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Figure 1: Top: Previous methods often assume a single misinformation source and conduct single-
source detection. Bottom: We collaborate generative models and AI tools to build a mixed-source
multimodal misinformation benchmark and achieve mixed-source detection.

ABSTRACT

Current multimodal misinformation detection (MMD) methods often assume a
single source and type of forgery for each sample, which is insufficient for real-
world scenarios where multiple forgery sources coexist. The lack of a benchmark
for mixed-source misinformation has hindered progress in this field. To address this,
we introduce MMFakeBench, the first comprehensive benchmark for mixed-source
MMD. MMFakeBench includes 3 critical sources: textual veracity distortion,
visual veracity distortion, and cross-modal consistency distortion, along with 12
sub-categories of misinformation forgery types. We further conduct an extensive
evaluation of 6 prevalent detection methods and 15 Large Vision-Language Models
(LVLMs) on MMFakeBench under a zero-shot setting. The results indicate that
current methods struggle under this challenging and realistic mixed-source MMD
setting. Additionally, we propose a new approach MMD-Agent, which integrates
the reasoning, action, and tool-use capabilities of LVLM agents, significantly
enhancing accuracy and generalization. We believe this study will catalyze future
research into more realistic mixed-source multimodal misinformation and provide
a fair evaluation of misinformation detection methods. Code and a portion of the
data are accessible in supplementary materials.
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1 INTRODUCTION

Recent advances in generative models for texts (Brown et al., 2020; Touvron et al., 2023) and
images (Dhariwal & Nichol, 2021; Rombach et al., 2022) have significantly lowered the barrier
to producing diverse multimodal misinformation, posing threats to politics, finance, and public
health. For instance, the misinformation “COVID-19 vaccine causes brain damage”, shown in Fig. 1,
accompanied by a highly convincing image, can lead to public distrust in medical treatments and
vaccine refusal. Therefore, identifying multimodal misinformation on social media is urgent.

Most current multimodal misinformation detection (MMD) methods (Abdelnabi et al., 2022; Qi et al.,
2024; Ying et al., 2023; Huang et al., 2023; Zhang & Gao, 2023; Lee et al., 2021) typically assume
that each sample has a single, known forgery source. As depicted in Fig. 1 Top, these forgery sources
involve either textual veracity with fake news text, visual veracity with fake images, or inconsistency
between the text and image. However, the single-source assumption is overly simplistic and fails to
capture the complexity of real-world scenarios, where misinformation often stems from multiple,
random sources. To address this mixed-source MMD problem, two key challenges need to be solved.
First, existing datasets primarily consist of single-source misinformation, lacking misinformation from
multiple sources. This limitation prevents comprehensive evaluation of MMD methods. Second, there
is a lack of general detectors capable of handling mixed-source misinformation. Hence, we present
MMFakeBench, encompassing the mixed-source MMD benchmark, evaluations, and framework.

Benchmark: We introduce MMFakeBench, the first comprehensive benchmark for evaluating
mixed-source MMD. As shown in Fig. 1 Bottom, leveraging advanced AI tools, such as diffusion
generators and ChatGPT, MMFakeBench provides 12 forgery types with 11,000 data pairs from three
primary sources: textual veracity distortion, visual veracity distortion, and cross-modal consistency
distortion. Textual veracity distortion encompasses three types of rumors: natural, artificial, and GPT-
generated rumors. Unlike (Thorne et al., 2018; Shu et al., 2020; Hanselowski et al., 2019; Chen & Shu,
2024) that focus solely on single-source, text-only rumors, MMFakeBench incorporates text-image
rumors using highly relevant real or AI-generated images. Visual veracity distortion filters existing
PS-edited images (Da et al., 2021; Nakamura et al., 2020) according to misinformation standards
and incorporates high-quality AI-generated images. Cross-modal consistency distortion integrates
inconsistencies from both edited and repurposed perspectives into five distinct sub-categories.

Evaluations: To access the current advancements in mixed-source MMD, we build the fine-grained
multi-class evaluation metric and conduct a comprehensive evaluation of 6 state-of-the-art detection
methods and 15 large vision-language models (LVLMs) on MMFakeBench. Specifically, we evaluate
6 detection methods in a single-source setting and assess their combined performance (text, image,
and cross-modal inconsistency detectors) in the mixed-source setting. Additionally, we evaluate 15
large vision-language models (LVLMs), including proprietary models such as GPT-4V (OpenAI,
2023). The results indicate that existing detection methods exhibit poor generalization. Although
LVLMs show robust generalization capabilities, their overall performance still requires improvement.

Framework: Based on our analysis, we propose a simple yet effective LVLM-based framework
called MMD-Agent, which enhances detection performance and serves as a new baseline for future
research. MMD-Agent decomposes mixed-source detection into three stages: textual veracity check,
visual veracity check, and cross-modal consistency reason. This decomposition ensures methodical
and thorough reasoning. At each stage, MMD-Agent instructs LVLMs to generate multi-perspective
reasoning traces, integrating model actions for coherent decisions. Additionally, the models interact
with external knowledge sources via tools (e.g., Wikipedia) to incorporate supplementary information
into their reasoning.

In summary, the main contributions are: (1) We introduce mixed-source multimodal misinformation
detection (MMD), a challenging setting for detecting misinformation from diverse and uncertain
sources, breaking free from single-source constraints, and advancing practical misinformation detec-
tion tasks. (2) We develop MMFakeBench, the first benchmark dataset for evaluating mixed-source
MMD. The dataset contains 3 critical categories (textual veracity distortion, visual veracity distortion,
and consistency reasoning) and 12 sub-categories of forgery types. (3) Using the newly collected
dataset, we benchmark mixed-source MMD by evaluating 6 prevalent detection methods and 15
LVLMs. (4) We propose MMD-Agent, a simple yet effective LVLM-based framework. It outper-
forms previous methods and LVLMs on the MMFakeBench benchmark, highlighting the potential of
mixed-source MMD and providing a new baseline for future research.
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Table 1: Comparison of misinformation datasets. (k) denotes the number of rumor types. ⊗ denotes
editing methods may unintentionally introduce the fact-conflicting content.

Dataset
Textual Veracity Distortion Visual Veracity Distortion Cross-modal Consistency Distortion

Text
(Rumor)

Supporting Image Text
(Veracity)

Fact-conflicting Image Image/Text
Repurposing

Image/Text
EditingRepurposed AI-generated PS-edited AI-generated

FEVER (Thorne et al., 2018) " (1) % % % % % % %

Politifact (Shu et al., 2020) " (1) % % % % % % %

Gossipcop (Shu et al., 2020) " (1) % % % % % % %

Snopes (Hanselowski et al., 2019) " (1) % % % % % % %

MOCHEG (Yao et al., 2023) " (1) % % % % % % %

LLMFake (Chen & Shu, 2024) " (1) % % % % % % %

EMU (Da et al., 2021) % % % % " % % %

Fakeddit (Nakamura et al., 2020) % % % " " % % %

MAIM (Jaiswal et al., 2017) % % % % % % " %

MEIR (Sabir et al., 2018)
⊗

% % % % % % "

NewsCLIPpings (Luo et al., 2021) % % % % % % " %

COSMOS (Aneja et al., 2023) % % % % % % " %

DGM4 (Shao et al., 2023)
⊗

% % % % % % "

MMFakeBench (Ours) " (3) " " " " " " "

2 RELATED WORK

Misinformation Benchmarks. One group of misinformation datasets primarily focuses on dis-
torting textual veracity. The FEVER (Thorne et al., 2018) dataset is constructed by manipulated
Wikipedia sentences with manual annotation. Unlike these artificial rumors, other datasets, such as
Snopes (Hanselowski et al., 2019), Politifact, Gossipcop (Shu et al., 2020), and MOCHEG (Yao et al.,
2023), collect natural rumors from fact-checking websites. Recently, the LLMFake (Chen & Shu,
2024) instructs large language models (LLMs) to generate diverse misinformation. Apart from mis-
leading text, the EMU (Da et al., 2021) and Fakeddit (Nakamura et al., 2020) collect Photoshop-edited
images from the Reddit platform. Another group of misinformation datasets focuses on disrupting
cross-modal consistency. The MAIM (Jaiswal et al., 2017) and MEIR (Sabir et al., 2018) datasets
employ caption replacement and entity swapping, respectively. The NewsCLIPpings (Luo et al.,
2021) and COSMOS (Aneja et al., 2023) datasets link out-of-context images to support certain narra-
tives. The recent dataset DGM4 (Shao et al., 2023) introduces global and local manipulation to alter
semantics and sentiment. Different from these works containing only single-source misinformation,
we propose the first benchmark dataset for evaluating mixed-source MMD, involving textual veracity
distortion, visual veracity distortion, and cross-modal consistency distortion, shown in Table 1.

Misinformation Detection. Current misinformation detection approaches are mainly divided into
two categories. The first is to check textural veracity by constructing features based on writing
style (Przybyla, 2020), sentiment (Ghanem et al., 2021), user feedback (Min et al., 2022) and pre-
trained language models (Huang et al., 2023; Zhang & Gao, 2023). The second is to fuse cross-modal
features to detect semantic inconsistencies. Previous works focus on devising attention-based mod-
ules (Qian et al., 2021b; Ying et al., 2023; Wu et al., 2021) guided by diverse learning strategies (Chen
et al., 2023). Recent works Shao et al. (2024); Qi et al. (2024); Liu et al. (2024c) capitalize the VLMs
which benefit from large-scale pre-training for reasoning context cues. However, these works target a
single-source problem, and evaluations are conducted in constrained scenarios. Our work is the first
to introduce a comprehensive benchmark for mixed-source multimodal misinformation detection.

Large Vision-Language Models. Large language models (LLMs) such as GPT-3 (Brown et al.,
2020) and Vicuna (Chiang et al., 2023) have demonstrated remarkable performance on various
linguistic tasks. Inspired by LLMs, models like LLaVA (Liu et al., 2023a) and MiniGPT-4 (Zhu et al.,
2023) facilitate image-text feature alignment by leveraging visual instruction tuning. More recently,
the evolution of LVLMs has driven advancements in creating diverse and high-quality multimodal
instruction datasets. Models such as InstructBLIP (Dai et al., 2023), mPLUG-Owl (Ye et al., 2023;
2024), LLaVA-1.5 (Liu et al., 2024a) exemplify these developments. In this paper, we explore the
reasoning capabilities (Zheng et al., 2023; Zhang et al., 2024) of LVLMs to address the challenge of
mixed-source multimodal misinformation by integrating reasoning, actions, and tool-use capabilities.

3 MMFAKEBENCH BENCHMARK

In MMFakeBench, we focus on multimodal misinformation involving both text and images, catego-
rizing it into three distinct types based on the sources of falsified content:
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AI-generated Image ( 2.5% )
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Obama To Pay 
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AI-generated Image ( 10% )

Magic Johnson 

did not play for the 

Lakers.

AI-generated Image ( 5% )

Pfizer CEO Secretly 

Admits COVID-19 

Vaccine Causes Per-

manent Brain Damage 

In Vaccine Recipients.

Repurposed Image ( 5% )

Biden Caught on 

Camera Laughing at 

Veterans During 

Memorial Day 
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Veracious Text & 
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in England.
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Consistency Distortion
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Rumor
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Query for Scene ( 5% )

Edited 

Inconsistency

Text Editing ( 10% )
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failure.

Image Editing ( 5% )

An old man 

reading a book 

on a park bench.

MMFakeBench

(10%)

(30%)

(30%)

Let we forget the 

French first world 

war cemetery of 

SerreHebuterne in 

France.

Natural 

Rumor

GPT-generated 

Rumor

Figure 2: Statistics of the MMFakeBench Benchmark.

• Textual Veracity Distortion. It incorporates text-based rumors paired with supporting images to
mimic real-world multimodal scenarios. An image that visually supports misleading text can make
the misinformation appear more credible and persuasive to the users.

• Visual Veracity Distortion. Images in this category contain fact-conflicting misinformation through
altered or fabricated elements, while the texts remain veracious. These visual manipulations often
lead people to perceive falsified content as authentic, distorting their understanding of the information.

• Cross-modal Consistency Distortion. Even when the text and image are individually correct, their
combination can generate potential misinterpretation if presented in a manner that introduces incorrect
associations or semantic discrepancies between the two modalities, thereby misleading people.

3.1 THREE MISINFORMATION SOURCES

3.1.1 TEXTUAL VERACITY DISTORTION

Textual veracity distortion is a critical misinformation category. Our dataset in this category comprises
3,300 samples. Previous works (Thorne et al., 2018; Shu et al., 2020; Hanselowski et al., 2019;
Chen & Shu, 2024) focus on single-source and single-modal textual rumors. However, the types of
real-world rumors are diverse, and those accompanied by images can have a significantly greater
impact. To address this, MMFakeBench introduces a broader range of rumor types and augments
them with highly relevant supporting images to enhance perceived credibility.

Textual Rumor. As shown in Table 1, unlike previous methods that consider only one type of textual
rumor, we consider three types: (1) Natural Rumor. We select natural rumors from Politifact and
Gossipcop (Shu et al., 2020), which provide political news and entertainment stories derived from fact-
checking websites. (2) Artificial Rumor. We collect artificial rumors from the FEVER dataset (Thorne
et al., 2018), which is curated by manually modifying Wikipedia sentences. (3) GPT-generated Rumor.
We instruct ChatGPT (gpt-3.5-turbo) to produce rumors via three prompt approaches (Chen
& Shu, 2024): arbitrary generation, rewriting generation, and information manipulation. Arbitrary
generation is utilized to generate misinformation in specific domains. Rewriting generation addresses
the concise and synthetic traces of artificial rumors, while information manipulation involves altering
factual information in real claims from Politifact and Gossipcop.

Supporting Image. We use either AI-generated images or carefully selected real images to support
the content presented in the rumor text. (1) AI-generated Image: For artificial rumors and their
derived GPT-generated rumors, as well as some less harmful gossip, we utilize generative models to
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Tool box

(c) Cross-modal Consistency Distortion by Text/Image Editing

Word disparity
book

DALLE.3

(a) Textual Veracity Distortion Supported by AI-Generated Images

Prompt: Imagine the scene in which the rumor occurred and provide details

Textual Rumor
Pfizer CEO Secretly Admits 
COVID-19 Vaccine Causes 
Per-manent Brain Damage 

In Vaccine Recipients.

Detail Description

... Pfizer's CEO standing at a 
podium…. a large screen displays 

an image of a brain…a vaccine 
syringe is placed in front of him… 

(b) Visual Veracity Distortion by AI-Generated Images

Prompt: Write a sentence about objects or events that do not exist in real world

Real Claim

Scenic boats daily travel 
the Thames in England.

Fact-conflicting Description

The Queen's face appears 
in the Thames.

Selena Gomez and Justin Bieber Spotted Making Out After Their Concert Date.

An old man 
reading a book on 

a park bench.

Original 𝐏𝐚𝐢𝐫 𝒕𝒆𝒙𝒕𝒐𝒓𝒊, 𝒊𝒎𝒈𝒐𝒓𝒊

Selena Gomez and Justin Bieber Spotted Making Out After Their Concert Date.

An old man 
reading a 

newspaper on a 
park bench.

Edited Pair 𝒕𝒆𝒙𝒕𝒆𝒅𝒊𝒕, 𝒊𝒎𝒈𝒆𝒅𝒊𝒕

Instruct
Pix2Pix

Word disparity
Newspaper

Selena Gomez and Justin Bieber Spotted Making Out After Their Concert Date.

An old man 
reading a 

newspaper on a 
park bench.

Text Editing 𝒕𝒆𝒙𝒕𝒆𝒅𝒊𝒕, 𝒊𝒎𝒈𝒐𝒓𝒊

Selena Gomez and Justin Bieber Spotted Making Out After Their Concert Date.

An old man 
reading a book

on a park bench.

Image Editing 𝒕𝒆𝒙𝒕𝒐𝒓𝒊, 𝒊𝒎𝒈𝒆𝒅𝒊𝒕

Rank CLIP
Similarity

𝒊𝒎𝒈𝒐𝒓𝒊

𝒕𝒆𝒙𝒕𝒐𝒓𝒊

𝒕𝒆𝒙𝒕𝒆𝒅𝒊𝒕
𝒊𝒎𝒈𝒆𝒅𝒊𝒕

Reassemble

Figure 3: Illustrations of using collaborative generative models and AI tools to generate different
sources of misinformation.

create supporting images. We utilize three advanced models: Stable Diffusion XL (Rombach et al.,
2022), DALL-E3 (Ramesh et al., 2022), and Midjourney V6 (Midjourney, 2022) to enhance the
diversity of the generated images. For each rumor, we randomly select a generative model to produce
a corresponding supporting image. As many rumors are highly abstract and lack concrete descriptions
of objects and scenes, directly using these texts as conditions often yields images that are neither
realistic nor relevant. To address this, as shown in Fig. 3 (a), we instruct ChatGPT to enrich the
rumors with more detailed descriptions. These enriched contexts are then used as input for generative
models, ensuring alignment with the textual rumors. (2) Repurposed Image: To avoid creating new
high-risk images, especially for sensitive topics like politics and gossip, we use repurposed images
from the VisualNews (Liu et al., 2021) dataset, which contains numerous image-text pairs from
real-world news sources. We select images with high semantic relevance to the textual rumors based
on text-image CLIP similarity and text-text CLIP similarity. Images with the highest similarity scores
are chosen as supporting images.

3.1.2 VISUAL VERACITY DISTORTION

The visual veracity distortion dataset comprises 1,100 samples where the text is real and the misinfor-
mation exists in the image. Previous datasets (Da et al., 2021; Nakamura et al., 2020) focus solely
on PS-edited (Photoshop-edited) images, containing both misleading and non-misleading content.
In this study, we manually select the misleading ones and include them in MMFakeBench. Besides,
we incorporate AI-generated images with veracity distortion, which is increasingly harmful due to
advancements in diffusion generators.

PS-Edited Image. The PS-edited images are derived from the "manipulated content" samples in
the Fakeddit dataset (Nakamura et al., 2020), which is designed for multimodal fake news detection.
These samples originate from the “Photoshop battles comments” on Reddit. PS-edited samples in
the Fakeddit typically exhibit either aesthetic modifications or fact-conflicting manipulations. Since
aesthetic modifications do not compromise the factuality of the visual content, they are excluded from
our benchmark criteria. Consequently, ten of the volunteers participate in selecting 550 PS-edited
images containing fact-conflicting content from the 7,693 samples of the “manipulated content” set.

AI-generated Image. We propose an automated pipeline that generates fact-conflicting descriptions
from text captions and then creates high-quality images. Specifically, we first collect image-text
pairs from the MS-COCO (Lin et al., 2014) and VisualNews datasets (Liu et al., 2021). Based on
the original text captions, we use ChatGPT to generate corresponding fact-conflicting descriptions,
which are manually verified, as depicted in Fig. 3 (b). For example, from the caption “Scenic boats
daily travel the Thames in England”, we generate the description “The Queen’s face appears in
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the Thames”. These descriptions, combined with the original captions, are used as prompts in the
Midjourney V6 model (Midjourney, 2022) to create corresponding images. The resulting text-image
pairs contain original factual text and generated images with additional fact-conflicting information.

3.1.3 CROSS-MODAL CONSISTENCY DISTORTION

In cross-modal consistency distortion, both the text and image with veracity, but either the text or
image is replaced/manipulated to disrupt their overall consistency. Previous datasets (Sabir et al.,
2018; Luo et al., 2021; Shao et al., 2023) focus on inconsistencies from a single source, either
edit-based or repurposed-based. In contrast, our MMFakeBench integrates inconsistencies from both
edited and repurposed perspectives into five distinct sub-categories, a total of 3,300 image-text pairs.

Repurposed Inconsistency. Our dataset contains three types of repurposed inconsistency, curated
directly from the NewsCLIPings (Luo et al., 2021) dataset: semantic query, person query, and scene
query. (1) Semantic query retrieves repurposed images based on specific semantic content. (2) Person
query ensures the individual mentioned in the caption appears in the mismatched image. (3) Scene
Query relies on spatial similarity to retrieve comparable scene information from repurposed images.

Edited Inconsistency. Our dataset contains two types of edited inconsistency: text editing and
image editing. For text editing, we select samples from the DGM4 (Shao et al., 2023) dataset,
which modifies sentiment words with their antonyms. Notably, some samples in DGM4 contain
fact-conflicting content post-editing. To avoid redundancy with textual veracity distortion, we filter
out these samples. For remaining text editing and all image editing inconsistencies, we build upon the
COCO-Counterfactuals (Le et al., 2023) dataset. This dataset encompasses original image-text pairs
(textori, imgori) and edited image-text pairs (textedit, imgedit) which are obtained via Instruct-
Pix2Pix model (Brooks et al., 2023). As illustrated in Fig. 3 (c), we separately extract word disparities
between textori and textedit and select samples with significant semantic differences using CLIP
similarity. Then, we reassemble the two pairs and obtain (textedit, imgori) as text-edited consistency
distortion samples and (textori, imgedit) as image-edited consistency distortion samples.

3.2 REAL DATA COLLECTION

In addition to the misinformation data, we collect 3,300 real data pairs, ensuring both textual and
visual veracity and exhibiting strong image-text consistency. Given that our synthetic data is derived
from multiple datasets, we construct the real dataset from the same corresponding sources, including
MS-COCO, VisualNews, and real image-text pairs from Fakeddit. We further divide VisualNews into
four distinct news sources: The Guardian, BBC, USA TODAY, and The Washington Post. Finally,
we build the real dataset by equally selecting from six distinct sources.

3.3 MMFAKEBENCH ANALYSIS

MMFakeBench consists of 11,000 image-text pairs, which are divided into a validation set and
a test set following (Yue et al., 2024). The validation set, comprising 1,000 image-text pairs, is
intended for hyperparameter selection, while the test set contains 10,000 pairs. MMFakeBench
encompasses one real category and three misinformation categories. Detailed statistics are shown
in Fig. 2. MMFakeBench is partitioned into 30% for textual veracity distortion, 10% for visual
veracity distortion, 30% for cross-modal consistency distortion, and 30% for real data. The three
misinformation categories can be further subdivided into 12 detailed subcategories based on the
sources of the text and images in Fig. 2. Such a comprehensive benchmark highlights the challenges
of intertwining mixed-source and multiple-types multimodal misinformation in the real world.

4 MMD-AGENT FRAMEWORK

We present a simple yet effective framework, MMD-Agent, which integrates the reasoning, actions,
and tool-use capabilities of LVLM agents. As shown in Fig. 4, MMD-Agent involves two main
processes: (1) Hierarchical decomposition and (2) Integration of internal and external knowledge.

Specifically, we instruct LVLMs M to decompose the task of mixed-source multimodal misinfor-
mation detection into three smaller subtasks: textual veracity check, visual veracity check, and
cross-modal consistency reasoning. During the intermediary phase, each subtask t is addressed
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Question: News Caption: XXXXXX. Make an accurate 
judgment on fine-grained classification of the multimodal 
misinformation, 

Magic Johnson 
did not play for 

the Lakers

Scenic boats daily 
travel the Thames 

in England

Please follow the instructions bellow,

1 Is there objective evidence refuting the news caption? If yes, 

answer 'Finish[TEXT REFUTES].'. If no, continue to step 2,

2. Is there objective evidence refuting the news image? If yes,  

answer 'Finish[Image REFUTES].'. If no, continue to step 3,

3. Does the news caption match the news image? If yes, answer 

'Finish[ORIGINAL].'. If no, answer 'Finish[MISMATCH].'

President Barack 
Obama walking near 

a white building

(b) Standard Prompting

Example 1 Example 2 Example 3

Textual 
Veracity 
Check

Action 1: Find the key entity 
: Magic Johnson 

Action 2: Search Magic Johnson.
Observation: …Magic Johnson spent his entire career with the Los 
Angeles Lakers in the National Basketball Association (NBA)….

WWW

External 
knowledge

Action 3: …Analysis if there is any objective fact that supports 
or refutes the news caption?

: ...It’s clear that Magic Johnson did play for Lakers...
Action 4: Draw the conclusion

: Finish [TEXT REFUTES]

Visual 
Veracity 
Check

Magic Johnson did not play for the 
Lakers

Action 5:  Describe the content in the news image that goes against 
the objective fact.

: …The manipulation creates an illusion that person’s

Action 6: Draw the conclusion 

: Finish [IMAGE REFUTES] Scenic boats daily travel the Thames 
in England

Cross-modal 
Consistency 

Reason

Thought 4: News image shows a man walking towards a white car…
Action 7: Draw the conclusion 

: Finish [MISMATCH] President Barack Obama walking near 
a white building

Finish [ORIGINAL]

Textual 
Veracity 

Distortion  

Visual 
Veracity 

Distortion  

Cross-modal 
Consistency 
Distortion  

(a) Mixed-source Multimodal Misinformation (c) MMD-Agent

Answer for Example 1: Finish [MISMATCH].

Answer for Example 2: Finish [ORIGINAL].

Answer for Example 3: Finish [ORIGINAL].

Question: Judge if the textual veracity is distorted? 

No
Question: Judge if the visual veracity is distorted? 

Question: Judge if the cross-modal consistency is distorted? 

Thought 1 

Thought 2 

Thought 3 
face is part of the water's surface, which is not an objective fact…

No

No

Figure 4: Comparison of standard prompting and proposed MMD-Agent. (a) Three examples of
multimodal misinformation from distinct sources. (b) LVLMs with standard prompting methods fail
to make correct judgments. (c) MMD-Agent instructs LVLMs to decompose mixed-source detection
into smaller subtasks, which are solved by integrating model thoughts and environment observation.

through an interleaved sequence of reasoning and action. The LVLM is guided to reason and induce
the needed action to solve the task. The actions at are then executed either by leveraging the model’s
internal knowledge to generate “Thought” Rt or by interacting with external sources to gather
additional information (“Observation”) Ot. These action outputs will be integrated into the sequence
to facilitate subsequent decision-making dt:

dt = M (Rt,Ot, at) . (1)

The LVLM’s internal capabilities and knowledge are utilized both to reason about which actions to
take and to perform those actions from various perspectives, such as identifying key textual entities
(Thought 1), conducting factual analysis (Thought 2), and applying commonsense reasoning (Thought
3). However, the model may experience hallucinations when relying solely on its internal knowledge.
To address this, we enable the model to interact with external knowledge bases, such as the Wikipedia
API, to retrieve reliable and up-to-date information for fact-checking. This approach ensures the
accuracy and relevance of the knowledge used in verification.

5 EXPERIMENTS

We select 6 state-of-the-art misinformation detection methods and 15 large vision-language models
(LVLMs) for preliminary benchmarking using the MMFakeBench dataset, aiming to explore their
applicability in the mixed-source MMD setting. Additionally, we evaluate the performance of our
proposed framework, MMD-Agent. All evaluations are conducted under a zero-shot setting on our
benchmark. All experiments are performed on eight NVIDIA GeForce 3090 GPUs with PyTorch.

5.1 EXPERIMENTAL SETTING

Baseline Models. We select LVLMs of varying sizes as baseline models. (i) LVLMs with 7B
parameter including Otter (Li et al., 2023a), MiniGPT-4 (Zhu et al., 2023), InstructBLIP (Dai et al.,
2023), Qwen-VL (Bai et al., 2023), VILA (Lin et al., 2024), PandaGPT (Su et al., 2023), mPLUG-
Owl2 (Ye et al., 2024), BLIP-2 (Li et al., 2023b) and LLaVA-1.6 (Liu et al., 2024b). (ii) LVLMs
with 13B parameter including VILA, InstructBLIP, BLIP-2, and LLaVA-1.6. (iii) LVLMs with 34B
parameter including LLaVA-1.6. (iv) Closed-source model including GPT-4V (OpenAI, 2023).

Evaluation Metrics. We evaluate the performance of different baselines using multi-class classifica-
tion, categorizing data into four distinct classes: textual veracity distortion, visual veracity distortion,
cross-modal consistency distortion, and real class. Consistent with (Qian et al., 2021a; Zhang & Gao,
2023; Chen et al., 2023), we adopt the widely-used macro-F1 metric, which balances precision and
recall through a harmonic mean. Beyond the F1 score, we also include macro-precision, macro-recall,
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Table 2: Overall results (%) of different models on the MMFakeBench validation and test set with the
comparison of standard prompting (Standard) and proposed MMD-Agent framework.

Validation (1000) Test (10000)Model
Name

Language
Model

Prompt
Method F1↑ Precision↑ Recall↑ ACC↑ F1↑ Precision↑ Recall↑ ACC↑

Human Evaluation 35.9 38.3 38.9 37.9 - - - -
LVLMs with 7B Parameter

Otter-Image MPT-7B Standard 5.2 10.5 3.4 4.1 4.9 9.3 3.3 4.0
MiniGPT4 Vicuna-7B Standard 5.2 5.2 21.2 9.0 5.3 6.9 21.0 9.1
InstructBLIP Vicuna-7B Standard 7.1 7.9 6.5 7.8 8.1 16.4 7.2 8.5
Qwen-VL Qwen-7B Standard 7.5 10.3 24.3 11.0 8.0 35.9 25.5 11.6
VILA LLaMA2-7B Standard 11.5 7.5 25.0 30.0 11.5 7.5 25.0 30.0
PandaGPT Vicuna-7B Standard 11.8 9.8 25.0 30.0 11.6 8.6 25.0 30.0
mPLUG-Owl2 LLaMA2-7B Standard 14.5 22.2 25.9 31.1 15.1 25.2 26.3 31.5
BLIP2 FlanT5-XL Standard 16.4 20.1 27.5 33.0 16.7 17.3 27.7 33.2
LLaVA-1.6 Vicuna-7B Standard 17.4 14.8 25.7 30.8 19.0 16.5 26.9 32.3

LVLMs with 13B Parameter
Standard 11.5 7.5 25.0 30.0 11.6 32.5 25.0 30.0

VILA LLaMA2-13B
MMD-Agent 22.7 27.3 24.4 28.7 24.0 30.4 25.5 29.4

Standard 13.7 13.2 24.0 28.8 13.9 25.5 24.3 29.1
InstructBLIP Vicuna-13B

MMD-Agent 26.0 33.3 30.1 29.5 24.5 32.1 28.8 27.3
Standard 16.7 34.9 27.3 32.8 16.3 34.6 27.3 32.8

BLIP2 FlanT5-XXL
MMD-Agent 31.6 39.8 32.2 34.4 28.8 39.0 30.4 32.1

Standard 12.0 22.5 25.0 30.0 14.4 35.7 26.0 31.2
LLaVA-1.6 Vicuna-13B

MMD-Agent 38.0 44.5 41.0 40.6 34.5 42.7 37.5 37.4
LVLMs with 34B Parameter

Standard 25.7 44.5 33.7 40.4 25.4 44.1 33.8 40.5
LLaVA-1.6

Nous-Hermes-2
-Yi-34B MMD-Agent 49.9 54.4 52.9 48.7 47.7 52.1 49.6 46.6

Proprietary LVLMs
Standard 51.0 66.8 49.7 54.0 48.8 63.0 48.7 54.2

GPT-4V ChatGPT
MMD-Agent 61.6 67.8 59.3 62.1 61.5 67.7 59.1 61.0

and macro-accuracy as complementary evaluation metrics. Specifically, we construct robust regular
expressions to extract key phrases from the long responses for accurate answer matching. Follow-
ing (Liu et al., 2023b), if a model’s response lacks a valid answer, we classify it as a pseudo choice
“Z” and consider the response incorrect.

5.2 MAIN RESULTS

Comparison of Different LVLMs. We present a comprehensive comparison of different LVLMs
using the MMFakeBench, detailed in Table 2. Our key findings are summarized as follows:

1) Challenges of MMFakeBench: The benchmark poses substantial challenges to current models.
Notably, GPT-4V, despite its advancement, achieves an F1-score of only 51.0% with the standard
prompting. This indicates considerable room for improvement and highlights the rigorous standards
of this benchmark.

2) Disparity between Open-source Models and GPT-4V: Although LLaVA-1.6-34b is the leading open-
source model, it achieves an F1-score of just 25.7% with the standard prompting, significantly lower
than GPT-4V. This highlights a pronounced disparity in detection capabilities between open-source
and proprietary models.

3) Impact of Parameter Quantity: Comparing models within the same series, such as LLaVA-1.6-
Vicuna-7b and LLaVA-1.6-34b, we observe that models with larger parameter counts exhibit better
performance. Smaller LVLMs face constraints in instruction-following and high predicted consistency,
as detailed in the Appendix A.1.1. These results indicate that 7B parameter models lack sufficient
multimodal understanding to effectively combat misinformation.

4) Effectiveness of MMD-Agent: Due to the limited reasoning capability of small-scale models, we
select moderately sized open-source and proprietary models as baselines to compare the proposed
MMD-Agent with the standard prompting. MMD-Agent significantly improves the F1-score for both
open-source models and GPT-4V. Notably, LLaVA-1.6-34B using MMD-Agent achieves an F1-score
of 49.9%, approaching the 51% score of GPT-4V with the standard prompting. This suggests that
MMD-Agent can serve as a general framework for future research on the MMFakeBench benchmark.
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Table 3: (a) Comparison with single-source detectors for MMFakeBench. (b) Ablation studies on
hierarchical (Hier.) decomposition and reasoning knowledge Kt = {Rt,Ot} of each sub-task t.
TVD, VVD, and CCD denote textual veracity distortion, visual veracity distortion, and cross-modal
consistency distortion, respectively. Corpus refers to the general datasets used in LVLMs, not tailored
for misinformation detection. * denotes the chosen single-source detector applied for mixed detection.

(a)
Existing
Detector

Train
Source

Binary
Overall↑

Multiclass
Overall↑

FakingFakeNews* TVD 37.8 -
CNNSpot VVD 23.8 -
UnivFD VVD 28.9 -
LNP* VVD 33.0 -
FakeNewsGPT4 CCD 41.7 -
HAMMER* CCD 43.0 -
Mixed Detection - 47.6 22.5
LLaVA-1.6-34B Corpus 67.2 49.9
GPT-4V Corpus 74.0 61.6

(b)
Hier. K1 K2 K3 Real↑ TVD↑ VVD↑ CCD↑ Overall↑

58.5 5.8 0.0 38.6 25.7

✓ 45.8 (↓12.7) 16.5 (↑10.7) 32.5 (↑32.5) 49.0 (↑10.4) 36.0

✓ ✓ 46.4 (↑0.6) 37.6 (↑21.1) 32.8 (↑0.3) 47.2 (↓1.8) 41.0

✓ ✓ ✓ 46.8 (↑0.4) 37.6 (↑0.0) 61.7 (↑28.9) 48.6 (↑1.4) 48.7

✓ ✓ ✓ ✓ 51.1 (↑4.3) 37.6 (↑0.0) 61.7 (↑0.0) 49.2 (↑0.6) 49.9

W/o Wiki Knowledge 49.7 18.0 61.0 46.3 43.8

W/ Google Knowledge 50.2 33.4 62.2 48.1 48.5

Comparison with Single-source Detectors. We compare LLaVA-1.6-34B and GPT-4V utilized in
MMD-Agent, with several competitive single-source detectors including FakeingFakeNews (Huang
et al., 2023), CNNSpot (Wang et al., 2020), UnivFD (Ojha et al., 2023b), LNP (Liu et al., 2022),
FakeNewsGPT4 (Liu et al., 2024c), and HAMMER (Shao et al., 2023). The details of each detec-
tor are presented in the Appendix A.3.2. For a fair comparison, in addition to the single-source
misinformation detection via existing detectors, we integrate the three most powerful detectors in
distinct sources (i.e., FakeingFakeNews, LNP, and HAMMER) to assess the capability of mixed
detection. Mixed detection utilizes our proposed hierarchical framework by replacing LVLMs with
relevant detectors. The results in Table 3 (a) show that LLaVA-1.6-34B and GPT-4V perform better
than single-source detectors for both binary and multiclass classification by a large margin. This
demonstrates that LVLMs trained with a large general corpus achieve promising generalization
performance in mixed-source MMD and can serve as potential baseline models for future study.

Results of Human Evaluation. We conduct a comprehensive user study using a validation set
containing 1,000 samples as a question bank. For each questionnaire, 50 samples are randomly
selected from this question bank. A total of 80 participants are asked to identify the source of
misinformation for each news item. As shown in the first row of Table 2, the results reveal that
62.1% of the items are predicted incorrectly by users, highlighting the dataset’s high confusion and
the realistic challenge it poses. This level of difficulty and confusion emphasizes the quality and
challenge embedded in our dataset, making it an invaluable resource for pushing the boundaries of
current understanding and capabilities in multimodal misinformation detection research.

5.3 EXPERIMENTAL ANALYSIS

Ablation Study on Hierarchical Decomposition and Reasoning Knowledge. We first investigate
the effects of instructing LVLMs using only hierarchical decomposition compared to standard prompt-
ing. In Table 3 (b), the decomposition method performs better for solving multi-task interference.
Additionally, we conduct an ablation study by sequentially generating multi-perspective knowledge
for individual sub-tasks. Results in Table 3 (b) show that augmenting decisions with reasoning
knowledge outperforms its ablation part, especially for checking content veracity. We further conduct
ablations on external knowledge by removing it or integrating an alternative source (i.e., Google
Knowledge Graph). Results show that models using external knowledge outperform those relying
solely on internal reasoning, highlighting its critical role in validating textual veracity.

Table 4: Performance (F1 score (%)) of models on
different sources of misinformation.

Model Real↑ TVD↑ VVD↑ CCD↑ Overall↑

VILA-13B 32.4 13.4 4.3 37.6 21.9

InstructBLIP-13B 41.9 18.8 19.6 23.8 26.0

BLIP2-FLAN-T5-XXL 41.5 39.2 13.1 32.6 31.6

LLaVA-1.6-34B 51.1 37.6 61.7 49.2 49.9

GPT-4V 65.3 67.2 57.3 56.5 61.6
Natural Rumor Artificial Rumor GPT-generated Rumor0.0

0.2

0.4

0.6

0.46

0.66
0.60

0.08

0.56

0.16
0.20

0.48

0.130.14

0.02

0.18
0.12

0.15

0.03

GPT-4V
LLaVA-1.6-34B

BLIP2-FLAN-T5-XXL
InstructBLIP-13B

VILA-13B

Figure 5: Performance (detection success
rate) of models on different types of rumor.
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Analysis of Misinformation Sources and Types. We compare the F1 scores of various LVLMs
across misinformation sources in Table 4. Across all sources, the majority of open-source models
perform worse than GPT-4V by a huge margin, particularly in terms of textual veracity distortion.
This indicates that open-source models are considerably challenged by textual veracity distortion.
Within textual veracity distortion, we further report the detection accuracy of selected models across
three types of textual rumors. Fig. 5 shows that open-source models typically perform better in the
artificial rumor. This might be attributed to the fact that artificial rumors are constructed by applying
specific rules, which provide identifiable points of falsification enabling verification through external
knowledge. In contrast, natural or GPT-generated rumors often leverage ambiguous language that
makes detection challenging. Analysis of other misinformation sources is detailed in Appendix A.1.3.

.

Keanu Reeves Seen 
Secretly Marrying 

Mystery Woman in 
Las Vegas Chapel 

Shocking Fa

WWW
Retrieved External Knowledge: Keanu Charles 
Reeves is a Canadian actor. … he has established 
himself as a leading man in action cinema…

LLaVA-1.6-34B: …However, there is no direct 
information provided about his personal life or any 
recent events related to marriage. … we would need to 
look for sources that report on Keanu Reeves' personal 
life, specifically any recent events related to marriage…
Answer: Finish[TEXT Supports]

Error Reason: The retrieved knowledge only contains 
Keanu Charles Reeves’ commonsense information on 
Wikipedia. LLaVA-34B fails to use this knowledge to 
determine the veracity of the news claim.  

.

LLaVA-1.6-34B: : …The man is wearing 
a suit and tie, and the woman is in a 
bridal gown. They are holding hands 
and appear to be exchanging vows or 
rings … The setting suggests a church 
or a chapel, with religious symbols…
Answer: Finish[IMAGE Supports]

Error Reason: LLaVA-1.6-34B describes 
The exact contents of the image. Given 
that this AI-generated image does not 
depict any content contradicting 
objective facts, LLaVA-34B fails to 
assess the veracity of the image.

Textual Veracity Check Visual Veracity Check

.

LLaVA-1.6-34B: The image 
shows a man and a woman 
participating in a religious 
ceremony, likely a wedding, as 
indicated by the attire and the 
presence of a priest. 
Answer: Finish[MATCH]

Error Reason: LLaVA-1.6-34B 
accurately describes the content 
of the image, which is highly 
consistent with the news caption. 
Thus, LLaVA-1.6-34B provides 
an answer to ”image-text match”.

Cross-modal Consistency Reason

GPT-generated Rumor 
& AI-generated Image 

Figure 6: One of the most harmful examples involves a GPT-generated rumor supported by an
AI-generated image, which is challenging for LLaVA-1.6-34B. More examples can be found in the
Appendix A.1.7.

Error Analysis. A fundamental root cause of textual veracity checking errors in the LLaVA-1.6-34B
is the lack of useful external knowledge. This deficiency is exemplified in Fig. 6, where the knowledge
contains only commonsense information but fails to provide relevant events. Moreover, this AI-
generated image in the image-text pair exhibits high fidelity and strong coherence, thus evading
detection in visual veracity and cross-modal consistency. These instances underscore the dangers of
using collaborative generative modes to automatically generate multimodal misinformation.

6 CONCLUSION

In this paper, we introduce MMFakeBench, the first comprehensive benchmark for detecting mixed-
source multimodal misinformation. MMFakeBench contains three primary misinformation categories
along with 12 sub-categories of forgery types. We conduct comprehensive evaluations of 6 prevalent
detection methods and 15 LVLMs on the MMFakeBench dataset. Furthermore, we propose an
innovative unified framework and perform extensive experiments to demonstrate its effectiveness.

ETHICS STATEMENT AND LIMITATIONS

This paper contains examples of harmful texts or images, raising concerns about the manipulation
of public safety. To reduce its social impact, we have implemented several safeguards: (1) Content
Safeguards. Rigorous review sensitive content in data generation such as those related to politics and
race etc. (2) Disable data generation code access. We open-source datasets and detection codes but
do not release data generation codes for safety. (3) Data Access Restrictions. Data access is restricted
to verified researchers by following a binding usage agreement. (4) Public Feedback Mechanism. We
will offer a public feedback channel for ethical concerns and continuous dataset improvement. The
licenses for the datasets contributed in this work are discussed in Appendix A.5.

While our MMFakeBench marks a critical advancement in mixed-source multimodal misinformation
detection, it is important to recognize certain limitations. Our proposed framework utilizes external
knowledge retrieved from the Wikipedia API. While the integration of such external knowledge has
enhanced the performance of our baseline models, it may not always provide useful information for
particularly challenging natural rumors and GPT-generated rumors. Future research should explore
the use of a more advanced retrieval augmentation generation (RAG), which could lead to further
performance improvements.
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A APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled “MMFakeBench:
A Mixed-Source Multimodal Misinformation Detection Benchmark for LVLMs”. The appendix is
organized as follows:

• §A.1 Additional Experimental Result.

• §A.1.1 Instruction Following and Prediction Consistency.
• §A.1.2 Evaluation Results for Binary Classification.
• §A.1.3 Analysis of More Misinformation Types.
• §A.1.4 Comparision of Existing Datasets.
• §A.1.5 Efficiency of MMD-Agent.
• §A.1.6 Fine-tuning on Existing Detectors.
• §A.1.7 More Error Analysis.
• §A.1.8 Interpretable visualization.

• §A.2 Benchmark Analysis.

• §A.3 Implementation Details.

• §A.3.1 LVLMs Configuration Details.
• §A.3.2 Existing Single-source Detectors Details.

• §A.4 Instruct Prompts for ChatGPT.

• §A.5 Dataset Licenses.

• §A.6 More Visualization Examples.

A.1 ADDITIONAL EXPERIMENTAL RESULTS

Table 5: Statistics of Instruction following capabilities and predicted consistency tendency of LVLMs.
Model Match Consist. Model Match Consist. Model Match Consist.

LVLMs with 7B Parameter
Otter-Image 9.8 100 Qwen-VL 88.6 92.9 mPLUG-Owl2 100 96.6
MiniGPT4 100 88.6 VILA 100 100 BLIP2 100 93.6

InstructBLIP 25.7 96.11 PandaGPT 100 98.9 LLaVA-1.6 100 76.9

LVLMs with 13B Parameter
VILA 100 100 InstructBLIP 99.9 91.0 BLIP2-FlanT5-XXL 100 49.4

LVLMs with 34B Parameter
LLaVA-1.6 100 52.6 - - - - - -

Proprietary LVLMs
GPT-4V 99.9 36.5 - - - - - -

A.1.1 INSTRUCTION FOLLOWING AND PREDICTION CONSISTENCY.

We evaluated the instruction following capabilities and prediction consistency to further study the
multimodal understanding of LVLMs on mixed-source multimodal misinformation detection (MMD).
We report the success rate in heuristic matching (Match) with regular expressions and prediction
consistency rate (Consist.). The results are shown in the Table 5. Among all LVLMs, small-scale
models like Otter-Image and InstructBLIP, achieve the lower matching success rate. While there
exist small-scale LVLMs that perfectly follow the format of the regular expressions and achieve high
success rates (>99%) in matching, most small-scale models exhibit high predicted consistency rates.
This indicates small-scale models may prefer to predict a certain category answer among all given
choices. Additionally, the leading open-source model, LLaVA-1.6-34B, and the proprietary model
GPT-4V demonstrate superior instruction-following capabilities and lower prediction consistency.
This indicates their significant potential in addressing mixed-source MMD, positioning them as
valuable baseline models.
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Table 6: Binary overall results of different models on the MM-FakeBench validation and test set with
the comparison of standard prompting (Standard) and proposed MMD-Agent framework.

Validation (1000) Test (10000)Model
Name

Language
Model

Prompt
Method F1 Precision Recall ACC F1 Precision Recall ACC

Human Evaluation 54.9 56.6 57.8 56.8 - - - -
LVLMs with 7B Parameter

Otter-Image MPT-7B Standard 7.9 4.1 4.5 7.9 8.6 32.4 5.0 8.6
MiniGPT4 Vicuna-7B Standard 40.4 38.2 45.7 63.1 41.7 41.0 47.4 65.2
InstructBLIP Vicuna-7B Standard 14.7 30.8 13.2 8.1 16.1 40.5 14.2 8.8
Qwen-VL Qwen-7B Standard 43.6 50.6 44.9 60.3 44.0 51.6 45.2 60.5
VILA LLaMA2-7B Standard 41.2 35.0 50.0 70.0 41.2 35.0 50.0 70.0
PandaGPT Vicuna-7B Standard 24.6 60.6 50.5 30.9 24.1 61.7 50.4 30.6
mPLUG-Owl2 LLaMA2-7B Standard 47.2 64.9 52.3 70.6 48.7 71.1 53.3 71.4
BLIP2 FlanT5-XL Standard 41.2 35.0 50.0 70.0 41.2 35.0 50.0 70.0
LLaVA-1.6 Vicuna-7B Standard 48.1 48.2 48.5 59.5 52.5 53.0 52.6 62.5

LVLMs with 13B Parameter
Standard 41.1 35.0 50.0 70.0 41.1 35.0 50.0 70.0

VILA LLaMA2-13B
MMD-Agent 56.5 62.2 56.9 70.3 56.6 64.3 57.2 71.2

Standard 41.1 35.0 49.9 69.9 41.1 35.0 49.9 69.8
InstructBLIP Vicuna-13B

MMD-Agent 51.3 53.4 54.0 53.1 47.9 50.1 50.1 49.9
Standard 31.6 63.4 53.6 35.5 30.6 64.9 53.4 34.9

BLIP2 FlanT5-XXL
MMD-Agent 51.5 53.4 54.0 53.6 51.8 54.0 54.7 53.5

Standard 41.1 35.0 50.0 69.7 42.3 57.3 50.1 69.5
LLaVA-1.6 Vicuna-13B

MMD-Agent 51.8 66.7 54.6 71.4 50.2 67.3 53.9 71.3
LVLMs with 34B Parameter

Standard 62.9 67.1 70.0 63.4 64.3 68.8 71.7 64.8
LLaVA-1.6

Nous-Hermes-2
-Yi-34B MMD-Agent 67.2 70.4 66.0 75.1 68.1 71.1 67.0 75.6

Proprietary LVLMs
Standard 72.3 72.1 72.8 75.6 74.2 73.5 76.9 76.4

GPT-4V ChatGPT
MMD-Agent 74.0 73.4 75.5 76.8 72.8 72.4 75.4 75.0

A.1.2 EVALUATION RESULTS FOR BINARY CLASSIFICATION.

In addition to multi-class classification, we also provide binary classification performance to assess
the overall detection capability of baseline models in mixed-source MMD. Based on the 4 categories
in the mixed-source MMD settings, we develop binary evaluation metrics via mapping techniques.
Specifically, we standardize the assignment of labels denoting “textual veracity distortion”, “visual
veracity distortion”, and “cross-modal consistency distortion” to the classification of “Fake” while
reserving the label “True” to denote real data. Similar to the multi-classification evaluation, we adopt
the widely used F1 score. In addition to the F1 score, we also use precision, recall, and accuracy as
supplementary evaluation metrics. The specific evaluation results are shown in Table 6. From the
results, we make the following observations:

• Current models including open-source models and GPT-4V are challenged by the MMFakeBench
dataset in binary classification detection. Despite being an advanced modal, GPT-4V attains a mere
F1-score of 72.3% using the standard prompting on the validation set.

• The proposed framework MMD-Agent yields substantial improvement on recent LVLMs, especially
on open-source models. For instance, for the BLIP2-FlanT5-XXL model, MMD-Agent achieves a
19.9% increase in F1 score on the validation set. This may be credited to the effective integration of
reasoning, actions, and tool use in enhancing multimodal understanding in mixed-source MMD.

A.1.3 ANALYSIS OF MORE MISINFORMATION TYPES.

Within visual veracity distortion, we report the detection accuracy of selected models across two
types of fact-conflicting images. Fig. 7 (a) shows the challenging nature of both types of such
fact-conflicting images for existing models. Notably, even the advanced GPT-4V achieves a detection
success rate of less than 50% on both types. Additionally, we present an analysis of the detection
accuracy of selected models across different types of image-text inconsistency. As shown in Fig. 7 (b),
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edited inconsistency emerges as a more substantial challenge compared to repurposed inconsistency.
This finding suggests that editing methods introduce minor alterations to images or text, necessitating
enhanced multimodal reasoning capabilities.

(a) (b)

Figure 7: (a) Performance (detection success rate) of models on different types of fact-conflicting
images. (b) Performance of models on different types of inconsistent image-text pairs.

Table 7: Performance (F1 score) comparison of selected models on the proposed benchmark and
existing benchmarks (datasets).

Model
Name

NewsClipings
(Binary)

NewsClipings
(Multiclass)

Fakeddit
(Binary)

Fakeddit
(Multiclass)

MMFakeBench
(Binary)

MMFakeBench
(Multiclass)

Large Vision Language Models
BLIP2-FLanT5-XXL 33.6 - 40.5 31.6 16.7

LLaVA-1.6-34B 65.6 - 71.4 62.9 25.7
Multimodal Specialized Detectors

FKA-Owl 52.0 - 55.0 41.7 -
HAMMER 55.0 - 52.6 43 -

A.1.4 COMPARISION OF EXISTING DATASETS

We conduct an experiment to compare the performance of selected models on the proposed benchmark
against existing benchmarks (datasets) in Table 7. We employ four models: two powerful open-
source LVLM models, LLaVA-1.6-34B and BLIP2-FLANT5-XXL with two open-source multimodal
specialized detectors, HAMMER (Shao et al., 2023) and FKA-Owl (Liu et al., 2024c). All these
models are evaluated on two widely-used multimodal misinformation datasets, NewsClippings (Luo
et al., 2021) and Fakeddit (Nakamura et al., 2020). The results indicate that our MMFakeBench poses
a greater challenge in binary classification compared to the other two datasets. More importantly,
the primary challenge of our benchmark lies in its capacity to perform fine-grained assessments
of misinformation sources in scenarios where multiple forgery types coexist. This mirrors the
complexity of real-world environments, where misinformation stems from diverse, overlapping
sources. This capability is essential for addressing real-world challenges and underscores the
importance of MMFakeBench in advancing multimodal misinformation detection.

A.1.5 EFFICIENCY OF MMD-AGENT

Table 8: Efficiency of MMD-Agent on LLaVA-1.6-34B.
Metric Standard MMD-Agent
Average Inference Time (s) 5.97s 49.04s

Memory (GB) 82G 82G

Performance (F1 score) 25.7 49.9

In Table 8, we compare the inference
time and computational resource usage
of MMD-Agent with standard prompting
methods. Overall, while MMD-Agent
shows an increase in inference time, it
does not lead to additional GPU memory
consumption and significantly enhances
both the performance and interpretability of multimodal misinformation detection. The experimental
results are shown in the table, and the detailed analysis is as follows: (1) MMD-Agent introduces
higher inference time compared to standard prompting methods, primarily due to the additional
reasoning steps, such as extracting key entities from the text. (2) MMD-Agent does not lead to
additional GPU memory consumption. This is because the Agent method does not affect the model
parameter deployment and dataset storage.
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While the increased inference time is a consideration, the substantial gains brought by the MMD-
Agent should not be overlooked. On the one hand, it greatly enhances the detection performance,
with the F1 score improving from 25.7 to 49.9. On the other hand, MMD-Agent offers stronger
interpretability because it offers a detailed analysis of the misinformation rather than only providing
classification labels as used in standard prompting methods. Specifically, as shown in Fig. 4, the
content of the intermediate reasoning traces such as Thought 2, Thought 3, and Thought 4 accurately
analyzes the specific reasons for misinformation from different sources.

Table 9: (a) Results of the specialized detector, HAMMER, fine-tuning on the MMFakeBench dataset.
(b) Results of the specialized detector, FKA-Owl, fine-tuning on the MMFakeBench dataset.

(a) Fine-tune on HAMMER Model.
Model DGM4 MMFakeBench
HAMMER before fine-tuning 83.2 44.1

HAMMER after fine-tuning (10) 78.7 46.8

HAMMER after fine-tuning (100) 70.1 60.8

HAMMER after fine-tuning (1000) 63.2 72.4

(b) Fine-tune on FKA-Owl Model.
Model DGM4 MMFakeBench
FKA-Owl before fine-tuning 78.5 44.6

FKA-Owl after fine-tuning (10) 78.3 46.9

FKA-Owl after fine-tuning (100) 66.4 61.1

FKA-Owl after fine-tuning (1000) 64.8 76.2

A.1.6 FINE-TUNING ON EXISTING DETECTORS

We conducted experiments in Table 9 to investigate the adaptation of existing models to the MM-
FakeBench dataset. Specifically, we selected two existing powerful specialized detectors, HAM-
MER Shao et al. (2023) and LVLM-based detector, FKA-Owl Liu et al. (2024c). Then we fine-tuned
them incrementally with 10, 100, and 1000 examples. We reported the results on both the DGM4 Shao
et al. (2023) dataset (used for training and evaluating HAMMER and FKA-Owl) and our proposed
dataset. The results indicate:

1) Tuning-based models can be hard to generalize to unseen forgery data. For off-the-shelf
dedicated detectors without fine-tuning, their performance on the proposed benchmark dataset
is notably poor. With the rapid development of generative models, new forgery techniques and
synthesized data continue to emerge. Models trained on limited samples face significant challenges
in generalizing to unseen types of forgery data, highlighting a critical issue in the field of fake
detection Liu et al. (2024c); Ojha et al. (2023b).

2) Catastrophic forgetting issues are inevitable. Fine-tuning on new data improves performance
on MMFakeBench but simultaneously leads to a decline in performance on the original dataset.
This degradation underscores the phenomenon of catastrophic forgetting, where previously acquired
knowledge, such as that from the DGM4 dataset, is progressively lost.

A.1.7 MORE ERROR ANALYSIS

In Fig. 8, We have presented more error analysis that span four models of different scales (i.e., GPT-
4V, LLaVA-1.6-34B, BLIP2-FLAN-T5-XXL, and VILA-13B) and on three distinct forgery sources of
textual veracity distortions, visual veracity distortion and cross-modal consistency distortion. Based
on these cases, we provide a deep analysis of the shortcomings of both largely and moderately sized
models when encountering different sources of multimodal misinformation.

1) For cases of textual veracity distortion, our analysis is summarized as follows:

• Reliance on external knowledge. While Largely sized models like LLaVA-1.6-34B and GPT-
4V exhibit strong reasoning capabilities, they are challenging to infer the factual correctness of a
statement without access to a broader context. For instance, when faced with factually incorrect
statements that appear linguistically accurate, such as the GPT-generated rumor, all these four models
lack the inherent capability to question the information without retrieving corroborative evidence.

2) For cases of visual veracity distortion, our analysis is summarized as follows:

• Limited Sensitivity to Abnormal Physical Features. Models including GPT-4V, LLaVA-1.6-
34B, BLIP2-FLAN-T5-XXL, and VILA-13B, face challenges in discerning abnormal physical
characteristics. For instance, in the PS-edited examples, these four models fail to detect subtle yet
unrealistic manipulations, such as swollen necks or distorted facial features in images of Donald
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. ...

Rubio speaks at the 
Conservative Political 
Action Conference on 

March 6 2014 in 
National Harbor Md.

VILA-13B: The news image 
shows a man wearing a suit 
and tie, standing in front of a 
flag, and giving a speech….

Answer: [MATCH]

Error Reason: VILA-13B 
exhibit limited reasoning 
capability, as the presence 
of the speaker in both 
modalities effectively 
misguides the model's 
judgment, leading it to 
overlook the inconsistencies 
between the scenarios.

VILA-13B

Repurposed Inconsistency
(Query for Person)

BLIP2-FLANT5-XXL: A man 
in a suit and tie is speaking….

Answer: [MATCH]

BLIP2-FlanT5-XXL

LLaVA-1.6-34B: The image 
shows a person who appears 
to be a public figure, possibly 
a politician, speaking at a 
podium with an American 
flag in the background.

Answer: [MATCH]

Error Reason: The reasoning 
capability of LLaVA-1.6-34B 
is insufficient. While the 
model identifies a politician 
speaking at a podium in the 
image, it fails to recognize 
the scenario inconsistency, as 
the text specifies the setting 
as National Harbor, Md.

LLaVA-1.6-34B

GPT-4V: The image you 
provided shows a person 
standing at a podium with an 
open gesture, wearing a suit…

Answer: [MATCH]

Error Reason: The reasoning 
capability of GPT-4V is 
insufficient. The visual 
presence of the suited 
individual effectively misleads 
the model's judgment, causing 
it to overlook the inconsistent 
scenarios. 

GPT-4V

Mismatch Reason: The text describes a speech taking place at National Harbor, Md., whereas the image depicts the 
individual speaking in an indoor conference room. 

Error Reason: The reasoning 
capability of BLIP2-FLANT5-
XXL is insufficient. The 
elements of speaker and suit 
in both modalities 
successfully mislead model’s 
judgement, causing it to 
overlook the inconsistent 
scenarios. 

. ...

The president of the 
united states.

VILA-13B: The news image 
shows a man with a large 
head and a large neck,.., It is 
a subjective description and 
does not go against any 
objective fact.

Answer: [Image Supports]

Error Reason: The VILA-13B  
does not discern artificially 
altered physical features. 
The model misinterprets 
these distortions as 
subjective or stylistic 
choices.

VILA-13B

Natural Text & 
PS-edited Images

BLIP2-FLANT5-XXL: The 
president is sitting at a table.

Answer: [Image Supports]

BLIP2-FlanT5-XXL

LLaVA-1.6-34B: The person's 
expression seems to be one of 
contemplation or focus on 
something off-camera. Without 
additional context, it's difficult 
to determine if the image goes 
against any objective facts…

Answer: [Image Supports]

Error Reason: LLaVA-1.6-34B 
focuses on the general facial 
expression of contemplation, 
it failed to account for the 
exaggerated physical 
distortions. 

LLaVA-1.6-34B

GPT-4V: The image you've 
uploaded appears to show 
former President Donald 
Trump in a serious or 
contemplative mood… I 
cannot determine if the image 
itself contradicts objective 
facts…

Answer: [Image Supports]

Correct Reason: GPT-4V 
describes Donald Trump as 
being in a serious or 
contemplative mood but 
overlooks the obvious 
counterfactual visual features, 
such as his abnormally swollen 
face and neck.

GPT-4V

Visual Fact-conflict Reason: The image depicts Donald Trump with an abnormally swollen face and neck, exhibiting 
noticeable features that deviate from natural proportions.

Error Reason: BLIP2-
FLANT5-XXL accurately 
recognize the general context 
of the president sitting at a 
table, it overlooked the 
significant alterations in 
Donald Trump's facial and 
neck proportions. 

GPT-generated Rumor
&AI-generated Image

Jennifer at war with 
'The Voice' Execs 

For Using Show To 
Promote Her Own 

Company!

. ...

VILA-13B: : The news 
caption is not supported by 
any credible objective 
evidence.

Answer: [Text Supports]

Error Reason: In the 
absence of relevant external 
knowledge, VILA-13B 
cannot provide a final 
judgment.

VILA-13B

BLIP2-FLANT5-XXL: 
SUPPORT.

Answer: [Text Supports]

BLIP2-FlanT5-XXL

LLaVA-1.6-34B: Based on the 
news caption, there is not 
enough information to 
determine the veracity of the 
news caption.

Answer: [Text Supports]

Error Reason: Lacking the 
necessary external 
information, LLaVA-1.6-34B 
is unable to reach a 
conclusive decision.

LLaVA-1.6-34B

GPT-4V: The caption doesn't 
provide sufficient detail 
about the circumstances or 
the individuals involved to 
make a clear determination.

Answer: [Text Supports]

Correct Reason: : Due to lack 
of appropriate external 
knowledge, GPT-4V cannot 
make a definitive judgment.

GPT-4V

Textual Fact-conflict Reason: The text describes Jennifer criticizes 'The Voice' Execs for using show to promote her own 
company. But in reality, this did not happen.

Error Reason: BLIP2-
FLANT5-XXL can not rely 
on itself to provide correct 
analysis. Therefore, the 
model makes a wrong 
judgment.

Retrieved External Knowledge: Could not find relevant knowledgeWWW

Figure 8: More Error analysis from three different forgery sources.

Trump. Instead, they are frequently distracted by more prominent visual elements, such as facial
expressions or gestures, resulting in misjudgments when identifying these manipulations.

3) For cases of cross-modal consistency distortion, our analysis is summarized as follows:

• Distraction by global consistent semantics. When confronted with scenarios where images and
text exhibit only subtle inconsistencies while other aspects remain largely consistent, large-scale
models such as LLaVA-1.6-34B and GPT-4V often struggle to detect these discrepancies. These
models can be distracted by the dominant presence of consistent content, which obscures the subtle
mismatches critical for accurate misinformation detection. For instance, in the case of repurposed
inconsistency, all four models focus on global semantics, such as a person delivering a speech, which
diverts attention from deeper, subtle inconsistencies in the scenario.
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Revenant.
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United States.
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Demonstrators wave 

banners in front of the 
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. . .

GT: [IMAGE REFUTES]

Pred: [IMAGE SUPPORTS]
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Pred: [IMAGE SUPPORTS]

GT: [MISMATCH]

Pred: [ORIGINAL]

(a)

(b)

(c)

(d)

(e)

(g)

Figure 9: Illustration of relevancy maps to showcase interpretability for the predicted output of the
LLaVA-13B model.

A.1.8 INTERPRETABLE VISUALIZATION

We have incorporated the recent LVLM-interpret Stan et al. (2024) as a visualization tool to provide
a more transparent understanding of the model’s decision-making process. This method adapts the
calculation of relevancy maps to LVLM, thus providing a detailed representation of the regions of the
image most relevant to each generated token. Specifically, as shown in Fig. 9 (e) for cross-modal
consistency distortion, the relevancy map focuses on the clapping action of the characters in the
image. Clapping typically signifies recognition or approval of an event, conveying semantics that
differ from the meaning of the associated text. This observation aligns with the model’s detection
output, providing intuitive explantations for the identified inconsistency. In contrast, Fig. 9 (g) shows
that the model predominantly focuses on the person depicted in the image while neglecting the slogan
displayed at its center. This oversight prevents the model from identifying the semantic inconsistencies
between the textual and visual modalities, resulting in a failure to capture the underlying mismatch.

(a) (b)

Figure 10: (a) TSNE visualization of textual features from different sources. (b) TSNE visualization
of visual features from different sources.

A.2 BENCHMARK ANALYSIS

Table 10: Benchmark statistics analysis.
Metric Real Unit Fake Unit
Avg. Number of Words 15.8 12.6
Word Frequency Entropy 10.9 11.6
Semantic Similarity (Text-Text) 0.41 0.47
Semantic Similarity (Image-Image) 0.39 0.41

In Table 10, We present benchmark analysis
based on count statistics (i.e., the average
number of words) and diversity (i.e., feature
distribution and word frequency) and seman-
tic similarity metrics for different forgery
sources. The results indicate: 1) The average
number of words is over 10 words, which
suggests that the samples are sufficiently informative. 2) We have provided an analysis of the dataset’s
diversity through t-SNE visualizations of textual and visual features presented in Fig. 10, as well as
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through the entropy of word frequencies detailed in Table 10. This feature visualization provides a
clear depiction of the dataset’s diversity where each forgery sources are distinctly dispersed across
the feature space. Moreover, we calculate the overall entropy of word frequency, where the entropy
for real units ranges from 0 to 15.5 (calculated by log2 (3000× 15.8)), 0 to 16.4 (calculated by
log2 (7000× 12.6)) for fake units where this dataset’s entropy reached 10.9 and 11.6, demonstrating
significant diversity. (3) Additionally, we computed the pairwise semantic similarity between samples,
with results showing an average similarity below 0.5, further confirming the dataset’s rich diversity.

A.3 IMPLEMENTATION DETAILS

A.3.1 LVLMS CONFIGURATION DETAILS

Model Version. As for ChatGPT model, we use GPT-3.5 (gpt-3.5-turbo) or GPT-4 (gpt-4-vision-
preview) as generators or detectors. As for text-to-image models, we use DALLE (DALLE-E3),
Stable-Diffusion (Stable Diffusion XL), and Midjourney (Midjourney V6).

Inference Hyperparameters. To achieve the justified evaluation, we have set the sampling hy-
perparameter of the off-the-shelf LVLMs, “do_sample = False” or “Temperature = 0”, to guarantee
consistency in the predicted outputs. We adopt the default setting of other hyperparameters such as
“max_new_tokens = 512”.

A.3.2 EXISTING SINGLE-SOURCE DETECTORS DETAILS

FakeingFakeNews. The FakingFakeNews Huang et al. (2023) is designed for the detection of
textual fake news, particularly for those natural human-written misinformation. It proposes an
innovative approach for generating training instances, leveraging established styles and strategies
commonly employed in human-authored propaganda. FakingFakeNews employs the ROBERTA Liu
et al. (2019) model as the backbone and trains it on its own proposed PROPANEWS dataset. In our
experiments, we utilized the default configuration of the ROBERTA detector provided within the
FakingFakeNews framework, retaining its default hyperparameters.

CNNSpot. CNNSpot Wang et al. (2020) is an artificial image detector designed specifically for
identifying images produced by generative models. It employs the ResNet-50 model as the classifier
backbone. Notably, CNNSpot recognizes that data augmentation, including JPEG compression and
Gaussian blur, can enhance the generalization capabilities of the detector. In our study, we utilize the
pre-trained CNNSpot model with default hyperparameters to perform the detection of visual veracity
distortion.

UnivFD. UvinFD Ojha et al. (2023a) is a general-purpose fake image detector that uses a feature
space not explicitly trained to distinguish between real from fake images. When given access to
the feature space of a pre-trained vision-language model, UvinFD employs the nearest neighbor to
identify fake images originating from various sources. The utilization of the large pre-trained model
results in a smooth decision boundary, thereby enhancing the generalization capability of the detector.
In our work, we use the pre-trained detector of UnivFD with default hyperparameters to conduct the
visual veracity distortion detection task.

LNP. LNP Liu et al. (2022) utilizes a well-trained denoising model to extract noise patterns from
spatial images. Subsequently, it discerns fake images by analyzing the frequency domain of these
noise patterns. Additionally, LNP employs the ResNet-50 model as the classifier backbone. In our
study, we utilize the pre-trained LNP detector with default hyperparameters to conduct the visual
veracity distortion detection task.

HAMMER. HAMMER Shao et al. (2023) is a multimodal detector designed to identify multimedia
manipulation. It is built upon the pre-trained vision-language model, ALBEF Li et al. (2021) which
comprises two unimodal encoders and a multimodal Aggregator. To accomplish the multimodal
manipulation detection task, HAMMER employs hierarchical manipulation reasoning consisting
of shallow and deep manipulation reasoning. Shallow manipulation reasoning involves semantic
alignment between image and text embeddings, while deep manipulation reasoning performs deep
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cross-modal fusion for forgery detection. In our paper, we employ the off-the-shelf HAMMER
detector with default hyperparameters to detect cross-modal consistency distortion.

FakeNewsGPT4. FakeNewsGPT4 Liu et al. (2024c) is developed based on large vision language
models (LVLMs) to detect multimodal fake news. It identifies two types of forgery-specific knowl-
edge: semantic correlation and artifact tract, and augments LVLMs with these two knowledge.
Specifically, it extracts semantic correlations using a multi-level cross-modal reasoning module and
comprehends unimodal localized details through a dual-branch fine-grained verification model. In our
study, we employed the off-the-shelf FakeNewsGPT4 with default hyperparameters to accomplish
the cross-modal consistency distortion detection task.

Mixed Detection We combine the three most powerful models on each single-source detection
task (i.e., FakingFakeNews for textual veracity distortion, LNP for visual veracity distortion, and
HAMMER for cross-modal consistency distortion) to perform mixed detection. Specifically, utilizing
our proposed hierarchical decomposition framework, we sequentially assess textual veracity, visual
veracity, and cross-modal consistency with three single-source detectors and assign corresponding
multi-class labels.

A.4 INSTRUCT PROMPT FOR CHATGPT

The construction of MMFakeBench employs the advanced ChatGPT to assist us in generating textual
rumors, expanding detailed descriptions, and generating fact-conflicting descriptions. The specific
prompts provided in this work are summarized as follows.

Instruct Prompts to Ask ChatGPT to Generate Textual Rumors. Fig. 11 illustrates the prompt
utilized for asking ChatGPT to generate textual rumors with different prompt methods. These methods
include arbitrary generation, rewriting generation, and information manipulation.

Please write a piece of misinformation title. The domain should be one of gossip, science, health and 
politics. The time period should be within the past ten years. The type should be fake 
news/rumors/misleading claims. Avoid answering words like fake, rumor, confusion, disbelief, 
misinformation, etc. 
#query
Misinformation title is:

(1) Arbitrary Generation Prompt

Given a sentence, please write a piece of misinformation title . The content should be the same. The 
writing style should be serious, informative and convincing. Avoid answering words like fake, 
rumor, confusion, disbelief, misinformation, etc.
#query
Sentence:___________.
Misinformation title is:

Given a true claim, please write a piece of misinformation. It should be long enough, convincing and 
detailed. The error type should be fake news/rumors/misleading claims. Avoid answering words 
like fake, rumor, confusion, disbelief, misinformation, etc. 
#query
The true claim is:___________.
The answer is:

(2) Rewriting Generation Prompt

(3) Information Manipulation Prompt

Figure 11: Prompt used to ask ChatGPT to generate textual rumors with arbitrary generation, rewriting
generation, and information manipulation methods.

Instruct Prompts to ask ChatGPT to Expand Detailed Descriptions. Fig. 12 illustrates the
prompt utilized for asking ChatGPT to expand detailed descriptions for textual rumors. Based on
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Given a news rumor that is not consistent with reality, I need you to imagine the scene in which the 
rumor occurred and provide details about the characters, famous buildings, physical objects, etc. in 
the scene. Avoid sentences that state opinions and only describe physical objects. Avoid words like 
false, rumor, confusion, disbelief, misinformation, etc. 

# in-context examples
Rumor: Peking University is in Thailand.
The answer is: A Thai university in the real world, with the Thai flag flying above, including the 
landmark building of Peking University, the gate of Peking University, a plaque with the name of 
Peking University, the Boya Tower of Peking University, and Weiming Lake of Peking University.

Rumor: Carlos Santana is a US president.
The answer is: This a realistic photo of Carlos Santana in the white house in the real world. Carlos 
Santana stands at a podium adorned with the presidential seal. Behind him, an American flag hangs 
proudly. A row of microphones and a table are set before him, as cameras flash around the room.

Rumor: The Chrysler Building has yet to be surpassed in height.
The answer is: This is a realistic photo of the center of New York City in the real world. The Chrysler 
Building stands tall. The slope of the Chrysler Building forms a crown. There are many high-rise 
buildings on the side.

#query
Rumor: ___________.
The answer is:

Figure 12: Prompt used to ask ChatGPT to expand detailed descriptions of rumors.

Imagine you as a science fiction writer. Given a true claim, please write a piece of misinformation. 
The error type should be contrary to objective facts, that is, objects or events that do not exist in the 
real scene, etc. Avoid answering words like fake, rumor, confusion, disbelief, misinformation, etc. 
# in-context examples
The true claim is: People are standing on top of a snowy mountain.
The answer is: There are angels with wings welcoming these people.

The true claim is: A person sailing in the air on a snow board.
The answer is: A person is snowboarding in the clouds.

The true claim is: A man wearing a blue tie with the ten commandments on it.
The answer is: This man is holding a huge fireball in his hand.
#query
The true claim is: ___________.
The answer is:

Figure 13: Prompt used to ask ChatGPT to generate fact-conflicting descriptions.

the responses, we prompt the stage-of-art diffusion generators to generate realistic and relevant
supporting images.

Instruct Prompts to ask ChatGPT to Generate Fact-conflicting Descriptions. Fig. 13 illustrates
the prompt utilized for asking ChatGPT to generate fact-conflicting descriptions. Then, we combine
these descriptions with original captions as prompts in the Midjourney V6 model Midjourney (2022)
to create corresponding images with additional fact-conflicting information.

A.5 DATASET LICENSES

The licenses of the existing datasets used in this work is as follows:

• FakeNewsNet: free to use by all.

• FEVER: Apache License 2.0.

• Fakeddit: free to use by all.
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• NewsClipings: free to use by all.
• DGM4: S-Lab License 1.0
• COCO-Counterfactuals: Attribution 4.0 International (CC BY 4.0).
• VisualNews: free to use by all.
• MSCOCO: free to use by all.

All datasets provided in this work are licensed under the Attribution Non-Commercial ShareAlike
4.0 International (CC BY-NC-SA 4.0) license. We chose this license because some of the original
datasets have this license and we provide our datasets with the same level of access.

A.6 MORE VISUALIZATION EXAMPLES

We have provided more visualization examples of multimodal misinformation from different sources
in Fig. 14, Fig. 15 and Fig. 16.
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Figure 14: Visualization examples of multimodal misinformation from the textual veracity distortion.
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Figure 15: Visualization examples of multimodal misinformation from the visual veracity distortion.
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Figure 16: Visualization examples of multimodal misinformation from the cross-modal consistency
distortion.
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