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Abstract

In this paper, we target at developing a globally convergent and yet practically
tractable optimization algorithm for the optimal experimental design problem with
synthetic controls. Specifically, we consider a setting when the pre-treatment out-
come data is available. the average treatment effect is estimated via the difference
between the weighted average outcomes of the treated and control units, where the
weights are learned from the data observed during the pre-treatment periods. We
find that if the experimenter has the ability to select an optimal set of non-negative
weights, the optimal experimental design problem is identical to to a so-called
phase synchronization problem. We solve this problem via a normalized variate of
the generalized power method with spectral initialization. On the theoretical side,
we establish the first global optimality guarantee for experiment design under a re-
alizable assumption with linear fixed-effect models (also referred to an "interactive
fixed-effect model"). These results are surprising, given that the optimal design of
experiments, especially involving covariate matching, typically involves solving an
NP-hard combinatorial optimization problem. Empirically, we apply our algorithm
on US Bureau of Labor Statistics and the Abadie-Diemond-Hainmueller California
Smoking Data. The experiments demonstrate that our algorithm surpasses the
random design with a large margin in terms of the root mean square error.

1 Introduction
Estimating the average effects of a binary treatment is one of the main goals of empirical economic and
political studies. Randomization in controlled trials is one of the golden rules for estimating average
treatments effects (ATE). If the treatment assignment procedure guarantees that the potential outcomes
are independent of the treatment status, then a simple difference-in-mean (i.e., average outcomes
of the treated and control units) estimator becomes an unbiased estimator of ATE. Nevertheless,
a completely randomized experiment may be affected by a significantly high variance in the final
estimation. Such variance can be reduced by taking advantage of features in the observed data. In
this paper, we focus on the following question can the observed covariates improve the statistical
properties of the ATE estimators via experimental designing? [1, 2]. This problem is referred to as
covariate balancing which restricts the randomization to achieve covariate balance between treatment
groups [3, 4].

Covariate balancing has been substantially explored in the literature. However, an NP-hard combina-
torial optimization problem [5, 6, 7] is always needed to be solved when balancing the covariance.
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In this paper, following [6, 7], we consider the experiment design problem when a synthetic con-
trol [8, 9, 10] esitmaotr is implemented. That is, the experiment designer can observe the pre-treatment
panel outcome data for a number of units in a number of time periods. Synthetic control compares
treated units with a weighted average of untreated units. The weights are determined via empirical fit
on the observed pre-treatment outcome. [6, 7] propose an optimization approach to select the control
group based on the observed pre-treatment outcome. Namely, the choice of the treated units aims to
balance the weighted average of treated and untreated covariates. As such, the designer can choose
the best non-negative weights. [6] prove that the underlying optimization problem is still NP-hard and
[7] relax the optimization problem into a canonical Quadratic Constraint Quadratic Program (QCQP).
Nevertheless, the resulting QCQP is rather computationally demanding and applicable algorithms are
not guaranteed to reach a global optimum.

In this paper, we remove the constraints of the number of units being treated in [6] and surprisingly
find out the optimization problem can be recast as a phase synchronization problem [11]. Although
phase synchronization is still an NP-hard problem [12], recent works [13, 14, 15, 16] have figured
out that the problem is polynomial-time solvable under certain data generating process. Motivated by
this line of research, we propose Synthetic principal component Design (SPCD), which optimizes
the treatment decision via (a normalized variate of) the generalized power method with spectral
initialization [17]. Under the realizable assumption in [7], we provide a global optimization guarantee
of a normalized variate of the generalized power method and statistical estimation guarantee of the
synthetic control procedure for the linear fixed-effect model studied [9, 18, 19, 20]. To the best of
our knowledge, this is the first formulation of combinatorial optimization-based experiment design
which enjoys a global optimization guarantee.

1.1 Contribution

• We show an equivalence between the experiment design with synthetic control [6, 7] and
phase synchronization problem [11, 14, 15], where separating the experiment and control
group can be transformed to finding the phase of a complex signal. Based on this observation,
we linked covariate balancing with the smallest eigenvector of gram matrix and utilize a
spectral method for fast experiment design.

• We proposed a novel normalized version of generalized power method which enjoys global
convergence results under certain generative models. The normalization technique needs
weaker generative models assumption for global results and consistently improves the
empirical results.

• Our method surpass random design a large margin empirically on both synthetic and real
world dataset. Our method even exceed 500000 times of rerandomization over the Abadie-
Diamond-Hainmueller smoking legislation data.

2 Problem Setup

In this section, we follow the setting of synthetic control (SC) and corresponding experiment design
introduced in [6]. We aim to estimate the effect of a binary treatment under the panel data setting.
Researchers have access to the outcome metric of interest Y ∈ RN×T for N units during T time
periods. At time T , researchers are required to execute an experiment by assigning a binary treatment
described by Di ∈ {−1, 1}, i = 1, 2, · · · , N based on the observed pre-treatment data.

If Di = 1, then a treatment needs to be applied to unit i. After the treatment experiment, furthermore
outcomes are observed for additional S time periods t = T +1, · · · , T +S. During this period, every
unit i ∈ [N ] in each time period t is associated with the following two random outcomes: Yit(−1) =
µit+ eit, and Yit(1) = Yit(−1)+ τi, where µit is the base outcome, τ is the treatment effect aiming
to estimate and eit is the zero mean i.i.d idiosyncratic noise with variance Var(ϵit) = σ. Once
treatment Di is applied, the experimenter is able to realize Yit =

(Di+1)
2 Yit(1) +

(1−Di)
2 Yit(−1).

Estimating the treatment effect τ is quite challenging because once we implement a treatment on unit
j (i.e., Dj = 1) and observe the outcome Yj,T+1(1), then counterfactual outcome Yj,T+1(−1) is not
observable. With the pre-treatment observation YiT , synthetic control literature [9, 18] constructs the
counterfactual estimate for a treated unit j (i.e., Dj = 1 ) from a weighted average of other units’
outcomes: Ŷj,T+1(−1) =

∑
i:Di=−1 wiYi,T+1. The weights wi are learned from the pre-treatment

observed data via minimizing
∑T

t=1(Yjt −
∑

i:Di=0 wiYit)
2. Then the treatment effect of unit j we

estimate can be written as τj = Yj,T+1 − Ŷj,T+1(−1).
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2.1 Synthetic Design

In this section, we consider the synthetic design objective function proposed for two-way fixed
effect in [6, 7] and showed an hidden connection with the phase synchronization problem. [6, 7]
aims to design treatment assignments {Di = ±1}Ni=1 and weights {wi ≥ 0}Ni=1 for outcome
experiments at time T +1. For we aims to estimate a two-way fixed effect where the treatment effects
are homogeneous, we can consider the weighted average treatment effect on the treated (wATET)
τ =

∑N
i=1

Di+1
2 wiτi instead [21]. wATET can be estimated as a difference in weighted means

estimator τ̂ =
∑

i:Di=1 wiYi,T+1 −
∑

i:Di=−1 wiYi,T+1 with
∑

i:Di=1 wi =
∑

i:Di=−1 wi = 1.
Following [6], upon the outcome model, the mean squared error of the difference-in-weighted-means
estimator admits the decomposition

E
[
(τ̂ − τ)2|{Di, wi}Ni=1

]
=

( ∑
i:Di=1

wiµi,T+1 −
∑

i:Di=−1

wiµi,T+1

)2

︸ ︷︷ ︸
weighted covariate balancing

+σ

N∑
i=1

w2
i .

The designer aims to design the experiment with a lowest expected mean square error. Thus, [6]
proposed the following mixed-integer programming for experimenting design with Synthetic Control:

min
{Di,wi}n

i=1

1

T

T∑
t=1

( ∑
i:Di=1

wiYit −
∑

i:Di=−1

wiYit

)2

+ σ

N∑
i=1

w2
i

s. t. wi ≥ 0, Di ∈ {−1, 1}, ∀i ∈ [N ],
∑

i:Di=1

wi =
∑

i:Di=−1

wi = 1.

(1)

Remark 1. We remove the constraint
∑

i:Di=1 Di = K for a given integer K ∈ N in the mixed-
integer programming in [6] mainly as this constraints is empirically proved not critical in [7]. The
NP-hard proof in [6] depends on the constraint

∑
i:Di=1 Di = K. In the following discussion, we

will show that the problem is also NP-hard even
∑

i:Di=1 Di = K is removed, as the resulting
optimization problem can be reformulated as the ℓ1-PCA [22, 23] and phase Synchronization [11, 14].

By making a further simplification of the problem (1), we introduce a change of variable Wi = wiDi.
For wi ≥ 0, then Di = sgn(Wi) and wi = |Wi|. At the same time, the constraint

∑
i:Di=1 wi =∑

i:Di=−1 wi = 1 is equivalent to 1⊤W = 0 and the objective function

1

T

T∑
t=1

( ∑
i:Di=1

wiYit −
∑

i:Di=−1

wiYit

)2

+ σ

N∑
i=1

w2
i

can be reformulated as W⊤(Y Y ⊤ + λI)W , where W = [w1, · · · , wN ]⊤ and 1 ∈ RN is the all one
vector. Thus, (1) can be recast into

min
W∈Rn,1⊤W=0,∥W∥1=1

W⊤(Y Y ⊤ + σI)W. (2)

Although the reformulation (2) translates the problem into a compact matrix form, it is still a
nonconvex problem due to the constraint ∥W∥1 = 1. To deal with the constraint 1⊤W = 0, we
add an extra term λ(1⊤W )2 to the objective function, where λ is a pre-defined hyper-parameter.
Although this penalty method cannot produce the exact global solution, we can still recover the
sign of the global solution (see Theorem 1). Once the sign of the global solution is identified, the
remaining effort of computing the magnitude reduces to solving a convex problem (5).

Theorem 1. For large enough λ, the global solution W ∗ of (2) satisfies

sgn(W ∗) = sgn

(
argmin

W∈Rn,∥W∥1=1

W⊤(Y Y ⊤ + σI + λ11⊤)W

)
.

The following theorem states that the problem is equivalent to another well-known NP-hard non-
convex problem — Phase Synchronization [11].
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Algorithm 1 Synthetic principal component Design

Require: Pre-treatment Observations Y ∈ RN×T

Set initial treatment assignment guess through y0 = sgn(v), where v is the smallest eigenvector of
matrix (Y Y ⊤ + αI + λ11⊤), where α, λ are two pre-defined hyper-parameter.

▷ Spectral Initialization
while Converged do

Select one of the following two boxes to iterate

For SPCD, update the design via ▷ Generalized power methods

yt+1 = sgn
[(
(Y Y ⊤ + αI + λ11⊤)−1 + βI

)
yt
]
, (3)

where β is a pre-defined hyper-parameter.

For NormSPCD, update the design via ▷ Normalize the inverse covariance matrix

yt+1 = sgn
[ [

(Y Y ⊤ + αI + λ11⊤)−1 + βI
]
(yt/d)

]
, (4)

where d =
√

diag((Y Y ⊤ + αI + λ11⊤)−1) and / denotes element-wise divide.

end while
Solve the following convex optimization problem

{wi}ni=1 =argmin
{wi}n

i=1

1

T

T∑
t=1

 ∑
i:y(i)=1

wiYit −
∑

i:y(i)=−1

wiYit

2

+ σ

N∑
i=1

w2
i

s. t. wi ≥ 0, ∀i ∈ [N ],
∑

i:y(i)=1

wi =
∑

i:y(i)=−1

wi = 1.

(5)

Treat Unit i if y(i) = −sgn
(∑N

i=1 y(i)
)

and run the experiment.
▷ To ensure the size of the treated group is smaller than the control group

Estimate the treatment effect via

τ̂ =

S∑
t=1

 ∑
i:y(i)=−sgn(

∑N
i=1 y(i))

wiYi,T+t −
∑

i:y(i)=sgn(
∑N

i=1 y(i))

wiYi,T+t

 .

Theorem 2 (Equivalence between Synthetic Design and Phase Synchronization). If x∗ ∈ Rn is the
global solution of min∥x∥1=1 ∥Ax∥22 for some matrix A ∈ RD×n (D > n) and the matrix A⊤A ∈
Rn×n is invertible, then y∗ = sgn(x∗) is the global solution of maxy∈{−1,+1}n y⊤((A⊤A)−1)⊤y.

The proof of Theorem 1 and Theorem 2 is omitted in the main text and is shown in Appendix B.

Remark 2. Phase synchronization [11, 13] aims to recover n phases zi = eiθi , i ∈ [n] via solving the
following optimization problem max|x1|=···=|xn|=1 x⊤Cx where Cij is the noisy observation of
ziz̄j = ei(θi−θj). Our problem is symbolically equivalent. However, the data generating process is
quite different from the Phase synchronization for we are considering the inverse of the Gram matrix.
In Appendix, we will show that our design is actually the first ℓ1-principal component [22, 23].

3 Algorithm description

In this section, we propose a normalized version generalized power method [24, 14, 15, 16] with
spectral initialization [17] to solve our problem.
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3.1 Generalized Power Methods

Spectral relaxation [11] is the first simple and efficient approach to solve the phase synchronization
problem. [11] relaxed the N constraints |xi| = 1, i ∈ [N ] to ∥x∥22 = n. Then the solution
becomes the leading eigenvector. [15, 16] showed that the eigenvector estimator is almost close to
the global optima under certain data generating process. Following these works, we take our initial
guess of the optimal experiment to be sgn(v), where v is the smallest eigenvector of the matrix
(Y Y ⊤ + αI + λ11⊤) with α, λ > 0 as two pre-defined hyper-parameters.

To further improve the experiment assignment, we utilize the generalized power method [24, 25],
which considers the linearization of the objective function at the current point and moves towards a
minimizer of this linear function over the non-convex set C. The generalized power method can be
also understood as projected gradient descent [26]. Indeed, the update

yt+1 = sgn[((
1

β
Y Y ⊤ +

σ

β
I +

α

β
11

⊤)−1 + I)yt]

can be understood as a projection step (sgn) after a gradient descent update with step size 1
β . Thus

the algorithm shares a sufficient ascent condition for each iteration. Our algorithm is called Synthetic
principal component Design (SPCD) and it is summarized in Algorithm 1.

Normalized Variant In [14, 16, 15], the global optimality result is highly dependent on the
assumption that the top eigenvector of the iteration matrix lies in {−1, 1}N . However, in our setup,
the top eigenvector of the iteration matrix is the smallest eigenvector of the covariance matrix which
may not be a {−1, 1}N vector. This is also the case appearing in the phase retrieval [27, 28] and the
degree corrected stochastic block model [29, 30]. Inspired by the SCORE [30, 31] method for degree
corrected stochastic block models, we further introduce a normalization step to the generalization
power method and call the new algorithm Normalized SPCD (cf. NormSPCD, see (4) for details).
We use the diagonal component of the inverse covariance as an estimate of the true normalization
component. In Appendix C, we show that NormSPCD can be interpreted as a Riemannian gradient
descent with a specific metric. Empirical results show that it is better than the original GPW in Figure
1b. This normalization technique may be of independent interest in other applications.

3.2 Global Guarantee

In this subsection, we provide the global optimization guarantee for the (normalized) generalized
power method. [13, 14, 15, 16] have shown that phase retrieval is globally solvable under certain
generative models. We will show that generalized power method can globally converge under certain
data generating processes, which are quite different from the ones assumed in the previous works.
Following [7], we consider a realizable linear factor model (also referred to as "interactive fixed-
effects model") [9, 18, 19, 20], which has already been commonly employed in the literature as a
benchmark model to analyze the properties of synthetic control estimators [32, 33]. Recently, [34]
justify the linear assumption from an independent causal mechanism viewpoint. The linear latent
factor model is stated in the following assumption. .
Assumption 1 (Linear Latent Factor Model [9, 18]). The outcomes are generated via the following
linear factor model

Yjt = δt +
Djt + 1

2
τ + θTt µj + ejt, E[ejt|δt, µj , Djt] = 0, Var[ejt|δt, µj , Djt] = σ.

Here δt is the time fixed effect; µj is the unobserved common factors; θt is a vector of unknown
factor loading; ejt is the unobserved i.i.d. idiosyncratic noise; τ is the treatment effect that we aim to
estimate and Djt is the {−1, 1} variable according to the treatment assignment to unit j at time t.
More specifically, in the pre-treatment period, Djt = −1 for all ∀j ∈ [N ], t ∈ [T ].

To obtain the global optimality result, we further make the following realizable assumption that there
is only one realizable experiment (zero error experiment) in population.
Assumption 2 (Realizable Assumption). There exists a unique parameter (wi, Di)

n
i=1(Di ∈

{−1, 1}) that satisfies the following conditions:

• wi ≥ 0 and
∑n

i=1 Diwi = 0. ∥w∥22 = N and ϵ ≤ |wi| ≤ 1
ϵ for all ∀i ∈ [N ].

• The weights will balance the covariates, i.e.
∑n

i=1 wiDiµi = 0.
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Remark 3. This realizable assumption is similar to [33], [34, (5)] and [7, Assumption 3]. The
difference is that [7, Assumption 3] assumes the weight will cancel noisy observation of the untreated
outcome Yjt(−1) which is not realistic when the pre-treatment period T is larger than the number of
units N . Our assumption is closer to [33] and [34, (5)], but we further assume the uniqueness of the
realizable experiment that makes the optimization problem easier (in terms of no need to distinguish
different realizable experiments).

Under Assumptions 1 and 2, we can show the following global optimality result and the proof is
shown in the Appendix C.
Theorem 3. (Informal) Suppose that Assumptions 1 and 2 hold and that the latent time factor
[θ⊤i δi]

⊤ is sampled from a underlying distribution with mean θ̃ and covariance Σ̃. Under regularity
assumptions (see Appendix C.2.4), if σ is small enough and T ≥ poly(N, 1

ϵ ), then

• If ϵ >
√
3
2 − 1, then SPCD converges to the global optima.

• If ϵ > 0, then NormSPCD converges to the global optima at a linear rate.

4 Numerical Study
This section report the numerical tests of our algorithm. In subsection 4.1, we demonstrate our
algorithm on two real world datasets. Both experiments have shown the effectiveness of our proposed
algorithm in terms of the the root-mean-square error (RMSE), where the squared differences between
the true values of the treatment effects and the respective estimates are computed for each treatment
period and averaged. We also validate our algorithm on the latent factor model in Appendix D.

4.1 Real World Data
To exam our algorithm on real data, we follow [35, 6] and utilize the US Bureau of Labor Statistics
and the Anti-Smoking Legislation data to examine the validity of our algorithm. Besides synthetic
control (SC), which randomly selects one unit to implement the treatment, we also implement an
additional random baseline, which randomly select units as control/group with probability 1/2. The
final result is shown in Table 1. SPCD surpasses SC a large margin on both of the datasets.

(a) Treatment Selected when T = 25 (b) Comparison in terms of RMSE (c) Comparison with rerandomization

Figure 1: A typical design selected via synthetic principal component design (SPCD) and its
performance.

The Abadie–Diamond–Hainmueller Smoking Data. [9] uses SC to study the effects of Proposition
99, a large-scale anti-smoking legislation program that California implemented in 1988. To simulate
the bias of SC and SPCD on this application, following [19], we consider observations for 38 states
(excluding California due to Proposition 99) from 1970 through 2000. We regard the first T year as
pre-treatment periods to produce the design and use the last 31− T years as post-treatment periods
to test the performance of the treatment assignment. The final result is shown in Table 1 and Figure
1b. Our design surpasses the random design by a large margin on most of the selection of time T . We
also compare our method with the rerandomization design [4, 36, 37] in Figure 1c, which shows that
our algorithm is still better than 500000 times of rerandomization.

One typical design produced by our algorithm is shown in Figure 1. The experiment design for
different pre-treatment length T is shown in Figure 6. The plots show that our selection of the control
group is robust to different pre-treatment time period and has the ability to represent all different
geographic, demographic, racial, and social structure of states in the United State.

US Bureau of Labor Statistics. We also apply our algorithm on the unemployment rate of 50
states in 40 months from the US Bureau of Labor Statistics (BLS). We run 50 simulations such that
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Table 1: Root-mean-square errors of the average treatment effect estimates by both synthetic control
(SC) and synthetic principal component design (SPCD) on real data. The random design is simulated
10 times and 95% confidence interval is demonstrated. The reported RMSE for BLS dataset are
multiplied by 103 for readability.

US Bureau of Labor Statistics

RMSE
T = 5 T = 10

SC Random SPCD SC Random SPCD

14.5 7.5 0.9 11.6 5.6 0.6
Anti-smoking legislation

RMSE
T = 15 T = 25

SC Random SPCD SC Random SPCD

11.65 4.32±0.21 1.14 7.89 3.13±0.19 0.98

each simulation utilizes a 20-by-T + S matrix sampled from the original 50-by-40 dataset. More
specifically, we randomly select 20 units and use the first T time period to select the synthetic design
and synthetic weight. The remaining S time periods are the consecutive months that follow. In our
experiment, we fix S = 5 and run both experiment for T = 5, 10. The final result in terms of the
RMSE is shown in Table 1.
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A Organization of the Appendix

We organize the appendix as following:

• In Appendix B, we demonstrated the equivalence between Synthetic Design, ℓ1-PCA and
Phase Synchronization. We also briefly introduce the literature of solving ℓ1-PCA and Phase
Synchronization in Appendix B.

• In Appendix C, we demonstrated the proof of global convergence of the generalized power
method. The road-map of the proof is following. In Appendix C.2.1, we analyze the spectral
initialization. We showed that it provide as accuracy estimate as the global optima to the
ground truth signal. In Appendix C.2.2, we verify the global optimality of the stationary
point of GPW via the Riemann Hessian. In Appendix C.2.3, we demonstrated the linear
convergence rate of the GPW method. In Appendix C.2.4, we analyze the data generating
process to match the assumption needed in the global optimality of the GPW method.

B Equivalent to Phase Synchronization

Theorem 4. For large enough λ, the global solution W ∗ of (2) satisfies

sgn(W ∗) = sgn

(
argmin

W∈Rn,∥W∥1=1

W⊤(Y Y ⊤ + σI + λ11⊤)W

)

Proof. We denote Wλ = argminW∈Rn,∥W∥1=1 W
⊤(Y Y ⊤ + σI + λ11⊤)W for λ > 0. From [38,

Theorem 17.1], we know that Wλ → W ∗ as λ ↑ ∞. Thus there exists λ∗, such that for all λ > λ∗,
we have

∥Wλ −W ∗∥∞ ≤ min{|W ∗(i)| : W ∗(i) ̸= 0}.

Thus for all λ > λ∗, we have sgn(W ∗) = sgn(Wλ).

Remark 4. In the above discussion, we consider both sgn(0) = 1 and sgn(0) = −1 are right. The
reason is that we plug in both sign selection in to the convex programming (5) can both produce the
true global optimum.

Theorem 5 (Equivalence between Synthetic Design, ℓ1-PCA and Phase Synchronization). If x∗ ∈ Rn

is the global solution of min∥x∥1=1 ∥Ax∥22 for some matrix A ∈ RD×n (D > n) and matrix A⊤A ∈
Rn×n is invertible, then y∗ = sgn(x∗) is the global solution of maxy∈{−1,+1}n y⊤((A⊤A)−1)⊤y.

Proof. Firstly, the problem min∥x∥1=1 ∥Ax∥22 is equivalent to min∥x∥1=1 ∥(A⊤A)
1
2x∥22 and can be

further transformed to min∥x∥2=1 ∥(A⊤A)−
1
2x∥1.

At the same time, for any matrix T ∈ Rn×n, we have

max
∥x∥2=1

∥Tx∥1 = max
∥x∥2=1,y∈{−1,+1}

y⊤Tx = max
y∈{−1,+1}

∥T⊤y∥2 = max
y∈{−1,+1}

y⊤TT⊤y. (6)

and thus leads to argmaxy∈{−1,+1}∥T⊤y∥2 = sgn(Tx∗) where x∗ = argmax∥x∥2=1∥Tx∥1. Com-
bining the two facts, we can prove the theorem.

Remark 5. Although we formulated the mixed integer programming as a well-known compact matrix
form, the two problems, i.e. ℓ1-PCA and phase synchronization, are still known to be NP-hard
[22, 12]. However phase synchronization can be globally solved under certain data generative
models [13, 14, 15, 16]. As far as the author known, there is still no data generative models for
ℓ1-PCA been found can be globally solved. [23] show that for the Kurdyka-Lojasiewicz exponent of
the ℓ1-PCA problem at any of the limiting critical points is 1

2 . This allows one to establish the linear
convergence to the local stationary point of certain algorithm. Although, Generalized Power Method
is also proposed for ℓ1-PCA [39], but only local convergence is guaranteed.
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C Optimization Theory

Out theory mostly follows [13, 14]. But we have slightly different optimization problem (optimization
over Cn in [13, 14] but Rn in ours) and uses different data generating process (gram matrix in [13, 14]
and inverse of gram matrix in our paper. All the entries of ground truth vector norm equals to 1 in
[13, 14], i.e. |zi| = 1. But this is not assumed in our paper.). For completeness, we complete all the
proof details here in the appendix.

C.1 Preliminaries

In this section, we present some basics of Riemannian gradients. For {−1, 1}n is a degenerate
manifold. In the proof, we will consider the global optimality of the synchronization problem over
a larger space Tn = {z ∈ Cn : |z1| = · · · = |zn| = 1}. Next we endow Tn with Euclidean metric〈
y1, y2

〉
=
∑n

i=1 R{y1i y2i
H} which is the equivalent to viewing Cn as R2n and equip with the

canonical inner product. Then Tn can be considered as a sub-manifold and the tangent space can be
written as

TyTn = {ẏ ∈ Cn : R(ẏiy
H
i ) = 0,∀i ∈ [n]}.

The projector to the tangent space is Projx : Cn → TxTn : ẋ → ẋ − R{ddiag(ẋxH)}x, where
ddiag : Cn → Cn is a function set all off-diagonal entries of the input matrix to zero. Thus the
Riemannian gradient of function f(x) = xHCx is given as

gradf(x) = 2(R{ddiag(CxxH)} − C)x

Following [13], we consider the Riemannian Hessian on the tangent space as the second-order
necessary optimality condition. The Riemannian Hessian is defined as

Hessf(x)[ẋ] = ProjxDgradg(x)[ẋ] = Projx2S(x)ẋ,

where S(x) = R{ddiag(CxxH)} − C. If x is a (local) optimum, then ⟨ẋ, S(x)ẋ⟩ > 0 for all
ẋ ∈ TxTN .

For NormSPCD iteration 4, we consider the update as a Riemannian steepest-descent[40].
The Riemannian steepest-descent search direction to minimize objective function f as
argminξx∈Rn ⟨∇f(x), ξx⟩R + 1

2 ⟨ξx, ξx⟩R. The Riemannian metric we consider for NormSPCD on
TxTN defined as

⟨y1, y2⟩R =

N∑
i=1

|zi|2R
(
y1(i)y2(i)

H
)

,∀y1, y2 ∈ TxTN .

Similarly, we can define the new Riemannian Hessian as SR(x) = R{ddiag(C̊xxH)} − C̊, where
C̊ = diag( 1

|z| )Cdiag( 1
|z| ). We’ll show that rS(x) ≼ SR(x) ≼ RS(x) for some constant r,R > 0

In our discussion, we consider our algorithm works in the Field of complexity numbers. However,
from the closeness of the Field of real numbers, we know that the whole trajectory of our algorithm
lies in the Field of real numbers. Global minimum in the complex domain is a harder problem and
directly indicate the global optimality in {−1,+1}N .

C.2 Global Optimality of (Normalzied) Generalized Power Methods

In this section, we first study a meta version of the optimization problem. Then we will show how
our generative model can be fitted into this framework. We consider the following meta optimization
problem

min
x∈Tn

f(x) = xHCx (7)

where C = zzH +∆ is a Hermite perturbed rank-1 matrix. Different from [13, 14, 15, 16] which
assumes z ∈ TN , instead, we have the following assumption on the ground truth vector z ∈ RN :
Assumption 3. For some ϵ > 1, we have

ϵ ≤ |zi| ≤
1

ϵ
, ∀i ∈ [N ]
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This is a smooth optimization problem over a smooth Riemannian manifold T n. Then the Riemannian
gradient gradg(x) = 2(R(diag(CxxH)) − C)x. The first order necessary optimality condition is
gardg(x) = 0. We will also make use the second order optimality via the Riemannian Hessian

Hessg(x)[ẋ] = 2 ⟨ẋ, Sẋ⟩ ,∀ẋ ∈ TyTn

where S(x) = R(ddiag(CxxH) − C) and ddiag : Cn×n → Cn×n zeros out all off-diagonal
entries of a matrix. Although computing the global optimum of (7) is NP-hard [12], fortunately,
global optimality of (7) can sometimes be certified through the Hermitian Hessian matrix S(x) =
R(ddiag(CxxH)−C). This can be shown in the following lemma for sufficient optimality condition:

Lemma 1 (Optimality Gap). Let x∗ be globally optimal for (7). For any x ∈ TN , the optimality gap
at x can be bounded as

0 ≤ f(x∗)− f(x) ≤ −Nλmin(S(x)).

As a result, if S(x) ⪰ 0, then x is the global optimality problem for (7).
Proof. See [13, Section 4.2] and [14, Lemma 2].
In the following lemma, we showed that similar property holds for the changed Riemannian metric.

Lemma 2 (Optimality Gap for Riemannian Formulation). Let x∗ be globally optimal for (7). If
ϵ < |zi| < 1

ϵ , then for any x ∈ TN , the optimality gap at x can be bounded as

0 ≤ f(x∗)− f(x) ≤ −1

ϵ
Nλmin(SR(x)).

As a result, if S(x) ⪰ 0, then x is the global optimality problem for (7).
Proof. This is because

xHCx− yHCy = yHS(x)y ≥ N

ϵ
λmin(SR(x))

To solve this problem, we consider the following Generalized Power Method [14, 15] in Algorithm 2
and our normalized version in Algorithm 3.

Algorithm 2 Generalized Power Method

Set initialization through x0 = sgn(v), where v is the leading eigenvector of matrix C. ▷ Spectral
Initialization
Define C̃ = C + αIN where α = ∥∆∥
while Converged do

xt+1 = T (xt) ≜ sgn
[
C̃xt

]
▷ Generalized power methods

end while

Algorithm 3 Normalized Generalized Power Method

Set initialization through x0 = sgn(v), where v is the leading eigenvector of matrix C. ▷ Spectral
Initialization
Define C̃ = C + αIN where α = ∥∆∥
while Converged do

xt+1 = T̊ (xt) ≜ sgn
[
C̃(xt./

√
ddiag(C))

]
, ▷ Normalized Generalized power methods

where ./ is the element-wise division.
end while

C.2.1 The Spectral Initialization

We make the initial guess in Algorithm 2 via spectral relaxation [11]. Denote v as the leading
eigenvector of matrix C. From the following Lemma 3, we can know that the leading eigenvector v
is close to the ground truth signal z.
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Lemma 3. Given vector z ∈ RN satisfies ∥z∥2 = 1. For matrix C = zz⊤ +∆, where ∆ ∈ RN×N

is a symmetric perturbation matrix. Then for all x ∈ Cn and ∥x∥22 = N satisfies xHCx ≥ zHCz,
we have ∥∥∥∥ min

θ∈{1,−1}
θx− z

∥∥∥∥ ≤ 4∥∆∥√
N

where the ∥∆∥ is matrix operator norm.

Proof. See [13, Lemma 4.1] and[14, Lemma 1].
Based on the top eigenvector v, we project v to the Riemann manifold Tn and make the initial guess.
For C is a symmetric real matrix, the eigenvector v ∈ RN . Thus projection to Tn of vector v will
simply become sgn(v). In the next lemma, we’ll show the Spectral Estimator is almost as close to z
as the global optima.
Lemma 4 (The Spectral Estimator is almost as accuracy as the Global Optima).∥∥∥∥ min

θ∈{1,−1}
θsgn(v)− θsgn(z)

∥∥∥∥ ≤ 8∥∆∥
ϵ
√
N

Lemma 4 is the direct corollary of Lemma 3 and the following technical lemma, which is also
important in the convergence rate proof in Section C.2.3.
Lemma 5. For w ∈ Rn and z ∈ Rn satisfies ∥z∥22 = N and ϵ ≤ |zi| ≤ 1

ϵ ,∀i ∈ [N ] (or 1 + ϵ), then
we have

∥sgn(w)− sgn(z)∥2 ≤ 2

ϵ
∥w − z∥2.

Proof. [16, Lemma 13] and [41, Lemma 3]

C.2.2 The Generalized Power Method

Although, the Spectral Estimator produce good estimates. We still cannot obtain the global optimum
of (7). Following [14, 15], we proceed the Generalized Power Method (GPM) to further improve
the estimate. [14] showed that the Generalized Power Method will converge to the global optima
of problem (7) and [15] showed that the proceeded estimate is always better than the initial spectral
estimate. The procedure of the Generalized Power Method is shown in Algorithm 2. We also consider
the Normalized GPM (Algorithm 3) in this section.

For the simplicity of description, we define an equivalence relationship ∼ over Tn as

x ∼ y ⇐⇒ x = yeiθ for some θ ∈ R.

The quotient space Tn/ ∼ is defined as all the corresponding equivalence class {xeiθ : θ ∈ R} for
some x ∈ C. The error measure we are interested in

dq(z, x) = min
θ∈R

∥xeiθ − z∥q =
√

2(n− |zHx|), q ∈ [1,∞].

Lemma 6. For all x, y ∈ {−1, 1}N and q ∈ [1,∞], then we have

e
i argmin

θ∈R
∥xeiθ−z∥q

∈ {−1, 1}.

Proof. We use proof by contradiction to prove this statement. If θ∗ = argmin
θ∈R

ei∥xe
iθ−z∥q ̸∈ R, then

we will have
∥xsgn(R(eiθ

∗
))− z∥q ≤ ∥x(R(eiθ

∗
))− z∥q < ei∥xe

iθ−z∥q .

This is contradicted with θ∗ = argminθ∈R ei∥xe
iθ−z∥q . Thus ei argminθ∈R ∥xeiθ−z∥q ∈ {−1, 1}.

Notice that (normalized) GPM iterates on the quotient space T N/ ∼, i.e. if x ∼ y, then sgn(C̃x) ∼
sgn(C̃y). Thus without further notice, all the equality in the following discussion is equality in the
quotient, i.e. x = y means x ∼ y.
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Lemma 7 (Monotonic Cost Improvement for GPM). The iterates {xk}k∈N produced by Algorithm 2
satisfies f(xk+1) > f(xk) unless converged. Thus the iterates xk do not cycle.

Proof. See [14, Lemma 8]

Although Algorithm 3 does not guarantee the Monotonic Cost Improvement on the original target
function f . We can still prove that the produced iterates from Algorithm 3 do not cycle for it’s
monotonically improve another energy function.

Lemma 8 (Converging of Normalized GPM). The iterates {xk}k∈N produced by Algorithm 3 do not
cycle.

Proof. Consider the potential function f̊(x) = 1
2x

H
(

diag( 1
|z| )Cdiag( 1

|z| )
)
x. Then the normalized

power iteration can be considered as the frank-wolf algorithm for the potential function in the sense
that

xt+1 = T̊ (xt) = arg max
y∈TN

〈
y,

(
diag(

1

|z|
)Cdiag(

1

|z|
)

)
xt

〉
.

Similar with [14, Lemma 8], we knows that the iterates {xk}k∈N monotonically improve the potential
function f̊ and thus the iterates do not cycle.

Lemma 9. If x is a fixed point of Generalized Power Methods (Algorithm 2), at least one of the
following holds

|zHx| ≥ ϵN − 4(∥∆∥+ α) or |zHx| ≤ 4(∥∆∥+ α)

ϵ
.

Furthermore, if ∥∆∥ ≤ ϵ2N
13 and α < ∥∆∥, all the accumulation points x of Algorithm 2 satisfies

|zHx| ≥ ϵn− 8∥∆∥.

Proof. The fixed point of the generalized power method satisfies (C̃x)ix̄i = |(C̃x)i|. Thus we have

xHC̃x = ∥C̃x∥1

On one hand, the quadratic term xHC̃x can be upper bounded as

xHC̃x = |zHx|2 + xH∆x+ αn ≤ |zHx|2 + (∥∆∥+ α)n.

On the other hand ∥C̃x∥1 can be lower bounded via

∥C̃x∥1 =

N∑
i=1

∣∣(zHx)zi + (∆x)i + αxi

∣∣ ≥ Nϵ|zHx| − ∥∆x∥1 − αN.

At the same time, ∥∆x∥1 ≤
√
N∥∆x∥2 ≤ N∥∆∥. Combine this with the two previous inequality,

we get
|zHx|(ϵN − |zHx|) ≤ 2N(∥∆∥+ α).

The above inequality enforces that one of |zHx| ≥ ϵN − 4(∥∆∥+α) and |zHx| ≤ 4(∥∆∥+α)
ϵ . holds.

We call all the stationary point satisfies |zHx| ≥ ϵN − 4(∥∆∥+ α) "good" stationary point and the
stationary point satisfies |zHx| ≤ 4(∥∆∥+α)

ϵ "bad" stationary point. In the following discussion, we
use Lemma 4 to show that the spectral initialization sgn(v) outperforms all the "bad" fixed points.
Due to Lemma 7, Generalized Power Method consistently improve the cost function and thus only
converge to "good" stationary points. From Lemma 4, we have

sgn(v)HCsgn(v) = |sgn(v)Hz|2 + sgn(v)H∆sgn(v)

≥
(
ϵN − 32∥∆∥2

ϵ3N

)2

−N∥∆∥ ≥ ϵ2N2 − 64∥∆∥2

ϵ3
−N∥∆∥

(8)
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The first inequality is because of Lemma 4, which proved the estimation sgn(v)Hsgn(z) ≥ N −
32∥∆∥2

ϵ2N and leads to the following results sgn(v)Hz ≥ ϵN − 32∥∆∥2

ϵ3N . At the same time, all the bad
fixed points x satisfies

xHCx = |xHz|2 + xH∆x ≤ 64∥∆∥2

ϵ2
+N∥∆∥ (9)

Combine (8), (9) with the assumption ∥∆∥ ≤ ϵ3/2N
13 and α < ∥∆∥, we knows that the spectral

initialization surpasses all the bad local points.

For Normalized Generalized Power Method, we can prove a similar version.
Lemma 10. If x is a fixed point of Normalized Generalized Power Methods (Algorithm 3), at least
one of the following holds

|zHx| ≥ N − 4

ϵ
(∥∆∥+ α) or |zHx| ≤ 4

ϵ
(∥∆∥+ α).

Furthermore, if ∥∆∥ ≤ nϵ
13 and α < ∥∆∥, all the accumulation points x of Algorithm 2 satisfies

|zHx| ≥ n− 8∥∆∥.

Proof. If x is a fixed point of Algorithm 3, then x satisfies ∥C̊x∥1 = xHC̊x (because |(C̊x)i| =〈
xi, (C̊x)i

〉
holds for all i) where C̊ = sgn(z)sgn(z)H + diag( 1

|z| )∆diag( 1
|z| ) + αdiag( 1

|z|2 ). For

simplicity, we denote ∆̊ = diag( 1
|z| )∆diag( 1

|z| ) in the following proof.

On one hand

xHC̊x = |sgn(z)Hx|2 + xH∆̊x+ α

N∑
i=1

1

|zi|
≤ |sgn(z)Hx|2 + N

ϵ
(∥∆∥+ α)

On the other hand

∥C̊x∥1 =

N∑
i=1

|(sgn(z)Hx)sgn(zi) + (∆̊x)i + αx./|z|| ≥ N |sgn(z)Hx| − ∥∆̊x∥1 −
αN

ϵ

At the same time, ∥∆̊x∥1 ≤
√
N∥∆̊x∥2 ≤ N∥∆̊∥. Combine this with the two previous inequality,

we get

|zHx|(N − |zHx|) ≤ N∥∆̊∥+ N

ϵ
(∥∆∥+ 2α) ≤ 2N

ϵ
(∥∆∥+ α).

The above inequality enforces that one of |zHx| ≥ N − 4
ϵ (∥∆∥ + α) and |zHx| ≤ 4

ϵ (∥∆∥ + α)

holds. We call all the stationary point satisfies |zHx| ≥ N − 4
ϵ (∥∆∥+ α) good stationary point and

the stationary point satisfies |zHx| ≤ 4
ϵ (∥∆∥+ α) bad stationary point. In the following discussion,

we use Lemma 4 to show that the spectral initialization sgn(v) outperforms all the bad fixed points in
terms of the potential function f̊(x) = 1

2x
H
(

diag( 1
|z| )Cdiag( 1

|z| )
)
x. From Lemma 4, we have

f̊(sgn(v)) = |sgn(v)Hz|2 + sgn(v)H∆̊sgn(v)

≥
(
N − 32∥∆∥2

ϵ2N

)2

− N

ϵ
∥∆∥ ≥ N2 − 64∥∆∥2

ϵ2
− N

ϵ
∥∆∥

(10)

The second equality is because 64∥∆∥2

ϵ2N ≤ ∥sgn(v)− z∥2 ≤ 2(N − |zHsgn(v)|). At the same time,
all the bad fixed points x satisfies

f̊(x) = |xHsgn(z)|2 + xH∆̊x ≤ 64∥∆∥2

ϵ2
+

N∥∆∥
ϵ

(11)

Combine (10), (11) with the assumption ∥∆∥ ≤ ϵN
13 and α < ∥∆∥, we knows that the spectral

initialization surpasses all the bad local points.
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Lemma 1 and Lemma 2 guaranteed the global optimality of the second order stationary point of
problem (7). Thus in the next theorem, we verify the Hessian S(x) = ddiag(CxxH)−C the Riemann
Hessian SR(x) = ddiag(C̊xxH)− C̊ is P.S.D over TxTn at the final stationary point. Then we can
conclude the global optimality of the converging point of the Generalized Power Method.
Theorem 6. Given vector z ∈ RN . For matrix C = zz⊤ +∆, where ∆ ∈ RN×N is a symmetric
perturbation matrix. If 1 −

√
3
2 < ϵ ≤ mini∈[N ] |zi|, ∥∆∥ ≤ ϵ′

28N and ∥∆∥∞ ≤ ϵ′

28N , where
ϵ′ = (ϵ2 + 2ϵ − 2). When α ≤ ∥∆∥, then the GPM converge to the unique global optimum in the
quotient space Rn/ ∼.

Proof. From Lemma 7, the Generalized Power Method must converge to a stationary point x. The
fixed point of the generalized power methods satisfies Sx = 0, which leads to (C̃x)ixi = |(C̃x)i| and
Lemma 9 guarantees convergence to the good stationary points satisfies |zHx| ≥ ϵN − 4(∥∆∥+ α).

From Lemma 1, we also know that, to prove global optimality of x, it suffices to show that uHSu > 0
holds for all u ∈ Cn such that u ̸= 0 and uHx = 0. This is because

uHSu =

N∑
i=1

|ui|2|(Cix)i| − uTCu

=

n∑
i=1

|ui|2
∣∣|zHx|zi + (∆x)i

∣∣− |uHz|2 − uH∆u

≥
n∑

i=1

|ui|2
(
ϵ|zHx| − |(∆x)i|

)
− |uH(z − x)|2 − uH∆u

≥ ∥u∥2
(
ϵ|zHx| − ∥∆x∥∞ − ∥z − x∥22 − ∥∆∥

)
≥ ∥u∥2 ((2 + ϵ)(ϵN − 4(∥∆∥+ α))− 2N − ∥∆x∥∞ − ∥∆∥)
≥ ∥u∥2((ϵ2 + 2ϵ− 2)N − (9 + 4ϵ)∥∆∥ − ∥∆∥∞)

(12)

Based on the assumption ∥∆∥ ≤ ϵ′

28N and ∥∆z∥∞ ≤ ϵ′

28N , we know that uHSu > 0.

Theorem 7. Given vector z ∈ RN and there exists a constant ϵ > 0 such that ϵ ≤ mini∈[N ] |zi|. For
matrix C = zz⊤ +∆, where ∆ ∈ RN×N is a symmetric perturbation matrix. If ∥∆∥ ≤ ϵ

28N and
∥∆∥∞ ≤ ϵ

28N , when α ≤ ∥∆∥, then the normalized GPM converge to the unique global optimum in
the quotient space Rn/ ∼.

Proof. From Lemma 8, the Normalized Generalized Power Methods must converge to a stationary
point x. The first order condition of the stationary point is ∥C̊x∥1 = xHC̊x and Lemma 10 guarantees
convergence to the good stationary points satisfies |zHx| ≥ N − 4

ϵ (∥∆∥+ α).

Observe that SR(x)x = 0, according to Lemma 2, the only thing we need to prove global optimality
of the converged stationary point x is to verify the uHSR(x)u > 0 for all uHx = 0.

uHSu =

N∑
i=1

|ui|2|(C̊ix)i| − uT C̊u

=

n∑
i=1

|ui|2
∣∣∣|sgn(z)Hx|sgn(zi) + (∆̊x)i

∣∣∣− |uHsgn(z)|2 − uH∆̊u

≥
n∑

i=1

|ui|2
(
|sgn(z)Hx| − |(∆̊x)i|

)
− |uH(sgn(z)− x)|2 − uH∆u− α∥u∥22

≥ ∥u∥2
(
|sgn(z)Hx| − ∥∆̊x∥∞ − ∥sgn(z)− x∥22 − ∥∆̊∥

)
≥ ∥u∥2

(
N − 12

ϵ
(∥∆∥+ α)− 1

ϵ
∥∆∥∞ − 1

ϵ
∥∆∥

)

(13)

Based on the assumption ∥∆∥ ≤ ϵ
28N and ∥∆z∥∞ ≤ ϵ

28N , we know that uHSu > 0.
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C.2.3 Linear Rate Convergence

In this section, following [15], we provide the proof of linear rate convergence of the nor-
malized Generalized Power Method on our problem. With out loss of generality, we assume
1 = argminθ∈{1,−1} ∥θyk − z∥2 for all k ∈ N, where {yk}k∈N is the iterates generated by the
normalized generalized power method.
Theorem 8 (Estimation Bound). Suppose that ∥∆∥ ≤ Nϵ

16 and α < Nϵ
6 . Then the iterates {yk}k∈N

generated by the normalized generalized power method satisfies

∥yk+1 − sgn(z)∥ ≤ µk+1∥y0, sgn(z)∥+ ν

1− µ

8∥∆∥
ϵ
√
N

for all k ∈ N, where

µ =
16(α+ ∥∆∥)
(7Nϵ− 8α)

< 1, ν =
2N

7N − 8α
ϵ

.

Proof. This Theorem is a direct adaptation of [15, Theorem 3.1].

Based on the previous estimation bound. We can build the local error bounds to guarantees global
convergence. The local error bounds provide an estimation of the distance between any points in
sgn(z)’s neighborhood and the global optima of the original optimization problem. To do this, we
first define two mappings Σ : Tn → Hn and ρ : Tn → R+ as

Σ(z) = diag(|C̊z|)− C̊, ρ(z) = ∥Σ(z)z∥2.
Then we can have the following results

Lemma 11. We denote z∗ the global optimum of problem (7) and {y(k)}k∈N the iterates generated
by the Normalized Generalized Power Method. If α ≤ ∥∆∥ ≤ ϵ

216N and ∥∆∥∞ ≤ ϵ
12N , then we

have

• (Local Error Bound) ∥y − z∗∥ ≤ N
4 ρ(y) holds for all

• ρ(yk) ≤ a∥yk+1 − yk∥2 holds for some constant a.

Proof. Proof of Local Error Bound To prove the local error bound, we make the following de-
composition ∥Σ(y)y∥ ≥ ∥Σ(z∗)y∥ − ∥(Σ(y) − Σ(z∗))y∥. We first build the lower bound of
∥(Σ(y)− Σ(z∗))y∥ following [15, Proposition 4.2]

∥(Σ(y)− Σ(z∗))y∥ = ∥|C̊y| − |C̊z∗|∥2 ≤ ∥C̊(y − ẑ)∥

≤
√
N |zH(y − z∗)|+ α+ ∥∆∥

ϵ
∥y − z∗∥

≤
√
N |(zH − z∗)H(y − z∗)|+

√
N |(z∗)H(y − z∗)|+ α+ ∥∆∥

ϵ
∥y − z∗∥

≤ α+ 5∥∆∥
ϵ

∥y − z∗∥+ 1

2
∥y − z∗∥2

(14)
Similar to Theorem 7, we can then lower bound ∥Σ(z∗)y∥ = ∥Σ(z∗)ŷ∥ where ŷ = (I −
1
nz

∗(z∗)H)(y − z∗) is the projection of y − z∗ onto the orthogonal complement of span(ẑ). At the
same time

∥û∥ ≥ ∥y − z∗∥ −
∥∥∥∥ 1nz∗(z∗)H(y − z∗)

∥∥∥∥ = ∥y − z∗∥ − ∥y − z∗∥2

2
√
N

where the last equality is because ∥y − z∗∥2 = 2(N − |yHz∗|). Similar to Theorem 7, we have

∥ŷ∥∥Σ(z∗)ŷ∥ ≥ ŷHΣ(z∗)ŷ = ŷH(diag(|C̊z|)− C̊)ŷ

=

n∑
i=1

|ŷi|2
∣∣∣|sgn(z)Hx|sgn(zi) + (∆̊x)i

∣∣∣− |ŷHsgn(z)|2 − ŷH∆̊ŷ

≥ ∥ŷ∥2
(
N − 12

ϵ
(∥∆∥+ α)− 1

ϵ
∥∆∥∞ − 1

ϵ
∥∆∥

)
.

(15)

18



Thus

∥Σ(z∗)ŷ∥ ≥
(
∥y − z∗∥ − ∥y − z∗∥2

2
√
N

)(
N − 12

ϵ
(∥∆∥+ α)− 1

ϵ
∥∆∥∞ − 1

ϵ
∥∆∥

)
.

At the same time ∥y−z∗∥2 ≤ ∥y−z∗∥(∥y−z∥+∥z−z∗∥) ≤
(√

N
2 + 4∥∆∥√

N

)
∥y−z∗∥. Combining

all the results we get and finally we have

ρ(z) ≥
[
N

2
− 18(∥∆∥+ α)

ϵ
− ∥∆∥

ϵ

]
∥y − z∗∥. (16)

Based on the assumptions α ≤ ∥∆∥ ≤ ϵ
216N and ∥∆∥∞ ≤ ϵ

12N , we know that ρ(z) ≥ N
4 d(z, ẑ)

Proof of ρ(yk) ≤ a∥yk+1 − yk∥2 By definition of yk+1, ρ(yk) = ∥diag(|C̊yk|)(yk+1 − yk)∥ ≤
∥diag(|C̊yk|)∥∞∥yk+1 − yk∥. At the same time, we have

∥diag(|C̊yk|)∥∞ ≤ ∥zzHyk∥∞ +
α+ ∥∆∥∞

ϵ

= |zHyk|+ α+ ∥∆∥∞
ϵ

≤ 2N.

(17)

This leads to the estimate ρ(yk) ≤ 2N∥yk+1 − yk∥2

Theorem 9. We make the same assumption as Lemma 11. We further assumes C̊ ⪰ a0I for some
constant a′ > 0, then the normalized generalized power method linearly converge to the global
optimum z∗.

Remark 6. In [15], the data generating process doesn’t ensures the matrix C is P.S.D. Thus [15]
should apply a lower bound on α to ensure C̊ is P.S.D. In our case, the matrix is the covariance
matrix of a noisy dataset. Thus it is nature have P.S.D. C̊.

Proof. For C̊ ⪰ a0I , it’s obvious to have sufficient ascent f̊(yk+1)− f̊(yk) ≥ a0∥yk+1−yk∥22 holds
for every iteration ([14, Lemma 8],[15, Proposition 4.3(a)]). Thus f(yk+1)− f(yk) ≥ ϵa0∥yk+1 −
yk∥22. Before we present the final linear convergence proof, we first prove that f(z∗) − f(yk) ≤
a1∥yk − z∗∥2. This is because

f(z∗)− f(yk) ≤ 1

ϵ
(f̊(z∗)− f̊(yk))

= (yk)H
(

diag(|C̊z∗|)− C̊
)
yk

= (yk − z∗)H
(

diag(|C̊z∗|)− C̊
)
(yk − z∗)

≤ (∥C̊∥+ ∥C̊∥∞)∥yk, z∗∥2.

(18)

Now we are equipped with all the inequality needed to provide a global convergence proof. According
to [15, Proof of Theorem 4.1], we knows that the normalized generalized power methods convergence
to the global optimum linearly.

C.2.4 Generative Models

In this section, we’ll discuss how the random data sampled form the linear fixed effect model (also
referred to an "interactive fixed-effect model") satisfies the discordant assumptions we used to prove
the global optimization results. We assume the outcomes are generated via the following linear factor
model

Yjt = δt +Djtτ + θTt µj + ejt, E[ejt|δt, µj , Djt] = 0,Var[ejt|δt, µj , Djt] = σ

where δt is the time fixed effect, µj is the unobserved common factors and θt is a vector of unknown
factor loadings. ϵjt is the unobserved idiosyncratic noise. τ is the treatment effect we aim to estimate
and Djt is the 0-1 variable according to the treatment assignment to unit j at time t. In specific, in
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the pre-treatment period, Djt = 0 for all ∀j ∈ [N ], t ∈ [T ]. Thus the outcome matrix Y ∈ RN×T

can be written in the following compact matrix form

Y =


µ⊤
1 1

µ⊤
2 1
· ·
· ·
· ·

µ⊤
N 1


︸ ︷︷ ︸

µ

[
θ1 · · · θt
δ1 · · · δt

]
︸ ︷︷ ︸

θ

+W

where W is a matrix whose entries are i.i.d. standard normal random variables denote the measure-

ment noise. We consider the time factor is sampled from a underlying distribution
(
θi
δi

)
∼ p(θ̃, Σ̃)

and Σθ ≜ θ̃θ̃⊤ + Σ̃ = E
(
θi
δi

)(
θi
δi

)⊤

. Then we knows that EY Y ⊤ = µΣθµ
⊤ + σIN . We first

assume that Σθ is a non-degenerate covariance matrix.
Assumption 4. Σθ is positive semi-definite.

Assumption 2 means that the matrix Σ ≜ µΣθµ
⊤ is rank n − 1. We assume v = (wiDi)

n
i=1 to

be vector in the null space of Σ, where (wi, Di)
n
i=1 is the only realizable experiment profile in

Assumption 2. To verify that the data generating processing satisfies the assumptions we made for
global convergence. We further made the following assumptions to the regularity of the problem.
Assumption 5 (Regularity of the Problem). We further assume the following regularity properties of
the covariance matrix and random sample Yt

• ∥Σ†∥ ≤ C1 holds for some constant C1.
• ∥Σ†∥∞ ≤ O(N c1) holds for some constant c1 ≥ 0.
• ∥YtY

⊤
t ∥ ≤ C2 holds almost surely holds for some constant C2.

• ∥YtY
⊤
t ∥∞ ≤ O(N c2) holds almost surely for some constant c2 ≥ 0.

Bound ∥σN(Y Y ⊤ + σI)−1 − uu⊤∥ In the following paragraph, we bound the error between the
iteration matrix with the rank one ground truth in ℓ2 operator norm. To do this, we make the following
decomposition

∥σN(Y Y ⊤ + σI)−1 − uu⊤∥ ≤ σN∥(Y Y ⊤ + σI)−1 − (Σ + σI)−1∥+ ∥σN(Σ + σI)−1 − uu⊤∥
≤ σN∥(Σ + σI)−1∥∥Y Y ⊤ − Σ∥+ ∥σN(Σ + σI)−1 − uu⊤∥

(19)

We first bound ∥σN(Σ+ σI)−1 − uu⊤∥. To bound this term, we use the geometric series expansion
λ

λ+X =
∑∞

j=0(−1)j
(
λ
X

)j+1
. If σ∥Σ†∥ < 1, then

∥σN(Σ + σI)−1 − uu⊤∥ ≤ N

∞∑
j=0

σj+1∥Σ†∥j+1 =
Nσ∥Σ†∥
1− σ∥Σ†∥ (20)

To bound ∥σN(Σ + σI)−1∥∥Y Y ⊤ − Σ∥, we first use the matrix Bernstein inequality [42, 43] to
bound ∥Y Y ⊤ − Σ∥. We know

∥Y Y ⊤ − Σ∥ ≤
√

C2
2 log(δ)

T
+

2C2 log(δ)

T
with high probability 1− δ. At the same time, we have

∥σN(Σ + σI)−1∥ ≤ ∥σN(Σ + σI)−1 − uu⊤∥+ ∥uu⊤∥ ≤ N

(1− σ∥Σ†∥∞)
.

Finally, we achieve

∥σN(Y Y ⊤ + σI)−1 − uu⊤∥ ≤ Nσ∥Σ†∥
1− σ∥Σ†∥

+
N

(1− σ∥Σ†∥∞)

√
C2

2 log(δ)

T

holds with high probability 1− δ.
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Bound ∥σN(Y Y ⊤ + σI)−1 − uu⊤∥∞ In the following paragraph, we bound the error between
the iteration matrix with the rank one ground truth in ℓ∞ operator norm.

∥σN(Y Y ⊤ + σI)−1 − uu⊤∥∞ ≤ σN∥(Y Y ⊤ + σI)−1 − (Σ + σI)−1∥∞ + ∥σN(Σ + σI)−1 − uu⊤∥∞
≤ σN∥(Σ + σI)−1∥∥Y Y ⊤ − Σ∥∞ + ∥σN(Σ + σI)−1 − uu⊤∥∞

(21)

We first bound ∥σN(Σ+σI)−1−uu⊤∥∞. To bound this term, we use the geometric series expansion
λ

λ+X =
∑∞

j=0(−1)j
(
λ
X

)j+1
. If σ∥Σ†∥∞ < 1, then

∥σN(Σ + σI)−1 − uu⊤∥∞ ≤ N

∞∑
j=0

σj+1∥Σ†∥j+1
∞ =

Nσ∥Σ†∥∞
1− σ∥Σ†∥∞

(22)

To bound ∥σN(Σ + σI)−1∥∥Y Y ⊤ − Σ∥∞, we first use the matrix Bernstein inequality [42, 43] to
bound ∥Y Y ⊤ − Σ∥∞. We know

∥Y Y ⊤ − Σ∥∞ ≤
√

N2c2 log(δ)

T
+

2N c2 log(δ)

T

with high probability 1− δ. At the same time, we have

∥σN(Σ + σI)−1∥ ≤ ∥σN(Σ + σI)−1 − uu⊤∥∞ + ∥uu⊤∥∞ ≤ N

ϵ2(1− σ∥Σ†∥∞)
.

We plug in all the bounds and finally get

∥σN(Y Y ⊤ + σI)−1 − uu⊤∥∞ ≤ Nσ∥Σ†∥∞
1− σ∥Σ†∥∞

+
N

ϵ2(1− σ∥Σ†∥∞)

√
N2c2 log(δ)

T

with high probability.

From the discussion in Appendix C.2.3, if we can bound both ∥σN(Y Y ⊤ + σI)−1 − uu⊤∥ and
∥σN(Y Y ⊤ + σI)−1 − uu⊤∥∞ as O(ϵN), then we can have global convergence results. It’s easy to
check that if we select σ ≤ Ω(ϵN−c1), T ≥ Ω(ϵ6N2c2), then the assumptions for global convergence
holds.
Corollary 1. If c1 = 0, i.e. there exists some constant C1 such that ∥Σ†∥∞ ≤ C1, then the noise
level σ ≤ Ω(ϵ) and T > Ω(ϵ6N2c2) ensures global convergence of NormSPCD algorithm.

D Supplementary Experiments

In this section, we’ll introduce the experiment details and more experiments omitted from the main
text due to the page limit.

We first introduce a simplified implementation of (Norm)SPCD, which although not guaranteed
optimum but efficient, simple and effective in practice. In the simplified implementation, we don’t
solve the convex program (5) exactly, but using w = 2(Y Y ⊤+αI+λ11⊤)−1y∗

∥(Y Y ⊤+αI+λ11⊤)−1y∗∥1
to approximate instead.

From 6, we know that once the optimal design profile y∗ is obtained, then w is the optimal design
weight. Notice that we don’t exactly globally solve the problem (2) in the simplified implementation,
although we obtained the right experiment profile y∗ (Theorem 1). The weight we obtained here
is the solve of the penalized approximation, but empirically it works good. The whole process is
described in Algorithm 4. In all the experiment in this paper, we use this simplified implementation.

D.1 More simulated Examples

In this subsection, we run more simulated examples. On all examples, SPCD surpasses the original
SC a large margin. All the data in this section is sampled from linear factor model (interactive
fixed-effect model) [33, 19, 18]. The outcome Y comes from

Yit = v⊤t γi + τWit + ϵit,∀i ∈ [N ],∀t ∈ [T + S].
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(a) L = 20, N = 10, T = 9 (b) L = 20, N = 10, T = 20

(c) L = 8, N = 10, T = 9 (d) L = 8, N = 10, T = 20

Figure 2: Treatment estimated via Synthetic Control and Synthetic Principle Design for data generated
from pure random latent vector. We run the experiment over 100 runs of different seeds for different
selections of L, T on data generated from purely random latent vector.In all cases, Synthetic Principle
Design provides more robust estimate of the true treatment effect 1.

(a) L = 20, T = 9 (b) L = 20, T = 20

(c) L = 8, T = 9 (d) L = 8, T = 20

Figure 3: Treatment estimated via synthetic control (SC) and synthetic principal component design
(SPCD) over 100 runs of different seeds for different selections of L, T .In all cases, Synthetic
Principle Design provides more robust estimate of the true treatment effect 1.

where γi is a vector of latent unit factor of dimension L generated as a standard Gaussian and vt is
a vector of latent time factor. We tested different ways to select the following ways to generate the
latent time factor. We fix the test time period S = 10 and number of units N = 10 and simulated
different pairs of L, T selection.

Pure Random Latent Vector In this experiment, we follow [7] and run our algorithm on a synthetic
dataset where all the time latent factors is sampled from random Gaussian. We sample the latent unit
factor v ∈ RN×T and latent time factor γ ∈ RN×T both as random standard Gaussian matrices. We
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Algorithm 4 Empirical Implementation of SPCD

Require: Pre-treatment Observations Y ∈ RT×N

Set initial treatment assignment guess through y0 = sgn(v), where v is the smallest eigenvector of
matrix (Y Y ⊤ + αI + λ11⊤), where α, λ are two pre-defined hyper-parameter.

▷ Spectral Initialization
while Converged do

Select one of the following two boxes to iterate

For SPCD, update the design via ▷ Generalized power methods

yt+1 = sgn
[(
(Y Y ⊤ + αI + λ11⊤)−1 + βI

)
yt
]
, (23)

where β is a pre-defined hyper-parameter.

For NormSPCD, update the design via ▷ Normalize the inverse covariance matrix

yt+1 = sgn
[ [

(Y Y ⊤ + αI + λ11⊤)−1 + βI
]
(yt/d)

]
, (24)

where d =
√

diag((Y Y ⊤ + αI + λ11⊤)−1) and / denotes element-wise divide.

end while
Once obtained the optimal design y∗, one can select the design weight w via

w =
2(Y Y ⊤ + αI + λ11⊤)−1y∗

∥(Y Y ⊤ + αI + λ11⊤)−1y∗∥1
(25)

▷ The optimality condition ensures sgn(w) = y.
Treat Unit i if y(i) = −sgn

(∑N
i=1 y(i)

)
and run the experiment.

Estimate the treatment effect via

τ̂ =

S∑
t=1

(
N∑
i=1

w(i)Yi,T+t

)

fix the test time period S = 10 and number of units N = 10 and simulated different pairs of L, T
selection. The final results is shown in Figure 2.

Time Varying Factor In this experiment, we generate the time factor vector vt as t− T+S
2 + ϵt,

where t − T+S
2 is time trend term and eit are i.i.d. standard Gaussian noise. The final results are

shown in Figure 3.

AR(1) Process In this experiment, we follow [44] and run our algorithm on a synthetic dataset
where the time latent factors is sampled from an AR(1) process. In particular the time factor
γ = [γ1, γ2, · · · , γT ]′ ∈ RN×T is sampled via

• γ1 ∼ N (0, IN ),

• γt+1 = Aγ1 + b+ σϵ, ϵ ∼ N (0, IN ).

In our experiment, we take A = 0.7IN , b = 1 and σ = 1. The final result is shown in Figure 5. The
selected control and treatment group is shown in Figure 4. Synthetic principal component Design
select the treated units whose features are representative of the whole aggregate market of interest [7]
and the estimated treatment effect improves a lot respect to the original synthetic control estimator.

Details on Real World Data The Abadie–Diamond–Hainmueller Smoking data is first organized
by [9]. In this paper, we use the organized version by [35] at https://github.com/
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Figure 4: The experiment designed by SPCD for the Autoregressive model.

(a) L = 20, N = 10, T = 9 (b) L = 20, N = 10, T = 20

(c) L = 8, N = 10, T = 9 (d) L = 8, N = 10, T = 20

Figure 5: Treatment estimated via Synthetic Control and Synthetic Principle Design for data generated
from an AR(1) process. We run the experiment over 100 runs of different seeds for different selections
of L, T on data generated from purely random latent vector.In all cases, Synthetic Principle Design
provides more robust estimate of the true treatment effect 1.

synth-inference/synthdid/blob/master/data/california_prop99.csv
which drop the data of minimum wage laws, gun laws to abortion laws in the original data and only
considers the smoking outcome data.

The BLS Statistics data is available from the BLS website. In this paper, we use the organized ver-
sion by [35] at https://github.com/synth-inference/synthdid/blob/master/
experiments/bdm/data/urate_cps.csv. We thank [35]’s authors carefully organize the
data and open source it on github.
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(a) T = 15 (b) T = 20 (c) T = 30

Figure 6: Selection of control and treatment group in the Abadie–Diamond–Hainmueller California
Smoking Data when different pre-treatment period length T is available. The experiment design
when T = 25 is shown in Figure 1a.
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