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Abstract

Motivated by the recent success of text-only001
modeling in certain vision-language tasks, this002
paper proposes that sign language processing003
can also use (large) text-only language mod-004
els for inference, freeing sign language models005
from the necessity of low-resource multimodal006
learning from scratch. To compare the perfor-007
mance of pre-trained text-only models against008
multimodal ones, we introduce the first text-009
only and multimodal large (7B) language mod-010
els to be pre-trained and then fine-tuned on a011
sign language recognition task. We propose012
new prompting strategies and fine-tuning strate-013
gies for text-only signed language processing,014
incorporating both linguistics of signed lan-015
guages and theoretically motivated strategies016
to mitigate catastrophic forgetting (of spoken017
language). We test the generalization of these018
models to other sign language recognition and019
generation tasks, showing text-only models020
are capable sign language models that are still021
adept at spoken language tasks and, by chang-022
ing the prompt, can even generalize to new023
prosodic and iconic sign recognition tasks. Fi-024
nally, we analyze trade-offs between our text-025
only and multimodal models. Our code and026
model checkpoints will be open-source.027

1 Introduction028

Traditionally, multimodal models are the de facto029

choice for sign language processing tasks, given030

the continuous and visual nature of signs. How-031

ever, recent work by Wang et al. (2022) and Cheng032

et al. (2023) calls into question the presumption033

that multimodal models are best for all visual tasks.034

In particular, they use text-based descriptors and035

text-only language models to achieve strong per-036

formance on few-shot video-to-text tasks without037

visual pretraining or fine-tuning. Motivated by this,038

we suggest that sign language processing can also039

be achieved through text-only language modeling.040

Figure 1: We show that text-only open foundation mod-
els when prompted or fine-tuned, can learn to perform
sign language processing tasks compared to their multi-
modal alternatives. Further, multitask fine-tuning alle-
viates forgetting of spoken language capabilities (e.g.,
QA tasks in English).

Rather than a visual medium, we focus on sign 041

language as a language, using language learning 042

theories and linguistic theories of signed languages 043

to create one-shot text prompts and fine-tune text- 044

only models to replace the visual modality of signs 045

in multimodal models. As a primary benefit, sign 046

language processing may be freed of traditional, 047

low-resource, multimodal learning from scratch 048

while also gaining the benefits of the recent suc- 049

cesses in language modeling, such as capability at 050

in-context learning. 051

Our central hypothesis stems from the fact that 052

text-only pre-trained models are already able to 053

represent rich semantic and prosodic information 054

based on the context in spoken languages, like 055

English (Garí Soler and Apidianaki, 2021; Saba, 056

2023). Sometimes text-only models can do this 057

even better than multimodal pre-trained models 058

(Wang et al., 2022). If we can use this semanti- 059

1



cally rich text-based representation space to capture060

the important visual concepts of signed-languages061

(e.g., intensity), then we defeat the purpose of ask-062

ing multimodal models to learn the visual seman-063

tics of signed languages from scratch. So, we ask064

the question, why can’t text-only pre-trained mod-065

els use the textual modality to learn effective visual066

sign language representations?067

In answering this question, we demonstrate the068

benefits of applying large pre-trained language069

models to tasks in signed languages. Moreover,070

our results point to a future where language models071

can also be pre-trained on signed languages without072

significant degradation of their spoken language073

capabilities, marking an essential step for the wider074

adoption of signed languages. In more detail, our075

contributions are described as follows.076

1. We use linguistic rules to prompt and fine-077

tune large (7B) text-only pre-trained models078

and compare them to multimodal pre-trained079

models on sign recognition for the first time.080

2. We theoretically and empirically study the081

problem of catastrophic forgetting during fine-082

tuning on sign language data, providing solu-083

tions to resolve this issue.084

3. We use annotator costs, carbon emission, and085

performance differences to analyze trade-offs086

between the use of a multimodal model and087

our linguistically-backed text-only models.088

Our results show fine-tuning large, pre-trained, text-089

only models offers new generalization capabili-090

ties compared to previous sign recognition training091

strategies; e.g., via in-context learning. We also do092

a case study on emergent iconicity by pre-trained093

models for signed languages. All code, data, and094

model checkpoints will be publicly available.095

2 Related Work096

Besides text-only models like LLaMA (Touvron097

et al., 2023a), Mixtral (Jiang et al., 2024), QWEN098

(Bai et al., 2023), Orca (Mukherjee et al., 2023),099

Phi (Gunasekar et al., 2023), multimodal models100

have been gaining popularity, especially in com-101

puter vision communities. Large Vision-Language102

models such as LLaVA (Liu et al., 2023b), Video-103

LLaMA (Zhang et al., 2023), Video-LLaVA (Lin104

et al., 2023), LanguageBind (Zhu et al., 2024),105

MultiModal-GPT (Gong et al., 2023), Mirasol3B106

(Piergiovanni et al., 2023), LAVIS (Li et al., 2023),107

LaViLa (Zhao et al., 2023), and UniVL (Luo et al.,108

2020) propose to align representations of combina-109

tions of images, videos, text, and/or speech signals 110

with human judgments. Further details of these 111

and similar models have been discussed in a sur- 112

vey paper by Yin et al. (2023). However, none 113

of these models claim to include sign language 114

processing tasks in their pre-training or fine-tuning 115

data. Through our theoretical and empirical studies, 116

this paper aims to address this gap. 117

The absence of literature using large models for 118

sign processing is mainly due to the low-resource 119

nature of signed languages (Yin et al., 2021). How- 120

ever, there have been several lines of research ap- 121

plying transformer-based language models to sign 122

language translation (Camgoz et al., 2018; Yin and 123

Read, 2020; Chen et al., 2023b), sign language 124

understanding (Hu et al., 2023; Moryossef et al., 125

2021), sign generation (Stoll et al., 2020), Sign- 126

Writing translation (Jiang et al., 2023), incorporat- 127

ing facial expressions (Viegas et al., 2023), model- 128

ing prosody (Inan et al., 2022), and sign language 129

segmentation (Moryossef et al., 2023). To the best 130

of our knowledge, Lee et al. provides the only 131

other work that leverages (smaller, but still large) 132

language models with shared vocabularies for sign 133

language processing. They focus on older models 134

(without RLHF, Ouyang et al., 2022). However, 135

none of these works involve modern large language 136

models (text-only nor multimodal), which we in- 137

troduce in this paper for the first time. 138

3 Method 139

In this section, we introduce the details of both the 140

text-only and multimodal foundation models used 141

in experiments (see Figure 2), along with the stud- 142

ied prompting and fine-tuning strategies. We also 143

provide a theoretical basis for choosing appropriate 144

training data to prevent foundation models from 145

forgetting the traditional language capabilities on 146

which they were pre-trained. 147

3.1 Sign Data, Tasks, and Models 148

DGS Data Due to widespread adoption as a 149

benchmark in the sign language processing commu- 150

nity, we use the RWTH-PHOENIX-14T1 corpus of 151

weather forecast signs in German Sign Language 152

(DGS). This dataset contains around 7000 training 153

samples, 500 validation samples, and 600 test sam- 154

ples. Each sample has a video, a text in spoken 155

German, and a gloss – which is an intermediary 156

1https://www-i6.informatik.rwth-aachen.de/
~koller/RWTH-PHOENIX-2014-T/
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Figure 2: This figure presents a summary of all the inputs, outputs, tasks, and models we are using and introducing
in this paper. The box on the left contains a sample from the RWTH-PHOENIX-14T dataset. From top to bottom,
the sentences are English text, DGS glosses, intensified DGS glosses, and German text. Yellow knobs represent
tasks, in which the acronyms of the tasks are inlaid (please refer to Section §3.1 for detailed task names).

textual representation of signs – in German Sign157

Language. Video samples consist of frames of mul-158

tiple signers sampled at 25 fps, with a size of 210 by159

260 pixels. We also include an enhanced version of160

this dataset, which contains intensifier information161

in its gloss representations as introduced by (Inan162

et al., 2022). Intensifiers in signed languages are de-163

picted through non-manual markers and can change164

the meaning of a sign, and this dataset contains ad-165

ditional tokens to capture intensifier information.166

We also translate the German text to English text167

to provide data for a cross-lingual task (discussed168

next). We use Google Translate.2169

Tasks As RWTH-PHOENIX-14T is a parallel170

corpus between spoken German and DGS, most171

previous research has focused on translation tasks172

between these languages. In this paper, we focus173

on translating DGS to German (broadly consid-174

ered as a sign understanding or recognition task)175

and German to DGS (broadly considered as sign176

generation). In addition to these, we introduce ad-177

ditional tasks to test generalization. Specifically,178

we consider:179

• (G2T) DGS Gloss to German Text: a text-only180

translation task from textual intermediary repre-181

sentations of DGS (glosses) to German text.182

• (T2G) German Text to DGS Gloss: the inverse183

problem of the above and is text-only.184

• (V2T) DGS Videos to German Text: a multi-185

modal task where the input is a video of a signer186

signing in DGS, and the output is German text.187

• (I-G2T) Intensified DGS Gloss to German Text:188

a text-only task with augmented DGS tokens. Ad-189

ditional symbols <HIGH-INT> and <LOW-INT>190

2https://cloud.google.com/translate/

are wrapped around glosses to depict intensity in 191

the video that is not depicted in traditional gloss 192

representations (Inan et al., 2022). 193

• (T2I-G) German Text to Intensified DGS Gloss: 194

the inverse problem of (I-G2T), still text-only. 195

• (G2E) DGS Gloss to English Text: a novel task 196

of cross-modal translation, where DGS glosses 197

from the German Sign Language family are 198

translated to English text from the spoken Indo- 199

European language family. Without any pre- 200

training, this is a difficult test of generaliza- 201

tion and composition of contextualized meanings 202

across traditional and signed languages. 203

To test generalizability and in-context learning, 204

G2T is the only DGS task we use for any fine- 205

tuning (see § 3.3). All the other tasks are used to 206

evaluate the models’ performance. 207

Models In this paper, we use two main founda- 208

tion models: LLaMA-2 7B Chat (Touvron et al., 209

2023b) for text-only inputs and LLaVA 1.5 7B 210

(Liu et al., 2023a,c) for multimodal inputs. To 211

compare with traditional sign language process- 212

ing approaches, which use smaller language mod- 213

els sans any foundational pre-training, we also 214

use a randomly initialized GPT-2 model (Radford 215

et al., 2019) trained on the G2T task of the RWTH- 216

PHOENIX-14T dataset. This controlled difference 217

allows us to quantify the utility of concepts learned 218

during foundational training (e.g., in LLama and 219

LLaVA) on sign language processing. Lastly, for 220

G2T task, we use LLaMA-2 70B with 4-bit quan- 221

tization3 to show how the number of parameters 222

affects the results. 223

3https://ollama.com/library/llama2:70b
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Prompt Strategy BLEU1 ROUGE1 BS-F1

zero-shot prompt 24.5 0.277 0.841
rule-based prompt 22.8 0.255 0.836
notation prompt 24.3 0.277 0.840
one-shot prompt 27.1 0.309 0.851

Table 1: Preliminary evaluation of prompting strategies
on the validation set of RWTH-PHOENIX-14T using
LLaMA-2 7B. The prompts are given in Appendix § B.
BS-F1 refers to BERTScore-F1.

3.2 Prompting and Initial Results224

To replace the visual modality of signed languages,225

we propose to prompt text-only foundation mod-226

els using linguistic and cognitive science rules of227

glossing and signing. We first prompt these foun-228

dation models for the tasks described in § 3.1. We229

incorporate the following linguistic rules of signed230

languages into the design of the prompts that we231

provide to the models:232

• zero-shot prompt: The prompt is structured as,233

"This is a sentence in German Sign Language234

glosses: <glosses>. You MUST translate these235

to spoken German. You MUST give the answer236

directly without any other text." Does not contain237

any linguistic rules.238

• rule-based prompt: The prompt is structured as239

five rules of glossing semantics. These rules are240

described in (Hanke et al., 2020).241

• notation prompt: This is structured as a set of242

rules about gloss morphologies. These rules are243

borrowed from Stein et al. (2010).244

• one-shot prompt: This prompt gives a single245

example of a DGS gloss and a corresponding246

German text. This example is formatted follow-247

ing the semantic and morphological rules above.248

Initially, we experiment with four different prompt249

strategies, then we pre-select two (the top-250

performing prompting strategy and the basic one)251

among these. All prompts are given in Appendix252

B.253

For the multimodal foundation model, we pro-254

vide a single chat template. We use a mixed prompt-255

ing strategy, where the video of signers is sampled256

at 50 frame intervals, fed into a CLIP-based Image257

Encoder (Radford et al., 2019), and then incorpo-258

rated into the prompt tokenization by the use of259

<image> for each frame. Then, the image por-260

tion of the prompt is succeeded by the text-based261

prompt “This video is in German Sign Language.262

What is the sentence being signed in German?”263

3.3 Supervised Fine-Tuning with LoRA 264

Besides in-context learning via few-shot prompts, 265

we also consider fine-tuning LLaMA2 and 266

LLaVA1.5 models using Supervised Fine-Tuning 4, 267

which is a supervised training method in addition 268

to the RLHF algorithm (Ouyang et al., 2022) for 269

chat-based model training, which aligns the mod- 270

els’ representations with human judgments. In this 271

case, the human annotations are either glosses or 272

text. For fast model training and reduced memory 273

consumption, we use Low-Rank Adaptation of Lan- 274

guage Models (LoRA) as introduced by Hu et al. 275

(2022). We give details of model hyperparameters 276

and training details in Appendix A. 277

Sign-Only Fine-Tuning As noted, for text-only 278

models we fine-tune on the G2T task from § 3.1, 279

and for multimodal we fine-tune on the V2T task. 280

This provides the model a simple introduction to 281

the meaning of signed glosses by grounding them 282

to their parallel German language context. 283

Multitasking Fine-Tuning As we discuss in the 284

next section, we hypothesize that the former (sign- 285

only) tuning strategy can lead to catastrophic forget- 286

ting. Due to the shared token vocabulary, the model 287

may overwrite existing knowledge and semantics 288

in the contextualized representations of traditional 289

language tokens. Intuitively, we expect that forcing 290

the model to “replay” traditional language tasks 291

from pre-training will prevent forgetting. To ac- 292

complish this, we also train on an additional (tradi- 293

tional task) dataset (OpenOrca5) randomly mixing 294

the sign and traditional data during tuning. This 295

dataset consists of system prompts, questions, and 296

responses, augmented from the FLAN collection 297

(Longpre et al., 2023). It is commonly used to 298

fine-tune smaller open models such as LLaMA for 299

better task success, surpassing proprietary models 300

such as GPT-3.5. The dataset is mainly in En- 301

glish and consists of multiple tasks: entailment 302

and semantic understanding, temporal and spatial 303

reasoning, causal judgment, multilingual under- 304

standing, world knowledge, logical and geomet- 305

ric reasoning, and similar other tasks (Mukherjee 306

et al., 2023). While the original dataset contains 307

around 3 million samples, we use the same split 308

sizes as RWTH-PHOENIX-14T to ensure balance 309

in sign/traditional task prioritization. 310

4https://huggingface.co/docs/trl/main/en/sft_
trainer

5https://huggingface.co/datasets/Open-Orca/
OpenOrca
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3.4 Theory: Multi-Tasking Mitigates311

Forgetting312

Motivated by neuroscience, experience replay has313

been suggested as a strategy to reduce forgetting314

in machine learning, with positive results (Rol-315

nick et al., 2019). Moreover, replay has been316

studied in mathematical theories of how language317

models learn with similar success (Sicilia and318

Alikhani, 2022). Our multi-tasking strategy (dis-319

cussed above) can be viewed as a type of experi-320

ence replay since many tasks from OpenOrca are321

presumed to be similar to prior experience dur-322

ing pre-training.6 In this section, we re-frame our323

learning environment using the theoretical tools324

provided by Sicilia and Alikhani (2022) to moti-325

vate our hypothesis. Namely, we show that multi-326

task fine-tuning (i.e., replay) can help mitigate for-327

getting in shared-vocabulary sign processing with328

foundation models.329

Sign Language Processing Algorithm Our cur-330

rent task setup is of a translation algorithm, where331

the model learns how to translate from a signed lan-332

guage to a spoken language and vice versa. Specif-333

ically, in the case of foundation models learning334

this, the algorithm contains two specific steps:335

1. Pre-Training: Foundation models are trained336

on multiple tasks that do not include (many or337

any) sign-language-specific tasks. Using the338

terminology of Sicilia and Alikhani (2022), this339

process picks the weights to minimize the test340

divergence or “error” TDPT where PT is the341

pre-training data distribution:342

TDPT (θ) = E[|ℓ(D, D̂)|]
D ∼ LM(X; θ), D̂ ∼ ANOT(X)

(1)343

where LM is the foundation model (e.g., a344

language model), ANOT is a human comple-345

tion/annotation provided the same context X346

(e.g., a prompt), and X ranges over the dataset347

PT . The test ℓ compares any measure of the348

quality or other properties of the generated text349

between foundation model and human; e.g.,350

it can represent automatic metrics like BLEU,351

ROUGE, or error at next-word prediction as352

well as more abstract tests (like human prefer-353

ence).354

2. Fine-Tuning: In this stage, the foundational355

model is fine-tuned on sign language processing356

tasks such as gloss-to-text translation. For the357

6Most open-source models do not share training data.

sign-only fine-tuning, we call this data distribu- 358

tion DGS. So, abstractly, our sign-only fine- 359

tuning process described previously attempts to 360

minimize TDDGS(θ). 361

Problem When we write out the pre-training and 362

fine-tuning objectives clearly in the terminology 363

of Sicilia and Alikhani (2022), it is clear that the 364

two processes optimize different objectives (e.g., 365

over different datasets). There is no way to ensure 366

that picking θ to minimize TDDGS will not have a 367

negative impact (i.e., increase) TDPT . This poten- 368

tial for increase in error on the pre-training tasks 369

characterizes the behavior we call “forgetting.” 370

Solution As mentioned, we also consider a multi- 371

tasking fine-tuning strategy where DGS data and 372

tasks similar to the pre-training data are mixed. 373

This multi-tasking data can be represented by the 374

mixture distribution: 375

MIX = α PT + (1− α) FT (2) 376

where α ∈ (0, 1) is a weighing factor between the 377

probabilities assigned by two datasets. Instead of 378

sampling X from only PT or only FT, we flip an 379

α-weighted coin to pick from which we sample. 380

Holding all else constant, this implies the equality: 381

TDMIX = α TDPT + (1− α) TDFT . (3) 382

By this choice, we can see: 383

|TDMIX − TDPT | (4) 384

= (1− α)|TDFT − TDPT | (5) 385

< |TDFT − TDPT |. (6) 386

Since TDMIX is always closer in magnitude to 387

TDPT than TDFT , we can see that minimizing 388

TDMIX can better prevent large increases TDPT , 389

or “forgetting.” This simple inequality provides 390

a theoretical motivation for our multi-tasking sug- 391

gestion in § 3.3. Our empirical results in § 4 also 392

confirm our theoretical hypotheses. 393

4 Findings 394

In this section, we conduct experiments to answer 395

six research questions. We outline all of these ques- 396

tions in the following sections and give answers to 397

them with our findings. 398

4.1 Automatic Metrics 399

For all the tasks, to compare the generated text 400

with the ground truth, we make use of automatic 401
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Performance of All Models on All Tasks

Finetuned GPT2 Not Finetuned LLaMA2 7b Multitasking LLaMA2 7b
Task Prompt

Strategy B1 RLSum BSF1 B1 RLSum BSF1 B1 RLSum BSF1

T2G one-shot 1.419 0.027 0.798 8.556 0.127 0.818 10.921 0.165 0.794
T2G zero-shot 1.879 0.030 0.810 8.335 0.122 0.802 10.485 0.161 0.794
G2E one-shot 3.604 0.066 0.822 9.226 0.084 0.807 3.104 0.034 0.828
G2E zero-shot 3.931 0.056 0.808 12.369 0.103 0.816 5.442 0.064 0.83

I-G2T one-shot 2.242 0.048 0.791 9.573 0.111 0.691 17.637 0.155 0.524
I-G2T zero-shot 1.642 0.043 0.768 11.589 0.143 0.769 21.157 0.279 0.845
T2I-G one-shot 1.305 0.054 0.815 42.277 0.576 0.897 43.636 0.156 0.778
T2I-G zero-shot 0.050 0.062 0.802 56.128 0.704 0.910 43.229 0.155 0.778

Table 2: This table shows the performance of all the models for all the tasks that we introduce in Section §3.1 for the
test set. The one-shot strategy contains an example for the task. B1 corresponds to BLEU-1, RLSum corresponds to
ROUGE, and BSF1 corresponds to BERTScore.

metrics. We use both traditional n-gram metrics of402

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),403

and also use learned generation metrics such as404

BERTScore (Zhang* et al., 2020). For the imple-405

mentation of all of these, we use the Huggingface406

evaluate library7. We do not include classification-407

based metrics, as our language models generate408

full-textual responses rather than classes.409

RQ1: How do different prompting strategies410

affect the performance of the pre-trained (not411

fine-tuned) text-only model? Using these auto-412

matic metrics, we first evaluate the performance413

of the prompting strategies for the non-finetuned414

LLaMA 1.5-7b model. We present these results for415

all the tasks in Table 1. These show that rule-based416

prompts and notation-based prompts perform sim-417

ilar to or less than zero-shot prompts. One-shot418

prompts are the best prompting strategy where an419

example translation is provided; this reinforces as-420

sumptions of few-shot prompts performing better421

than zero-shot.422

TEST SET

Models B1 ↑ B2 ↑ RLSum ↑ BSF1 ↑

LLaMA2 7b 12.057 1.968 0.144 0.764
LLaMA2 70b 11.281 2.054 0.175 0.798

Table 3: This table shows the performance differences
between LLaMA2 7b, and LLaMA2 70b variants. The
bigger model generates more intelligible sentences, yet
fails to carry out the translation task.

RQ2: How does the number of parameters af-423

fect the performance of the model in text-only424

7https://huggingface.co/docs/evaluate/

sign language processing tasks? We show the 425

effects of the number of parameters of the text-only 426

model for the G2T task in Table 3. A higher num- 427

ber of parameters does not always correlate with 428

better automatic metric results. A higher number of 429

parameters also increases the fine-tuning duration. 430

RQ3: How does supervised fine-tuning the text- 431

only model on the G2T affect the performance? 432

To answer this questions, we fine-tune several foun- 433

dational models. These results compare the base- 434

line of a small GPT-2 model which is fine-tuned on 435

the G2T task, with our larger models LLaMA 2 7b, 436

and Multitasking LLaMA 2 7b. We first show the 437

results for the fine-tuned task of G2T in Figure 3.

Figure 3: This figure shows the bar plot of ablations on
the G2T task. It can be seen that the performance of
the larger LLaMA-based models is higher overall com-
pared to a smaller model (GPT2). Also, multitasking to
prevent forgetting does not affect model performance.

438

RQ4: Can the performance in G2T generalize 439

to other sign language processing tasks? Does it 440

perform better than smaller transformer-based 441

6
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language models, which are not pre-trained?442

To answer, we show the results for all the sign443

language tasks in Table2. It can be seen that the444

multitasking model outperforms the smaller model445

across all tasks. There is variability across tasks on446

whether the original LLaMA model performs better447

than the multitasking version. This can be caused448

by the differences in the task setup and input out-449

puts being more easily with semantic information450

only from the pre-trained representation.451

RQ5: How does the fine-tuned multimodal452

model perform in comparison to the text-only453

model? What are the implications of videos as454

inputs rather than glosses? To answer this, we455

fine-tune LLaVA 7b on the RWTH-PHOENIX-14T456

videos. The performance differences are shown in457

Table 4. Here, it can be seen that the fine-tuned458

model is performing better than the non-finetuned459

model across all metrics. The implications of using460

videos rather than glosses mean that in the absence461

of signer annotations on the glosses, videos can be462

used as input as well, with a decrease in the overall463

performance (compare Figure 3 and Table 4), but464

text-only models outperform video models. We465

give a more detailed analysis of this in our trade-466

offs section §6.467

Multimodal Sign Understanding (SignVideo2Text)

Models TEST SET
B1 ↑ B2 ↑ RLSum ↑ BSF1 ↑

LLaVA1.5 7b 2.140 0.006 0.022 0.658
ft-LLaVA1.5 7b 12.776 2.404 0.103 0.779

Table 4: This table shows the automatic metric results
for the translation task of German Sign Language video
to German Text. ft-LLaVA1.5 7b is the fine-tuned
model.

RQ6: Given the theoretical background of for-468

getting, how does including multiple tasks dur-469

ing fine-tuning affect performance? To answer470

this question, we use the generic open language471

model Benchmarks by EleutherAI Evaluation Har-472

ness (Gao et al., 2023) and test the performance473

difference between the multitasking, finetuned, and474

non-finetuned models. We show the results in the475

bar plot in Figure 4. We can empirically observe476

that there is a drop in performance between non-477

finetuned and fine-tuned LLaMA2 models. This478

shows the data shift that we have outlined in Sec-479

tion §3.4 due to the differences in data distribu-480

tion between the pretrained LLaMA2 and the sign- 481

finetuned LLaMA2. This strongly suggests that 482

there is forgetting of the original capabilities of the 483

pretrained model. 484

Figure 4: This is the bar plot showing the ablation
study on the multitasking/mixing model on the Open
Language Model Benchmarks of ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), and Wino-
Grande (Sakaguchi et al., 2019), all degrade (forgetting)
when LLaMA2 is fine-tuned on the sign language tasks,
and when trained on multiple tasks, it performs better.

5 Towards Prosodic, Iconic and 485

Semantically-Rich Sign Language 486

Representations via LLMs 487

Signed languages and the current machine learn- 488

ing setups for sign language processing systems 489

have been constrained to multimodal translation 490

systems mostly, as can be seen from our tasks as 491

well. However, sign interpretation and production 492

by humans are not translation-based processes be- 493

tween modalities. Cognitive science, neuroscience, 494

and linguistics research into the signed languages 495

by Kubicek and Quandt (2019, 2021) show that 496

prosody during signing affects interpretation and 497

action recognition, and Karadöller et al. (2023); 498

Chen et al. (2023a); Campisi et al. (2023) show 499

that different signed languages use different levels 500

of iconicity and iconic signs can facilitate interpre- 501

tation. In this section, we present a case study on 502

the current iconicity characteristics that are devel- 503

oped during the fine-tuning of the LLaMA2 model 504

by using emojis as placeholders for intensifiers. 505

5.1 Iconicity Case Study: Emojis as 506

Intensifiers 507

During the fine-tuning of the LLaMA2 7b+ model, 508

it has been observed in the generated outputs for the 509

intensified tasks there are emojis, even though the 510

model is not instructed to include emojis, and the 511
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Ground Truth Text Intensified Gloss Generated Text

woher soll die wärme derzeit auch kommen WOHER <HIGH-INT>WARM </HIGH-INT> wo es auch am wochenende warmer wird

where is the heat supposed to come from? WHERE WARM where it gets warmer on the weekend too

morgen gibt es mal sonne mal wolken in
der nordhälfte zeigt sich die sonne häufiger

MORGEN SONNE WOLKE WECHSELHAFT
NORD <HIGH-INT>SONNE </HIGH-INT>OFT

morgen wird es auch wieder sehr sonnig
und teils auch wolkig und auch hochintensiv

Tomorrow there will be clouds, in the north
half the sun will be more common

TOMORROW SUN CLOUD VARIABLE
NORTH <HIGH-INT>SUN </HIGH-INT>OFTEN

Tomorrow it will be very sunny and sometimes
also cloudy and also highly intensive

Table 5: This table shows three samples of German Text, DGS Gloss, and the generated text by the LLaMA2 7b+
model. Each sample includes a translation in English as well. LLaMA learns to depict intensifier tokens as emojis
without any instructions or training data examples.

training set does not contain emoji tokens for the512

RWTH-PHOENIX-14-T. Some samples are shown513

in Table 5. Here, it is observed that the model514

is mapping the intensifier tokens that exist in the515

intensified dataset to emojis. However, this is not516

a one-to-one mapping, and it is more so using the517

iconicity of the emoji to depict semantics that does518

not exist in the textual glosses.519

It can be claimed that iconicity, which is nor-520

mally depicted in the spatial modality during the521

signing, is now depicted with a different modality522

in a semantically rich textual form. Also, in the last523

sample, the generation directly includes "highly524

intensive," which shows that sometimes the model525

does not map the intensifier tokens directly to emo-526

jis. Overall, it can be qualitatively claimed that527

this mapping of semantics to icons via emojis is528

a property of LLMs fine-tuned on multiple tasks.529

This provides a paradigm shift in sign language pro-530

cessing, where including prosodically-rich tasks of531

signed languages can be accomplished with the532

help of large foundation models instead of seeing533

them as translation problems. Yet, new task def-534

initions and datasets specific to signed languages535

should be made available for further investigations536

of these capabilities.537

6 The Glossing Trade-Off538

This section presents a trade-off between using tex-539

tual representations of signs such as glosses or Sign-540

Writing that are linguistically-backed or directly541

using video of signers. This trade-off may not be542

an option most of the time, as having access to in-543

termediary textual representations such as glosses544

as part of the sign corpora is not prevalent across545

all datasets available online. To decide whether to546

use glosses or videos, we can use insights from the547

linguistics literature and data collection experience548

from the RWTH-PHOENIX-14-T dataset.549

In the original data collection effort as described550

by Forster et al. (2012) and Stein et al. (2010), the 551

annotations of glosses are done by a congenitally 552

deaf person with no previous annotation experience. 553

On average, they report that it took the annotator 24 554

hours to annotate 15 minutes of footage. When we 555

compare these statistics to the fine-tuning statistics 556

of the text-only and multimodal models, we can 557

observe the trade-offs better. This is presented in 558

Table 6. It can be seen that the text-only model has 559

nearly double the performance of the multimodal, 560

and it needs less storage space and leads to less 561

carbon emissions, even though it takes longer to 562

annotate. 563

Trade-off Statistics

TA

(h)
TFT

(h)
TI

(s/tok)
S

(GB)

Carbon
Emissions

(kg)

Perf.
(B1)

Annotator +
Text-Only

2400 8 4 0.1 0.211 22.85

Multimodal 0 8 8 50 0.240 13.62

Table 6: This table shows different statistics compar-
ing the human annotation with the text-only model and
video-based multimodal model. Carbon emissions are
calculated using the US EPA’s greenhouse gas equiv-
alencies calculator. TA: average time for annotation,
TFT : average time for fine-tuning, TI : average time for
inference, S: storage space needed for data.

7 Conclusion 564

In this paper, we have prompted, fine-tuned, and 565

compared text-only and multimodal language mod- 566

els for sign language processing tasks. We have 567

provided theoretical grounding and analyzed our 568

results from cognitive science and theoretical per- 569

spectives. From our findings, it can be claimed 570

that text-only language models perform better than 571

multimodal models. Moving forward, training big- 572

ger models with larger multilingual corpora is a 573

promising next step for a broader set of novel sign 574

language processing tasks. 575
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8 Limitations576

The major limitation of our work has been the com-577

puting power required to fine-tune, test, and carry578

out inference. Even with the smallest large lan-579

guage models, it becomes quickly infeasible to test580

multiple independent variables. Hence, our tech-581

niques have been tested on the smaller end of the582

large language family of models. Larger models583

can have higher performance gains. An additional584

limitation of our models is the context length. With585

long linguistic rules added to the prompt, certain586

samples of glosses made the inference lengthy. The587

maximum number of generated tokens has been a588

limiting factor of the output of models as well,589

which resulted in poor performance metrics. These590

can be alleviated with higher computing powers.591

Another major limitation is the dataset size and592

number of available tasks in sign language process-593

ing. The sign language processing community has594

focused on translation tasks so far, and not many595

other task definitions and datasets exist that can596

be useful for signers. This affects our benchmark-597

ing, as the only tasks we can test the generalization598

on are either other translation tasks or traditional599

NLP tasks that are non-specific to signed languages.600

Having diverse tasks and accompanying datasets is601

needed for the future of sign language processing.602

9 Ethical Statement603

We are using LLaMA2-based models for both our604

text-only and multimodal setups, which are trained605

on data acquired by Meta and are not made pub-606

licly available; even though the model itself is607

open-source, the pretraining dataset is not open.608

This leads to unaccountable biases that have been609

collected during the dataset formation and in the610

pretraining, our models may have inherent biases611

passed down from these pretraining setups. Our612

RWTH-PHOENIX-14-T dataset contains the faces613

of the signers, which is a piece of private informa-614

tion. This private information is used in accordance615

with the original dataset creator’s directions and616

privacy concerns. Furthermore, sign language pro-617

cessing can be a sensitive topic, especially when618

the community-centric approach is not taken for619

the design of systems. For this, we collaborate with620

the deaf and hard-of-hearing communities or sign-621

ers in general while developing such systems as622

this one.623
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A Hyperparameters & Training940

Implementation Details941

We trained all of the models on an Apple MacBook942

Pro with an M3 Max chip. Libraries used were Py-943

Torch, Huggingface TRL, Transformers, Datasets,944

Evaluate, and W&B. The hyperparameters for the945

LLaMA models are: learning rate of 1e-3, lr sched-946

uler type: "reduce lr on the plateau", per device947

training batch size of 2, number of epochs of 5,948

and weight decay of 0.01, and maximum sequence949

length of 300 tokens. LoRA configuration for the950

LLaMA model is: rank of 8, LoRA alpha of 32, and951

LoRA dropout of 0.1. For the LLaVA model: mm952

projector learning rate of 2e-5, one epoch, batch953

size of 2, learning rate of 5e-5, linear lr scheduler954

type, maximum sequence length of 2048. LoRA955

configuration for LLaVA model: LoRA rank: 128,956

and LoRA alpha: 256.957

B All Prompt Types 958

Here we present all the prompt types that have been 959

used in the experiments: 960

• zero-shot prompt: This is a sentence in Ger- 961

man Sign Language glosses: <glosses>. You 962

MUST translate these to spoken German. You 963

MUST give the answer directly without any 964

other text. 965

• rule-based prompt: "Instructions Here are 966

some basic rules of German GLOSSES: 1) 967

German signs correspond to meanings not to 968

words. 2) Some GLOSSes are formed from 969

more than one German word. In this case the 970

words are joined by a hyphen. The hyphen 971

indicates one single sign that is labeled with 972

two or more German words. 3) Glosses com- 973

bined with a plus sign are two separate signs 974

that are joined together to make what appears 975

to be a single sign 4) In DGS, some signs are 976

repeated for specific meaning. for instance 977

LEARN + LEARN changes the sign from the 978

VERB “To Learn” to the NOUN “Learning.” 979

5) Words that are to be Fingerspelled are in- 980

dicated in one of two ways: - Separated by 981

hyphens between each Fingerspelled letter: G- 982

L-A-D-Y-S - Preceded by the initials FS in 983

parenthesis: (fs) GLADYS. Task You MUST 984

translate <glosses> of DGS to German with- 985

out using any special characters, according to 986

these rules." 987

• notation-based prompt: "Instruction Below 988

is a list of common symbols used in the writ- 989

ing of DGS Glosses: - The Crosshatch: This 990

symbol indicates a loan sign, a sign originat- 991

ing from the fingerspelling of an English word. 992

- Parentheses: ( ) Additional information about 993

the production of a sign is can added to the 994

written gloss between a set of parentheses. 995

Such information can be abbreviated as in 996

(2h)DO++, or it may appear as German in- 997

structions to add information to a sign: GIVE 998

(left), or to a Classifier CL:1 (man hurries 999

past). - CL: The abbreviation CL: indicates 1000

a classifier. The information following the 1001

colon indicates the hand shape and number 1002

of hands. - The Umlaut (two dots above a 1003

given hand shape) ( indicate the bending of 1004

the fingers of that hand. The 3 (called the 1005

“bent three”) is the hand shape used in the 1006
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sign “INSECT”. This technique is only used1007

in reference to a specific handshape such as a1008

classifier.1009

Task You MUST translate <glosses> to Ger-1010

man according to these symbols."1011

• one-shot prompt: "Example ""Here’s a sam-1012

ple DGS gloss: “ORT REGEN DURCH1013

REGEN KOENNEN UEBERSCHWEM-1014

MUNG KOENNEN” which translates to1015

""mancherorts regnet es auch länger und1016

ergiebig auch lokale überschwemmungen sind1017

wieder möglich"" in German1018

Task You MUST translate <glosses> to Ger-1019

man according to this example. "1020
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