
Published as a conference paper at ICLR 2025

DIFFUSING TO THE TOP: BOOST GRAPH NEURAL NET-
WORKS WITH MINIMAL HYPERPARAMETER TUNING

Lequan Lin ∗†

University of Sydney
Dai Shi∗
University of Sydney

Andi Han
Riken AIP

Zhiyong Wang
University of Sydney

Junbin Gao
University of Sydney

ABSTRACT

Graph Neural Networks (GNNs) are proficient in graph representation learning and
achieve promising performance on versatile tasks such as node classification and
link prediction. Usually, a comprehensive hyperparameter tuning is essential for
fully unlocking GNN’s top performance, especially for complicated tasks such as
node classification on large graphs and long-range graphs. This is usually associated
with high computational and time costs and careful design of appropriate search
spaces. This work introduces a graph-conditioned latent diffusion framework
(GNN-Diff) to generate high-performing GNNs based on the model checkpoints of
sub-optimal hyperparameters selected by a light-tuning coarse search. We validate
our method through 166 experiments across four graph tasks: node classification
on small, large, and long-range graphs, as well as link prediction. Our experiments
involve 10 classic and state-of-the-art target models and 20 publicly available
datasets. The results consistently demonstrate that GNN-Diff: (1) boosts the
performance of GNNs with efficient hyperparameter tuning; and (2) presents high
stability and generalizability on unseen data across multiple generation runs. The
code is available at https://github.com/lequanlin/GNN-Diff.

1 INTRODUCTION

Graph neural networks (GNNs) are deep learning models that excel in capturing relationships
within graph-structured data, making them highly effective for a variety of graph tasks such as node
classification and link prediction (Wu et al., 2020; Zhou et al., 2020). Although GNNs achieve good
performance on simple graph tasks without sophisticated hyperparameter tuning (Kipf & Welling,
2017), fully unlocking their potential to achieve top performance or handle complicated graph tasks
still requires extensive hyperparameter tuning (Luo et al., 2024; Tönshoff et al., 2024). This is often
associated with high computational and time costs and careful design of appropriate search spaces.
For example, in Figure 1, we show that the average test accuracy of GCN (Kipf & Welling, 2017)
for node classification typically increases with the hyperparameter search space. Nevertheless, it

Figure 1: Effect of hyperparameter search space on GCN performance for node classification. The
test accuracy is averaged over 10 search runs. We also show the results of our method, GNN-Diff.

∗Equal contribution. Lequan Lin is the corresponding author. # lequan.lin@sydney.edu.au.
†In memory of MeiMei
 , whose love and companionship will always be remembered.

1

https://github.com/lequanlin/GNN-Diff

Published as a conference paper at ICLR 2025

Figure 2: GNNs with parameters found by (a) grid search with the full search space, (b) random
search with the sub-search space, (c) coarse search with the minimal search space, and (d) GNN-Diff
generation based on sub-optimal hyperparameters selected by the coarse search. Top performance
may be achieved by a large search space at a cost of time, or generated with GNN-Diff efficiently.

may cost over 20× of tuning time to gain an accuracy increase of less than 1%. This motivates
us to develop a method that boosts the performance of GNNs while minimizing search space and
tuning time. Furthermore, this method will be particularly beneficial for complex tasks such as
node classification in large and long-range graphs (Hu et al., 2020a; Dwivedi et al., 2022), where
hyperparameter tuning often plays a critical role.

In this paper, we propose a graph-conditioned latent diffusion framework (GNN-Diff) to generate
high-performing GNN parameters with sub-optimal hyperparameters selected by a coarse search,
which is a random search with a relevantly small search space (Figure 2). Our method assumes
that the performance of GNNs is primarily determined by the quality of the learned parameters.
In addition, high-quality parameters exist in the underlying parameter population produced by a
sub-optimal but sufficiently good configuration, which can be found by the coarse search. Based on
our experiments, the coarse search space only needs to be 10% of the grid search space for most graph
tasks to find a promising configuration. The parameter generation is fulfilled by a latent denoising
diffusion probabilistic model (Ho et al., 2020; Rombach et al., 2022). While parameter generation
have been extensively studied in previous research (Erkoç et al., 2023; Peebles et al., 2022; Schürholt
et al., 2022; Soro et al., 2024; Wang et al., 2024), the intrinsic relationship between data characteristics
and network parameters remains underexplored. To fill this gap, we adopt a task-oriented graph
feature encoder to integrate data and graph structural information as a condition for GNN parameter
generation. Lastly, it is noteworthy that GNN-Diff does not require additional hyperparameter tuning
for parameter generation, reducing tuning costs to only those incurred by the coarse search.

Results from 166 experiments across 4 graph tasks, 10 target models, and 20 datasets consistently
show that GNN-Diff: (1) efficiently boosts GNN performance with minimal hyperparameter tuning;
and (2) demonstrates high stability and generalizability over multiple generation runs on unseen data.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) are deep-learning architectures designed for graph data. Typically,
there are two types of GNNs: spatial GNNs that aggregate neighboring nodes with message passing
(Hamilton et al., 2019; Kipf & Welling, 2017; Gasteiger et al., 2019) and spectral GNNs developed
from the graph spectral theory (Defferrard et al., 2016; Lin & Gao, 2023; Zou et al., 2023). The key
component of GNNs is the convolutional layer, which usually consists of graph convolution, linear
transformation, and non-linear activation function.

We denote an undirected graph with N nodes as G{V, E ,A}, where V and E are the node set and the
edge set, respectively, and A ∈ RN×N is the adjacency matrix containing information of relationships.
A can be either weighted or unweighted, normalized or unnormalized. The graph signals are stored
in a matrix X ∈ RN×Df , where Df is the number of features. Then, the convolutional layer in GCN
can be written as σ(AXW), involving graph convolution by node aggregation with the adjacency
A, a feature linear transformation operator W, and the activation σ. Usually, learnable parameters
of GNNs exist in the linear operator and sometimes in the parameterized graph convolution as well
(Defferrard et al., 2016; Zheng et al., 2021).

2

Published as a conference paper at ICLR 2025

2.2 LATENT DIFFUSION MODELS

Diffusion models generate a step-by-step denoising process that recovers data in the target distribution
from random white noises. A typical diffusion model adopts a pair of forward-backward Markov
chains, where the forward chain perturbs the observed samples eventually to white noises, and then
the backward chain learns how to remove the noises and recover the original data. Let w0 ∼ qw(w0)
be the original data (e.g., vectorized network parameters) from the target distribution qw(w0). Then,
the forward-backward chains are formulated as follows.

Forward chain. For diffusion steps t = 0, 1, ..., T , Gaussian noises ϵ ∼ N (0, I) are injected to
wt until qw(wT) :=

∫
qw(wT |w0)qw(w0)dw0 ≈ N (wT ;0, I). By the Markov property, one

may jump to any diffusion steps via wt =
√
α̃tw0 +

√
1− α̃tϵ, where α̃t =

∏t
i=1(1 − βi) with

β = {β1, β2, ..., βT } is a pre-defined noise schedule.

Backward chain. The backward chain removes noises from wT gradually via a backward transition
kernel qw(wt−1|wt), which is usually approximated by a neural network pθ(wt−1|wt) with learnable
parameters θ. In this paper, we adopt the framework of denoising diffusion probabilistic models
(DDPMs), which alternatively uses a denoising network ϵθ to predict the noise injected at each
diffusion step with the loss function

LDDPM = Et,w0∼qw(w0),ϵ∼N (0,I)

∥∥∥ϵ− ϵθ

(√
α̃tw0 +

√
1− α̃tϵ, t

)∥∥∥2 . (1)

Latent diffusion for parameter generation. Generating GNN parameters directly with diffusion
models may lead to slow training and long inference time, especially when the model is heavily-
parameterized. As a common solution to such problems, latent diffusion models (LDM) (Rombach
et al., 2022; Soro et al., 2024; Wang et al., 2024) first learn a parameter autoencoder (PAE) to convert
the target parameters w0 ∈ RDw to a low-dimensional latent space z0 = P-Encoder(w0) ∈ RDp

with Dp ≪ Dw, then generate in the latent space before reconstructing the original target with a
sufficiently precise decoder. The loss function of PAE is usually formulated as the mean squared
error (MSE) between original parameters w0 and reconstructed parameters P-Decoder(z0).

3 RELATED WORKS

This is a summary of related works, and we discuss more details in Appendix A. The related
works cover three topics: network parameter generation, GNN training, and advanced methods
for hyperparameter tuning. In network parameter generation, we start with hypernetwork, an early
concept of predicting parameters of the target network (Ha et al., 2017; Stanley et al., 2009), followed
by a review on generative models for parameter generation (Schürholt et al., 2021; 2022; Peebles
et al., 2022; Wang et al., 2024; Soro et al., 2024). p-diff (Wang et al., 2024) is the most relevant
method to our approach, which collects checkpoints from the training process of the target network
and adopts an unconditional latent diffusion model to generate high-performing parameters. Next, in
GNN training, we discuss two major approaches to boost GNN performance, including pre-training
(Hu et al., 2020b;c; Lu et al., 2021) and architecture search (Gao et al., 2020; You et al., 2020).
However, both approaches inevitably rely on hyperparameter tuning to succeed. Lastly, we consider
some advanced methods of hyperparameter tuning, such as Bayesian optimization (Snoek et al., 2012;
2015) and coarse-to-fine search (Moshkelgosha et al., 2017; Payrosangari et al., 2020).

4 GRAPH NEURAL NETWORK DIFFUSION (GNN-DIFF)

GNN-Diff is a graph-conditioned diffusion framework that generates high-performing parameters for
a target GNN to match or even surpass the results of time-consuming hyperparameter tuning with
a much more efficient process. This is achieved via a pipeline of four steps: (1) input graph data,
(2) parameter collection of the target GNN with a light-tuning coarse search, (3) training, and (4)
inference and prediction. GNN-Diff has three trainable components: a parameter autoencoder (PAE),
a graph feature encoder (GFE), and a graph-conditioned latent diffusion model (G-LDM). We provide
the overview of the GNN-Diff pipeline in Figure 3. The input data and PAE have been previously
discussed in Section 2, thus the rest of this section focuses on the remaining details in the GNN-Diff
pipeline. The pseudo codes of training and inference algorithms are provided in Appendix B.

3

Published as a conference paper at ICLR 2025

Figure 3: How GNN-Diff works for node classification. (1) Input graph data: input graph signals,
adjacency matrix, and train/validation ground truth labels. (2) Parameter collection: we use a coarse
search with a small search space to select an appropriate hyperparameter configuration for the target
GNN, and then collect model checkpoints with this configuration. (3) Training: PAE and GFE are
firstly trained to produce latent parameters and the graph condition, and then G-LDM learns how to
recover latent parameters from white noises with the graph condition as a guidance. (4) Inference:
after sampling latent parameters from G-LDM, GNN parameters are reconstructed with the PAE
decoder and returned to the target GNN for prediction.

4.1 PARAMETER COLLECTION WITH COARSE SEARCH

To produce high-performing GNN parameters, we need a set of good parameter samples such that the
diffusion model can generate from their underlying population distribution. Intuitively, the quality of
parameter samples relies on the hyperparameter selection. Hence, we apply a coarse search with a
relevantly small search space to determine the suitable configuration. Two types of hyperparameters
are considered: training-related such as learning rate and weight decay, and model-related such as
hidden size and the teleport probability α in APPNP (Gasteiger et al., 2019). We train the target
model with multiple runs for each configuration. Then, we select the configuration with the best
validation results on average. After the coarse search, model checkpoints trained with the selected
configuration are saved as parameter samples. Parameter samples are reorganized and vectorized
before they are further processed by the PAE.

4.2 GRAPH FEATURE ENCODER (GFE)

Previous works have discussed using datasets as conditions of parameter generation, but only for
the purpose of transferability (Nava et al., 2022; Soro et al., 2024; Zhang et al., 2024). The role of
specific data characteristics in parameter generation still remains underexplored. To fill this gap,
GNN-Diff leverages the graph data and structural information as the generative condition. The GFE
is designed to encode graph information in graph signals X and structure A to form the condition.
Our experiments involve node classification and link prediction tasks, thus the GFE encoder aims at
producing a graph representation that works well on the specific task. Straightforwardly, we consider
adopting a GNN-based architecture for the encoder to capture and process both data and graph
information. This architecture is determined by the nature of each task. For example, multiple GNN
layers may be well-suited for node classification on homophilic graphs, where connected nodes are
normally from the same classes, but inappropriate for heterophilic graphs, where nodes with different
labels are prone to be linked (Zheng et al., 2022; Han et al., 2024). Hence, enlightened by some
previous works (Shao et al., 2023; Thorpe et al., 2022; Zhu et al., 2020), we introduce a structure
that is capable of handling node classification on both homophilic and heterophilic graphs. The GFE
encoder (without activation) can be denoted as

η = G-Encoder(X,A) = Concat
(
A2XW1,AXW2,XW3

)
W4 ∈ RN×Dp , (2)

which is composed of the concatenation of a two-layer GCN, a one-layer GCN, and an MLP,
followed by a linear transformation W4 ∈ RDG×Dp , where DG and Dp are the dimensions of the
concatenation and the latent parameter representation, respectively. Next, the GFE decoder for
general node classification is a single linear layer G-Decoder(η) = ηW5 ∈ RDc , with Dc being the

4

Published as a conference paper at ICLR 2025

number of node classes. This ensures that graph information is fully encapsulated in the output of
the encoder. Finally, the loss function is the cross entropy on node labels. We use this GFE for node
classification on small homophilic and heterophilic graphs. The GFEs for node classification on large
and long-range graphs and link prediction are discussed in Appendix C.1. The graph condition is
constructed via mean-pooling the nodes as cG = 1

N

∑N
i=1 η(i) ∈ RDp , where η(i) is the i-th row

of graph representation. The purpose of applying mean pooling on nodes is to construct an overall
graph condition regardless of the graph size, which will later be combined with latent representation
z0 ∈ RDp as input of diffusion denoising network.

4.3 GRAPH-CONDITIONED LATENT DDPM (G-LDM)

G-LDM is developed from LDM with the graph condition as a consolidated guidance on latent GNN
parameter generation. The forward pass of G-LDM is the same as traditional DDPM, while the
backward pass uses a graph-conditioned backward kernel to recover data from white noises. Given
the latent parameters z0 from the PAE encoder and the graph condition cG from the GFE encoder,
the corresponding G-LDM loss function is written as

LG-LDM = Et,z0∼qz(z0),ϵ∼N (0,I)

∥∥∥ϵ− ϵθ

(√
α̃tz0 +

√
1− α̃tϵ, t, cG

)∥∥∥2 . (3)

For both PAE and denoising network ϵθ, we adopt the Conv1d-based architecture in (Wang et al.,
2024). We include the graph condition by taking the sum of zt, cG , and the time embedding as input
to ϵθ. We observe in experiments that the most important factor in high-quality generation is to reduce
parameter dimension sufficiently while ensuring reconstruction tightness. This can be easily done
by setting the appropriate kernel size and stride for Conv1d layers in PAE based on the parameter
size, which does not require hyperparameter tuning. We discuss more details about the PAE and ϵθ
architectures and how to ensure high-quality generation in Appendices C.2 and C.3.

4.4 INFERENCE AND PREDICTION

The last step is to obtain parameters and return them to the target GNN for prediction. G-LDM
generates samples of latent parameters with the learned ϵθ. Then, the learned PAE decoder is applied
to reconstruct parameters back to the original parameter space. These parameters are returned to the
target GNN, thus we have a group of GNNs with generated parameters. Lastly, the model with the
best validation performance will be used for final evaluation.

5 EXPERIMENTS AND DISCUSSIONS

5.1 EXPERIMENTAL SETUP

Tasks and metrics. We evaluate our method with 4 graph tasks: (1) basic node classification on
small homophilic and heterophilic graphs; (2) node classification on large graphs with a huge amount
of nodes; (3) node classification on long-range graphs with very deep GNNs; (4) link existence
prediction on undirected graphs. We use accuracy as the metric for all tasks except for the node
classification on long-range graphs. Since node classes are highly imbalanced in long-range graphs,
we employ macro F1-score as the metric. We will report 100× F1-scores for presentation purpose.

Baseline methods. We compare GNN-Diff with (1) grid search with full search space; (2) random
search with 20% of full search space; (3) coarse search with 10% of full search space; (4) coarse-to-
fine (C2F) that narrows down search space based on the coarse search to optimize hyperparameters.

Datasets. We conduct the experiments on 20 publicly available datasets. For basic node clas-
sification, we consider 6 homophilic graphs: Cora, Citeseer, and Pubmed (Yang et al.,
2016), as well as Computers, Photo, and CS (Shchur et al., 2018); and 6 heterophilic graphs:
Actor and Wisconsin (Pei et al., 2020), along with Roman-Empire, Amazon-Ratings,
Minesweeper, and Tolokers (Platonov et al., 2023). We also test on large graphs with
89,250 to 2,339,029 nodes, including Flickr (Zeng et al., 2020), Reddit (Hamilton et al.,
2019), and OGB-arXiv and OGB-Products (Hu et al., 2020a). For long-range graphs, we
use PascalVOC-SP and COCO-SP (Dwivedi et al., 2022). Additionally, our link prediction exper-
iments involve 4 datasets: Cora and Citeseer (Yang et al., 2016), as well as Chameleon and
Squirrel (Rozemberczki et al., 2021).

5

Published as a conference paper at ICLR 2025

Target models. 9 classic and state-of-the-art GNNs are selected as target models: GCN (Kipf &
Welling, 2017), SAGE (Hamilton et al., 2019), APPNP (Gasteiger et al., 2019), GAT (Veličković
et al., 2018), ChebNet Defferrard et al. (2016), H2GCN (Zhu et al., 2020), SGC (Wu et al., 2019),
GRPGNN (Chien et al., 2021), and MixHop (Abu-El-Haija et al., 2019). We also include multilayer
perceptron (MLP) to represent baseline performance.

Experiment details. All experiments are run on NVIDIA 4090 GPUs with 24GB memory. GNN-
Diff is trained with a consecutive training flow of its three components (200 epochs for GFE, 9000
epochs for PAE and 6000 epochs for G-LDM). We may generate either all or part of the target
model’s parameters. The partial generation focuses on the last learnable layer, because earlier layers
typically perform the role of feature extraction and representation learning, while the last layer is
more task-specific and crucial for the final classification (Yosinski et al., 2014). For the sake of
efficiency, GNN-Diff performs partial generation in all experiments. To collect partial parameters, we
fix the parameters in all layers except the last layer after 190 epochs, save the checkpoint with the best
validation result, and further train it with a small learning rate 5e-4 in another 10 epochs for 10 runs.
The parameters collected in each run are different due to randomness caused by dropout, but they are
assumed to be from the same population, as they are obtained by slightly altering the saved checkpoint.
In evaluation, we generate 100 samples and test the sample with the best validation performance. For
the baseline search methods, we first train the target model with each configuration for 200 epochs
over 10 runs (3 runs for some large and long-range graphs in consideration of time), then select
the configuration with the best average validation performance. To ensure a fair comparison with
GNN-Diff, which fine-tunes the last layer for parameter collection, we also train the target model
for 190 epochs and fine-tune the last layer for 10 more epochs using the best configuration from the
baseline search. We then report the better test accuracy from either the full 200-epoch training or the
fine-tuning scheme.

Reproducibility and comparability. The random seed was set as 42 to mitigate randomness in
experiments. Our results may be different from some related works such as (Luo et al., 2024; Tönshoff
et al., 2024) due to different data split and model architecture. For example, we only use the first split
of Actor and Wisconsin (Pei et al., 2020) because all the experiments are conducted based on
one train/validation/test split. Also, the target GNNs mostly adopt simple architectures without tricks
such as residual connection and layer or batch normalization.

Please refer to Appendices D, E, F, G, and H for more experiment settings and details.

Table 1: Results of basic node classification on homophilic and heterophilic graphs. We report the
average test accuracy (%) and the standard deviation of models selected by validation over 10 training
or generation runs. The best results are marked in bold.

Datasets Cora (Homophily) Citeseer (Homophily)

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 59.41 ± 0.94 58.32 ± 1.21 58.28 ± 0.68 57.83 ± 1.58 59.47 ± 0.43 58.26 ± 1.04 57.63 ± 1.45 57.51 ± 1.30 57.63 ± 1.44 58.72 ± 0.84
GCN 82.04 ± 0.96 81.52 ± 0.71 81.89 ± 0.48 81.99 ± 0.95 82.33 ± 0.17 71.92 ± 1.10 72.04 ± 0.56 71.97 ± 0.67 72.13 ± 0.23 72.37 ± 0.29
SAGE 80.58 ± 1.04 80.49 ± 0.77 80.43 ± 0.78 80.43 ± 0.78 80.60 ± 0.15 70.56 ± 0.58 69.50 ± 0.61 68.81 ± 0.86 70.39 ± 0.91 70.45 ± 0.14
APPNP 81.91 ± 0.90 81.69 ± 0.62 81.47 ± 0.51 81.91 ± 0.90 82.51 ± 0.29 70.82 ± 1.40 69.87 ± 0.45 69.68 ± 0.63 69.60 ± 1.32 71.44 ± 0.17
GAT 81.10 ± 0.52 81.05 ± 0.82 80.13 ± 1.18 80.52 ± 1.29 81.69 ± 0.10 70.83 ± 0.58 70.81 ± 0.69 70.45 ± 1.13 69.82 ± 1.10 71.50 ± 0.09
ChebNet 81.83 ± 0.46 81.51 ± 0.85 81.30 ± 0.88 81.73 ± 1.09 82.05 ± 0.55 71.14 ± 0.13 71.24 ± 0.75 71.02 ± 1.12 71.14 ± 0.13 71.65 ± 0.27
H2GCN 82.05 ± 0.81 81.67 ± 0.71 81.63 ± 0.88 82.11 ± 0.72 82.17 ± 0.12 71.49 ± 0.89 71.30 ± 1.31 71.39 ± 0.19 71.12 ± 0.98 71.78 ± 0.25
SGC 81.89 ± 0.94 82.09 ± 0.55 81.60 ± 0.80 82.09 ± 0.55 82.10 ± 0.24 71.94 ± 0.56 71.82 ± 0.26 71.77 ± 0.23 71.70 ± 0.43 72.10 ± 0.18
GPRGNN 81.03 ± 0.65 81.34 ± 0.63 81.21 ± 0.64 81.41 ± 0.84 81.79 ± 0.20 70.93 ± 1.19 70.44 ± 0.71 70.05 ± 0.94 70.93 ± 1.19 71.86 ± 0.19
MixHop 80.08 ± 1.43 79.39 ± 0.77 78.81 ± 0.66 79.50 ± 0.73 80.32 ± 0.71 70.88 ± 0.94 70.54 ± 1.27 70.15 ± 0.68 70.81 ± 1.16 71.50 ± 0.49

Datasets Actor (Heterophily) Wisconsin (Heterophily)

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 37.36 ± 0.71 37.81 ± 0.71 37.22 ± 0.77 37.91 ± 0.79 37.89 ± 0.33 78.63 ± 1.72 78.43 ± 2.26 78.43 ± 4.13 79.61 ± 3.09 80.39 ± 1.07
GCN 30.94 ± 0.46 30.43 ± 0.47 30.79 ± 0.46 30.79 ± 0.46 31.24 ± 0.26 59.80 ± 2.96 59.41 ± 2.62 59.02 ± 1.72 60.39 ± 3.40 61.17 ± 0.78
SAGE 35.54 ± 0.84 35.53 ± 0.84 35.35 ± 0.83 36.70 ± 0.81 36.11 ± 0.09 75.68 ± 4.26 74.90 ± 4.60 73.73 ± 4.15 73.73 ± 5.48 76.47 ± 2.32
APPNP 35.32 ± 0.53 35.09 ± 0.53 35.11 ± 0.75 35.53 ± 0.76 35.92 ± 0.21 80.98 ± 3.59 79.61 ± 3.60 79.60 ± 3.60 80.78 ± 3.89 81.16 ± 1.53
GAT 29.84 ± 0.61 29.79 ± 0.86 29.61 ± 0.73 29.87 ± 0.74 29.88 ± 0.23 53.92 ± 3.73 51.96 ± 4.26 52.35 ± 2.62 51.57 ± 4.72 52.94 ± 0.05
ChebNet 37.29 ± 0.75 36.48 ± 0.72 36.23 ± 0.53 37.39 ± 0.69 37.49 ± 0.16 80.00 ± 4.32 79.61 ± 2.95 79.61 ± 2.48 79.80 ± 4.03 80.59 ± 2.83
H2GCN 34.05 ± 0.76 34.05 ± 0.76 34.01 ± 0.59 33.63 ± 0.65 34.16 ± 0.21 83.14 ± 2.65 82.55 ± 3.39 80.98 ± 3.93 82.55 ± 3.39 83.72 ± 0.90
SGC 30.32 ± 0.39 30.32 ± 0.39 29.13 ± 0.32 28.87 ± 0.42 30.38 ± 0.17 57.25 ± 4.41 58.24 ± 3.34 57.84 ± 4.06 57.25 ± 4.41 60.32 ± 1.19
GPRGNN 36.32 ± 0.43 36.56 ± 1.21 36.26 ± 0.61 36.68 ± 0.57 36.84 ± 0.41 80.20 ± 3.63 79.41 ± 3.83 79.41 ± 3.49 80.78 ± 4.41 81.53 ± 0.96
MixHop 37.76 ± 1.00 37.57 ± 0.92 37.06 ± 0.59 37.60 ± 0.60 38.15 ± 0.38 77.45 ± 3.10 79.41 ± 2.31 79.61 ± 2.95 79.80 ± 3.07 80.39 ± 0.07

6

Published as a conference paper at ICLR 2025

Table 2: Results of node classification on large graphs. We report the average test accuracy (%) and
the standard deviation of models selected by validation over 10 (Flickr and OGB-arXiv) or 3
Reddit and OGB-Products) training or generation runs. The best results are marked in bold.

Datasets Flickr Reddit

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

GCN 52.54 ± 0.89 52.65 ± 0.99 52.64 ± 0.63 52.81 ± 0.76 52.84 ± 0.04 91.01 ± 0.09 91.07 ± 0.05 91.12 ± 0.07 91.12 ± 0.07 91.15 ± 0.04
SAGE 53.60 ± 0.39 53.53 ± 0.39 53.48 ± 0.47 53.63 ± 0.92 53.70 ± 0.02 93.26 ± 0.02 93.19 ± 0.06 93.28 ± 0.03 93.34 ± 0.06 93.45 ± 0.03
APPNP 52.37 ± 0.61 51.78 ± 0.64 51.92 ± 0.46 51.99 ± 0.21 52.23 ± 0.03 87.94 ± 0.07 86.44 ± 0.18 86.40 ± 0.12 87.93 ± 0.09 88.07 ± 0.05

Datasets OGB-arXiv OGB-Products

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

GCN 69.22 ± 0.09 68.97 ± 0.05 68.53 ± 0.2 69.25 ± 0.15 69.38 ± 0.04 73.21 ± 0.19 73.29 ± 0.21 73.04 ± 0.23 73.94 ± 0.22 74.03 ± 0.16
SAGE 69.91 ± 0.38 69.85 ± 0.28 69.64 ± 0.17 70.03 ± 0.26 70.34 ± 0.07 75.68 ± 0.37 75.9 ± 0.33 75.6 ± 0.34 76.01 ± 0.42 76.52 ± 0.14
APPNP 55.05 ± 2.37 54.64 ± 4.05 54.58 ± 1.28 54.89 ± 1.12 55.09 ± 1.02 58.89 ± 0.21 56.09 ± 0.24 53.38 ± 0.36 54.22 ± 0.27 53.59 ± 0.18

Table 3: Results of node classification on long-range graphs. We report the average test F1-score and
the standard deviation of models selected by validation over 3 training or generation runs. We show
100× the original values for presentation purpose. The best results are marked in bold.

Datasets PascalVOC-SP COCO-SP

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 11.82 ± 0.16 11.79 ± 0.12 11.77 ± 0.14 11.89 ± 0.27 11.97 ± 0.04 3.15 ± 0.31 3.13 ± 0.16 3.05 ± 0.26 3.17 ± 0.42 3.20 ± 0.05
GCN 23.31 ± 0.14 23.20 ± 0.17 23.18 ± 0.11 23.33 ± 0.26 23.52 ± 0.08 7.94 ± 0.21 7.78 ± 0.26 7.92 ± 0.18 7.90 ± 0.31 8.07 ± 0.03
SAGE 27.98 ± 0.23 28.08 ± 0.32 27.42 ± 0.26 27.98 ± 0.23 28.24 ± 0.06 8.65 ± 0.61 9.19 ± 0.34 8.99 ± 0.64 8.65 ± 0.61 9.28 ± 0.08
APPNP 17.24 ± 0.12 15.82 ± 0.11 15.25 ± 0.14 17.24 ± 0.12 15.57 ± 0.05 4.28 ± 0.07 4.27 ± 0.08 4.06 ± 0.15 4.27 ± 0.08 4.43 ± 0.02
SGC 21.65 ± 0.23 21.55 ± 0.21 21.05 ± 0.26 21.32 ± 0.14 21.80 ± 0.12 5.56 ± 0.39 5.82 ± 0.29 5.53 ± 0.40 5.70 ± 0.33 5.84 ± 0.11
GPRGNN 15.56 ± 0.19 15.21 ± 0.10 15.03 ± 0.09 14.91 ± 0.12 15.26 ± 0.09 4.40 ± 0.07 4.33 ± 0.12 4.27 ± 0.08 4.39 ± 0.08 4.34 ± 0.07
MixHop 21.79 ± 0.18 22.37 ± 0.12 22.60 ± 0.16 22.60 ± 0.16 22.75 ± 0.03 7.06 ± 0.19 7.01 ± 0.15 6.55 ± 0.25 6.87 ± 0.21 6.74 ± 0.03

Table 4: Results of link existence prediction. We report the average test accuracy (%) and the standard
deviation of models selected by validation over 10 training or generation runs. The best results are
marked in bold.

Datasets Cora Citeseer

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 75.04 ± 1.12 74.61 ± 1.72 74.05 ± 1.25 74.79 ± 0.97 75.42 ± 0.19 78.26 ± 0.80 78.23 ± 1.23 76.79 ± 1.28 78.25 ± 1.79 78.87 ± 0.07
GCN 76.92 ± 0.83 76.73 ± 0.80 76.29 ± 0.88 76.47 ± 0.43 77.04 ± 0.12 77.90 ± 0.90 75.93 ± 0.72 76.90 ± 0.92 77.25 ± 0.92 77.94 ± 0.14
SAGE 75.09 ± 0.49 75.22 ± 1.14 74.97 ± 0.43 74.11 ± 2.24 76.33 ± 0.31 76.25 ± 1.15 76.37 ± 1.32 75.84 ± 1.91 76.43 ± 0.85 76.51 ± 0.08
APPNP 75.95 ± 0.93 75.80 ± 1.07 75.64 ± 0.91 75.95 ± 0.93 76.94 ± 0.15 75.98 ± 1.06 75.73 ± 0.81 75.68 ± 0.72 75.92 ± 0.85 76.15 ± 0.15
ChebNet 74.96 ± 0.79 74.53 ± 0.70 74.17 ± 0.48 74.31 ± 0.96 74.96 ± 0.15 78.31 ± 1.88 77.36 ± 2.77 76.76 ± 1.38 76.82 ± 0.82 78.35 ± 0.33

Datasets Chameleon Squirrel

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 76.88 ± 0.39 76.56 ± 0.46 75.27 ± 0.66 76.61 ± 0.50 76.23 ± 0.10 73.24 ± 0.16 73.13 ± 0.07 73.13 ± 0.07 73.28 ± 0.22 73.32 ± 0.04
GCN 78.71 ± 0.54 78.50 ± 0.38 77.69 ± 0.43 77.91 ± 0.34 78.26 ± 0.02 74.72 ± 0.12 74.52 ± 0.45 74.61 ± 0.11 74.62 ± 0.17 74.73 ± 0.05
SAGE 82.06 ± 0.41 81.89 ± 0.35 81.88 ± 0.40 82.02 ± 0.51 82.08 ± 0.19 75.34 ± 0.32 74.49 ± 0.51 74.09 ± 0.26 74.37 ± 0.27 74.66 ± 0.02
APPNP 78.87 ± 0.75 77.67 ± 0.34 77.66 ± 0.29 77.74 ± 0.65 77.95 ± 0.04 73.61 ± 0.22 73.54 ± 0.25 73.51 ± 0.17 73.61 ± 0.22 73.76 ± 0.09
ChebNet 81.00 ± 0.54 77.52 ± 0.46 77.25 ± 0.44 77.25 ± 0.44 81.30 ± 0.18 75.48 ± 0.34 75.31 ± 0.32 73.56 ± 0.62 75.32 ± 0.43 75.54 ± 0.03

5.2 MAIN EXPERIMENT RESULTS

Results of basic node classification. We show results of node classification on Cora, Citeseer,
Actor, and Wisconsin in Table 1. More node classification results on homophilic and heterophilic
graphs can be found in Appendix I. In general, models generated by GNN-Diff achieve the best
average test accuracy for 36 out of 40 experiments in Table 1. For the rest of 4 experiments, GNN-Diff
produces accuracy that still sufficiently matches the grid search performance. Both GNN-Diff and
C2F show clear improvement on the coarse search results, while GNN-Diff outperforms C2F for
most target models and datasets. Moreover, it is apparent that models generated by GNN-Diff exhibit
more stable performance in terms of standard deviation.

Results of node classification on large graphs. The challenge of large graphs is often associated
with the large number of nodes, which makes the computation of graph convolution considerably
slow. In addition, GNNs often need a comparably larger hidden size (e.g., 256) to achieve good
performance on large graphs (Hu et al., 2020a), which increases the volume of parameters to learn.
The experiment results in Table 2 show that GNN-Diff can produce high-performing GNNs on large

7

Published as a conference paper at ICLR 2025

graphs by generating only the last layer parameters efficiently. In consideration of time and memory
efficiency, our experiments are conducted with the clustering training (Chiang et al., 2019). We
also discuss the potential of combining GNN-Diff with other state-of-the-art large-scale training
algorithms in Appendix I.7.

Results of node classification on long-range graphs. In long-range graphs, nodes need to exchange
information over long distances (i.e., information is passed through many edges to form useful graph
representations), which usually relies on very deep GNNs with many graph convolutional layers
(Dwivedi et al., 2022). Partial generation is even more helpful in this case because a well-informed
graph representation is formed just before the last layer, making it an important mapping to final
classification. We observe in Table 3 that GNN-Diff generates top-performing GNNs for most
long-range graph tasks as expected.

Results of link prediction. To validate GNN-Diff on various graph tasks, we conduct link existence
prediction following the experiment design in (Kipf & Welling, 2016). We use accuracy as the metric
instead of AUC-ROC because we adopt equal-proportion sampling for positive and negative edges.
The results are presented in Table 4. Models generated by GNN-Diff show outstanding performance
in Cora, Citeseer, and Squirrel. On Chameleon, however, random search shows more
promising results, though GNN-Diff generally better enhances the original performance from coarse
search compared to C2F.

5.3 FURTHER DISCUSSIONS

Visualizations

We use visualizations of node classification with GCN on Citeseer as examples to answer the
following three questions. Please note that “input samples” refers to the parameter samples collected
for GNN-Diff training.

Figure 4: (a) Scatter plot between validation and test accuracy for grid, random, and coarse search.
The black circle indicates the final models selected by validation. (b) Visualization of generated
and input sample parameters with isomap. Each bubble represents one parameter sample, and the
bubble size shows the corresponding test accuracy. (c) Kernel density estimation plot of test accuracy
distributions corresponding to input samples, noised sample parameters, and GNN-Diff parameters.

Q1. Why are some random or coarse search results even better than grid search? We observe
that some random or coarse search results may be even better than the comprehensive grid search.
For example, with GCN node classification on Citeseer, results from coarse, random, and grid
search are 71.97%, 72.04%, and 71.92%, respectively. This is different from our previous observation
in Figure 1. In Figure 4 (a), we note that models that achieve higher validation accuracy may not
perform better on the test set. We recognize this phenomenon as “overfitting on validation set” with
overly extensive grid search. Random search with a smaller search space may solve the problem. But
how do we know the appropriate search space size? In addition, more than 80% of experiment results
show that grid search can find better generalized models than random search. Thus GNN-Diff, which
learns from samples with sub-optimal validation performance, is considered as a better solution.

Q2. How does GNN-Diff generate better performance based on the input samples? In short,
GNN-Diff approximates the population of input samples and explores into better-performing regions.
In Figure 4 (b), we visualize the input parameters (orange) and 100 parameters generated by GNN-
Diff (red) via isometric mapping dimensionality reduction (Tenenbaum et al., 2000). Additionally, we
plot each model point as bubbles with bubble size representing the corresponding test accuracy. We

8

Published as a conference paper at ICLR 2025

observe that parameters generated by GNN-Diff spread around the input sample distribution. Notably,
parameters in the extended distribution may lead to better accuracy than the best-performing input
sample (72.70% vs. 72.30%). This may verify our assumption that better-performing parameters
exist in the population of sample parameters from a sub-optimal configuration, and can be found by
GNN-Diff.

Q3. Can we find better-performing models by simply adding random noises to input samples?
There is a slight possibility, but GNN-Diff clearly shows more promising outcomes. To answer
this question, we conduct an experiment in which we add random Gaussian noises to the input
samples of GNN-Diff. We set the mean of noises as 0 and tune the standard deviation (std) in [1e-3,
5e-3, 1e-2, 2e-2]. All distributions are plotted based on 100 results. The model performance with
lightly noised parameters (std = 1e-3) almost follows the sample distribution, while high-level noises
(std = 2e-2) significantly diminish the model accuracy. We observe that when noise std = 5e-3,
the corresponding accuracy distribution presents slightly better results than the original samples.
Nevertheless, parameters from GNN-Diff consistently outperform the noised ones, indicating that
GNN-Diff enhances model performance beyond random guessing.

Full Generation vs. Partial Generation

We found that GNN-Diff significantly enhances GNNs by generating only the last learnable
layer of the target model. To confirm the effectiveness of this approach, we compared GNN-
Diff with three different generation and sampling strategies: (a) partial generation as in the
main experiments; (b) full generation (best checkpoint) with samples collected by training
the best validation checkpoint from 190 epochs with another 10 epochs and a very small
learning rate for 10 runs; (c) full generation (all checkpoints) with samples collected by sav-
ing all checkpoints over 200 epochs and discarding the first 10 that have not yet converged.

Figure 5: GNN-Diff for GCN node classification on Cora
with three generation and sampling strategies. Each row
contains visualisations of (1) generated and input sample
distributions of the first parameter in last layer bias; (2) gen-
erated and input sample distributions of the first parameter
in last layer weights; (3) test accuracy of generated and input
sample parameters.

In Figure 5, we show the distribution
of the GNN-Diff parameters and the
input parameters and their test accu-
racy. The test accuracy distribution
of GNN-Diff is based on the results
of 30 generation runs of 100 sam-
ples. We only show the test accu-
racy corresponding to the best vali-
dation sample in each run. Overall,
GNN-Diff effectively captures and ex-
pands the sample distribution across
all three strategies. Moreover, the
generated samples usually yield better
test performance than the input sam-
ples. Partial generation and full gener-
ation (best checkpoint) produce sim-
ilar results, while full generation (all
checkpoints) shows noticeably infe-
rior performance. This difference may
be caused by the low-quality param-
eters in the input samples, as the test
accuracy from the input samples col-
lected with the all-checkpoint strategy
exhibits a much wider range of lower
values (see Figure 5 (c)).

Ablation Study on the Graph Condition

An ablation study is conducted to evaluate GNN parameter generation with and without the graph
condition (more analyses related to the GFE and graph condition are in Appendix I.5). Here we
compare GNN-Diff with p-diff (Wang et al., 2024), an unconditional diffusion model for parameter
generation. GNN-Diff adopts nearly identical PAE and ϵθ as p-diff, minimizing the impact of model
architecture differences. We apply the same training and hyperparameter settings for both methods to
ensure that the only difference is the graph condition. The results are exhibited in Table 5. GNN-Diff
outperforms p-diff in almost all experiments, and generally presents more stable generation outcomes

9

Published as a conference paper at ICLR 2025

with lower standard deviation. Therefore, we conclude that the graph condition is indeed helpful with
GNN parameter generation by providing insightful guidance based on graph and data information.

Table 5: Comparison between GNN parameter
generation with and without the graph condi-
tion (GNN-Diff vs. p-diff). We consider node
classification on 4 types of graphs, Cora (ho-
mophily), Actor (heterophily), Flickr (large),
and PascalVOC-SP (long-range), and two tar-
get models, GCN and SAGE.

Models GCN SAGE

Methods GNN-Diff p-diff GNN-Diff p-diff

Cora 82.33 ± 0.17 81.96 ± 0.31 80.60 ± 0.05 80.19 ± 0.60
Actor 31.24 ± 0.26 30.96 ± 0.30 36.11 ± 0.09 36.25 ± 0.31
Flickr 52.84 ± 0.04 52.70 ± 0.11 53.70 ± 0.02 53.55 ± 0.23

PascalVOC-SP 23.52 ± 0.08 23.49 ± 0.09 28.24 ± 0.06 28.12 ± 0.02

Figure 6: Sensitivity analysis. How average
test results varies with coarse search results
(left column) and number of samples gener-
ated (right column).

Sensitivity Analyses

(1) Sensitivity analysis on coarse search results. We would like to know whether a coarse search
with 10% of full search space is able to find a sufficiently good configuration for GNN-Diff to
generate high-performing parameters. So, we repeat the coarse search for GCN node classification on
Cora and PascalVOC-SP without fixed random seed 7 times and obtain 7 configurations selected
for parameter collection. Then, we train and generate with GNN-Diff based on these configurations.
The results show that GNN-Diff consistently produces better test outcomes than grid search (see
Figure 6 (a) and (b)), which confirms the feasibility of adopting the 10% coarse search space.

(2) Sensitivity analysis on the number of samples generated by GNN-Diff. Since overfitting
the validation data may lead to inferior results on unseen data, we wonder if generating too many
samples from GNN-Diff will encounter this issue. Hence, we set the number of samples generated by
GNN-Diff from 10 to 1000. In general, GNN-Diff’s performance on unseen data is not very sensitive
to the number of samples, though generating 750 to 1000 samples indeed diminishes the test accuracy
on Cora (see Figure 6 (c) and (d)). In consideration of sampling efficiency, we suggest that 100
samples are sufficient for GNN-Diff to produce good performance in a reasonable sampling time.

Time Efficiency

Figure 7: Time costs of grid search, random search, coarse search, C2F search, and GNN-Diff.

Finally, we compare the time costs of GNN-Diff and other search methods in Figure 7. The coarse
search is the most time-consuming component in GNN-Diff (see more details in Appendix I.6).
GNN-Diff shows a clear time advantage, though it may not be faster than C2F on small graphs such
as Cora and Actor. This is acceptable, as GNN-Diff often yields better-performing models than
C2F and is more efficient on larger graphs such as Flickr and PascalVOC-SP, which offers
greater practical value, especially for complicated tasks with large and long-range graphs.

6 CONCLUSION

In this paper, we proposed a graph-conditioned latent diffusion framework, GNN-Diff, to generate
top-performing GNN parameters by learning from checkpoints saved with a sub-optimal configuration
selected by a light-tuning coarse search. We validate with 166 empirical experiments that our method
is an efficient alternative to costly search methods and is able to generate better prediction outcomes
than the comprehensive grid search on unseen data. Future works may involve combining GNN-Diff
with efficient large-scale training algorithms, and more details will be discussed in I.7.

10

Published as a conference paper at ICLR 2025

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In International Conference on Machine Learning,
pp. 21–29, 2019.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631,
2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM International Conference on Knowledge Discovery & Data Mining, pp. 257–266, 2019.

Eli Chien, Zhichun Pei, Suhang Lin, Arya Jain, Ashish Krishnamurthy, and Alfred O. Hero. Adaptive
universal generalized pagerank graph neural network. In International Conference on Learning
Representations, 2021.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Interna-
tional Conference on Machine Learning, pp. 7449–7479, 2023.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
2016.

Lior Deutsch. Generating neural networks with neural networks. arXiv:1801.01952, 2018.

Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and Lichao Sun. User preference-aware
fake news detection. In International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 2051–2055, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, pp. 22326–22340, 2022.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. In Proceedings of the International Conference
on Computer Vision, pp. 14300–14310, 2023.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In International Conference on Machine Learning,
pp. 2083–2092, 2019.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search. In
Proceedings of the 29th International Joint Conference on Artificial Intelligence, pp. 1403–1409,
2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learning
Representations, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2019.

Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural
networks: Neural diffusion and beyond. Transactions on Machine Learning Research, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

11

Published as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 33:22118–22133, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020b.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-GNN: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM International Conference
on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020c.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv:1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International Conference on Machine Learning, pp. 6437–6449, 2021.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Lequan Lin and Junbin Gao. A magnetic framelet-based convolutional neural network for directed
graphs. In International Conference on Acoustics, Speech and Signal Processing, 2023.

Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: Progress, challenges, and opportunities. arXiv preprint
arXiv:2204.07321, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4276–4284, 2021.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns for
node classification. arXiv preprint arXiv:2406.08993, 2024.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. In Proceedings of the 41st International Conference on Machine Learning (ICML), 2024.

Vahid Moshkelgosha, Hamed Behzadi-Khormouji, and Mahdi Yazdian-Dehkordi. Coarse-to-fine
parameter tuning for content-based object categorization. In 2017 3rd International Conference on
Pattern Recognition and Image Analysis, pp. 160–165, 2017.

Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K. Katzschmann, and Benjamin F Grewe. Meta-
learning via classifier(-free) guidance. In 6th Workshop on Meta-Learning at the Advances in
Neural Information Processing Systems, 2022.

Samin Payrosangari, Afshin Sadeghi, Damien Graux, and Jens Lehmann. Meta-hyperband: Hyper-
parameter optimization with meta-learning and coarse-to-fine. In International Conference on
Intelligent Data Engineering and Automated Learning, pp. 335–347, 2020.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv:2209.12892, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.

12

Published as a conference paper at ICLR 2025

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress?
International Conference on Learning Representations, 2023.

Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural networks.
In International Conference on Machine Learning, pp. 5361–5369. PMLR, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning
on neural network weights for model characteristic prediction. Advances in Neural Information
Processing Systems, 34:16481–16493, 2021.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations
as generative models: Sampling unseen neural network weights. Advances in Neural Information
Processing Systems, 35:27906–27920, 2022.

Zhiqi Shao, Dai Shi, Andi Han, Yi Guo, Qibin Zhao, and Junbin Gao. Unifying over-smoothing
and over-squashing in graph neural networks: A physics informed approach and beyond.
arXiv:2309.02769, 2023.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv:1811.05868, 2018.

Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. Fakenewsnet: A data
repository with news content, social context, and spatiotemporal information for studying fake
news on social media. Big data, 8(3):171–188, 2020.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, 25, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International Conference on Machine Learning, pp. 2171–2180, 2015.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Song Chong, Frank Hutter, and Sung Ju Hwang.
Diffusion-based neural network weights generation. arXiv:2402.18153, 2024.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolving
large-scale neural networks. Artificial Life, 15(2):185–212, 2009.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with
self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher,
and Bao Wang. GRAND++: Graph neural diffusion with a source term. In International Conference
on Learning Representations, 2022.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. Transactions on Machine Learning Research, 2024.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
neural network accuracy from weights. arXiv:2002.11448, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

13

Published as a conference paper at ICLR 2025

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural
network diffusion. arXiv:2402.13144, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Internation Conference on Learning Representations, 2019.

Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. Lazygnn: Large-scale
graph neural networks via lazy propagation. In International Conference on Machine Learning, pp.
38926–38937, 2023.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning, pp. 40–48. PMLR, 2016.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in Neural Information Processing Systems, 27, 2014.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33:17009–17021, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 16687–16695, 2024.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
In International Conference on Learning Representations, 2019.

Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan. Graph
neural networks for graphs with heterophily: A survey. arXiv:2202.07082, 2022.

Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yu Guang Wang, Pietro Lió, Ming Li, and Guido Montúfar.
How framelets enhance graph neural networks. International Conference on Machine Learning,
2021.

Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. Hypertransformer: Model generation
for supervised and semi-supervised few-shot learning. In International Conference on Machine
Learning, pp. 27075–27098, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020. ISSN 2666-6510.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33:7793–7804, 2020.

Chunya Zou, Andi Han, Lequan Lin, Ming Li, and Junbin Gao. A simple yet effective framelet-based
graph neural network for directed graphs. IEEE Transactions on Artificial Intelligence, 2023.

14

APPENDICES CONTENTS

A RELATED WORKS 16

B PSEUDO CODE OF GNN-DIFF 17

C DETAILS OF GNN-DIFF 18
C.1 GFE ARCHITECTURES FOR VARIOUS TASKS 18
C.2 PAE AND G-LDM DENOISING NETWORK ARCHITECTURES 19
C.3 GNN-DIFF SETTINGS . 20

D BASELINE METHODS 20

E DATASETS 22
E.1 DATASET SOURCES . 22
E.2 DATASET STATISTICS . 23
E.3 DATASET TRAIN/VAL/TEST SPLITS . 24

F TARGET MODELS 24

G TASKS AND RELEVANT DETAILS 25
G.1 BASIC NODE CLASSIFICATION . 25
G.2 NODE CLASSIFICATION ON LARGE GRAPHS . 25
G.3 NODE CLASSIFICATION ON LONG-RANGE GRAPHS 25
G.4 LINK PREDICTION . 26

H HYPERPARAMETER TUNING SEARCH SPACE 27
H.1 FULL SEARCH SPACES - BASIC NODE CLASSIFICATION 27
H.2 FULL SEARCH SPACES - NODE CLASSIFICATION ON LARGE GRAPHS 27
H.3 FULL SEARCH SPACES - NODE CLASSIFICATION ON LONG-RANGE GRAPHS . . 28
H.4 FULL SEARCH SPACES - LINK PREDICTION . 28

I SUPPLEMENTARY EXPERIMENT RESULTS AND DISCUSSIONS 29
I.1 MORE RESULTS OF NODE CLASSIFICATION ON HOMOPHILIC GRAPHS 29
I.2 MORE RESULTS OF NODE CLASSIFICATION ON HETEROPHILIC GRAPHS 29
I.3 EXTENSION TO GRAPH-LEVEL TASKS AND EXPERIMENT RESULTS 30
I.4 BAYESIAN OPTIMIZATION VS. GNN-DIFF . 32
I.5 ANALYSIS OF THE GRAPH FEATURE ENCODER (GFE) 33
I.6 GNN-DIFF TIME ANALYSIS . 35
I.7 COMBINE GNN-DIFF WITH LARGE-SCALE TRAINING ALGORITHMS 35

15

Published as a conference paper at ICLR 2025

A RELATED WORKS

Network Parameter Generation

Hypernetwork (Ha et al., 2017; Stanley et al., 2009) is an early concept of deep learning technique for
network generation and now serves as a general framework that encompasses many existing methods.
A hypernetwork is a neural network that learns how to predict the parameters of another neural
network (target network). The input of a hypernetwork may be as simple as parameter positioning
embeddings (Stanley et al., 2009), or more informative, such as encodings of data, labels, and tasks
(Deutsch, 2018; Ha et al., 2017; Ratzlaff & Fuxin, 2019; Zhang et al., 2019; Zhmoginov et al., 2022).

With the emergence of generative modelling, studies on distributions of network parameters have
gained their popularity in relevant research. A pioneering work of (Unterthiner et al., 2020) showed
that simply knowing the statistics of parameter distributions enabled us to predict model accuracy
without accessing the data. Enlightened by this finding, two following works (Schürholt et al.,
2022; 2021) studied the reconstruction and sampling of network parameters from their population
distribution. The similar idea was also investigated by (Peebles et al., 2022), who proposed that
network parameters corresponding to a specific metric value of some specific data and tasks could be
generated with a transformer-diffusion model trained on a tremendous amount of model checkpoints
collected from past training on a group of data and tasks. This method, however, relies highly on
the amount and quality of model checkpoints fed to the generative model. A more network- and
data-specific approach, p-diff (Wang et al., 2024), alternatively collects checkpoints from the training
process of the target network and uses an unconditional latent diffusion model to generate better-
performing parameters. Another recent work, D2NWG (Soro et al., 2024), adopts dataset-conditioned
latent diffusion to generate parameters for target networks on unseen datasets. Diffusion-based
network generation has also been widely applied to other applications, such as meta learning (Nava
et al., 2022; Zhang et al., 2024) and producing implicit neural-filed for 3D and 4D synthesis (Erkoç
et al., 2023).

GNN Training

Previous works on GNN training generally focus on two topics: GNN pre-training and GNN
architecture search. GNN pre-training involves using node, edge, or graph level tasks to find
appropriate initialization of GNN parameters before fine-tuning with ground truth labels (Hu et al.,
2020b;c; Lu et al., 2021). This approach still inevitably relies on hyperparameter tuning to boost
model performance. GNN architecture search aims to find appropriate GNN architectures given
data and tasks (Gao et al., 2020; You et al., 2020). However, it was shown in (Shchur et al., 2018)
that under a comprehensive hyperparameter tuning and a proper training process, simple GNN
architectures such as GCN may even outperform sophisticated ones.

Advanced Methods for Hyperparameter Tuning

There emerge many recent works on parameter-free optimization, such as (Defazio & Mishchenko,
2023; Ivgi et al., 2023; Mishchenko & Defazio, 2024) that automatically set step size based on
problem characteristics. However, most if not all methods require nontrivial adaptation of existing
optimizers and show theoretical guarantees only for convex functions. In addition, the parameter-free
optimization is only designed for tuning training-related hyperparameters such as the learning rate.
This means it is less suitable for GNN hyperparameter tuning, which usually involves model-related
hyperparameters such as the teleport probability of APPNP. Bayesian optimization (Snoek et al.,
2012; 2015), on the other hand, is a more advanced approach to tuning hyperparameters in a more
informed way than grid and random search. Bayesian optimization usually adopts a probabilistic
surrogate model to approximate the loss function and then uses an acquisition function to sample
hyperparameters for further search. Additionally, Hyperband (Li et al., 2018), a method that is
considered more efficient than Bayesian optimization, optimizes the search space by allocating
resources (e.g., training time or dataset size) to more promising configurations and pruning those
that perform poorly. In our experiments, we consider the coarse-to-fine (C2F) search (Moshkelgosha
et al., 2017; Payrosangari et al., 2020), a variant of random search and Hyperband that narrows the
search space based on the result of a coarse search.

16

Published as a conference paper at ICLR 2025

B PSEUDO CODE OF GNN-DIFF

Algorithm 1 Algorithm of GNN-Diff Parameter Generation
Input: Graph condition cG from Algorithm 2; the learned P-Decoder(·) from Algorithm 3; the
learned denoising network ϵθ from Algorithm 4.
Output: Generated parameters ŵ0 that can be returned to target GNN for prediction.

1: Run Algorithm 5 to sample latent parameter ẑ0
2: Reconstruct parameters with the learned PAE decoder: ŵ0 = P-Decoder(ẑ0)

Algorithm 2 Training Algorithm of GFE (Basic Node Classification Example)
Input: Graph signals X; graph structure A; graph label Y; graph training mask Mtrain; number of
training epochs EGFE.
Output: Graph condition cG .

1: for i = 1, 2, ..., EGFE do
2: Compute G-Encoder: η = Concat

(
A2XW1,AXW2,XW3

)
W4

3: Compute G-Decoder: Ŷ = Softmax(ηW5)
4: Take gradient step and update W = {W1,W2,W3,W4,W5}:

∇WCrossEntropy(Y ⊙Mtrain, Ŷ ⊙Mtrain)

5: end for
6: Compute graph representation η = Concat

(
A2XW1,AXW2,XW3

)
W4

7: Conduct mean pooling to obtain graph condition cG = 1
N

∑N
i=1 η(i).

Algorithm 3 Training Algorithm of PAE
Input: Vectorized parameters collected based on coarse search w0 ∼ qw(w0); number of training
epochs EPAE.
Output: Latent parameter representation z0 ∼ qz(z0); the learned decoder P-Decoder(·).

1: for i = 1, 2, ..., EPAE do
2: Compute latent parameter representation z̃0 = P-Encoder(w0)
3: Compute PAE decoder for reconstruction w̃0 = P-Decoder(z̃0)
4: Take gradient step and update PAE parameters with the loss function LPAE = ∥w0 − w̃0∥2
5: end for
6: Use PAE encoder to produce latent parameter representation z0 = P-Encoder(w0).

Algorithm 4 Training Algorithm of ϵθ in G-LDM
Input: Latent parameter representation z0 ∼ qz(z0); graph signals X; graph structure A; number of
diffusion steps T ; noise schedule β = {β1, β2, ..., βT }; number of training epochs EG-LDM.
Output: The learned denoising network ϵθ.

1: Sample z0 ∼ qz(z0)
2: for i = 1, 2, ..., EG-LDM do
3: t ∼ Uniform(1, T), ϵ ∼ N (0, I)
4: Take gradient step and update θ:

∇θEt,z0∼qz(z0),ϵ∼N (0,I)

∥∥∥ϵ− ϵθ

(√
α̃tz0 +

√
1− α̃tϵ, t, cG

)∥∥∥2
5: end for

17

Published as a conference paper at ICLR 2025

Algorithm 5 Inference Algorithm of G-LDM
Input: Number of diffusion steps T ; noise schedule β = {β1, β2, ..., βT }; diffusion sampling
variance hyperparameter σ = {σ1, σ2, ..., σT }.
Output: Generated latent parameters ẑ0.

1: Randomly generate white noises ẑT ∼ N (0, I)
2: for t = T, T − 1, ..., 1 do
3: e = 0 if t = 1 else e ∼ N (0, I)
4: Compute and update

ẑt−1 =
1√

1− βt

(
ẑt −

βt√
1− α̃t

ϵθ(ẑt, t, cG)

)
+ σte

5: end for

C DETAILS OF GNN-DIFF

C.1 GFE ARCHITECTURES FOR VARIOUS TASKS

We provide illustrations of the GFE architectures for various tasks in Figure 8. In GFE encoders,
we generally adopt graph convolutional layers to process graph data and structural information.
The decoders, on the other hand, is a single linear layer (MLP1), thus the graph information is
entirely preserved in the output of the encoders, which will later be further processed and used as
the graph condition in G-LDM. The details of GFE for each task are as follows. Please note that for
simplicity, we show encoders without activation functions, but activation functions can be included in
implementation.

Figure 8: GFE architectures for node classification on small, large, and long-range graphs, and link
prediction. The graph condition is designed to incorporate both data and graph structural information
and guided by specific tasks and the corresponding loss functions.

Basic node classification. Details can be found in Subsection 4.2.

Node classification on large graphs. The input to the GFE is a set of graph clusters, each with
Ni nodes for i = 1, 2, ..., I . Details of how the graph clusters are obtained from the original large
graph with N nodes are discussed in G.2. The feature matrix and adjacency matrix of each cluster
are denoted as Xi and Ai, respectively. We adopt the same encoder architecture as for basic node
classification, because the homophilic and heterophilic problem may also exist in large graph node
classification. This may or may not be true for the datasets in our experiments, but we design in
this way for future extension to other large graphs. Hence, for each cluster, the encoder is applied
following Equation 2 as

ηi = G-Encoder(Xi,Ai) = Concat
(
A2

iXiW1,AiXiW2,XiW3

)
W4 ∈ RNi×Dp . (4)

The decoder and loss function are the same as the GFE for basic node classification as well. To form
the graph condition, we shall first concatenate the outputs of the encoder in the node dimension as

η = Concat(η1, η2, ..., ηI) ∈ RN×Dp , (5)

which will be eventually turned into the graph condition via the node mean-pooling.

Node classification on long-range graphs. The input of GFE is a set of batches, where each batch
contains a set of small graphs. Suppose that we have B batches and that a small graph in a batch
has Nb,j nodes for b = 1, 2, ..., B, and j = 1, 2, ..., Jb, where Jb ∈ [J1, J2, ..., JB] is the number of

18

Published as a conference paper at ICLR 2025

small graphs in each batch. Then, we organize the small graphs in each batch into a combined batch
graph with Nb = Nb,1 +Nb,2 + · · ·+Nb,Jb

nodes. Let the feature matrix and adjacency matrix of
each batch graph formed by the small graphs in a batch be Xb and Ab, respectively. The encoder
will be applied to each batch graph as

ηb = G-Encoder(Xb,Ab) = Deep-GCN(Xb,Ab) ∈ RNb×Dp , (6)

where Deep-GCN(·) is a GCN-based structure with 7 GCN convolutional layers and residual connec-
tions for the training purpose. We choose this deep GCN-based structure as the GFE encoder to better
process long-term information among distant nodes, which is usually considered as important in
long-range graphs. The decoder is as simple as a single linear layer. Moreover, the loss function is the
weighted cross entropy discussed in the appendix G.3. Similar to large graphs, the graph condition is
constructed by mean-pooling the concatenation of encoder outputs:

η = Concat(η1, η2, ..., ηB) ∈ RNall×Dp , (7)

where Nall is the total number of nodes of small graphs in all batches.

Link prediction. The GFE for link prediction is designed based on the implementation in (Kipf
& Welling, 2016). Details of the link prediction task can be found in Appendix G.4. The input of
GFE is the feature matrix X and the adjacency matrix Atrain with only training edges. The encoder is
designed as a 2-layer GCN:

η = G-Encoder(X,Atrain) = Atrain(AtrainXW1)W2 ∈ RN×Dp , (8)

where W1 and W2 are learnable linear operators. The decoder is again a single linear layer, but is
followed by the pairwise node multiplication and embedding aggregation for link prediction. The
loss function is binary cross entropy computed based on the training edge labels. Lastly, the graph
condition can be constructed by mean-pooing the graph nodes.

C.2 PAE AND G-LDM DENOISING NETWORK ARCHITECTURES

Illustrations of the PAE and the G-LDM denoising network ϵθ are provided in Figure 9 and Figure
10, respectively. Taking the idea from (Wang et al., 2024), both architectures have Conv1d-based
layers with LeakyReLU activation and instance normalization.

PAE. P-Encoder and P-Decoder are both composed of 4 basic blocks in Figure 9. Since the input
is latent representation of vectorized parameters, the number of input channels of the first block
in P-Encoder is 1. The number of output channels for the 4 blocks in P-Encoder is [6, 6, 6, 6].
Accordingly, the number of input channels of the first block in P-Decoder is also 6. The number of
output channels of the 4 blocks in P-Decoder is [512, 512, 8, 1].

G-LDM ϵθ. The denoising network ϵθ adopts an encoder-decoder structure with 8 basic blocks in
Figure 10. The number of input channels and output channels, kernel size, and stride are the same
as in (Wang et al., 2024). In Figure 10, we also mark the position where the graph condition cG is
involved. We include the graph condition in each encoder and decoder block by adding it to the input
of the block directly.

Figure 9: The PAE architecture. The PAE adopts an encoder-decoder structure with 4 encoder
blocks and 4 decoder blocks. All blocks have the same structure as shown in the basic block. The
dimensionality of the input parameters is first reduced by the P-Encoder, and then recovered by the
P-Decoder.

19

Published as a conference paper at ICLR 2025

Figure 10: The ϵθ architecture. Like PAE, ϵθ adopts an encoder-decoder structure with 4 encoder
blocks and 4 decoder blocks. We mark the position where the graph condition is involved by taking
sum with the input of each block.

C.3 GNN-DIFF SETTINGS

GFE is trained with the same graph data as target models. PAE is trained with vectorized parameter
samples, while G-LDM learns from their latent representation. Batch size for PAE and G-LDM
training is 50. All three modules are trained with the same AdamW optimizer (Loshchilov & Hutter,
2019) with learning rate 0.001 and weight decay 0.002. The concatenation dimension DG is set the
same as the latent parameter dimension Dp, which is decided by the Conv1d layer in PAE. Dropout
is applied with dropout rate 0.1. For G-LDM, we set the number of diffusion steps T = 1000. We
choose the linear beta schedule with β1 =0.0001 and βT =0.02.

How to ensure high quality generation? We observe in experiments that GNN-Diff does not rely
on hyperparameter tuning to generate top-performing GNNs. The only factor that may influence the
generative outcomes is the dimension of the latent parameters, which can be easily adjusted by setting
the kernel size and stride of Conv1d layers in P-Encoder blocks. Additionally, the appropriate kernel
size and stride can be easily decided based on the dimension of the original parameter samples (see
Table 6). Therefore, we highlight that GNN-Diff does not introduce additional hyperparameter
tuning burdens, and all tuning efforts are only associated with the tuning of target models in coarse
search.

Table 6: Kernel size and stride of Conv1d layers in P-Encoder based on the input parameter
dimension. The simple rule is: (1) the stride equals to the kernel size; (2) if the parameter dimension
is larger than 1000, we increase kernel size and stride by 1 for every 5000 parameters.

Vectorized parameter dimension Kernel size Stride

≤ 99 2 2
100 - 499 3 3
500 - 999 4 4

1000 - 4999 5 5
5000 - 9999 6 6

10000 - 14999 7 7
15000 - 19999 8 8
20000 - 24999 9 9

...

D BASELINE METHODS

We involve four baseline search methods to compare with GNN-Diff, including grid search, random
search, coarse search, and C2F search. As aforementioned in Subsection 5.1, random search and
coarse search adopt 20% and 10% of the full search space in grid search. In terms of C2F search, we
first conduct the coarse search, and then fix the model-related hyperparameters and optimizer based
on the coarse search result, and further tune other training-related hyperparameters. For example,
if the hyperparameter configuration leading to the best validation accuracy is {optimizer: ‘Adam’,
learning_rate: 0.01, weight_decay: 0.005, dropout: 0.3, hidden_size: 64}, we will fix the optimizer to

20

Published as a conference paper at ICLR 2025

‘Adam’ and the hidden_size to 64, and tune the training related hyperparameters in a narrowed search
space as {learning_rate [0.005, 0.1, 0.05], weight_decay [0.0005, 0.005, 0.05], dropout [0.1, 0.3,
0.5]}. The number of configurations in the search spaces of different baseline methods are presented
in Table 7, 8, 9, and 10. More details of hyperparameter configurations can be found in Appendix H.

Table 7: Number of hyperparameter configurations in the search spaces of baseline methods for basic
node classification on homophilic and heterophilic graphs. The size of the C2F search space depends
on the coarse search result.

Basic Node Classiciation Grid Search Random Search Coarse Search C2F Search

MLP 540 108 54 61 - 80
GCN 540 108 54 61 - 80
SAGE 540 108 54 61 - 80

APPNP 900 180 90 97 - 116
GAT 1620 324 162 169 - 188

ChebNet 1620 324 162 169 - 188
H2GCN 540 108 54 61 - 80

SGC 540 108 54 61 - 80
GPRGNN 1440 288 144 151 - 170
MixHop 540 108 54 61 - 80

Table 8: Number of hyperparameter configurations in the search spaces of baseline methods for node
classification on large graphs. The size of the C2F search space depends on the coarse search result.

Large Graphs Grid Search Random Search Coarse Search C2F Search

GCN 54 12 6 13 - 23
SAGE 54 12 6 13 - 23

APPNP 72 16 8 15 - 25

Table 9: Number of hyperparameter configurations in the search spaces of baseline methods for node
classification on long-range graphs. The size of the C2F search space depends on the coarse search
result.

Long-range Graphs Grid Search Random Search Coarse Search C2F Search

MLP 48 10 5 12 - 16
GCN 48 10 5 12 - 16
SAGE 48 10 5 12 - 16

APPNP 72 16 8 15 - 19
SGC 48 10 5 12 - 16

GPRGNN 72 16 8 15 - 19
MixHop 48 10 5 12 - 16

Table 10: Number of hyperparameter configurations in the search spaces of baseline methods for link
prediction tasks. The size of the C2F search space depends on the coarse search result.

Link Prediction Grid Search Random Search Coarse Search C2F Search

MLP 540 108 54 61 - 80
GCN 540 108 54 61 - 80
SAGE 540 108 54 61 - 80

APPNP 1620 324 162 169 - 188
ChebNet 1620 324 162 169 - 188

21

Published as a conference paper at ICLR 2025

E DATASETS

E.1 DATASET SOURCES

All datasets used in our experiments are publicly available and can be easily retrieved from the
following sources.

Cora, Citeseer, Pubmed

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.
Planetoid

Computers, Photo

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.Amazon.html#torch_geometric.datasets.
Amazon

CS

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.Coauthor.html#torch_geometric.datasets.
Coauthor

Actor

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.Actor.html#torch_geometric.datasets.Actor

Wisconsin

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.WebKB.html#torch_geometric.datasets.WebKB

Roman-Empire, Amazon-Ratings, Minesweeper, Tolokers

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.HeterophilousGraphDataset.html#torch_
geometric.datasets.HeterophilousGraphDataset

Chameleon, Squirrel

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.
datasets.WikipediaNetwork

Flickr

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.Flickr.html#torch_geometric.datasets.
Flickr

Reddit

https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.datasets.Reddit.html#torch_geometric.datasets.
Reddit

OGB-arXiv, OGB-Products

https://ogb.stanford.edu/docs/nodeprop/

PascalVOC-SP, COCO-SP

https://github.com/vijaydwivedi75/lrgb

22

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Amazon.html#torch_geometric.datasets.Amazon
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Amazon.html#torch_geometric.datasets.Amazon
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Amazon.html#torch_geometric.datasets.Amazon
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html#torch_geometric.datasets.Coauthor
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html#torch_geometric.datasets.Coauthor
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html#torch_geometric.datasets.Coauthor
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Actor.html#torch_geometric.datasets.Actor
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Actor.html#torch_geometric.datasets.Actor
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WebKB.html#torch_geometric.datasets.WebKB
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WebKB.html#torch_geometric.datasets.WebKB
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.HeterophilousGraphDataset.html#torch_geometric.datasets.HeterophilousGraphDataset
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.HeterophilousGraphDataset.html#torch_geometric.datasets.HeterophilousGraphDataset
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.HeterophilousGraphDataset.html#torch_geometric.datasets.HeterophilousGraphDataset
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.datasets.WikipediaNetwork
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.datasets.WikipediaNetwork
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WikipediaNetwork.html#torch_geometric.datasets.WikipediaNetwork
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Flickr.html#torch_geometric.datasets.Flickr
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Flickr.html#torch_geometric.datasets.Flickr
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Flickr.html#torch_geometric.datasets.Flickr
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html#torch_geometric.datasets.Reddit
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html#torch_geometric.datasets.Reddit
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html#torch_geometric.datasets.Reddit
https://ogb.stanford.edu/docs/nodeprop/
https://github.com/vijaydwivedi75/lrgb

Published as a conference paper at ICLR 2025

E.2 DATASET STATISTICS

We provide statistics of 20 datasets used in our experiments in Table 11, 12, 13, 14, and 15.

Table 11: Datasets in basic node classification on homophilic graphs. We provide statistics of the
number of nodes, edges, features, and node classes. “#” means “the number of”.

Dataset #Nodes #Egdes #Features #Node Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,372 3,703 6
Pubmed 19,717 44,338 500 3

Computers 13,752 491,722 767 10
Photo 7,487 126,530 745 8
CS 18,333 100,227 6805 15

Table 12: Datasets in basic node classification on heterophilic graphs. We provide statistics of the
number of nodes, edges, features, and node classes. “#” means “the number of”.

Dataset #Nodes #Egdes #Features #Node Classes

Actor 7,600 30,019 932 5
Wisconsin 251 515 1,703 5

Roman-Empire 22,662 32,927 300 18
Amazon-Ratings 24,492 93,050 300 5
Minesweeper 10,000 39,402 7 2
Tolokers 11,758 519,000 10 2

Table 13: Datasets in node classification on large graphs. We provide statistics of the number of
nodes, edges, features, and node classes. “#” means “the number of”.

Dataset #Nodes #Egdes #Features #Node Classes

Flickr 89,250 899,756 500 7
Reddit 232,965 114,615,892 602 41

OGB-arXiv 169,343 1,166,243 128 40
OGB-Products 2,449,029 61,859,140 100 47

Table 14: Datasets in node classification on long-range graphs. Long-range graph datasets contain
multiple small graphs. We provide statistics of the number of graphs, all nodes, average nodes, edges,
features, and node classes. “#” means “the number of”.

Dataset #Graphs #Nodes (all) #Nodes (avg.) #Egdes #Features #Node Classes

PascalVOC-SP 11,355 5,443,545 ~479.4 30,777,444 14 21
COCO-SP 123,286 58,793,216 ~476.9 332,091,902 14 81

Table 15: Datasets in link prediction. We provide statistics of the number of nodes, edges, features,
and link classes. “#” means “the number of”.

Dataset #Nodes #Egdes #Features #Link Classes

Cora 2,708 10,556 1,433 2
Citeseer 3,327 9,104 3,703 2
Chameleon 2,277 36,101 2,325 2
Squirrel 5,201 270,962 2,089 2

23

Published as a conference paper at ICLR 2025

E.3 DATASET TRAIN/VAL/TEST SPLITS

For Cora, Citeseer, and Pubmed in node classification tasks, we adopt the public fixed
train/test/val splits in (Yang et al., 2016). For Computers, Photo, and CS, we generate the
splits with 20 nodes and 30 nodes per class in the training and validation sets and the rest in the test
set. For heterophilic datasets, we adopt their original splits from (Pei et al., 2020) and (Platonov
et al., 2023), and use the first split out of the 10 available splits for each dataset. This is because only
one train/val/test split is considered in our experiments to easily compare the generated performance
with the training performance over multiple runs. Large graph datasets are splited in the same
way as in their original papers (Zeng et al., 2020; Hamilton et al., 2019; Hu et al., 2020a). The
long-range datasets, PascalVOC-SP and COCO-SP, both contain multiple graphs. Hence, we
adopt the train, validation, and test loaders from the implementation in Dwivedi et al. (2022). Besides,
in consideration of time, for COCO-SP, we only use 10% of graphs in each loader for our experiment,
and we ensure that the reduced loaders contain all node classes. Furthermore, the link prediction
datasets are splited based on edges. Please refer to Appendix G.4 for details.

F TARGET MODELS

In Table 16, we show details of the target models in our experiments. The original graph data is
denoted as X(0), and the output of layer ℓ is denoted as X(ℓ). In addition, X(out) is the output of the
target model, and we only show how X(out) is computed when the last layer is different from the
other layers. We use W(ℓ) to represent learnable linear operators in layer ℓ, and σ to represent the
activation function. The adjacency matrix A can be normalized in implementation. We focus on the
model-specific hyperparameters when designing the search spaces in our experiments. Please refer to
the original papers for details of the other notations.

Table 16: Details of target models. We provide information of model layers, model-specific hyperpa-
rameters, and implementation sources.

Model Layer Model-specific Hyperparameter

MLP X(ℓ+1) = σ
(
X(ℓ)W(ℓ)

)
-

GCN X(ℓ+1) = σ
(
AX(ℓ)W(ℓ)

)
-

SAGE X(ℓ+1) = σ
(
X(ℓ)W

(ℓ)
1 +AX(ℓ)W

(ℓ)
2

)
-

APPNP X(ℓ+1) = (1− α)AX(ℓ) + αX(0) X(out) = σ
(
X(L)W

)
Teleport probability α

GAT X(ℓ+1) = σ
(
Θ(ℓ) ⊙AX(ℓ)W(ℓ)

)
Number of heads

ChebNet X(ℓ+1) = σ
(∑K

k=0 Tk(L̃)X(ℓ)W(ℓ)
)

Chebyshev filter size K

H2GCN X
(ℓ+1)
i,h∈H = AGGR{X(ℓ)

j : j ∈ Nh(i)} X
(out)
i = Combine(X

(0)
i ,X

(1)
i , · · ·X(L)

i)W Hop set H

SGC X(out) = σ
(
AhX(0)W

)
Number of hops h

GPRGNN X(ℓ+1) =
∑M

m=0 γmAX(ℓ)W(ℓ) GPR weights γm

MixHop X(out) = Combineh∈H(AhX(0)W) Hop set H

Model Implementation Source

MLP https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

GCN https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

SAGE https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

APPNP https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

GAT https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

ChebNet https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

H2GCN https://github.com/GemsLab/H2GCN

SGC https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

GPRGNN https://github.com/jianhao2016/GPRGNN

MixHop https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

24

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://github.com/GemsLab/H2GCN
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://github.com/jianhao2016/GPRGNN
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

Published as a conference paper at ICLR 2025

G TASKS AND RELEVANT DETAILS

G.1 BASIC NODE CLASSIFICATION

Task description. The basic node classification is a semi-supervised task on small-scale homophilic
and heterophilic graphs. During training, the GNN has access to the features of all nodes and the graph
adjacency matrix, but the loss function is computed only based on the training node labels. Likewise,
validation and test are conducted with the validation and test node labels. Training, validation, and
test labels are obtained with masks.

Target model architectures. We use a 2-convolutional layer structure for most target models
following the common practice. Similarly, for MLP, we use 2 linear layers, which often leads to good
performance on heterophilic graphs (Xu et al., 2019). For SGC and MixHop, which are designed
to have only one graph convolutional layer, we adjust by setting 2 hops for SGC and {0, 1, 2} hops
for MixHop. H2GCN also uses a hop set of {0, 1, 2}, but like most target models, we set the
number of layers to 2. The ReLU activation function is used in all layers except for the last layer
when applicable. Importantly, all target models have simple architectures without using advanced
techniques like residual connections or layer normalization.

G.2 NODE CLASSIFICATION ON LARGE GRAPHS

Task description. The node classification on large graphs is the same as the basic node classification
except that the graphs are very large, which may cause memory issues and slow computation. To
solve this problem, we apply graph clustering as motivated by (Chiang et al., 2019). Graphs are
clustered into multiple densely connected subgraphs by minimizing the number of edges cut between
clusters. The number of clusters is set to 32 for Flickr and OGB-arXiv and 960 for Reddit
and OGB-Products. Each cluster has its own train/validation/test masks. During training, we
loop through all clusters iteratively via a cluster loader in each epoch. Validation and testing are
implemented with the cluster loader without shuffling.

Target model architectures. We use GCN, SAGE, and APPNP as target models. GCN and SAGE
adopt the 2-convolutional layer structure with the hidden size tuned in [64, 128, 256]. APPNP has
2 graph convolutional layers followed by a linear layer to map the graph representation formed by
graph convolutional layers to node classes. The ReLU activation function is used in all layers except
for the last layer when applicable.

G.3 NODE CLASSIFICATION ON LONG-RANGE GRAPHS

Task description. The node classification on long-range graphs is different from the previous two
tasks as there are multiple small graphs in long-range graph datasets. These small graphs are divided
into train/validation/test sets. Therefore, the node classification on long-range graphs is a supervised
task instead of a semi-supervised task. In addition, the node classes are highly imbalanced in the
datasets used in our experiments. For example, in PascalVOC-SP, there are 21 classes with more
than 70% of nodes in class 0. Accordingly, we use the weighted cross entropy loss for training as in
(Dwivedi et al., 2022), which applies higher weights to uncommon classes. In data preprocessing,
we construct train/validation/test loaders with batch sizes 128, 500, and 500, respectively. The small
graphs in each batch are connected into a large batch graph such that they can be processed by target
models in parallel. We train the target model with 200 epochs with 50 batches in each epoch and then
evaluate the model with all batches in the validation and test loaders.

Target model architectures. Since long-range graphs usually rely on very deep GNN architectures,
we set the number of layers as a hyperparameter in the search spaces. For most target models, we
adjust the number of layers in [8, 10] and the hidden size in [192, 256]. For SGC and MixHop, since
they are designed to have only one graph convolutional layer, we tune the number of hops of SGC
in [8, 10], and the hop set of MixHop in [{6, 8, 10}, {8, 10}]. Furthermore, considering the taget
models are very deep, we adopt the GELU activation function and residual connections following the
experiment settings in (Tönshoff et al., 2024) as well as layer normalization.

25

Published as a conference paper at ICLR 2025

G.4 LINK PREDICTION

Task description. The link prediction is a binary classification task that predicts the existence of
edges between pairs of nodes (Kipf & Welling, 2016). If there exists an edge between a pair of nodes,
then the edge is called a “positive link”, which is corresponding to class 1. In contrast, if there is
no edge between a pair of nodes, then it is treated as a “negative link”, which is corresponding to
class 0. The prediction requires two steps: (1) an encoder to construct node embeddings based on the
positive links; (2) a decoder to aggregate embeddings of target node pairs by taking inner products.
An illustration of the prediction process is provided in Figure 11.

Figure 11: Illustration of the link prediction process. This figure is adapted from a nice tuto-
rial in https://github.com/tomonori-masui/graph-neural-networks/blob/
main/gnn_pyg_implementations.ipynb.

The train/validation/test split is conducted on the edge level. More specifically, we randomly select
5% edges as validation edges and 10% edges as test edges, and the rest will be training edges.
The selected edges are the positive links, and the negative links will be randomly sampled from
disconneted node pairs. The number of negative egdes is set to be the same as the number of positive
edges, which enables us to use accuracy as the metric. We present how the training, validation, and
testing edges are used in Figure 12.

Figure 12: Edges used in the encoder and decoder during training, validation, and testing.
This figure is adapted from a nice tutorial in https://github.com/tomonori-masui/
graph-neural-networks/blob/main/gnn_pyg_implementations.ipynb.

Target model architectures. All target models are used as the encoder in the link prediction task.
Target GNNs all adopt 2-convolutional layer structure, while the MLP is composed of two linear
layers. For APPNP, we apply a linear layer after the 2 graph convolutional layers to reduce the
embedding dimension. The ReLU activation function is applied in the encoder when applicable. The
output dimension of the encoder is the same as the hidden size of the target model, and is treated as a
hyperparameter that requires tuning. The decoders are the same for all target models, taking inner
products of target node pairs and then passing to the Sigmoid activation function for final prediction.

26

https://github.com/tomonori-masui/graph-neural-networks/blob/main/gnn_pyg_implementations.ipynb
https://github.com/tomonori-masui/graph-neural-networks/blob/main/gnn_pyg_implementations.ipynb
https://github.com/tomonori-masui/graph-neural-networks/blob/main/gnn_pyg_implementations.ipynb
https://github.com/tomonori-masui/graph-neural-networks/blob/main/gnn_pyg_implementations.ipynb

Published as a conference paper at ICLR 2025

H HYPERPARAMETER TUNING SEARCH SPACE

H.1 FULL SEARCH SPACES - BASIC NODE CLASSIFICATION

Training-related Hyperparameters

optimizer: [‘SGD’, ‘Adam’]

learning_rate: [0.005, 0.01, 0.05, 0.1, 0.5, 1]

weight_decay: [0.0005, 0.005, 0.05]

dropout: [0.1, 0.3, 0.5, 0.7, 0.9]

scheduler: [‘MultiStepLR’]

scheduler_milestone: [[100, 125, 150, 175]]

scheduler_gamma: [0.2]

Model-related Hyperparameters

MLP: hidden_size [16, 32, 64]

GCN: hidden_size [16, 32, 64]

SAGE: hidden_size [16, 32, 64]

APPNP: teleport_probability [0.1, 0.3, 0.5, 0.7, 0.9]

GAT: hidden_size [16, 32, 64]; num_heads [4, 8, 12]

ChebNet: hidden_size [16, 32, 64]; filter_size [1, 2, 3]

H2GCN: hidden_size [16, 32, 64]

SGC: num_hops [1, 2, 3]

GPRGNN: init [‘Random’, ‘PPR’], GPR_alpha [0.1, 0.2, 0.5, 0.9]

MixHop: hidden_size [16, 32, 64]; power_set [{0, 1, 2}]

H.2 FULL SEARCH SPACES - NODE CLASSIFICATION ON LARGE GRAPHS

Training-related Hyperparameters

optimizer: [‘Adam’]

learning_rate: [0.0005, 0.005, 0.05]

weight_decay: [0.0005, 0.005]

dropout: [0.1, 0.3, 0.7]

scheduler: [‘MultiStepLR’]

scheduler_milestone: [[150, 170]]

scheduler_gamma: [0.2]

Model-related Hyperparameters

GCN: hidden_size [64, 128, 256]

SAGE: hidden_size [64, 128, 256]

APPNP: teleport_probability [0.1, 0.3, 0.5, 0.9]

27

Published as a conference paper at ICLR 2025

H.3 FULL SEARCH SPACES - NODE CLASSIFICATION ON LONG-RANGE GRAPHS

Training-related Hyperparameters

optimizer: [‘AdamW’]

learning_rate: [0.0005, 0.001, 0.005]

weight_decay: [0.0005, 0.005]

dropout: [0.1, 0.3]

scheduler: None

Model-related Hyperparameters

MLP: hidden_size [192, 256], num_layers [8, 10]

GCN: hidden_size [192, 256], num_layers [8, 10]

SAGE: hidden_size [192, 256], num_layers [8, 10]

APPNP: hidden_size [256], num_layers [8, 10], teleport_probability [0.1, 0.5, 0.9]

SGC: hidden_size [192, 256], num_hops [8, 10]

GPRGNN: hidden_size [256], num_layers [8, 10], init [‘PPR’], GPR_alpha [0.1, 0.5, 0.9]

MixHop: hidden_size [192, 256], power_set [{6, 8, 10}, {8, 10}]

H.4 FULL SEARCH SPACES - LINK PREDICTION

Training-related Hyperparameters

optimizer: [‘SGD’, ‘Adam’]

learning_rate: [0.005, 0.01, 0.05, 0.1, 0.5, 1]

weight_decay: [0.0005, 0.005, 0.05]

dropout: [0.1, 0.3, 0.5, 0.7, 0.9]

scheduler: [‘MultiStepLR’]

scheduler_milestone: [[100, 125, 150, 175]]

scheduler_gamma: [0.2]

Model-related Hyperparameters

MLP: hidden_size [16, 32, 64]

GCN: hidden_size [16, 32, 64]

SAGE: hidden_size [16, 32, 64]

APPNP: hidden_size [16, 32, 64], teleport_probability [0.1, 0.5, 0.9]

ChebNet: hidden_size [16, 32, 64]; filter_size [1, 2, 3]

28

Published as a conference paper at ICLR 2025

I SUPPLEMENTARY EXPERIMENT RESULTS AND DISCUSSIONS

I.1 MORE RESULTS OF NODE CLASSIFICATION ON HOMOPHILIC GRAPHS

Table 17: More results of basic node classification on heterophilic graphs. We report the average
test accuracy (%) and the standard deviation of models selected by validation over 10 training or
generation runs. The best results are marked in bold.

Datasets Pubmed (Homophily) Computers (Homophily)

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 73.83 ± 0.31 73.79 ± 0.45 74.07 ± 0.87 74.11 ± 0.58 74.73 ± 0.10 66.40 ± 2.18 66.79 ± 1.62 67.34 ± 0.76 66.39 ± 2.01 67.57 ± 0.16
GCN 79.27 ± 0.40 79.09 ± 0.47 78.70 ± 1.09 79.09 ± 0.47 79.30 ± 0.31 82.42 ± 0.78 80.69 ± 1.42 80.35 ± 1.39 79.07 ± 0.42 82.39 ± 0.29
SAGE 77.26 ± 0.34 77.55 ± 0.35 77.61 ± 0.41 77.27 ± 0.62 77.65 ± 0.11 80.19 ± 1.89 78.92 ± 1.87 78.69 ± 3.06 80.19 ± 1.89 79.80 ± 0.22
APPNP 79.15 ± 0.70 79.15 ± 0.61 78.72 ± 0.54 77.55 ± 0.89 79.28 ± 0.20 82.77 ± 1.55 82.35 ± 1.58 83.30 ± 0.81 83.37 ± 1.62 83.93 ± 0.58
GAT 78.45 ± 0.69 78.33 ± 0.64 78.08 ± 0.43 78.46 ± 0.68 78.40 ± 0.03 82.70 ± 0.85 82.43 ± 0.93 82.06 ± 0.58 82.94 ± 0.96 83.16 ± 0.44
ChebNet 78.29 ± 0.71 77.30 ± 0.59 77.82 ± 0.35 77.45 ± 0.70 78.31 ± 0.58 73.76 ± 2.77 69.58 ± 1.82 69.56 ± 1.81 69.57 ± 1.78 70.12 ± 0.66
H2GCN 79.18 ± 0.38 79.46 ± 0.12 78.99 ± 0.42 79.01 ± 0.21 79.76 ± 0.47 77.29 ± 1.36 75.21 ± 3.50 73.79 ± 4.34 75.02 ± 2.39 77.81 ± 0.92
SGC 78.50 ± 0.16 77.44 ± 0.77 78.32 ± 0.04 78.91 ± 0.57 79.10 ± 0.19 80.37 ± 1.65 80.91 ± 1.56 81.88 ± 0.91 81.79 ± 0.63 82.26 ± 0.58
GPRGNN 79.56 ± 0.56 79.35 ± 0.42 79.19 ± 0.83 79.22 ± 0.83 79.69 ± 0.08 82.42 ± 0.60 82.79 ± 1.40 82.58 ± 0.58 82.58 ± 0.58 82.80 ± 0.30
MixHop 76.96 ± 0.94 76.42 ± 0.34 76.91 ± 0.80 76.96 ± 0.69 78.03 ± 0.21 73.62 ± 1.44 73.00 ± 0.96 72.76 ± 1.57 72.57 ± 0.96 75.64 ± 0.13

Datasets Photo (Homophily) CS (Homoophily)

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 80.61 ± 0.64 80.46 ± 0.69 80.45 ± 0.69 80.45 ± 0.69 81.69 ± 0.02 88.32 ± 0.60 87.45 ± 0.91 86.90 ± 1.28 87.59 ± 0.95 87.63 ± 0.01
GCN 90.83 ± 0.45 90.81 ± 0.37 90.96 ± 0.47 91.10 ± 1.57 91.41 ± 0.01 91.34 ± 0.19 91.04 ± 0.34 91.25 ± 0.14 91.17 ± 0.14 91.35 ± 0.02
SAGE 90.32 ± 0.55 90.27 ± 0.70 89.62 ± 0.91 88.35 ± 1.35 90.36 ± 0.19 90.98 ± 0.33 90.95 ± 0.32 90.75 ± 0.58 90.91 ± 0.17 91.01 ± 0.40
APPNP 90.43 ± 0.77 90.34 ± 0.94 90.12 ± 0.45 90.29 ± 0.89 90.99 ± 0.50 92.13 ± 0.25 92.09 ± 0.30 91.73 ± 0.20 92.13 ± 0.25 92.30 ± 0.02
GAT 90.25 ± 0.92 90.24 ± 0.71 89.71 ± 0.89 90.11 ± 1.06 91.01 ± 0.48 90.35 ± 0.46 89.81 ± 0.78 89.52 ± 0.9 89.73 ± 1.14 90.57 ± 0.08
ChebNet 87.73 ± 2.87 84.88 ± 2.13 83.85 ± 3.07 86.28 ± 1.81 85.98 ± 0.13 91.79 ± 0.53 91.76 ± 0.65 91.55 ± 0.39 91.82 ± 0.35 91.90 ± 0.04
H2GCN 90.30 ± 0.80 89.99 ± 0.60 89.17 ± 1.47 90.29 ± 0.76 90.83 ± 0.44 92.24 ± 0.32 92.11 ± 0.13 91.27 ± 0.41 92.07 ± 0.24 92.24 ± 0.04
SGC 90.27 ± 0.60 90.47 ± 0.52 90.46 ± 0.56 90.24 ± 1.20 90.65 ± 0.17 91.59 ± 0.12 90.99 ± 0.16 91.37 ± 0.23 91.02 ± 0.38 91.46 ± 0.09
GPRGNN 91.18 ± 0.38 90.28 ± 1.26 90.07 ± 1.20 91.24 ± 0.59 91.26 ± 0.28 90.94 ± 0.44 90.81 ± 0.44 90.66 ± 0.53 90.75 ± 2.01 90.93 ± 0.14
MixHop 86.31 ± 1.31 85.04 ± 1.17 84.47 ± 0.73 84.67 ± 1.39 86.12 ± 0.60 92.10 ± 0.33 92.09 ± 0.33 91.05 ± 0.72 91.82 ± 0.51 92.23 ± 0.05

I.2 MORE RESULTS OF NODE CLASSIFICATION ON HETEROPHILIC GRAPHS

Table 18: More results of basic node classification on homophilic graphs. We report the average
test accuracy (%) and the standard deviation of models selected by validation over 10 training or
generation runs. The best results are marked in bold.

Datasets Roman-Empire (Heterophily) Amazon-Ratings (Heterophily)

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 66.19 ± 0.17 65.32 ± 0.36 65.27 ± 0.29 65.27 ± 0.29 66.11 ± 0.08 40.20 ± 0.52 38.52 ± 0.68 38.56 ± 0.16 39.60 ± 0.35 39.82 ± 0.20
GCN 48.87 ± 0.20 47.44 ± 0.57 47.43 ± 0.42 47.70 ± 0.51 48.43 ± 0.17 43.10 ± 0.13 41.52 ± 0.28 41.16 ± 0.16 43.11 ± 0.33 43.19 ± 0.14
SAGE 78.12 ± 0.22 77.32 ± 0.29 76.91 ± 0.32 76.91 ± 0.32 77.65 ± 0.12 43.23 ± 0.52 43.27 ± 0.51 42.78 ± 0.57 43.03 ± 0.52 43.32 ± 0.06
APPNP 58.23 ± 0.19 58.14 ± 0.21 57.71 ± 0.06 58.23 ± 0.19 58.36 ± 0.34 38.79 ± 0.17 39.03 ± 0.13 38.86 ± 0.63 38.86 ± 0.63 39.26 ± 0.16
GAT 56.86 ± 0.58 55.53 ± 1.26 55.31 ± 0.73 56.10 ± 1.00 55.40 ± 0.04 44.74 ± 0.30 44.41 ± 0.46 44.39 ± 0.37 44.42 ± 0.35 44.77 ± 0.04
ChebNet 80.05 ± 0.27 79.09 ± 0.40 78.63 ± 0.21 80.05 ± 0.27 80.06 ± 0.04 44.56 ± 0.16 42.87 ± 0.35 43.96 ± 0.28 43.93 ± 0.29 44.04 ± 0.18
H2GCN 63.63 ± 2.30 62.96 ± 0.65 62.12 ± 1.19 63.32 ± 1.27 63.94 ± 0.07 43.24 ± 0.27 43.09 ± 0.26 42.65 ± 0.08 42.76 ± 0.29 42.83 ± 0.15
SGC 39.10 ± 0.17 39.02 ± 0.12 38.28 ± 0.05 39.01 ± 0.12 38.47 ± 0.16 39.96 ± 0.53 39.70 ± 0.27 39.56 ± 0.18 39.37 ± 0.17 39.60 ± 0.12
GPRGNN 71.70 ± 0.31 71.63 ± 0.46 69.82 ± 0.42 69.81 ± 0.44 71.76 ± 0.07 44.13 ± 0.38 44.06 ± 0.48 43.95 ± 0.39 44.17 ± 0.52 44.24 ± 0.17
MixHop 77.99 ± 0.14 76.95 ± 0.31 74.10 ± 0.13 79.01 ± 0.16 74.94 ± 0.13 43.03 ± 0.32 42.61 ± 0.37 41.25 ± 0.16 41.64 ± 0.25 42.29 ± 0.07

Datasets Minesweeper (Heterophily) Tolokers (Heterophily)

Models Grid Random Coarse C2F GNN-Diff Grid Random Coarse C2F GNN-Diff

MLP 80.00 ± 0.00 79.97 ± 0.08 79.94 ± 0.12 79.72 ± 0.09 80.00 ± 0.00 78.22 ± 0.04 78.18 ± 0.03 78.16 ± 0.01 78.17 ± 0.02 78.24 ± 0.05
GCN 80.26 ± 0.10 80.26 ± 0.12 80.19 ± 0.10 80.28 ± 0.14 80.28 ± 0.07 78.65 ± 0.07 78.67 ± 0.09 78.63 ± 0.10 78.67 ± 0.05 78.73 ± 0.08
SAGE 85.63 ± 0.20 85.56 ± 0.21 85.23 ± 0.27 85.63 ± 0.20 85.78 ± 0.32 78.25 ± 0.20 78.44 ± 0.12 78.34 ± 0.21 78.47 ± 0.11 78.51 ± 0.06
APPNP 80.20 ± 0.07 80.11 ± 0.13 79.96 ± 0.08 80.01 ± 0.13 80.26 ± 0.02 78.62 ± 0.80 78.61 ± 0.04 78.56 ± 0.12 78.63 ± 0.04 78.63 ± 0.03
GAT 81.98 ± 0.62 81.34 ± 0.53 81.18 ± 0.37 81.81 ± 0.73 82.31 ± 0.06 79.73 ± 0.50 79.50 ± 0.61 78.34 ± 0.59 78.35 ± 0.87 79.80 ± 0.12
ChebNet 86.82 ± 0.29 86.64 ± 0.38 84.66 ± 1.26 86.86 ± 0.20 86.89 ± 0.27 79.43 ± 0.60 78.83 ± 0.49 78.56 ± 0.13 78.68 ± 0.14 79.66 ± 0.19
H2GCN 83.59 ± 1.03 83.31 ± 0.33 82.67 ± 0.92 83.61 ± 0.49 83.68 ± 0.32 78.83 ± 0.52 78.56 ± 0.13 78.37 ± 0.25 78.51 ± 0.09 78.80 ± 0.07
SGC 81.51 ± 0.11 81.61 ± 0.17 81.46 ± 0.20 81.55 ± 0.22 81.63 ± 0.24 78.51 ± 0.02 78.49 ± 0.03 78.47 ± 0.09 78.63 ± 0.04 78.57 ± 0.03
GPRGNN 83.92 ± 0.52 83.92 ± 0.52 83.94 ± 0.56 83.94 ± 0.56 83.97 ± 0.03 78.38 ± 0.27 78.36 ± 0.21 78.28 ± 0.16 78.37 ± 0.22 78.28 ± 0.06
MixHop 83.52 ± 0.14 82.75 ± 0.20 83.46 ± 0.21 83.86 ± 0.14 83.92 ± 0.12 79.51 ± 0.15 78.7 ± 0.33 79.22 ± 0.24 79.51 ± 0.15 79.54 ± 0.41

29

Published as a conference paper at ICLR 2025

I.3 EXTENSION TO GRAPH-LEVEL TASKS AND EXPERIMENT RESULTS

GNN-Diff for Graph Classification and Regression

Graph classification is a task where we try to predict the label of an entire graph from a collection of
graphs. This is different from node classification, where we predict labels for individual nodes within
a graph with representations learned for each node. In graph classification, we need to create a global
representation for the whole graph, which captures information from all the nodes in the graph, in
order to make the final prediction. To achieve this, GNNs for graph classification usually construct
node-level representations first, then apply a graph pooling layer to integrate all node information
(Liu et al., 2022). The graph pooling process can be as simple as taking the sum or average of all node
representations, or employing more advanced methods such as differentiable pooling (Ying et al.,
2018) and top-k pooling (Gao & Ji, 2019). Graph regression is very similar to graph classification,
with the main difference being the type of loss function and evaluation metrics.

Figure 13: GFE architecture for graph classification and graph regression. The graph condition is
designed to incorporate both data and graph structural information for GNN parameter generation.

The extension of GNN-Diff to graph classification and regression involves the change of GFE (see
Figure 13). The input of GFE is a set of graphs. We denote the feature matrix and adjacency matrix
of each graph as Xi and Ai for i = 1, 2, ..., I . In the GFE encoder, each graph is processed by a
graph convolutional layer, followed by a mean pooling layer as

ηi = G-Encoder(Xi,Ai) = POOL(GNN(Xi,Ai)) ∈ RDp . (9)

Note that the node dimension is aggregated into 1 by the pooling layer. In the following experiments,
we apply a single GCN layer for the graph convolution. The GFE decoder is a single linear layer.
Moreoever, the loss function needs to adjusted based on the task. Normally, we may choose the cross
entropy loss for graph classification, and the mean squared error loss for graph regression. Finally, to
construct the graph condition, we take the mean of the global representations of all input graphs as
cG = 1

I

∑I
i=1 ηi ∈ RDp .

Experiments Results of Graph Classification

Table 19: Fake news datasets for graph classification experiments. Each dataset contain multiple
graphs. We provide statistics of the number of graphs, all nodes, average nodes, edges, features, and
node classes. “#” means “the number of”.

Dataset #Graphs #Nodes (all) #Nodes (avg.) #Edges #Features #Classes
Politifact 314 41,054 131 40,740 300 2
Gossipcop 5464 314,262 58 308,798 300 2

To evaluate the effectiveness of GNN-Diff on graph-level tasks, we conduct graph classification
experiments for fake news detection using two datasets: Politifact and Gossipcop (Shu et al.,
2020; Dou et al., 2021). Politifact contains political news, while Gossipcop focuses on
entertainment news. Both datasets consist of tree-structured graphs derived from Twitter, where the
task is to classify each graph as either fake or real news. Node features are derived from embeddings
of Twitter users’ historical tweets. More details of the datasets can be found in Figure 19.

30

Published as a conference paper at ICLR 2025

Table 20: Experiment results of graph classification. We report the average test accuracy (%) and
the standard deviation of models selected by validation over 10 training or generation runs. The best
results are marked in bold.

Politifact

Models Grid Random Coarse C2F GNN-Diff

GCN 80.14 ± 1.94 79.23 ± 1.95 78.42 ± 1.87 77.19 ± 1.22 80.45 ± 1.12
SAGE 76.24 ± 3.47 76.60 ± 2.71 77.10 ± 0.91 77.60 ± 2.85 78.28 ± 1.71

Gossipcop

Models Grid Random Coarse C2F GNN-Diff

GCN 97.14 ± 0.08 96.85 ± 0.16 96.58 ± 0.23 97.06 ± 0.09 97.62 ± 0.09
SAGE 96.73 ± 0.24 96.72 ± 0.06 96.59 ± 0.14 96.84 ± 0.14 96.73 ± 0.07

We use two target models, GCN and SAGE, and follow the data split and model implementation from
the PyTorch_Geometric example1. The hyperparameter search space is as follows:

optimizer: [‘SGD’, ‘Adam’]

learning_rate: [0.005, 0.01, 0.05, 0.1, 0.5]

weight_decay: [0.0005, 0.005]

dropout: [0.0, 0.1, 0.3]

GCN_hidden_size [16, 32, 64]

SAGE_hidden_size [16, 32, 64].

The experimental results in Table 20 demonstrate that GNN-Diff consistently surpasses the baseline
methods across both datasets—Politifact and Gossipcop—in the graph classification task
for fake news detection. Specifically, for the Politifact dataset, GNN-Diff achieves the highest
accuracy for both GCN and SAGE. Similarly, on the Gossipcop dataset, GNN-Diff maintains its
superiority with GCN and SAGE, matching or exceeding the performance of other baselines while
achieving the lowest variance. These results underscore GNN-Diff’s robustness and effectiveness in
addressing the graph classification challenges in the context of fake news detection, particularly in
achieving high accuracy with consistent reliability.

1https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
upfd.py

31

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/upfd.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/upfd.py

Published as a conference paper at ICLR 2025

I.4 BAYESIAN OPTIMIZATION VS. GNN-DIFF

In our main experiments, we compare GNN-Diff with some traditional search methods, including
coarse search, random search and grid search, and a more advanced method, coarse-to-fine (C2F)
search, to efficiently reduce the search space based on the coarse search results. Here we consider
another advanced hyperparameter tuning method, Bayesian optimization, which is less commonly
used in GNN-related works but a very useful tool in the general machine learning field (Snoek et al.,
2012; 2015). We implement the Bayesian search with Optuna (Akiba et al., 2019). Optuna is a
hyperparameter tuning framework that by default adopts Tree-structured Parzen Estimators (TPEs), a
probabilistic model-based optimization method that falls under the umbrella of Bayesian optimization.
We compare the Bayesian search and GNN-Diff with basic node classification tasks on 6 homophilic
and 6 heterophilic graphs (see Table 21). The Bayesian search space is almost the same as in Section
H.1 except that we employ continuous range for the learning rate, weight decay, dropout and also the
alphas in APPNP and GPRGNN to better suit the Bayesian hyperparameter tuning framework.

Table 21: Comparison between Bayesian search and GNN-Diff. The average test accuracy (%) and
the corresponding standard deviation are reported. The best results are marked in bold.

Basic Node Classification - Homophilic Graphs

Datasets Cora Citeseer Pubmed

Models Bayesian GNN-Diff Bayesian GNN-Diff Bayesian GNN-Diff

MLP 58.73 ± 0.78 59.47 ± 0.43 57.32 ± 1.48 58.72 ± 0.84 72.19 ± 1.98 74.73 ± 0.10
GCN 81.09 ± 0.37 82.33 ± 0.17 70.34 ± 0.48 72.37 ± 0.29 79.24 ± 0.22 79.30 ± 0.31
SAGE 80.43 ± 0.34 80.60 ± 0.15 70.40 ± 0.46 70.45 ± 0.14 76.87 ± 0.36 77.65 ± 0.11
APPNP 78.99 ± 1.06 82.51 ± 0.29 68.60 ± 1.15 71.44 ± 0.17 76.29 ± 0.90 79.28 ± 0.20
GAT 81.46 ± 1.25 81.69 ± 0.10 70.24 ± 0.39 71.50 ± 0.09 76.95 ± 0.61 78.40 ± 0.03
ChebNet 80.96 ± 0.76 82.05 ± 0.55 69.97 ± 0.58 71.65 ± 0.27 77.35 ± 0.80 78.31 ± 0.58
H2GCN 81.37 ± 1.89 82.17 ± 0.12 68.12 ± 0.91 71.78 ± 0.25 79.07 ± 0.81 79.76 ± 0.47
SGC 81.94 ± 0.24 82.10 ± 0.24 71.52 ± 2.77 72.10 ± 0.18 78.80 ± 0.27 79.10 ± 0.19
GPRGNN 81.51 ± 1.32 81.79 ± 0.20 71.12 ± 0.26 71.86 ± 0.19 79.52 ± 0.40 79.69 ± 0.08
MixHop 78.42 ± 0.93 80.32 ± 0.71 69.74 ± 0.72 71.50 ± 0.49 76.71 ± 0.25 78.03 ± 0.21

Datasets Computers Photo CS

Models Bayesian GNN-Diff Bayesian GNN-Diff Bayesian GNN-Diff

MLP 65.82 ± 1.42 67.57 ± 0.16 80.70 ± 0.91 81.69 ± 0.02 87.62 ± 0.28 87.63 ± 0.01
GCN 82.24 ± 0.91 82.39 ± 0.29 90.47 ± 0.69 91.41 ± 0.01 90.80 ± 0.12 91.35 ± 0.02
SAGE 79.45 ± 1.30 79.80 ± 0.22 90.33 ± 0.80 90.36 ± 0.19 90.95 ± 0.31 91.01 ± 0.40
APPNP 83.01 ± 1.55 83.93 ± 0.58 90.66 ± 1.17 90.99 ± 0.50 91.61 ± 0.52 92.30 ± 0.02
GAT 82.00 ± 1.02 83.16 ± 0.44 90.54 ± 1.46 91.01 ± 0.48 90.13 ± 0.33 90.57 ± 0.08
ChebNet 77.37 ± 1.74 70.12 ± 0.66 86.27 ± 1.90 85.98 ± 0.13 91.78 ± 0.42 91.90 ± 0.04
H2GCN 77.58 ± 1.27 77.81 ± 0.92 87.54 ± 2.60 90.83 ± 0.44 91.12 ± 0.74 92.24 ± 0.04
SGC 82.24 ± 0.12 82.26 ± 0.58 90.71 ± 0.13 90.65 ± 0.17 91.00 ± 0.43 91.46 ± 0.09
GPRGNN 78.97 ± 2.25 82.80 ± 0.30 90.50 ± 0.30 91.26 ± 0.28 90.74 ± 0.42 90.93 ± 0.14
MixHop 73.14 ± 1.62 75.64 ± 0.13 87.77 ± 0.80 86.12 ± 0.60 92.19 ± 0.26 92.23 ± 0.05

Basic Node Classification - Heterophilic Graphs

Datasets Actor Wisconsin Roman-Empire

Models Bayesian GNN-Diff Bayesian GNN-Diff Bayesian GNN-Diff

MLP 37.85 ± 0.63 37.89 ± 0.33 80.16 ± 0.78 80.39 ± 1.07 66.01 ± 0.14 66.11 ± 0.08
GCN 30.45 ± 0.77 31.24 ± 0.26 56.47 ± 2.29 61.17 ± 0.78 50.41 ± 0.44 48.43 ± 0.17
SAGE 36.00 ± 0.42 36.11 ± 0.09 75.49 ± 3.95 76.47 ± 2.32 77.42 ± 0.37 77.65 ± 0.12
APPNP 35.08 ± 0.58 35.92 ± 0.21 83.14 ± 1.30 81.16 ± 1.53 57.33 ± 0.12 58.36 ± 0.34
GAT 30.30 ± 1.20 29.88 ± 0.23 52.75 ± 2.39 52.94 ± 0.05 55.29 ± 1.16 55.40 ± 0.04
ChebNet 37.06 ± 0.80 37.49 ± 0.16 81.56 ± 1.71 80.59 ± 2.83 79.33 ± 0.22 80.06 ± 0.04
H2GCN 33.63 ± 0.52 34.16 ± 0.21 78.24 ± 0.16 83.72 ± 0.90 63.70 ± 1.18 63.94 ± 0.07
SGC 30.14 ± 0.09 30.38 ± 0.17 56.27 ± 0.90 60.32 ± 1.19 36.96 ± 0.15 38.47 ± 0.16
GPRGNN 33.39 ± 2.94 36.84 ± 0.41 80.31 ± 0.84 81.53 ± 0.96 70.92 ± 0.25 71.76 ± 0.07
MixHop 37.32 ± 0.57 38.15 ± 0.38 81.18 ± 2.51 80.39 ± 0.07 76.68 ± 0.15 74.94 ± 0.13

Datasets Amazon-Ratings Minesweeper Tolokers

Models Bayesian GNN-Diff Bayesian GNN-Diff Bayesian GNN-Diff

MLP 40.41 ± 0.59 39.82 ± 0.20 80.00 ± 0.00 80.00 ± 0.00 78.13 ± 0.05 78.24 ± 0.05
GCN 42.91 ± 0.40 43.19 ± 0.14 80.19 ± 0.10 80.28 ± 0.07 78.54 ± 0.15 78.73 ± 0.08
SAGE 43.28 ± 0.99 43.32 ± 0.06 85.26 ± 0.27 85.78 ± 0.32 78.64 ± 0.11 78.51 ± 0.06
APPNP 37.48 ± 0.15 39.26 ± 0.16 80.04 ± 0.02 80.26 ± 0.02 78.42 ± 0.03 78.63 ± 0.03
GAT 44.39 ± 0.32 44.77 ± 0.04 81.75 ± 0.61 82.31 ± 0.06 79.48 ± 0.53 79.80 ± 0.12
ChebNet 43.79 ± 0.54 44.04 ± 0.18 86.84 ± 0.23 86.89 ± 0.27 79.10 ± 0.33 79.66 ± 0.19
H2GCN 42.80 ± 0.16 42.83 ± 0.15 83.32 ± 0.15 83.68 ± 0.32 78.45 ± 0.44 78.80 ± 0.07
SGC 38.89 ± 0.17 39.60 ± 0.12 80.26 ± 0.02 81.63 ± 0.24 78.28 ± 0.02 78.57 ± 0.03
GPRGNN 43.79 ± 0.73 44.24 ± 0.17 83.96 ± 0.17 83.97 ± 0.03 78.26 ± 0.11 78.28 ± 0.06
MixHop 42.23 ± 0.39 42.29 ± 0.07 84.28 ± 0.11 83.92 ± 0.12 79.24 ± 0.14 79.54 ± 0.41

32

Published as a conference paper at ICLR 2025

I.5 ANALYSIS OF THE GRAPH FEATURE ENCODER (GFE)

Ablation Study of GFE Components

The ablation study of GFE components aims to analyze the effectiveness of each component in
Equation 2. We use 2 target GNNs, GCN and SAGE, and 2 datasets, Cora and Actor. The results
are shown in Table 14. “GCN2 & GCN1 & MLP” refers to the current GFE architecture, where
the three components are combined via concatenation. The same implementation applies to other
architectures as well. We also include “None” for comparison, which is equivalent with p-diff, the
unconditional baseline we have discussed in Table 5. Since the target GNNs only have 2 layers by
our experiment design, we only consider up to 2-layer GCN (GCN2) in this analysis.

We observe that for different models on different datasets, a specific component may contribute
to promising results more than other components. For example, for GCN on Cora, the average
accuracy tends to be higher when GCN2 is included in the GFE. Similarly, GCN1 is shown to be
more important for SAGE on Cora, while MLP may lead to better accuracy on the heterophilic
graph, Actor, for both GCN and SAGE. In addition, the current GFE architecture with 3 components
generally produces the best average results among all other architectures in the ablation study. We
suppose this is because the current architecture incorporates all factors that may lead to promising
generation outcomes and enables the automatic selection of these components during the learning
process.

Furthermore, a well-designed GFE architecture, such as "GCN2 & GCN1 & MLP", enhances
generation quality by improving both the average accuracy and the stability (as reflected in the
standard deviation) compared to the unconditional generation model ("None").

Figure 14: Results of GFE ablation study. The blue dots represent the average accuracy while the
blue lines show the corresponding standard deviation. It can be observed that a specific component
may lead to comparably better results than other components.

33

Published as a conference paper at ICLR 2025

GFE with Various Graph Convolutions

In the previous discussion, we concentrated on the GFE architecture utilizing the GCN graph
convolution. Here we extend the analysis by exploring alternative graph convolutions as the backbone
of the GFE. Specifically, we investigate whether employing the graph convolution of the target
models within the GFE can yield improved prediction outcomes. For instance, in the case of GAT,
we compare the GFE described in Equation 2 with GFEs constructed using the GAT convolution.

We consider 3 target models, SAGE, GAT, and APPNP, and 2 datasets, Cora and Actor. For each
target model, except for the GFE adopted by GNN-Diff (“GCN2 & GCN1 & MLP”), we also try
GFE with 2 layers of the target model (e.g., GAT), and the concatenation with MLP (e.g., GAT &
MLP). In addition, we include MLP and no graph condition as baselines for comparison.

The results in Figure 15 indicate that employing the target GNN convolution in GFE can lead to
moderately higher accuracy compared to GCN-based GFE models (e.g., SAGE and GAT on Cora).
However, this advantage is not consistently significant and may occasionally underperform (e.g.,
GAT on Actor and APPNP on Cora). Therefore, we conclude that the current GFE architecture
utilized by GNN-Diff serves as a reasonable default for tuning any GNN. Nevertheless, exploring
alternative graph convolutions is advisable if computational resources and time permit.

Additional noteworthy findings include: (1) concatenating with an MLP proves to be a versatile
and effective approach that can be integrated with many graph convolutions; and (2) consistent
with observations from the ablation study, parameters generated using graph conditions exhibit
significantly higher stability compared to those generated without any conditions. These results
further validate the efficacy of the GFE in generating parameters for GNNs.

Figure 15: Results of GFEs with various graph convolutions. The blue dots represent the average
accuracy while the blue lines show the corresponding standard deviation.

34

Published as a conference paper at ICLR 2025

I.6 GNN-DIFF TIME ANALYSIS

We provide the details of the time costs of GNN-Diff in Figure 16. In general, the coarse search
consumes most of the time taken by the entire GNN-Diff process. This is the inevitable cost that one
shall expect for GNN-Diff to generate high-performing GNNs, though the coarse search is much
more efficient compared to the baseline search methods. The parameter collection time is almost
negligible for small graphs such as Cora and Actor. In contrast, it takes much longer to collect
parameters for large-scale tasks, such as the node classification on PascalVOC-SP. This is due
to the long training and validation time associated with large graphs. Similarly, the proportion of
sampling time is lower for small graphs and higher for large graphs, because of the longer validation
and testing time with large graphs.

Figure 16: Time analysis of GNN-Diff. The time costs of GNN-Diff include the time for the coarse
search, parameter collection, training, and inference.

I.7 COMBINE GNN-DIFF WITH LARGE-SCALE TRAINING ALGORITHMS

While our experiments on large graphs utilize clustering-based training for computational efficiency,
future work could explore combining GNN-Diff with more advanced large-scale training algorithms.

One promising direction is integrating our method with the reversible connections proposed by Li et al.
(2021), which enable the training of very deep or wide GNNs to achieve exceptional performance on
large graphs. This could involve incorporating reversible connections into the architectures of target
models, allowing us to evaluate whether partial generation remains effective for significantly deeper
or wider GNNs. Additionally, combining GNN-Diff with the Self-Label-Enhanced training described
in (Sun et al., 2021) could improve scalability and performance on large-scale datasets. Furthermore,
lazy propagation in (Xue et al., 2023) offers an intriguing direction, as their efficient computation
could further reduce the training costs of our framework on large graphs.

Given that GNN-Diff is a general tuning framework and these strategies are generic training al-
gorithms, their combination could lead to a scalable, efficient, and model-agnostic approach for
enhancing GNN performance on large-scale and complex graph datasets.

35

	Introduction
	Preliminaries
	Graph Neural Networks
	Latent Diffusion Models

	Related Works
	Graph Neural Network Diffusion (GNN-Diff)
	Parameter Collection with Coarse Search
	Graph Feature Encoder (GFE)
	Graph-conditioned Latent DDPM (G-LDM)
	Inference and Prediction

	Experiments and Discussions
	Experimental Setup
	Main Experiment Results
	Further Discussions

	Conclusion
	Appendices
	Related Works
	Pseudo Code of GNN-Diff
	Details of GNN-Diff
	GFE Architectures for Various Tasks
	PAE and G-LDM Denoising Network Architectures
	GNN-Diff Settings

	Baseline Methods
	Datasets
	Dataset Sources
	Dataset statistics
	Dataset Train/Val/Test Splits

	Target Models
	Tasks and Relevant Details
	Basic Node Classification
	Node Classification on Large Graphs
	Node Classification on Long-range Graphs
	Link Prediction

	Hyperparameter Tuning Search Space
	Full Search Spaces - Basic Node Classification
	Full Search Spaces - Node Classification on Large Graphs
	Full Search Spaces - Node Classification on Long-range Graphs
	Full Search Spaces - Link Prediction

	Supplementary Experiment Results and Discussions
	More Results of Node Classification on Homophilic Graphs
	More Results of Node Classification on Heterophilic Graphs
	Extension to Graph-level Tasks and Experiment Results
	Bayesian Optimization vs. GNN-Diff
	Analysis of the Graph Feature Encoder (GFE)
	GNN-Diff Time Analysis
	Combine GNN-Diff with Large-scale Training Algorithms

