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Abstract

Motivated by the recent success of text-only
modeling in certain vision-language tasks, this
paper proposes that sign language processing
can also use (large) text-only language mod-
els for inference, freeing sign language models
from the necessity of low-resource multimodal
learning from scratch. To compare the perfor-
mance of pre-trained text-only models against
multimodal ones, we introduce the first text-
only and multimodal large (7B) language mod-
els to be pre-trained and then fine-tuned on a
sign language recognition task. We propose
new prompting strategies and fine-tuning strate-
gies for text-only signed language processing,
incorporating both linguistics of signed lan-
guages and theoretically motivated strategies
to mitigate catastrophic forgetting (of spoken
language). We test the generalization of these
models to other sign language recognition and
generation tasks, showing text-only models
are capable sign language models that are still
adept at spoken language tasks and, by chang-
ing the prompt, can even generalize to new
prosodic and iconic sign recognition tasks. Fi-
nally, we analyze trade-offs between our text-
only and multimodal models. Our code and
model checkpoints will be open-source.

1 Introduction

Traditionally, multimodal models are the de facto
choice for sign language processing tasks, given
the continuous and visual nature of signs. How-
ever, recent work by Wang et al. (2022) and Cheng
et al. (2023) calls into question the presumption
that multimodal models are best for all visual tasks.
In particular, they use text-based descriptors and
text-only language models to achieve strong per-
formance on few-shot video-to-text tasks without
visual pretraining or fine-tuning. Motivated by this,
we suggest that sign language processing can also
be achieved through text-only language modeling.
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Figure 1: We show that text-only open foundation mod-
els when prompted or fine-tuned, can learn to perform
sign language processing tasks compared to their multi-
modal alternatives. Further, multitask fine-tuning alle-
viates forgetting of spoken language capabilities (e.g.,
QA tasks in English).

Rather than a visual medium, we focus on sign
language as a language, using language learning
theories and linguistic theories of signed languages
to create one-shot text prompts and fine-tune text-
only models to replace the visual modality of signs
in multimodal models. As a primary benefit, sign
language processing may be freed of traditional,
low-resource, multimodal learning from scratch
while also gaining the benefits of the recent suc-
cesses in language modeling, such as capability at
in-context learning.

Our central hypothesis stems from the fact that
text-only pre-trained models are already able to
represent rich semantic and prosodic information
based on the context in spoken languages, like
English (Gari Soler and Apidianaki, 2021; Saba,
2023). Sometimes text-only models can do this
even better than multimodal pre-trained models
(Wang et al., 2022). If we can use this semanti-



cally rich text-based representation space to capture
the important visual concepts of signed-languages
(e.g., intensity), then we defeat the purpose of ask-
ing multimodal models to learn the visual seman-
tics of signed languages from scratch. So, we ask
the question, why can’t text-only pre-trained mod-
els use the textual modality to learn effective visual
sign language representations?

In answering this question, we demonstrate the
benefits of applying large pre-trained language
models to tasks in signed languages. Moreover,
our results point to a future where language models
can also be pre-trained on signed languages without
significant degradation of their spoken language
capabilities, marking an essential step for the wider
adoption of signed languages. In more detail, our
contributions are described as follows.

1. We use linguistic rules to prompt and fine-
tune large (7B) text-only pre-trained models
and compare them to multimodal pre-trained
models on sign recognition for the first time.

2. We theoretically and empirically study the
problem of catastrophic forgetting during fine-
tuning on sign language data, providing solu-
tions to resolve this issue.

3. We use annotator costs, carbon emission, and
performance differences to analyze trade-offs
between the use of a multimodal model and
our linguistically-backed text-only models.

Our results show fine-tuning large, pre-trained, text-
only models offers new generalization capabili-
ties compared to previous sign recognition training
strategies; e.g., via in-context learning. We also do
a case study on emergent iconicity by pre-trained
models for signed languages. All code, data, and
model checkpoints will be publicly available.

2 Related Work

Besides text-only models like LLaMA (Touvron
et al., 2023a), Mixtral (Jiang et al., 2024), QWEN
(Bai et al., 2023), Orca (Mukherjee et al., 2023),
Phi (Gunasekar et al., 2023), multimodal models
have been gaining popularity, especially in com-
puter vision communities. Large Vision-Language
models such as LLaVA (Liu et al., 2023b), Video-
LLaMA (Zhang et al., 2023), Video-LLaVA (Lin
et al., 2023), LanguageBind (Zhu et al., 2024),
MultiModal-GPT (Gong et al., 2023), Mirasol3B
(Piergiovanni et al., 2023), LAVIS (Li et al., 2023),
LaVilLa (Zhao et al., 2023), and UniVL (Luo et al.,
2020) propose to align representations of combina-

tions of images, videos, text, and/or speech signals
with human judgments. Further details of these
and similar models have been discussed in a sur-
vey paper by Yin et al. (2023). However, none
of these models claim to include sign language
processing tasks in their pre-training or fine-tuning
data. Through our theoretical and empirical studies,
this paper aims to address this gap.

The absence of literature using large models for
sign processing is mainly due to the low-resource
nature of signed languages (Yin et al., 2021). How-
ever, there have been several lines of research ap-
plying transformer-based language models to sign
language translation (Camgoz et al., 2018; Yin and
Read, 2020; Chen et al., 2023b), sign language
understanding (Hu et al., 2023; Moryossef et al.,
2021), sign generation (Stoll et al., 2020), Sign-
Writing translation (Jiang et al., 2023), incorporat-
ing facial expressions (Viegas et al., 2023), model-
ing prosody (Inan et al., 2022), and sign language
segmentation (Moryossef et al., 2023). To the best
of our knowledge, Lee et al. provides the only
other work that leverages (smaller, but still large)
language models with shared vocabularies for sign
language processing. They focus on older models
(without RLHF, Ouyang et al., 2022). However,
none of these works involve modern large language
models (text-only nor multimodal), which we in-
troduce in this paper for the first time.

3 Method

In this section, we introduce the details of both the
text-only and multimodal foundation models used
in experiments (see Figure 2), along with the stud-
ied prompting and fine-tuning strategies. We also
provide a theoretical basis for choosing appropriate
training data to prevent foundation models from
forgetting the traditional language capabilities on
which they were pre-trained.

3.1 Sign Data, Tasks, and Models

DGS Data Due to widespread adoption as a
benchmark in the sign language processing commu-
nity, we use the RWTH-PHOENIX-14T! corpus of
weather forecast signs in German Sign Language
(DGS). This dataset contains around 7000 training
samples, 500 validation samples, and 600 test sam-
ples. Each sample has a video, a text in spoken
German, and a gloss — which is an intermediary

1https: //www-16.informatik.rwth-aachen.de/
~koller/RWTH-PHOENIX-2014-T/
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Figure 2: This figure presents a summary of all the inputs, outputs, tasks, and models we are using and introducing
in this paper. The box on the left contains a sample from the RWTH-PHOENIX-14T dataset. From top to bottom,
the sentences are English text, DGS glosses, intensified DGS glosses, and German text. Yellow knobs represent
tasks, in which the acronyms of the tasks are inlaid (please refer to Section §3.1 for detailed task names).

textual representation of signs — in German Sign
Language. Video samples consist of frames of mul-
tiple signers sampled at 25 fps, with a size of 210 by
260 pixels. We also include an enhanced version of
this dataset, which contains intensifier information
in its gloss representations as introduced by (Inan
etal., 2022). Intensifiers in signed languages are de-
picted through non-manual markers and can change
the meaning of a sign, and this dataset contains ad-
ditional tokens to capture intensifier information.
We also translate the German text to English text
to provide data for a cross-lingual task (discussed
next). We use Google Translate.”

Tasks As RWTH-PHOENIX-14T is a parallel
corpus between spoken German and DGS, most
previous research has focused on translation tasks
between these languages. In this paper, we focus
on translating DGS to German (broadly consid-
ered as a sign understanding or recognition task)
and German to DGS (broadly considered as sign
generation). In addition to these, we introduce ad-
ditional tasks to test generalization. Specifically,
we consider:

* (G2T) DGS Gloss to German Text: a text-only
translation task from textual intermediary repre-
sentations of DGS (glosses) to German text.

¢ (T2G) German Text to DGS Gloss: the inverse
problem of the above and is text-only.

* (V2T) DGS Videos to German Text: a multi-
modal task where the input is a video of a signer
signing in DGS, and the output is German text.

e (I-G2T) Intensified DGS Gloss to German Text:
a text-only task with augmented DGS tokens. Ad-
ditional symbols <HIGH-INT> and <LOW-INT>

2https://cloud.google.com/translate/

are wrapped around glosses to depict intensity in
the video that is not depicted in traditional gloss
representations (Inan et al., 2022).

¢ (T21-G) German Text to Intensified DGS Gloss:
the inverse problem of (I-G2T), still text-only.

¢ (G2E) DGS Gloss to English Text: a novel task
of cross-modal translation, where DGS glosses
from the German Sign Language family are
translated to English text from the spoken Indo-
European language family. Without any pre-
training, this is a difficult test of generaliza-
tion and composition of contextualized meanings
across traditional and signed languages.

To test generalizability and in-context learning,
G2T is the only DGS task we use for any fine-
tuning (see § 3.3). All the other tasks are used to
evaluate the models’ performance.

Models In this paper, we use two main founda-
tion models: LLaMA-2 7B Chat (Touvron et al.,
2023b) for text-only inputs and LLaVA 1.5 7B
(Liu et al., 2023a,c) for multimodal inputs. To
compare with traditional sign language process-
ing approaches, which use smaller language mod-
els sans any foundational pre-training, we also
use a randomly initialized GPT-2 model (Radford
et al., 2019) trained on the G2T task of the RWTH-
PHOENIX-14T dataset. This controlled difference
allows us to quantify the utility of concepts learned
during foundational training (e.g., in LLama and
LLaVA) on sign language processing. Lastly, for
G2T task, we use LLaMA-2 70B with 4-bit quan-
tization® to show how the number of parameters
affects the results.

Shttps://ollama.com/library/1lama2:70b
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Prompt Strategy | BLEU; ROUGE; BS-F1
zero-shot prompt 24.5 0.277 0.841
rule-based prompt | 22.8 0.255 0.836
notation prompt 24.3 0.277 0.840
one-shot prompt 27.1 0.309 0.851

Table 1: Preliminary evaluation of prompting strategies
on the validation set of RWTH-PHOENIX-14T using
LLaMA-2 7B. The prompts are given in Appendix § B.
BS-F1 refers to BERTScore-F1.

3.2 Prompting and Initial Results

To replace the visual modality of signed languages,
we propose to prompt text-only foundation mod-
els using linguistic and cognitive science rules of
glossing and signing. We first prompt these foun-
dation models for the tasks described in § 3.1. We
incorporate the following linguistic rules of signed
languages into the design of the prompts that we
provide to the models:

* zero-shot prompt: The prompt is structured as,
"This is a sentence in German Sign Language
glosses: <glosses>. You MUST translate these
to spoken German. You MUST give the answer
directly without any other text." Does not contain
any linguistic rules.

* rule-based prompt: The prompt is structured as
five rules of glossing semantics. These rules are
described in (Hanke et al., 2020).

* notation prompt: This is structured as a set of
rules about gloss morphologies. These rules are
borrowed from Stein et al. (2010).

* one-shot prompt: This prompt gives a single
example of a DGS gloss and a corresponding
German text. This example is formatted follow-
ing the semantic and morphological rules above.

Initially, we experiment with four different prompt

strategies, then we pre-select two (the top-

performing prompting strategy and the basic one)
among these. All prompts are given in Appendix

B.

For the multimodal foundation model, we pro-
vide a single chat template. We use a mixed prompt-
ing strategy, where the video of signers is sampled
at 50 frame intervals, fed into a CLIP-based Image
Encoder (Radford et al., 2019), and then incorpo-
rated into the prompt tokenization by the use of
<image> for each frame. Then, the image por-
tion of the prompt is succeeded by the text-based
prompt “This video is in German Sign Language.
What is the sentence being signed in German?”

3.3 Supervised Fine-Tuning with LoRA

Besides in-context learning via few-shot prompts,
we also consider fine-tuning LLaMA2 and
LLaVA1.5 models using Supervised Fine-Tuning 4,
which is a supervised training method in addition
to the RLHF algorithm (Ouyang et al., 2022) for
chat-based model training, which aligns the mod-
els’ representations with human judgments. In this
case, the human annotations are either glosses or
text. For fast model training and reduced memory
consumption, we use Low-Rank Adaptation of Lan-
guage Models (LoRA) as introduced by Hu et al.
(2022). We give details of model hyperparameters
and training details in Appendix A.

Sign-Only Fine-Tuning As noted, for text-only
models we fine-tune on the G2T task from § 3.1,
and for multimodal we fine-tune on the V2T task.
This provides the model a simple introduction to
the meaning of signed glosses by grounding them
to their parallel German language context.

Multitasking Fine-Tuning As we discuss in the
next section, we hypothesize that the former (sign-
only) tuning strategy can lead to catastrophic forget-
ting. Due to the shared token vocabulary, the model
may overwrite existing knowledge and semantics
in the contextualized representations of traditional
language tokens. Intuitively, we expect that forcing
the model to “replay” traditional language tasks
from pre-training will prevent forgetting. To ac-
complish this, we also train on an additional (tradi-
tional task) dataset (OpenOrca®) randomly mixing
the sign and traditional data during tuning. This
dataset consists of system prompts, questions, and
responses, augmented from the FLAN collection
(Longpre et al., 2023). It is commonly used to
fine-tune smaller open models such as LLaMA for
better task success, surpassing proprietary models
such as GPT-3.5. The dataset is mainly in En-
glish and consists of multiple tasks: entailment
and semantic understanding, temporal and spatial
reasoning, causal judgment, multilingual under-
standing, world knowledge, logical and geomet-
ric reasoning, and similar other tasks (Mukherjee
et al., 2023). While the original dataset contains
around 3 million samples, we use the same split
sizes as RWTH-PHOENIX-14T to ensure balance
in sign/traditional task prioritization.
4https://huggingface.co/docs/trl/main/en/sft_

trainer

5https://huggingface.co/datasets/Open—Orca/
OpenOrca
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3.4 Theory: Multi-Tasking Mitigates
Forgetting

Motivated by neuroscience, experience replay has
been suggested as a strategy to reduce forgetting
in machine learning, with positive results (Rol-
nick et al., 2019). Moreover, replay has been
studied in mathematical theories of how language
models learn with similar success (Sicilia and
Alikhani, 2022). Our multi-tasking strategy (dis-
cussed above) can be viewed as a type of experi-
ence replay since many tasks from OpenOrca are
presumed to be similar to prior experience dur-
ing pre-training.® In this section, we re-frame our
learning environment using the theoretical tools
provided by Sicilia and Alikhani (2022) to moti-
vate our hypothesis. Namely, we show that multi-
task fine-tuning (i.e., replay) can help mitigate for-
getting in shared-vocabulary sign processing with
foundation models.

Sign Language Processing Algorithm Our cur-
rent task setup is of a translation algorithm, where
the model learns how to translate from a signed lan-
guage to a spoken language and vice versa. Specif-
ically, in the case of foundation models learning
this, the algorithm contains two specific steps:

1. Pre-Training: Foundation models are trained
on multiple tasks that do not include (many or
any) sign-language-specific tasks. Using the
terminology of Sicilia and Alikhani (2022), this
process picks the weights to minimize the fest
divergence or “error” TDpr where PT is the
pre-training data distribution:

TDpr(0) = E[|¢(D, D)|]

. 1
D ~LM(X;6),D ~ ANOT(X) M

where LM is the foundation model (e.g., a
language model), ANOT is a human comple-
tion/annotation provided the same context X
(e.g., a prompt), and X ranges over the dataset
PT. The test £ compares any measure of the
quality or other properties of the generated text
between foundation model and human; e.g.,
it can represent automatic metrics like BLEU,
ROUGE, or error at next-word prediction as
well as more abstract tests (like human prefer-
ence).

2. Fine-Tuning: In this stage, the foundational
model is fine-tuned on sign language processing
tasks such as gloss-to-text translation. For the

$Most open-source models do not share training data.

sign-only fine-tuning, we call this data distribu-
tion DGS. So, abstractly, our sign-only fine-
tuning process described previously attempts to
minimize TDpgs(6).

Problem When we write out the pre-training and
fine-tuning objectives clearly in the terminology
of Sicilia and Alikhani (2022), it is clear that the
two processes optimize different objectives (e.g.,
over different datasets). There is no way to ensure
that picking 6 to minimize TD pgg will not have a
negative impact (i.e., increase) TD pr. This poten-
tial for increase in error on the pre-training tasks
characterizes the behavior we call “forgetting.”

Solution As mentioned, we also consider a multi-
tasking fine-tuning strategy where DGS data and
tasks similar to the pre-training data are mixed.
This multi-tasking data can be represented by the
mixture distribution:

MIX = o PT + (1 — o) FT 2)

where a € (0, 1) is a weighing factor between the
probabilities assigned by two datasets. Instead of
sampling X from only PT or only FT, we flip an
a-weighted coin to pick from which we sample.
Holding all else constant, this implies the equality:

TDyrx :aTDpT—I—(l—a) TDpr. (3)

By this choice, we can see:

|TDaprrx — TDpr| “)
= (1—0&)’TDFT—TDPT‘ (5)
< |TDFT — TDPT’. (6)

Since TDjsrx is always closer in magnitude to
TDpr than TDgp7, we can see that minimizing
TDjsrx can better prevent large increases TDpr,
or “forgetting.” This simple inequality provides
a theoretical motivation for our multi-tasking sug-
gestion in § 3.3. Our empirical results in § 4 also
confirm our theoretical hypotheses.

4 Findings

In this section, we conduct experiments to answer
six research questions. We outline all of these ques-
tions in the following sections and give answers to
them with our findings.

4.1 Automatic Metrics

For all the tasks, to compare the generated text
with the ground truth, we make use of automatic



Performance of All Models on All Tasks

Prompt Finetuned GPT2 ‘ Not Finetuned LLaMA2 7b ‘ Multitasking LLaMA2 7b
Task P
Strategy Bi  Risum BSrki| Bi Risum BSpi | Bi Rpsum BSpi
T2G  one-shot | 1.419 0.027 0.798 | 8.556  0.127 0.818 | 10.921 0.165 0.794
T2G  zero-shot | 1.879 0.030 0.810 | 8.335 0.122 0.802 | 10.485 0.161 0.794
G2E  one-shot | 3.604 0.066 0.822 | 9.226 0.084 0.807 3.104 0.034 0.828
G2E  zero-shot | 3.931 0.056 0.808 | 12.369 0.103 0.816 5442  0.064 0.83
I-G2T one-shot | 2.242 0.048 0.791 | 9.573  0.111 0.691 | 17.637 0.155 0.524
I-G2T zero-shot | 1.642 0.043 0.768 | 11.589  0.143 0.769 | 21.157 0.279 0.845
T2I-G  one-shot | 1.305 0.054 0.815 | 42.277 0.576 0.897 | 43.636 0.156 0.778
T2I-G zero-shot | 0.050 0.062 0.802 | 56.128 0.704 0910 | 43.229 0.155 0.778

Table 2: This table shows the performance of all the models for all the tasks that we introduce in Section §3.1 for the
test set. The one-shot strategy contains an example for the task. B; corresponds to BLEU-1, Ry, gy, corresponds to

ROUGE, and BSf; corresponds to BERTScore.

metrics. We use both traditional n-gram metrics of
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and also use learned generation metrics such as
BERTScore (Zhang* et al., 2020). For the imple-
mentation of all of these, we use the Huggingface
evaluate library’. We do not include classification-
based metrics, as our language models generate
full-textual responses rather than classes.

RQI1: How do different prompting strategies
affect the performance of the pre-trained (not
fine-tuned) text-only model? Using these auto-
matic metrics, we first evaluate the performance
of the prompting strategies for the non-finetuned
LLaMA 1.5-7b model. We present these results for
all the tasks in Table 1. These show that rule-based
prompts and notation-based prompts perform sim-
ilar to or less than zero-shot prompts. One-shot
prompts are the best prompting strategy where an
example translation is provided; this reinforces as-
sumptions of few-shot prompts performing better
than zero-shot.

sign language processing tasks? We show the
effects of the number of parameters of the text-only
model for the G2T task in Table 3. A higher num-
ber of parameters does not always correlate with
better automatic metric results. A higher number of
parameters also increases the fine-tuning duration.

RQ3: How does supervised fine-tuning the text-
only model on the G2T affect the performance?
To answer this questions, we fine-tune several foun-
dational models. These results compare the base-
line of a small GPT-2 model which is fine-tuned on
the G2T task, with our larger models LLaMA 2 7b,
and Multitasking LLaMA 2 7b. We first show the
results for the fine-tuned task of G2T in Figure 3.

®m BERTScore F1 BERTScore Recall
ROUGEL = ROUGE2 = ROUGE1

BERTScore Precision © ROUGELSum
BLEU-4 = BLEU-3 m BLEU-2 ® BLEU-1

5.000

4.000

3.000

2000 -

TEST SET 1000 e —
0.000 — _ |
Models Bi T B2t Risum T BSp1 7 one-shot GPT2 finetuned LLaMA2 7b  multitasking LLaMA2 7b
LLaMA2 7b 12.057 1.968 0.144 0.764 Models
LLaMA270b | 11.281 2.054 0.175 0.798

Table 3: This table shows the performance differences
between LLaMA?2 7b, and LLaMA?2 70b variants. The
bigger model generates more intelligible sentences, yet
fails to carry out the translation task.

RQ2: How does the number of parameters af-
fect the performance of the model in text-only

"https://huggingface.co/docs/evaluate/

Figure 3: This figure shows the bar plot of ablations on
the G2T task. It can be seen that the performance of
the larger LLaMA-based models is higher overall com-
pared to a smaller model (GPT2). Also, multitasking to
prevent forgetting does not affect model performance.

RQ4: Can the performance in G2T generalize
to other sign language processing tasks? Does it
perform better than smaller transformer-based


https://huggingface.co/docs/evaluate/

language models, which are not pre-trained?
To answer, we show the results for all the sign
language tasks in Table2. It can be seen that the
multitasking model outperforms the smaller model
across all tasks. There is variability across tasks on
whether the original LLaMA model performs better
than the multitasking version. This can be caused
by the differences in the task setup and input out-
puts being more easily with semantic information
only from the pre-trained representation.

RQ5: How does the fine-tuned multimodal
model perform in comparison to the text-only
model? What are the implications of videos as
inputs rather than glosses? To answer this, we
fine-tune LLaVA 7b on the RWTH-PHOENIX-14T
videos. The performance differences are shown in
Table 4. Here, it can be seen that the fine-tuned
model is performing better than the non-finetuned
model across all metrics. The implications of using
videos rather than glosses mean that in the absence
of signer annotations on the glosses, videos can be
used as input as well, with a decrease in the overall
performance (compare Figure 3 and Table 4), but
text-only models outperform video models. We
give a more detailed analysis of this in our trade-
offs section §6.

Multimodal Sign Understanding (SignVideo2Text)

Models TEST SET
Bit B2t Risum?T BSm?
LLaVA1.57b 2.140  0.006 0.022 0.658
ft-LLaVA1.57b | 12.776 2.404 0.103 0.779

Table 4: This table shows the automatic metric results
for the translation task of German Sign Language video
to German Text. ft-LLaVA1.5 7b is the fine-tuned
model.

RQ6: Given the theoretical background of for-
getting, how does including multiple tasks dur-
ing fine-tuning affect performance? To answer
this question, we use the generic open language
model Benchmarks by EleutherAl Evaluation Har-
ness (Gao et al., 2023) and test the performance
difference between the multitasking, finetuned, and
non-finetuned models. We show the results in the
bar plot in Figure 4. We can empirically observe
that there is a drop in performance between non-
finetuned and fine-tuned LLaMA?2 models. This
shows the data shift that we have outlined in Sec-
tion §3.4 due to the differences in data distribu-

tion between the pretrained LLaMA?2 and the sign-
finetuned LLaMA2. This strongly suggests that
there is forgetting of the original capabilities of the
pretrained model.
W ARC

HellaSwag Winogrande

1.00

) I I I
0.00

llama2 llama2 finetuned llama2 multitasking

Normalized Accuracies

Figure 4: This is the bar plot showing the ablation
study on the multitasking/mixing model on the Open
Language Model Benchmarks of ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), and Wino-
Grande (Sakaguchi et al., 2019), all degrade (forgetting)
when LLaMAZ2 is fine-tuned on the sign language tasks,
and when trained on multiple tasks, it performs better.

5 Towards Prosodic, Iconic and
Semantically-Rich Sign Language
Representations via LLMs

Signed languages and the current machine learn-
ing setups for sign language processing systems
have been constrained to multimodal translation
systems mostly, as can be seen from our tasks as
well. However, sign interpretation and production
by humans are not translation-based processes be-
tween modalities. Cognitive science, neuroscience,
and linguistics research into the signed languages
by Kubicek and Quandt (2019, 2021) show that
prosody during signing affects interpretation and
action recognition, and Karadoller et al. (2023);
Chen et al. (2023a); Campisi et al. (2023) show
that different signed languages use different levels
of iconicity and iconic signs can facilitate interpre-
tation. In this section, we present a case study on
the current iconicity characteristics that are devel-
oped during the fine-tuning of the LLaMA2 model
by using emojis as placeholders for intensifiers.

5.1 Iconicity Case Study: Emojis as
Intensifiers

During the fine-tuning of the LLaMA?2 7b+ model,
it has been observed in the generated outputs for the
intensified tasks there are emojis, even though the
model is not instructed to include emojis, and the



Ground Truth Text

Intensified Gloss

Generated Text

woher soll die wirme derzeit auch kommen

WOHER <HIGH-INT>WARM </HIGH-INT>

wo es auch am wochenende warmer wird & & & ¢

where is the heat supposed to come from? WHERE WARM

where it gets warmer on the weekend too & & & ¢

morgen gibt es mal sonne mal wolken in
der nordhilfte zeigt sich die sonne haufiger

MORGEN SONNE WOLKE WECHSELHAFT
NORD <HIGH-INT>SONNE </HIGH-INT>OFT

morgen wird es auch wieder sehr sonnig
und teils auch wolkig und auch hochintensiv

Tomorrow there will be clouds, in the north
half the sun will be more common

TOMORROW SUN CLOUD VARIABLE
NORTH <HIGH-INT>SUN </HIGH-INT>OFTEN

Tomorrow it will be very sunny and sometimes
also cloudy and also highly intensive ¢

Table 5: This table shows three samples of German Text, DGS Gloss, and the generated text by the LLaMA2 7b+
model. Each sample includes a translation in English as well. LLaMA learns to depict intensifier tokens as emojis

without any instructions or training data examples.

training set does not contain emoji tokens for the
RWTH-PHOENIX-14-T. Some samples are shown
in Table 5. Here, it is observed that the model
is mapping the intensifier tokens that exist in the
intensified dataset to emojis. However, this is not
a one-to-one mapping, and it is more so using the
iconicity of the emoji to depict semantics that does
not exist in the textual glosses.

It can be claimed that iconicity, which is nor-
mally depicted in the spatial modality during the
signing, is now depicted with a different modality
in a semantically rich textual form. Also, in the last
sample, the generation directly includes "highly
intensive," which shows that sometimes the model
does not map the intensifier tokens directly to emo-
jis. Overall, it can be qualitatively claimed that
this mapping of semantics to icons via emojis is
a property of LLMs fine-tuned on multiple tasks.
This provides a paradigm shift in sign language pro-
cessing, where including prosodically-rich tasks of
signed languages can be accomplished with the
help of large foundation models instead of seeing
them as translation problems. Yet, new task def-
initions and datasets specific to signed languages
should be made available for further investigations
of these capabilities.

6 The Glossing Trade-Off

This section presents a trade-off between using tex-
tual representations of signs such as glosses or Sign-
Writing that are linguistically-backed or directly
using video of signers. This trade-off may not be
an option most of the time, as having access to in-
termediary textual representations such as glosses
as part of the sign corpora is not prevalent across
all datasets available online. To decide whether to
use glosses or videos, we can use insights from the
linguistics literature and data collection experience
from the RWTH-PHOENIX-14-T dataset.

In the original data collection effort as described

by Forster et al. (2012) and Stein et al. (2010), the
annotations of glosses are done by a congenitally
deaf person with no previous annotation experience.
On average, they report that it took the annotator 24
hours to annotate 15 minutes of footage. When we
compare these statistics to the fine-tuning statistics
of the text-only and multimodal models, we can
observe the trade-offs better. This is presented in
Table 6. It can be seen that the text-only model has
nearly double the performance of the multimodal,
and it needs less storage space and leads to less
carbon emissions, even though it takes longer to
annotate.

Trade-off Statistics

Carbon

Ty Tpr T; S . . Perf.
Emissions
(h) (h)  (s/tok) (GB) (By)
(kg)
Annotator + 50 g 4 01 0211 2285
Text-Only
Multimodal 0 8 8 50 0240  13.62

Table 6: This table shows different statistics compar-
ing the human annotation with the text-only model and
video-based multimodal model. Carbon emissions are
calculated using the US EPA’s greenhouse gas equiv-
alencies calculator. T 4: average time for annotation,
T rr: average time for fine-tuning, T;: average time for
inference, S: storage space needed for data.

7 Conclusion

In this paper, we have prompted, fine-tuned, and
compared text-only and multimodal language mod-
els for sign language processing tasks. We have
provided theoretical grounding and analyzed our
results from cognitive science and theoretical per-
spectives. From our findings, it can be claimed
that text-only language models perform better than
multimodal models. Moving forward, training big-
ger models with larger multilingual corpora is a
promising next step for a broader set of novel sign
language processing tasks.



8 Limitations

The major limitation of our work has been the com-
puting power required to fine-tune, test, and carry
out inference. Even with the smallest large lan-
guage models, it becomes quickly infeasible to test
multiple independent variables. Hence, our tech-
niques have been tested on the smaller end of the
large language family of models. Larger models
can have higher performance gains. An additional
limitation of our models is the context length. With
long linguistic rules added to the prompt, certain
samples of glosses made the inference lengthy. The
maximum number of generated tokens has been a
limiting factor of the output of models as well,
which resulted in poor performance metrics. These
can be alleviated with higher computing powers.
Another major limitation is the dataset size and
number of available tasks in sign language process-
ing. The sign language processing community has
focused on translation tasks so far, and not many
other task definitions and datasets exist that can
be useful for signers. This affects our benchmark-
ing, as the only tasks we can test the generalization
on are either other translation tasks or traditional
NLP tasks that are non-specific to signed languages.
Having diverse tasks and accompanying datasets is
needed for the future of sign language processing.

9 [Ethical Statement

We are using LLaMA2-based models for both our
text-only and multimodal setups, which are trained
on data acquired by Meta and are not made pub-
licly available; even though the model itself is
open-source, the pretraining dataset is not open.
This leads to unaccountable biases that have been
collected during the dataset formation and in the
pretraining, our models may have inherent biases
passed down from these pretraining setups. Our
RWTH-PHOENIX-14-T dataset contains the faces
of the signers, which is a piece of private informa-
tion. This private information is used in accordance
with the original dataset creator’s directions and
privacy concerns. Furthermore, sign language pro-
cessing can be a sensitive topic, especially when
the community-centric approach is not taken for
the design of systems. For this, we collaborate with
the deaf and hard-of-hearing communities or sign-
ers in general while developing such systems as
this one.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report.

Necati Cihan Camgoz, Simon Hadfield, Oscar Koller,
Hermann Ney, and Richard Bowden. 2018. Neu-
ral sign language translation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Emanuela Campisi, Anita Slonimska, and Asli Ozy'urek.
2023. Cross-linguistic differences in the use of
iconicity as a communicative strategy. In the 8th
Gesture and Speech in Interaction (GESPIN 2023).

Xuanyi Chen, Junfei Hu, Falk Huettig, and Asli
Ozyiirek. 2023a. The effect of iconic gestures on
linguistic prediction in Mandarin Chinese: a. [On-
line; accessed 14. Feb. 2024].

Yutong Chen, Ronglai Zuo, Fangyun Wei, Yu Wu, Shu-
jie Liu, and Brian Mak. 2023b. Two-stream network
for sign language recognition and translation.

Feng Cheng, Xizi Wang, Jie Lei, David Crandall, Mo-
hit Bansal, and Gedas Bertasius. 2023. VindLU: A
Recipe for Effective Video-and-Language Pretrain-
ing. [Online; accessed 15. Feb. 2024].

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

Jens Forster, Christoph Schmidt, Thomas Hoyoux, Os-
car Koller, Uwe Zelle, Justus Piater, and Hermann
Ney. 2012. RWTH-PHOENIX-weather: A large vo-
cabulary sign language recognition and translation
corpus. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 3785-3789, Istanbul, Turkey. Eu-
ropean Language Resources Association (ELRA).

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.


http://arxiv.org/abs/2309.16609
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3528269
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3528269
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3528269
http://arxiv.org/abs/2211.01367
http://arxiv.org/abs/2211.01367
http://arxiv.org/abs/2211.01367
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_VindLU_A_Recipe_for_Effective_Video-and-Language_Pretraining_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_VindLU_A_Recipe_for_Effective_Video-and-Language_Pretraining_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_VindLU_A_Recipe_for_Effective_Video-and-Language_Pretraining_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_VindLU_A_Recipe_for_Effective_Video-and-Language_Pretraining_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cheng_VindLU_A_Recipe_for_Effective_Video-and-Language_Pretraining_CVPR_2023_paper.html
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://www.lrec-conf.org/proceedings/lrec2012/pdf/844_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/844_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/844_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/844_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/844_Paper.pdf
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Aina Garf Soler and Marianna Apidianaki. 2021. Let’s
play mono-poly: BERT can reveal words’ polysemy
level and partitionability into senses. Transactions of

the Association for Computational Linguistics, 9:825—
844.

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang,
Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang,
Ping Luo, and Kai Chen. 2023. Multimodal-gpt: A
vision and language model for dialogue with humans.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks Are All You Need.
arXiv.

Thomas Hanke, Marc Schulder, Reiner Konrad, and
Elena Jahn. 2020. Extending the Public DGS Corpus
in size and depth. In Proceedings of the LREC2020
9th Workshop on the Representation and Processing
of Sign Languages: Sign Language Resources in the
Service of the Language Community, Technological
Challenges and Application Perspectives, pages 75—
82, Marseille, France. European Language Resources
Association (ELRA).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Hezhen Hu, Weichao Zhao, Wengang Zhou, and
Hougqiang Li. 2023. SignBERT+: Hand-Model-
Aware Self-Supervised Pre-Training for Sign Lan-
guage Understanding. [EEE Trans. Pattern Anal.
Mach. Intell., 45(9):11221-11239.

Mert Inan, Yang Zhong, Sabit Hassan, Lorna Quandt,
and Malihe Alikhani. 2022. Modeling intensifica-
tion for sign language generation: A computational
approach. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 2897-2911,
Dublin, Ireland. Association for Computational Lin-
guistics.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William EI Sayed. 2024. Mix-
tral of experts.

Zifan Jiang, Amit Moryossef, Mathias Miiller, and
Sarah Ebling. 2023. Machine translation between
spoken languages and signed languages represented

10

in SignWriting. In Findings of the Association for
Computational Linguistics: EACL 2023, pages 1706~
1724, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Dilay Z. Karadoller, David Peeters, Francie Manhardt,
Asli Ozyiirek, and Gerardo Ortega. 2023. Iconicity
and gesture jointly facilitate learning of L2 signs at
first exposure. Language Learning.

Emily Kubicek and Lorna C. Quandt. 2019. Senso-
rimotor system engagement during ASL sign per-
ception: An EEG study in deaf signers and hearing
non-signers. Cortex, 119:457-469.

Emily Kubicek and Lorna C. Quandt. 2021. A Positive
Relationship Between Sign Language Comprehen-
sion and Mental Rotation Abilities. J. Deaf Stud.
Deaf Educ., 26(1):1-12.

Huije Lee, Jung-Ho Kim, Eui Jun Hwang, Jaewoo Kim,
and Jong C. Park. Leveraging Large Language Mod-
els With Vocabulary Sharing For Sign Language
Translation. In 2023 IEEE International Conference
on Acoustics, Speech, and Signal Processing Work-
shops (ICASSPW), pages 04—10. IEEE.

Dongxu Li, Junnan Li, Hung Le, Guangsen Wang, Sil-
vio Savarese, and Steven C.H. Hoi. 2023. LAVIS:
A one-stop library for language-vision intelligence.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
3: System Demonstrations), pages 31-41, Toronto,
Canada. Association for Computational Linguistics.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning,
Peng Jin, and Li Yuan. 2023. Video-llava: Learn-
ing united visual representation by alignment before
projection.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023c. Visual instruction tuning. In NeurIPS.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning.

Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming
Zhou. 2020. Univl: A unified video and language
pre-training model for multimodal understanding and
generation. arXiv preprint arXiv:2002.06353.


https://doi.org/10.1162/tacl_a_00400
https://doi.org/10.1162/tacl_a_00400
https://doi.org/10.1162/tacl_a_00400
https://doi.org/10.1162/tacl_a_00400
https://doi.org/10.1162/tacl_a_00400
http://arxiv.org/abs/2305.04790
http://arxiv.org/abs/2305.04790
http://arxiv.org/abs/2305.04790
https://doi.org/10.48550/arXiv.2306.11644
https://aclanthology.org/2020.signlang-1.12
https://aclanthology.org/2020.signlang-1.12
https://aclanthology.org/2020.signlang-1.12
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/TPAMI.2023.3269220
https://doi.org/10.1109/TPAMI.2023.3269220
https://doi.org/10.1109/TPAMI.2023.3269220
https://doi.org/10.1109/TPAMI.2023.3269220
https://doi.org/10.1109/TPAMI.2023.3269220
https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.18653/v1/2022.findings-acl.228
https://doi.org/10.18653/v1/2022.findings-acl.228
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2023.findings-eacl.127
https://doi.org/10.18653/v1/2023.findings-eacl.127
https://doi.org/10.18653/v1/2023.findings-eacl.127
https://doi.org/10.18653/v1/2023.findings-eacl.127
https://doi.org/10.18653/v1/2023.findings-eacl.127
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3547112
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3547112
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3547112
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3547112
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3547112
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1016/j.cortex.2019.07.016
https://doi.org/10.1093/deafed/enaa030
https://doi.org/10.1093/deafed/enaa030
https://doi.org/10.1093/deafed/enaa030
https://doi.org/10.1093/deafed/enaa030
https://doi.org/10.1093/deafed/enaa030
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.1109/ICASSPW59220.2023.10193533
https://doi.org/10.18653/v1/2023.acl-demo.3
https://doi.org/10.18653/v1/2023.acl-demo.3
https://doi.org/10.18653/v1/2023.acl-demo.3
http://arxiv.org/abs/2311.10122
http://arxiv.org/abs/2311.10122
http://arxiv.org/abs/2311.10122
http://arxiv.org/abs/2311.10122
http://arxiv.org/abs/2311.10122
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2304.08485
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688

Amit Moryossef, Zifan Jiang, Mathias Miiller, Sarah
Ebling, and Yoav Goldberg. 2023. Linguistically
motivated sign language segmentation. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 12703-12724, Singapore. Asso-
ciation for Computational Linguistics.

Amit Moryossef, loannis Tsochantaridis, Roee Aharoni,
Sarah Ebling, and Srini Narayanan. 2021. Real-Time
Sign Language Detection Using Human Pose Estima-
tion. In Computer Vision — ECCV 2020 Workshops,
pages 237-248. Springer, Cham, Switzerland.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Al Piergiovanni, Isaac Noble, Dahun Kim, Michael S.
Ryoo, Victor Gomes, and Anelia Angelova. 2023.
Mirasol3b: A multimodal autoregressive model for
time-aligned and contextual modalities.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. Advances in Neural
Information Processing Systems, 32.

Walid Saba. 2023. Towards ontologically grounded and
language-agnostic knowledge graphs. In Proceed-
ings of the 15th International Conference on Com-
putational Semantics, pages 94-98, Nancy, France.
Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale.

Anthony Sicilia and Malihe Alikhani. 2022. LEATHER:
A framework for learning to generate human-like text
in dialogue. In Findings of the Association for Com-
putational Linguistics: AACL-IJCNLP 2022, pages
30-53, Online only. Association for Computational
Linguistics.

11

Daniel Stein, Jens Forster, Uwe Zelle, Philippe Dreuw,
and Hermann Ney. 2010. Rwth-phoenix: Analysis of
the german sign language weather forecast corpus. In
sign-lang@ LREC 2010, pages 225-230. European
Language Resources Association (ELRA).

Stephanie Stoll, Necati Cihan Camgoz, Simon Hadfield,
and Richard Bowden. 2020. Text2Sign: Towards
Sign Language Production Using Neural Machine
Translation and Generative Adversarial Networks.
Int. J. Comput. Vision, 128(4):891-908.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. LLaMA:
Open and Efficient Foundation Language Models.
arXiv.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open Foundation and
Fine-Tuned Chat Models. arXiv.

Carla Viegas, Mert Inan, Lorna Quandt, and Malihe
Alikhani. 2023. Including facial expressions in con-
textual embeddings for sign language generation. In
Proceedings of the 12th Joint Conference on Lexical
and Computational Semantics (*SEM 2023), pages 1—-
10, Toronto, Canada. Association for Computational
Linguistics.

Zhenhailong Wang, Manling Li, Ruochen Xu, Lu-
owei Zhou, Jie Lei, Xudong Lin, Shuohang Wang,
Ziyi Yang, Chenguang Zhu, Derek Hoiem, Shih-Fu
Chang, Mohit Bansal, and Heng Ji. 2022. Language
Models with Image Descriptors are Strong Few-Shot
Video-Language Learners. Advances in Neural Infor-
mation Processing Systems, 35:8483-8497.

Kayo Yin, Amit Moryossef, Julie Hochgesang, Yoav
Goldberg, and Malihe Alikhani. 2021. Including
signed languages in natural language processing. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th


https://doi.org/10.18653/v1/2023.findings-emnlp.846
https://doi.org/10.18653/v1/2023.findings-emnlp.846
https://doi.org/10.18653/v1/2023.findings-emnlp.846
https://doi.org/10.1007/978-3-030-66096-3_17
https://doi.org/10.1007/978-3-030-66096-3_17
https://doi.org/10.1007/978-3-030-66096-3_17
https://doi.org/10.1007/978-3-030-66096-3_17
https://doi.org/10.1007/978-3-030-66096-3_17
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2311.05698
http://arxiv.org/abs/2311.05698
http://arxiv.org/abs/2311.05698
https://aclanthology.org/2023.iwcs-1.11
https://aclanthology.org/2023.iwcs-1.11
https://aclanthology.org/2023.iwcs-1.11
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
https://aclanthology.org/2022.findings-aacl.4
https://aclanthology.org/2022.findings-aacl.4
https://aclanthology.org/2022.findings-aacl.4
https://aclanthology.org/2022.findings-aacl.4
https://aclanthology.org/2022.findings-aacl.4
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2023.starsem-1.1
https://doi.org/10.18653/v1/2023.starsem-1.1
https://doi.org/10.18653/v1/2023.starsem-1.1
https://proceedings.neurips.cc/paper_files/paper/2022/hash/381ceeae4a1feb1abc59c773f7e61839-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/381ceeae4a1feb1abc59c773f7e61839-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/381ceeae4a1feb1abc59c773f7e61839-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/381ceeae4a1feb1abc59c773f7e61839-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/381ceeae4a1feb1abc59c773f7e61839-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.18653/v1/2021.acl-long.570
https://doi.org/10.18653/v1/2021.acl-long.570

International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7347—
7360, Online. Association for Computational Lin-
guistics.

Kayo Yin and Jesse Read. 2020. Better sign language
translation with STMC-transformer. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5975-5989, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2023. A survey on
multimodal large language models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Hang Zhang, Xin Li, and Lidong Bing. 2023. Video-
llama: An instruction-tuned audio-visual language
model for video understanding.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yue Zhao, Ishan Misra, Philipp Krihenbiihl, and Rohit
Girdhar. 2023. Learning video representations from
large language models. In CVPR.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui,
HongFa Wang, Yatian Pang, Wenhao Jiang, Junwu
Zhang, Zongwei Li, Wancai Zhang, Zhifeng Li,
Wei Liu, and Li Yuan. 2024. Languagebind: Ex-
tending video-language pretraining to n-modality by
language-based semantic alignment.

A Hyperparameters & Training
Implementation Details

We trained all of the models on an Apple MacBook
Pro with an M3 Max chip. Libraries used were Py-
Torch, Huggingface TRL, Transformers, Datasets,
Evaluate, and W&B. The hyperparameters for the
LLaMA models are: learning rate of le-3, Ir sched-
uler type: "reduce Ir on the plateau”, per device
training batch size of 2, number of epochs of 5,
and weight decay of 0.01, and maximum sequence
length of 300 tokens. LoRA configuration for the
LLaMA model is: rank of 8, LoRA alpha of 32, and
LoRA dropout of 0.1. For the LLaVA model: mm
projector learning rate of 2e-5, one epoch, batch
size of 2, learning rate of 5e-5, linear Ir scheduler
type, maximum sequence length of 2048. LoRA
configuration for LLaVA model: LoRA rank: 128,
and LoRA alpha: 256.
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B All Prompt Types

Here we present all the prompt types that have been
used in the experiments:

* zero-shot prompt: This is a sentence in Ger-
man Sign Language glosses: <glosses>. You
MUST translate these to spoken German. You
MUST give the answer directly without any
other text.

rule-based prompt: "Instructions Here are
some basic rules of German GLOSSES: 1)
German signs correspond to meanings not to
words. 2) Some GLOSSes are formed from
more than one German word. In this case the
words are joined by a hyphen. The hyphen
indicates one single sign that is labeled with
two or more German words. 3) Glosses com-
bined with a plus sign are two separate signs
that are joined together to make what appears
to be a single sign 4) In DGS, some signs are
repeated for specific meaning. for instance
LEARN + LEARN changes the sign from the
VERB “To Learn” to the NOUN “Learning.”
5) Words that are to be Fingerspelled are in-
dicated in one of two ways: - Separated by
hyphens between each Fingerspelled letter: G-
L-A-D-Y-S - Preceded by the initials FS in
parenthesis: (fs) GLADYS. Task You MUST
translate <glosses> of DGS to German with-
out using any special characters, according to
these rules."

notation-based prompt: "Instruction Below
is a list of common symbols used in the writ-
ing of DGS Glosses: - The Crosshatch: This
symbol indicates a loan sign, a sign originat-
ing from the fingerspelling of an English word.
- Parentheses: () Additional information about
the production of a sign is can added to the
written gloss between a set of parentheses.
Such information can be abbreviated as in
(2h)DO++, or it may appear as German in-
structions to add information to a sign: GIVE
(left), or to a Classifier CL:1 (man hurries
past). - CL: The abbreviation CL: indicates
a classifier. The information following the
colon indicates the hand shape and number
of hands. - The Umlaut (two dots above a
given hand shape) ( indicate the bending of
the fingers of that hand. The 3 (called the
“bent three”) is the hand shape used in the
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sign “INSECT”. This technique is only used
in reference to a specific handshape such as a
classifier.

Task You MUST translate <glosses> to Ger-
man according to these symbols."

one-shot prompt: "Example ""Here’s a sam-
ple DGS gloss: “ORT REGEN DURCH
REGEN KOENNEN UEBERSCHWEM-
MUNG KOENNEN” which translates to
""mancherorts regnet es auch ldnger und
ergiebig auch lokale tiberschwemmungen sind
wieder moglich"" in German

Task You MUST translate <glosses> to Ger-
man according to this example. "
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