCF-Tencent RAGR20240102).

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]
(8]

(9]

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5 technical report,”’
CoRR, vol. abs/2412.15115, 2024.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sravankumar, A. Korenev,
A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru, B. Roziere, B. Biron,
B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell, C. Keller,
C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz,
D. Livshits, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino, D. Hupkes,
E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic, F. Zhang,
G. Synnaeve, G. Lee, G. L. Anderson, G. Nail, G. Mialon, G. Pang, G. Cucurell, H. Nguyen,
H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. M. Kloumann, I. Misra, I. Evtimov,
J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah, J. van der Linde, J. Billock,
J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton, J. Spisak, J. Park,
J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Upasani, K. Plawiak, K. Li, K. Heafield,
K. Stone, and et al., “The llama 3 herd of models,” CoRR, vol. abs/2407.21783, 2024.

OpenAl, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023.

Y. Deng, X. Zhang, W. Zhang, Y. Yuan, S. Ng, and T. Chua, “On the multi-turn instruction
following for conversational web agents,” in Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024 (L. Ku, A. Martins, and V. Srikumar, eds.), pp. 8795-8812,
Association for Computational Linguistics, 2024.

A. Maharana, D. Lee, S. Tulyakov, M. Bansal, F. Barbieri, and Y. Fang, “Evaluating very long-
term conversational memory of LLM agents,” in Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024 (L. Ku, A. Martins, and V. Srikumar, eds.), pp. 13851-13870,
Association for Computational Linguistics, 2024.

S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. K. S. Yau,
Z.Lin, L. Zhou, C. Ran, L. Xiao, C. Wu, and J. Schmidhuber, “Metagpt: Meta programming for
A multi-agent collaborative framework,” in The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, OpenReview.net, 2024.

“Bing copilot.” https://www.bing.com/chat, 2024.

Z. Liu, W. Ping, R. Roy, P. Xu, C. Lee, M. Shoeybi, and B. Catanzaro, “Chatqga: Surpass-
ing GPT-4 on conversational QA and RAG,” in Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS
2024, Vancouver, BC, Canada, December 10 - 15, 2024 (A. Globersons, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. M. Tomczak, and C. Zhang, eds.), 2024.

X. Jiang, R. Qiu, Y. Xu, W. Zhang, Y. Zhu, R. Zhang, Y. Fang, C. Xu, J. Zhao, and Y. Wang,
“Ragraph: A general retrieval-augmented graph learning framework,” in Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024 (A. Glober-
sons, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. M. Tomczak, and C. Zhang, eds.), 2024.

11



[10] D.Ru, L. Qiu, X. Hu, T. Zhang, P. Shi, S. Chang, C. Jiayang, C. Wang, S. Sun, H. Li, Z. Zhang,
B. Wang, J. Jiang, T. He, Z. Wang, P. Liu, Y. Zhang, and Z. Zhang, “Ragchecker: A fine-grained
framework for diagnosing retrieval-augmented generation,” in Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024 (A. Globersons, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. M. Tomczak, and C. Zhang, eds.), 2024.

[11] C. Lin, Z. Han, C. Zhang, Y. Yang, F. Yang, C. Chen, and L. Qiu, “Parrot: Efficient serving
of llm-based applications with semantic variable,” in 18th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024
(A. Gavrilovska and D. B. Terry, eds.), pp. 929-945, USENIX Association, 2024.

[12] J. Stojkovic, C. Zhang, I. Goiri, E. Choukse, H. Qiu, R. Fonseca, J. Torrellas, and R. Bian-
chini, “TAPAS: thermal- and power-aware scheduling for LLM inference in cloud plat-
forms,” in Proceedings of the 30th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ASPLOS 2025, Rotterdam,
Netherlands, 30 March 2025 - 3 April 2025 (L. Eeckhout, G. Smaragdakis, K. Liang, A. Samp-
son, M. A. Kim, and C. J. Rossbach, eds.), pp. 1266-1281, ACM, 2025.

[13] Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin, and H. Zhang, “Distserve: Dis-
aggregating prefill and decoding for goodput-optimized large language model serving,” in
18th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2024,
Santa Clara, CA, USA, July 10-12, 2024 (A. Gavrilovska and D. B. Terry, eds.), pp. 193-210,
USENIX Association, 2024.

[14] R. Qin, Z. Li, W. He, J. Cui, F. Ren, M. Zhang, Y. Wu, W. Zheng, and X. Xu, “Mooncake:
Trading more storage for less computation - A kvcache-centric architecture for serving LLM
chatbot,” in 23rd USENIX Conference on File and Storage Technologies, FAST 2025, Santa
Clara, CA, February 25-27, 2025 (H. S. Gunawi and V. Tarasov, eds.), pp. 155-170, USENIX
Association, 2025.

[15] A. K. Kamath, R. Prabhu, J. Mohan, S. Peter, R. Ramjee, and A. Panwar, “Pod-attention: Un-
locking full prefill-decode overlap for faster LLM inference,” in Proceedings of the 30th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2025, Rotterdam, Netherlands, 30 March 2025 - 3 April 2025
(L. Eeckhout, G. Smaragdakis, K. Liang, A. Sampson, M. A. Kim, and C. J. Rossbach, eds.),
pp- 897-912, ACM, 2025.

[16] H. Dong, T. Johnson, M. Cho, and E. Soroush, “Towards low-bit communication for tensor
parallel LLM inference,” CoRR, vol. abs/2411.07942, 2024.

[17] Q.Li, B. Zhang, L. Ye, Y. Zhang, W. Wu, Y. Sun, L. Ma, and Y. Xie, “Flash communication:
Reducing tensor parallelization bottleneck for fast large language model inference,” CoRR,
vol. abs/2412.04964, 2024.

[18] T. Guo, X. Zhang, J. Du, Z. Chen, N. Xiao, and Y. Lu, “gllm: Global balanced pipeline
parallelism system for distributed llm serving with token throttling,” 2025.

[19] A. Agrawal, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani, and R. Ramjee,
“SARATHI: efficient LLM inference by piggybacking decodes with chunked prefills,” CoRR,
vol. abs/2308.16369, 2023.

[20] J. Du, H. Zhang, T. Wei, Z. Zheng, K. Wu, Z. Chen, and Y. Lu, “Ecoserve: Enabling cost-
effective llm serving with proactive intra- and inter-instance orchestration,” 2025.

[21] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica,
“Efficient memory management for large language model serving with pagedattention,” in
Proceedings of the 29th Symposium on Operating Systems Principles, SOSP 2023, Koblenz,
Germany, October 23-26, 2023 (J. Flinn, M. 1. Seltzer, P. Druschel, A. Kaufmann, and J. Mace,
eds.), pp. 611-626, ACM, 2023.

12



[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

L. Zheng, L. Yin, Z. Xie, C. Sun, J. Huang, C. H. Yu, S. Cao, C. Kozyrakis, I. Stoica, J. E. Gon-
zalez, C. W. Barrett, and Y. Sheng, “Sglang: Efficient execution of structured language model
programs,” in Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024 (A. Globersons, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. M.
Tomczak, and C. Zhang, eds.), 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA (I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, eds.), pp. 5998-6008, 2017.

J. Gu, K. Cho, and V. O. K. Li, “Trainable greedy decoding for neural machine transla-
tion,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017 (M. Palmer, R. Hwa,
and S. Riedel, eds.), pp. 1968-1978, Association for Computational Linguistics, 2017.

S. Lemons, C. L. Lépez, R. C. Holte, and W. Ruml, “Beam search: Faster and monotonic,”
in Proceedings of the Thirty-Second International Conference on Automated Planning and
Scheduling, ICAPS 2022, Singapore (virtual), June 13-24, 2022 (A. Kumar, S. Thiébaux,
P. Varakantham, and W. Yeoh, eds.), pp. 222-230, AAAI Press, 2022.

H. Zhang, T. Wei, Z. Zheng, J. Du, Z. Chen, and Y. Lu, “Td-pipe: Temporally-
disaggregated pipeline parallelism architecture for high-throughput LLLM inference,” CoRR,
vol. abs/2506.10470, 2025.

ZeroMQ authors, “ZeroMQ: An open-source universal messaging library.”

NVIDIA  Corporation,  “NCCL: Nvidia collective communications library.”
https://github.com/NVIDIA/nccl, 2025.

N. Corporation, “Nvidia al00 tensor core gpu architecture.” https://resources.nvidia.com/en-us-
genomics-ep/ampere-architecture-white-paper, 2021.

S. Teams., “Share your wildest chatgpt conversations with one click.,” 2023.

P. Patel, E. Choukse, C. Zhang, A. Shah, I. Goiri, S. Maleki, and R. Bianchini, “Splitwise: Effi-
cient generative LLM inference using phase splitting,” in 51st ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2024, Buenos Aires, Argentina, June 29 - July
3,2024, pp. 118-132, IEEE, 2024.

Z.Lin, H. Xu, G. Chen, X. Zhang, and Y. Lu, “Bullet: Boosting gpu utilization for llm serving
via dynamic spatial-temporal orchestration,” 2025.

W. Cui, Y. Chen, H. Zhao, Z. Xu, Q. Chen, X. Chen, Y. Zhou, S. Sun, and M. Guo, “Optimizing
slo-oriented llm serving with pd-multiplexing,” 2025.

B. Sun, Z. Huang, H. Zhao, W. Xiao, X. Zhang, Y. Li, and W. Lin, “Llumnix: Dynamic
scheduling for large language model serving,” in 18th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024
(A. Gavrilovska and D. B. Terry, eds.), pp. 173-191, USENIX Association, 2024.

Q. Su, W. Zhao, X. Li, M. Andoorveedu, C. Jiang, Z. Zhu, K. Song, C. Giannoula, and
G. Pekhimenko, “Seesaw: High-throughput LLM inference via model re-sharding,” CoRR,
vol. abs/2503.06433, 2025.

J. Lin, Z. Liu, Y. You, J. Wang, W. Zhang, and R. Zhao, “Weipipe: Weight pipeline paral-
lelism for communication-effective long-context large model training,” in Proceedings of the
30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,
PPoPP 2025, Las Vegas, NV, USA, March 1-5, 2025, pp. 225-238, ACM, 2025.

13



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Z. Sun, H. Cao, Y. Wang, G. Feng, S. Chen, H. Wang, and W. Chen, “Adapipe: Optimizing
pipeline parallelism with adaptive recomputation and partitioning,” in Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1 May
2024 (R. Gupta, N. B. Abu-Ghazaleh, M. Musuvathi, and D. Tsafrir, eds.), pp. 86—100, ACM,
2024.

Z. Liu, S. Cheng, H. Zhou, and Y. You, “Hanayo: Harnessing wave-like pipeline parallelism
for enhanced large model training efficiency,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2023, Denver, CO,
USA, November 12-17, 2023 (D. Arnold, R. M. Badia, and K. M. Mohror, eds.), pp. 56:1-56:13,
ACM, 2023.

T. Kim, H. Kim, G. Yu, and B. Chun, “Bpipe: Memory-balanced pipeline parallelism for training
large language models,” in International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA (A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, eds.), vol. 202 of Proceedings of Machine Learning Research, pp. 16639—-16653,
PMLR, 2023.

P. Qi, X. Wan, G. Huang, and M. Lin, “Zero bubble (almost) pipeline parallelism,” in The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, OpenReview.net, 2024.

M. T. Yeung, P. Qi, M. Lin, and X. Wan, “Balancing pipeline parallelism with vocabulary
parallelism,” CoRR, vol. abs/2411.05288, 2024.

T. Wei, B. Zhu, L. Zhao, C. Cheng, B. Li, W. Lii, P. Cheng, J. Zhang, X. Zhang, L. Zeng,
X. Wang, Y. Ma, R. Hu, S. Yan, H. Fang, and Y. Zhou, “Skywork-moe: A deep dive into training
techniques for mixture-of-experts language models,” CoRR, vol. abs/2406.06563, 2024.

W. Liu, M. Li, G. Tan, and W. Jia, “Mario: Near zero-cost activation checkpointing in pipeline
parallelism,” in Proceedings of the 30th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, PPoPP 2025, Las Vegas, NV, USA, March 1-5, 2025,
pp- 197211, ACM, 2025.

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti, D. Vainbrand,
P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Zaharia, “Efficient large-
scale language model training on GPU clusters using megatron-lm,” in International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2021, St. Louis,
Missouri, USA, November 14-19, 2021 (B. R. de Supinski, M. W. Hall, and T. Gamblin, eds.),
p- 58, ACM, 2021.

14



Appendix
A Performance Evaluation on Other Models
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Figure 9: Performance comparison on MoE and Dense LLM models. DynaPipe consistently
outperforms the baseline in both average latency and SLO compliance across all workloads.

As shown in Figure 9, DynaPipe consistently outperforms the baseline on both MoE and dense
LLM models. The experiments are conducted on a single node equipped with four NVIDIA A100
40GB GPUs. The results reveal that, under pipeline parallelism, the inter-stage load imbalance
caused by sampling overhead is a pervasive issue, regardless of the underlying model architecture.
By dynamically detecting and adapting to such imbalance, DynaPipe effectively accelerates the
inference process across different models. This further demonstrates the strong generality and
scalability of the proposed method in a wide range of model scenarios.

B Analysis of System Overhead

Migration Overhead Analysis In our system, dynamic layer redistribution inevitably introduces a
certain amount of KV cache migration overhead. Since the KV cache is transferred at the layer gran-
ularity, the communication cost of each migration remains relatively fixed under PCle interconnect
conditions. Meanwhile, the main latency of model forward computation is strongly correlated with
the batch size: when the batch size is large, we overlap KV cache migration with part of the forward
computation, effectively hiding most of the communication latency; when the batch size is small,
although the overlap is less complete, the additional delay of a single layer migration can still be kept
within 100 ms. Furthermore, when deployed in environments with high-bandwidth interconnects
such as NVLINK, this overhead can be further reduced significantly.

To mitigate the disturbance caused by frequent migrations, we introduce a window-threshold mech-
anism into the scheduling policy. The system does not trigger redistribution upon every minor
fluctuation in the ratio between sampling latency and single-layer forward computation cost. Instead,
the signal is accumulated over a sliding window, and redistribution is only executed when the accumu-
lated value exceeds a predefined threshold. This design effectively avoids oscillations near decision
boundaries. For instance, when the sampling-to-forward ratio approaches the boundary between
“adjusting 2 layers” and “adjusting 3 layers,” the mechanism prevents frequent switching between
these two configurations, thereby avoiding redundant migrations and unnecessary costs. Moreover,
in this boundary region, the performance difference between the two configurations is inherently
minimal. Experimental results show that triggering redistribution only 57 times is sufficient to
achieve an excellent balance between performance and stability.

Memory Overhead Analysis. To accommodate potential layer redistributions during runtime, we
preemptively load the weights of layers that may be used in the future, which inevitably leads to a
certain degree of GPU memory overhead. Taking the Qwen2.5-32B model as an example: under
a static allocation strategy, each GPU is typically assigned 16 Transformer layers, whereas after
dynamic redistribution, some GPUs may need to load up to 19 layers. For a 40GB A100 GPU, this
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corresponds to approximately a 7.5% increase in memory usage. Although this adds some memory
pressure, the resulting performance improvement is significant, reflecting a deliberate trade-off
between system performance and memory resource utilization. More importantly, this memory
overhead can be further optimized in the future. By introducing an asynchronous weight offloading
and loading mechanism, the weights of layers that are not on the current computation path can be
temporarily stored in CPU memory. When the scheduler anticipates an upcoming layer redistribution,
the system asynchronously preloads the corresponding weights onto the target GPU in advance.
This mechanism allows us to maintain high performance while significantly mitigating memory
redundancy caused by dynamic layer redistribution.

C Performance Benefit Analysis.

Within the inference pipeline of LLM, the sampling stage typically introduces additional process-
ing time after each microbatch’s forward computation, resulting in pipeline bubbles. Under high
concurrency, these bubbles accumulate continuously and significantly increase the queuing delay of
subsequent requests. As illustrated in Fig. 1, in the baseline system, the accumulation of sampling
bubbles progressively postpones the scheduling of subsequent microbatches into the pipeline. Let the
duration of a single sampling bubble be t5. If completing the prefill for the first n requests requires
x microbatches, then the (n + 1)-th request must wait at least xt, of additional time before it can
start execution. Moreover, during decoding, each forward step introduces an extra (PP, — 1) sam-
pling bubbles, further increasing the overall inference latency. In contrast, with layer redistribution
optimization, bubble accumulation can be effectively mitigated, allowing new requests to enter the
system more rapidly and reducing e2e latency.

The performance advantages of DynaPipe are most pronounced in scenarios with small models and
high request rates. This phenomenon arises primarily because the per-step forward computation time
of small models is short, whereas the sampling latency remains largely constant. Consequently, the
relative contribution of sampling to total latency increases, thereby magnifying the effect of pipeline
idle time on overall system performance.
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and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides complete proofs for both the complexity analysis and the
modeling.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the benchmark settings and hyperparameter configurations neces-
sary for reproduction.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use only publicly available datasets, and the code will be open-sourced
after the paper is accepted.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Our paper includes these details in the evaluation section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While the experimental results demonstrated high stability (with repeated
trials of selected experiments confirming consistent outcomes), comprehensive repetition
was infeasible due to prohibitively long computation times required for each complete
experimental run.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental section comprehensively documents all computational
resources used, including hardware specifications and runtime metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully complies with all provisions of the NeurIPS Code of Ethics
in every aspect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This study improves the inference speed of large language models.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This study utilizes only publicly available, low-risk academic datasets and
does not involve any high-risk models or data that could potentially be misused or have
dual-use applications.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party resources used in this study have been properly cited in their re-
spective sections, with clear attribution of sources, version numbers, and license information
(including MIT License and CC-BY 4.0).

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This study did not create any new datasets, models, or code repositories.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study utilizes publicly available datasets for analysis and does not involve
any experiments with human subjects or crowdsourcing.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve human subjects or crowdsourcing experiments,
therefore IRB approval was not required.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLM tools were used in this study.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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