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ABSTRACT

Recent studies demonstrate that diffusion models can serve as a strong prior for
solving inverse problems. A prominent example is Diffusion Posterior Sampling
(DPS), which approximates the posterior distribution of data given the measure
using Tweedie’s formula. Despite the merits of being versatile in solving various in-
verse problems without re-training, the performance of DPS is hindered by the fact
that this posterior approximation can be inaccurate especially for high noise levels.
Therefore, we propose Diffusion Posterior MCMC (DPMC), a novel inference
algorithm based on Annealed MCMC to solve inverse problems with pretrained
diffusion models. We define a series of intermediate distributions inspired by the
approximated conditional distributions used by DPS. Through annealed MCMC
sampling, we encourage the samples to follow each intermediate distribution more
closely before moving to the next distribution at a lower noise level, and therefore
reduce the accumulated error along the path. We test our algorithm in various
inverse problems, including super resolution, Gaussian deblurring, motion deblur-
ring, inpainting, and phase retrieval. Our algorithm outperforms DPS with less
number of evaluations across nearly all tasks, and is competitive among existing
approaches.

1 INTRODUCTION

Diffusion Models (Sohl-Dickstein et al., 2015} [Ho et al.l 2020; Song & Ermonl 2019; [Song et al.|
2021b) have recently achieved significant success in high-dimensional data generation, including
images (Dhariwal & Nicholl 2021;|Ramesh et al., 2022; Rombach et al., 2022} Saharia et al., 2022),
videos (Ho et al., 2022bj; (OpenAl, 2024; |Ho et al.| [2022a; Blattmann et al., [2023} (Girdhar et al.,
2023), audio [Kong et al.[(2020); Chen et al.|(2020), text Li et al.|(2022), and and 3D generation (Liu
et al.} 2023} |Poole et al., [2023; Wu et al., [2023; Shi et al.| 2023} |Gao et al.,|2024)). Beyond generation
(Zhang et al., |2024a; (Chang et al., [2024)), recent works have applied diffusion models to solve inverse
problems in a plug-and-play fashion without the need for fine-tuning (Jalal et al.| 2021; Kadkhodaie
& Simoncellil 2021} [Kawar et al.,|2022; [Song et al., 2021b;|Chot et al., 2021} |Chung et al.| [2022a;
2023a; Dou & Song, |2023; Mardani et al., [2023a; [Song et al.| |2023b; |[Rout et al., 2023 |Song et al.|
2023a; |Chung & Ye, [2022; Feng et al., 2023} Zhu et al.,[2023b; |Chung et al., 2023b; Zhang et al.,
2024b), where the goal is to restore data x from degraded measurements y. Among these, one line of
works Jalal et al.| (2021)); Chung et al.| (2023al); Song et al.| (2023b); [Rout et al.| (2023); [Song et al.
(2023a)) proposes to modify the inference process of diffusion models with guidance that encourages
samples to be consistent with the measure. Other perspectives include variational inference (Mardani
et al.,|2023a; |[Feng et al.|[2023; |Zhu et al.,2023b)), Bayesian filtering Dou & Song|(2023)), and solving
an inner loop optimization problem during sampling (Song et al.| 2022; 2023a).

A typical challenge in this context is that the posterior distribution p(x|y) is only defined for clean
samples x, yet during sampling, an estimation of p(x;|y) is needed at each diffusion step ¢. DPS
(Chung et al.| [2023a) approximates the intractable posterior through Tweedie’s formula (Efronl 2011),
enabling its application in general inverse problems. However, this approximation might be inaccurate
especially on high noise levels, leading to samples of low quality. To address this, IIGDM (Song
et al., |2023b) attempts to improve the approximated guidance by pseudo-inverting the measurement.
Additionally, [Rout et al.| (2023); Song et al.|(2023a)) aim to enhance DPS in the Latent Diffusion
model (Rombach et al.,|2022)) by introducing extra guidance terms or resampling processes to the
data space.
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In this work, we propose to leverage annealed Markov Chain Monte Carlo (MCMC) to improve
solving inverse problems with diffusion models. As a family of effective algorithms that draw
samples from complex distributions, MCMC is widely used in training Energy-Based Models
(EBMs) (Xie et al. 2016; Nijkamp et al, [2019; Du et al., 2021) and sampling from diffusion
models (Song & Ermon, 2019;[Song et al.,|2021b). Annealed MCMC further proposes to facilitate
MCMC sampling by gradually sampling from a sequence of distributions from decreasingly lower
temperature, to accelerate the mixing. Previous work (Du et al.| [2023) has leveraged Annealed
MCMC in compositional generation with EBMs or diffusion models. In this work, we propose using
MCMC to reduce the error of posterior approximation in solving inverse problems.

There are some earlier works (Jalal et al.,[2021} [Song et al., 2021b)) that employ annealed MCMC
with Langevin dynamics to solve inverse problems. They tackle the intractability of the posterior
distribution by projecting the current sample onto the measurement subspace. However, these
approaches might fail when measurements are noisy or the measurement process is non-linear,
as discussed in |Chung et al.[(2023a). Moreover, a single MCMC step is executed at every noise
level before moving to the next noise level. Alternatively, we propose to build the the intermediate
distributions of our annealed MCMC with the approximated posterior distributions derived in /Chung
et al.[(2023a). Despite the fact that such approximation might be inaccurate for the data distributions
defined by the forward diffusion, they still remain as a valid sequence of distributions that can be
leveraged in annealed MCMC. We further propose to run multiple sampling steps at each noise level
similar to Du et al.|(2023), that empirically improves the performance.

In summary, we make the following contributions in this work:

* We propose the Diffusion Posterior MCMC (DPMC) algorithm, which leverages annealed
MCMC with a sequence of posterior distribution of data given measurements, whose formula
is inspired by DPS (Chung et al., 2023a).

* We demonstrate that empirically DPMC outperforms DPS in terms of sample quality across
various types of inverse problems in image domain, including both linear and nonlinear
inverse problems. DPMC also establishes competitive performance compared with other
existing approaches.

» Through extensive ablation study and comparison with other approaches, we highlight the
effectiveness of MCMC-based approaches for solving inverse problems, and a constant
improvement of performance with increasingly larger number of sampling step.

2 BACKGROUND

2.1 INVERSE PROBLEM

We denote data distribution X ~ pgatq(x). In many scientific applications, instead of directly
observing x, we might only have a partial measurement y, which is derived from x, and we want to
restore x from y. Formally, we might assume the following mapping between x and y

y =A(x)+n, xe R, y e RY, n~ N(0,%) 1)

where A(-) : RP s R? is called forward measurement operator and n is the measurement noise
following Gaussian distribution. Therefore, we have p(y|x) ~ N (A(x), c?I). Mapping between x
to y can be many-to-one. This makes exactly restoring x become an ill-posed problem.

2.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., [2015; |[Ho et al.l 2020; Song et al.| |2022; |Song & Ermon,
2019) define a generative process that gradually transforms a random noise distribution into a clean
data distribution. A diffusion model consists of a forward noise injection process and a backward
denoising process. Let Xg ~ pgqtq denote clean observed samples. DDPM (Ho et al., 2020) defines a
Markovian forward process as follows:

Q(XlzT\Xt—l) = Q(Xt|xt—1) = N(\/OTtXt—l, 5t1)
q(xt[x0) = N(vauxo, (1 — a)I) 2
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where {3;}7_, is the manually designed noise schedule that might differ from different works (Ho
et al} 2020; [Song et al.| [2021b; [Karras et al., [2022). And oy = 1 — B4, ¢ = H§=1 o;. In the
backward process, we start from the noise distribution and gradually denoise the samples as follows:

xi_1 = po(xe,t) +\/ Bize, 2z ~ N(0,1)

1 By > 1—ay
Xy, t) = X; — X¢,t) ), = 3
He(t ) m<t mﬁe(t )) Bt 1— o Bt 3)
where €g(x¢, t) is parameterized by a neural network (Ho et al.|[2020; Peebles & Xie),[2023). Let the
marginal distribution defined by the forward process of x; be denoted as p;(x;). When trained with
denoising score matching loss (Ho et al.| 2020; [Song et al., [2021b)), with sufficient data and model
capacity, for almost all x and ¢, €9(x:, t) corresponds to the gradient field V, log p:(x:) as follows:

€9(X¢,t
Vi, logpi(x:) = —%
—Qy

Other than DDPM, DDIM (Song et al., 2021a)) defines a Non-Markovian forward process that shares
the same training objective as DDPM. Thus, a model trained with DDPM can be directly applied in
the DDIM sampler to accelerate the sampling process. A DDIM sampler follows:

—+v1—a ,t -
Xi—1 =V Qr—1 (Xt \/gtee(xt )) +1/1 =01 — Ugea(xtut) + 0:2Z¢ )
t

where z; ~ N(0,I) and variance oy can be arbitrary defined.

“

2.3 DIFFUSION POSTERIOR SAMPLING

To solve the ill-posed inverse problem, Diffusion Posterior Sampling (DPS) (Chung et al., |2023a)
recruits pretrained diffusion models (Ho et al., [2020; [Song et al., 2021b)) as prior and propose an
iterative optimization algorithm. According to Bayes rule, the gradient field of posterior distribution
Vi, logp(xt|ly) = Vi, logpi(x:) + Vi, log p(y|x:) where the term Vy, log p:(x;) is estimated
by the pretrained diffusion model using equation[d In DPS, the authors adapt the approximation
p(y|xt) = p(y[%o), where Xo(x:) = Fx,~p(xo|x;) [X0] can be estimated through Tweedie’s formula
(Efronl 2011):

. Xt — V1 — aueg(xy, t)

= 6
Xo o (6)
Given noisy observation data x;, DPS makes the following updates
Xy = (= ey, t)) + o0t 7~ N(O,T)
V1—p vi—ay

Xi-1=X;_1 — (Vi [ly — Al%o) |3 @)

In practice, DPS employs the following adaptive step size parameter (;:

¢
G=7—~ (3)
ly — A(%o)ll2

where ( is a fix constant.

3  DIFFUSION POSTERIOR WITH MCMC SAMPLING

In this section, we introduce our DPMC model, which combines diffusion models and Markov Chain
Monte Carlo (MCMC) sampling. The former one is for the progressive denoising to provide an
unconditional proposal distribution. The latter is for the conditional guidance by the measurement y.
According to Theorem 1 in|Chung et al.|(2023a), error of the approximation p(y|x;) =~ p(y|Xo) is
bounded by the estimation error between x, and Xo. When the noise level is low, p(xg|x;) can be
single-modal and the estimation X and the posterior approximation might be accurate. However,
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Figure 1: The illustration of DPMC. At each step, DPMC iterates over diffusion proposal step and
MCMC exploration step.

at higher noise levels, where p(xo|x;) can be indeed multi-modal and X can be far from xq, this
approximation can be too loose, potentially leading to inferior results. As illustrated in Figure [2]
while the samples of DPS are valid, they might fail to capture vivid details. To address these problems,
we instead resort to MCMC sampling.

Unlike diffusion models, which explicitly define all the noise distributions p;(x;) through the forward
process, MCMC sampling does not require knowledge of the sample distributions at each intermediate
MCMC step. As long as a valid transition kernel and a sufficient number of MCMC sampling steps
are used, MCMC is known to sample from arbitrary underlying distributions.

Annealed MCMC (Neal, 2001} [Song & Er] - -
imon, 2019} [Song et al}, 2021b) is a widely Algorithm 1 DPMC Algorithm

used technique to accelerate the MCMC  Require: Inverse problem forward operator A(.),

sampling process for highly multi-modal noisy measurement y, pretrained diffusion prior
data. In the annealed sampling process, model p;(x;), number of intermediate noise levels
samples gradually progress through a series T, number of MCMC steps K, MCMC step size 7;,
of intermediate distributions with different weighting parameter &;.

temperatures. MCMC is applied at each
intermediate distribution to enable samples :fort=Tto1ldo

to transition from the previous distribution Proposal step: Sample x;_; from x; following
to the current one. In this work, we apply Eq.f|

annealed MCMC to solve the inverse prob- Exploration step: Set x\*), = %,_;

lem. We introduce a series of intermediate for k — 1to K do =1

4
TR N 5
distributions {p;(x;|y)}7_,. Note that we 6 Update x!_, to x**! following Eq.
7
8

—_

: XTNN(O,I)

W N

(0)

do not expect ;ﬁt(xt|y) to be close to the end for
true posterior distribution p;(x;|y) at every . end for
intermediate distribution. Instead, we only
require p;(x:|y) to agree with p(x;|y) at
the clean image distribution. The key idea is that MCMC sampling can bridge the gap between
different intermediate distributions. And the intermediate distributions only need to form a trajectory
that enables MCMC to smoothly transition from the noise distribution to the target distribution in the
clean data space.

Following Chung et al.| (2023a)), we define the intermediate distributions p;(x;|y) as

Pe(xely) o< pe(xt) exp(—plly — A(%0)l|3) &)

where p = 1/0%. py(x;) denotes the diffusion prior at noise level ¢ and Vy, log p;(x;) can be
estimated using equation[d] However, instead of using|[7)for sampling, which requires the intermediate
distribution to be sufficiently close to the ground truth posterior at each noise level, we propose a new
proposal-and-update algorithm based on annealed MCMC sampling.
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Figure 2: Qualitative comparison between DPS samples and our DPMC samples. Images in the top
rows are from super resolution task. Images in the bottom rows are from Gaussian deblurring task.

Proposal Stage: Given samples x; that follow the intermediate distribution p;(x¢|y), we first denoise
them to ¢ — 1 following the standard diffusion step without considering the extra guidance. We
denote the proposed sample as X;_. The proposal step aims to provide a good initialization for the
intermediate distribution at p;_1(x;_1|y) with the help of the diffusion model. The samples X;_;
might not fully adhere to the target distribution p; 1 (x;_1|y), but we hope they are close enough to
the target distribution so that we can obtain good samples with a few MCMC sampling steps.

Exploration Stage: We then encourage the samples to explore the landscape at noise level ¢ — 1 and
follow py—1(x¢—1|y) with MCMC updates. We employ Langevin Dynamics (Roberts & Tweediel
1996) as the transition kernel. Specifically, starting from xY ;| = %X;_1, we iterate the following
updates:

xi = x{ Vi log i (xi1]y) + /21w, w~ N(0,T) (10)

We named our algorithm Diffusion Posterior MCMC (DPMC). We illustrate DPMC Figure|[I]and in
Algorithm [T} We also provide a theoretical analysis which shows that the conditional distribution
derived by DPMC is e-close to the ground truth, i.e.

Drv(qo(x0 | ¥) [ p*(%0 | ¥)) <

with a carefully chosen step size 7; and inner loop K of the Langevin MCMC algorithm, under
several assumptions on the score estimation error, conditional probability approximation error as well
as some convexity and Lipschitz continuity conditions. Detailed assumptions and main theorem for
the convergence of our DPMC algorithm is deferred to Appendix [B]

Implementation Details We apply the same implementation as[Chung et al.| (2023a) in equation|[§]by
introducing a step size parameter (; to be inverse proportional to optimization distance ly — A(%o)]l2-
This setting equals to sampling according to the prior distribution tilted by an exponential distribution
of the optimization distance. In practice, we calculate Vy,p:(x:|y) at each step using the following
equation:
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Vx, log;ﬁt(xt|y) = Vx, logpt(xt) —&Vx, Hy - A(’ACO)||2 (11)

where &, represents a constant or variable weighting schedule. Note that we replace square /o norm
by I norm itself. According to/Chung et al.|(2023a);/'Song & Dhariwall (2023)), using /5 norm might
make the optimization to be more robust to outliers and can achieve more stable results than square /5
norm as it imposes a smaller penalty for large errors.

While adding MCMC exploration might inevitably introduce more sampling steps at each intermediate
distribution and thus increase the sampling time, we find that with DPMC, we can counteract this by
reducing the number of intermediate distributions needed. In fact, we find that using 200 intermediate
distributions is sufficient for DPMC. Moreover, during the early stage of diffusion, the samples are
very close to Gaussian noise. Considering that the reason for inserting intermediate distributions is to
provide a good initialization for sampling more complex distributions that are very different than
Gaussian, we can skip those early stages with high noise levels and start MCMC sampling directly
from a moderate noise level. On the other hand, at very low noise levels, p(xo|x;) almost becomes
single-modal, and the approximation p(y|x;) ~ p(y|xo) becomes sufficiently accurate. Thus, we
can directly follow DPS without the need for additional MCMC sampling. In fact, we find that
DPMC performs well when we apply the proposal and exploration steps only to the middle steps of
the sampling process, while following the original DPS setting at both ends. This further reduces the
number of evaluation steps needed. In practice, DPMC can achieve much better results compared to
DPS with an even smaller number of evaluations (NFEs).

4 EXPERIMENTS

In this section, we conduct experiments on the DPMC method proposed by us, which outperforms
existing baselines on diffusion posterior sampling. To start with, we thoroughly introduce the models,
datasets and settings of our experiments.

4.1 EXPERIMENT SETTINGS

Datasets and Pretrained Model: Following (Chung et al.| (2023a)), we test our algorithm on FFHQ
256 x 256 dataset (Karras et al.,|2019) and ImageNet 256 x 256 dataset (Deng et al., 2009). Same as
Chung et al.| (2023a)); Dou & Song| (2023)), we use 1k validation images for each dataset. For FFHQ
dataset, we use the pretrained model provided by |Chung et al.|(2023a). For ImageNet dataset, we use
the pretrained model provided by |Dhariwal & Nichol| (2021).

Inverse Problems: We evaluate the effectiveness of our DPMC algorithm on the following inverse
problems: (i) Super-resolution with 4x bicubic downsampling as the forward measurement; (ii)
Random inpainting using both box masks and random masks; (iii) Deblurring with Gaussian blur
kernels and motion blur kernels|'f (iv) Phase retrieval, where we perform a Fourier transformation on
each image and use only the Fourier magnitude as the measurement. Among these inverse problems,
(i), (i1), and (iii) are linear inverse problems, while (iv) is a nonlinear inverse problem. We use
Gaussian noise with 0 = 0.05 for all tasks and set task-related parameters according to Chung et al.
(2023a)); \Dou & Song|(2023)) to ensure a fair comparison.

Hyper-Parameter Setting: We use the DDIM sampler with default variance o, = 0 as our diffusion
proposal sampler. We use 7' = 200 intermediate distributions and K = 4 MCMC steps at each
intermediate distribution. Empirically, we set 7, = n3; and & = £&3, where 1) and € are task-related
constants. We find these schedules work well across all settings. The detailed parameter settings
can be found in Section [A]in the Appendix. As discussed in[3] we apply the proposal-exploration
step in the middle 60% of the total sampling steps and resort to original DPS sampler step at the first
30% and the last 10% noise levels. An exception is the inpainting task with a box-type mask on the
ImageNet dataset, where we find that applying the proposal-exploration step until clean images yields
better results. Considering both the initial proposal step and the MCMC sampling steps, the NFE of
this setting is around 700, which is smaller than the 1000 NFE of DPS. All of the experiments are
carried out on a single Nvidia A100 GPU. We report the running clock time of DPMC in Table []in

Appendix
"https://github.com/LeviBorodenko/motionblur
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Figure 3: Qualitative results of DPMC on different linear inverse problem tasks.

Baselines: On linear inverse problems, we compare DPMC algorithm with the original DPS (Chung
et al.| [2023al), filter posterior sampling (FPS) with and without sequential Monte Carlo sampling (Dou

& Song, 2023), IIGDM (2023b), DDNMWang et al.|(2023), RED-Diff Mardani et al.
(2023a), DiffPir [Zhu et al.| (2023a), CCDF [Chung et al.| (2022b)), denoising diffusion restoration
models (DDRM) (Kawar et al., 2022), manifold constrained gradients (MCG) 2022a),
plug-and-play alternating direction method of multiplier (PnP-ADMM) 2017), Score-
Based SDE (Song et al.| 2021b}, [Choi et al.| 2021) and alternating direction method of multiplier
with total-variation (TV) sparsity regularized optimization (ADMM-TV). We get the results of FPS,
DiffPir, CCDF, DDRM, MCG, PnP-ADMM, Score-Based SDE, ADMM-TV from the corresponding
papers. We reproduce the results of [IGDM and RED-Diff with the official implementation EI of
RED-Diff. And We reproduce the results of DDNM using its official implementation El

On phase retrieval, we compare DPMC with DPS (Chung et al.,|2023a)), oversampling smoothness

(0OSS) (Rodriguez et al., 2013), Hybrid input-output (HIO) (Fienup & Daintyl, [1987) and error
reduction (ER) (Fienup), [1982) algorithm.

4.2 EXPERIMENTAL RESULTS

Linear Inverse Problems: We carried out experiments on FFHQ and ImageNet datasets. We show
qualitative samples of each task in Figure 3] More results can be found in Appendix . DPMC is
able to generate valid samples given the noisy, degraded input. Note that, as discussed in[2.1] given
the information loss in the image degradation process, exactly restoring the original x is ill-posed.
Instead, an effective algorithm should be able to fill in meaningful content that agrees with the noisy
observation. This is particularly true for tasks with large information loss, such as inpainting large
areas in the image with random or box masks. We show an example in Figure f] where we present
samples generated with different random seeds using the same noisy observation y in the inpainting

Zhttps://github.com/NVlabs/RED-diff
3https://github.com/wyhuai/DDNM
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task with a box-shaped mask. DPMC is capable of generating various samples that agree with the
observed part.

Qualitative results are shown in Table[T|and Table 2] Following|[Chung et al.|(2023a)); Dou & Song
(2023)), we report the LPIPS score (Zhang et al.| |2018) and FID (Heusel et al.,|2017) score. The
LPIPS score measures the similarity of predicted samples with the ground truth at the single image
level. As discussed inZhang et al.|(2018)), unlike PSNR and SSIM, which capture shallow, low-level
features and might fail to account for many nuances of human perception, LPIPS focuses more on
structured information related to human perception. On the other hand, FID measures the distribution
differences between generated samples and observations. We believe these two metrics are well-suited
to reflect sample performance given the many-to-one mapping nature between y and x.

We have observed that the results of RED-diff and IIGDM are significantly influenced by whether
noise is added to the degradation process. We observed that if noise is added, the optimized samples
might exhibit noise-like artifacts and sometimes completely fail. Therefore, we include both the noisy
version (same as our setting) and the noiseless version (denoted as o = 0 ) here. Note that due to
setting differences, the noiseless results are listed here for reference only.

As we can see, DPMC achieves similar or better results than DPS on both datasets across all tasks
using less NFE. This is also evident in the qualitative comparisons in Figure[2] where DPS provides
blurred samples and our DPMC fills in more vivid details. Compared to other strong baselines, such
as FPS, 7GDM, DDNM, DPMC achieves superior results on most tasks, especially in terms of FID.
A full qualitative comparison of DPMC and these baselines can be found in figure [T} DPMC has the
advantage in the sample details and will not provide samples containing noise-like artifacts in noisy
settings (o > 0). This demonstrates the effectiveness of introducing MCMC in the sampling process.

Nonlinear Inverse Problem: We conducted the phase retrieval experiment on the FFHQ dataset.
For this, we utilized 7" = 200 intermediate distributions and X = 6 MCMC sampling steps at
each intermediate distribution. The proposal-exploration step was still applied to the middle 60%
of the sampling steps, corresponding to 920 NFE. Similar to DPS, we observed that the quality of
final samples depend on the initialization. Therefore, we followed DPS by generating four different
samples and selecting the best one. Our qualitative results are shown in Figure[5] and the quantitative
results are reported in Table[3] Compared to DPS, our DPMC achieved better LPIPS and a similar
FID score.

Table 1: Quantitative results of various linear inverse problems (with o = 0.05) on FFHQ 256 x 256-
1k validation set. Bold denotes the best result for each task and underline denotes the second best
result. Results with “*” are reproduced by ourselves. We also list the noiseless version (o = 0) of
RED-Diff and IIGDM on the bottom for reference.

Methods Super Resolution Inpainting (box) G ian Deblur Inpainting (random) Motion Deblur
FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS
DPMC (Ours) 2193 0.212 19.59 0.160 21.34 0.210 21.26 0.205 20.73 0.213
DDNM*(Wang et al.|[2023) 26.64 0214 2597 0.150 2869 0.212 28.71 0.201
RED-Diff* (Mardani et al.[[2023a} 89.13  0.435 - - 3735  0.255 - -
IIGDM* (Song et al.[[2023b} 29.59 0214 - 431.83  0.887
CCDF (Chung et al.||2022b) 60.90 - 4977 - - - - - - -
DiffPir (Zhu et al.[[2023a) - 0.260 - 0.236 - - - - - 0.255
FPS (Dou & Song!2023)} 26.66 0.212 26.13  0.141 30.03 0.248 3521  0.265 26.18 0.221
FPS-SMC (Dou & Song||2023) 26.62 0.210 26.51  0.150 29.97  0.253 33.10 0.275 2612 0.227
DPS (Chung et al.[[2023a) 39.35 0214 33.12  0.168 44.05 0257 21.19 0212 39.92  0.242
DDRM (Kawar et al.[[2022) 62.15 0.294 4293  0.204 7492 0.332 69.71  0.587 - -
MCG (Chung et al.[[2022a) 87.64 0.520 40.11  0.309 101.2  0.340 29.26  0.286
PnP-ADMM (Chan et al.|[2017) 66.52  0.353 151.9  0.406 90.42 0.441 123.6  0.692
Score-SDE (Song et al.|[2021b{|Cho1 et al.|[2021)  96.72  0.563 60.06 0.331 109.0  0.403 76.54  0.612
ADMM-TV 110.6  0.428 68.94 0322 186.7  0.507 1815 0.463
RED-Diff* (¢ = 0.0) (Mardani et al.|[2023a) 39.68 0.185 - - 30.54 0.161
TIGDM* (o = 0.0) (Song et al.{|2023b} 39.61 0.207 - - 3452 0.140

4.3 ABLATION STUDY

We conducted ablation studies on critical parameters of DPMC using the Gaussian deblur task on
the FFHQ dataset. Table fa] examines the impact of the number of MCMC sampling steps. Table
explores the influence of the number of intermediate distributions. Table [4c|evaluates different
weighting schedules by setting & oc f(@;), where f(-) ranges from a constant function to &;.
For each ablation setting, we adjusted the task-related parameters 7 and £ to optimize the current
configuration. The results demonstrate that using more sampling steps or intermediate distributions
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Table 2: Quantitative results of various linear inverse problems (with ¢ = 0.05) on ImageNet
256 x 256-1k validation set. Bold denotes the best result for each task and underline denotes the
second best result. Results with “*” are reproduced by ourselves. We also list the noiseless version
(0 = 0) of RED-Diff and IIGDM on the bottom for reference.

Super Resoluti Inpainting (box) G ian Deblur  Inpainting (random) Motion Deblur
Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS
DPMC (Ours) 31.74  0.307 30.55 0.221 3362 0318 30.25  0.292 30.88 0.303
DDNM*(Wang et al. 41.62 0317 3391 0.208 3725 0.321 37.82 0315
. 82.62 0471 - - 39.11 0319 - -
4355 0.343 - - 371.33 0.813 -
- 0.371 - 0.355 - - - - - 0.366
47.32  0.329 33.19  0.204 5441  0.396 42,68 0.325 5222 0370
4730 0316 3324 0212 5421 0403 4277 0328 52.16 0.365
50.66 0.337 38.82  0.262 6272 0444 35.87 0.303 56.08 0.389
59.57 0.339 4595 0.245 63.02 0427 1149  0.665 - -
1445 0.637 39.74  0.330 95.04  0.550 39.19 0414
9727 0433 7824 0.367 100.6  0.519 1147 0.677
170.7  0.701 54.07 0354 1203 0.667 127.1  0.659
ADMM-TV 130.9 0.523 87.69 0319 1557 0.588 189.3 0510

RED-Diff* (¢ = 0) (Mardani et al.|[2023a 45.17  0.304 - - 3229 0232
TIGDM* (o = 0) (Song et al. 50.21 0342 - - 3299  0.200

Ground Truth x Observation y Sample 1 Sample 2 Sample 3

Figure 4: Inpainting results with box-shape mask using different random seed. The first column is
the ground truth. The second column is the masked observation. The third to fifth columns are results
get by our algorithm under different random seeds.

improves performance, with T' = 200 and K = 4 being a good choice for balancing performance
and sample efficiency. Additionally, setting & = £a3 yields better results compared to constant
scheduling or other alternatives.

Table 4: Ablation studies on number of MCMC sampling step K, number of intermediate distribution
T and €; schedule. In[a] we keep the same number of intermediate distributions and change the
number of MCMC sampling steps; in4b}, we keep the same MCMC sampling steps and change the
number of intermediate distributions; 1?1% we keep the number of MCMC steps and the number of
intermediate distributions and change different weighted schedule &;.

(a) Keep T' = 200, Change K (b) Keep K = 4, Change T'

K=1 K=2 K=4 K=6 T=100 T=200 T=300 T=400

LPIPS 0227 0.214 0210 0209 LPIPS 0.220 0.210 0.209 0.207
FID 26.81 22.00 2134 21.25 FID 21.89 2134 2129  21.35

(c) Keep T" = 200, K = 4, Change &; schedule.

Constant & a? a3 af

LPIPS 0.232 0.219 0.213 0.210 0.209
FID 24.72 22.53 21.62 2134 2143
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Table 3: Quantitative results of DPMC on
FFHQ 256 x 256 phase retrieval task.

Methods FID LPIPS

DPMC (Ours) 55.64 0.372

DPS (Chung et al.,[2023a) ~ 55.61 0.399
OSS (Rodriguez et al., 2013 137.7 0.635
HIO (Fienup ainty L@) 96.40 0.542
tenupl |1 214.1 0.738

Observation y Ground Truth x Sample

Figure 5: Qualitative results of DPMC on FFHQ
256 x 256 phase retrieval task.

5 CONCLUSION AND FUTURE WORK

In this study, we propose DPMC, an algorithm based on a specific formula of the posterior distribution
and Annealed MCMC sampling to solve inverse problems. We demonstrate that DPMC results in
superior sample quality compared to DPS across various inverse problems with fewer functional
evaluations. Our study underscores the benefit of incorporating more sampling steps into each
intermediate distribution to encourage exploration. Additionally, it is beneficial to trade in the number
of intermediate distributions with the number of MCMC exploration steps. One potential limitation of
our current work is the necessity to manually tune the weighting schedule and other hyper-parameters,
whose optimal values can vary for different tasks. An interesting future direction is to explore
scenarios where an explicit estimation p(x) is provided by an EBM or another likelihood-based
estimation technique, enabling the use of more advanced samplers such as Hamiltonian Monte Carlo
(HMC) with adaptive step sizes. As a powerful algorithm that can process images, DPMC might
have the potential to cause negative social consequences, including deepfakes, misinformation, and
privacy breaches. We believe that more research and resources are needed to mitigate these risks.
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A EXPERIMENTAL DETAILS

In this study, for linear inverse problem, we use 7' = 200 intermediate distributions and K = 4
MCMC sampling step at each intermediate distributions as our default setting. For the nonlinear
inverse problem, phase retrieval, we use T = 200 intermediate distributions and K = 6 MCMC
sampling step at each intermediate distributions. Our main task specific parameters are the Guidance
weight £ and Langevin step size coefficient 17. We show the parameter setting for each task in Table[5]
All of our experiments are carried on a single Nvidia A100 GPU.

Table 5: Hyper-parameter settings for various linear inverse problems. &: Guidance Weight; 7:
Langevin Step Size Coefficient

(2) FFHQ dataset (b) ImageNet dataset
Settings ¢ n Settings ¢ "
Super Resolution 3.6e3 0.2 -
Inpainting (box) 4.2e3 05 Sup r Resolutlon 3.3e3 0.4
. Inpainting (box) 5.1e3 04

Gaussian Deblur 6e3 03 .

- Gaussian Deblur 4.5e3 03
Inpainting (random) 6e3 0.5 L

. Inpainting (random) 5.7¢3 0.5
Motion Deblur 6.6e3 0.3 Motion Deblur 63 05
Phase Retrieval 1.5¢3 3.0 ¢ ;

B THEORETICAL ANALYSIS

In this section, we provide some theoretical analysis on the DPMC model proposed by us. First, we
start with some existing results on the KL-convergence of the Langevin MCMC algorithm. Denote
p* as the target distribution over R?, and s*(x) := V log p*(x) as its score function. The Langevin
MCMC algorithm with step size 7 is given by:

Xo ~po; Xiy1=X; +1s"(Xi) ++/2n-&
where &; ~ N (0, I;). Before we state the convergence rate, we propose the strong convexity and
Lipschitz continuity assumption that the target distribution p* needs to satisfy.

Assumption B.1 (Strong Convexity and Lipschitz Continuity of Potential Function). Let U(X) =
—log p*(X) be the potential function. It has m-strong convexity and its gradient has L-Lipschitz

continuous, i.e.:
mly < V2U(X) < LI; forvX € R%

Under this assumption, Cheng & Bartlett| (2018)) propose the following total variation convergence

result of the Langevin MCMC algorithm.

Lemma B.2 (TV-Convergence of Langevin MCMC Algorithm). After choosing the step size n =
%, and the number of iterations

K 32L2dlog(Drv (pollp*)/e)
- m2e2

)

the last iterate distribution px := Law (X ) holds that:

Drv (prllpo) <e.

Notice that in the original Theorem 1 of |(Cheng & Bartlett, (2018), the authors set pg = N (0, %I 4)-
However, the proof does not actually rely on this choice. Besides, we use the corollary of TV-distance
convergence instead of the original KL-divergence result since TV distance holds triangular inequality,
which benefits our analysis.

Next, we study the distribution estimation error and provide a convergence guarantee for DPMC
proposed by us. Our main result requires the following assumptions on the conditional distribution
p(x¢ | y) as well as the unconditional score estimation error.
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Assumption B.3 (Unconditional Score Estimation Error). For all k = 1,2,..., N, it holds that:

8g(x, kh) — V log pn (x)||* < &3

score

EXN:DML

where $¢(x, t) is the pretrained score estimator we plug into our algorithm, and h = T'/N is the time
step.

Assumption B.4 (Conditional Score Approximation). Forall k = 1,2,..., N, we have an upper
bound for the TV-distance between the true conditional distribution pgp, (Xgn | ¥) and our DPS-type
approximation pgp, (Xin | y) as follows:

Drv (Pen(Xkn | Y) | Pen(Xkn | ¥)) < Econd-

Assumption B.5 (Lipschitz Continuity, Strongly Convexity and Bounded Moment of Conditional
Score). For all ¢, the conditional score V log p;(x; | y) is L-Lipschitz continuous, and the potential
function log p;(x¢ | y) is m-strongly convex, which enables us to obtain exponential convergence of
Langevin MCMC algorithm. We also assume that

By () |V 102 P2 (Y | 3%0) |2 < Ul
Fort =0, po(- | y) has bounded second-order moment, i.e.
m% = Exofvpo(‘ly)”XOHQ < OQ.

It also leads to the conclusion that po(x¢ | y) has a bounded KL-divergence from the standard
Gaussian distribution, i.e.

Dk (po(x0 | y)[IN(0, 14)) < poly(d).

Assumption B.6 (Initial Conditional Gap). The TV-distance in Assumption is upper bounded by
€o whent =0, i.e.
Drv (po(woly), p(zoly)) < €o-

Unlike the Jensen gap £.onq Which is expected to be large because DPS-type approximation Py, (X, |
y) is usually not a good estimate of the true conditional distribution, &¢ is only dependent on score
estimation error, which can be sufficiently small after enough training.

Now, we state our main theorem as follows:
Theorem B.7. Under Assumptions once our time step h < 1/L A\ 1, we can guarantee
that our last-iterate conditional distribution qo(- | y) derived from DPMC is (€ 4 €cond)-close from
ground truth with respect to TV-distance:

Drv(qo(%0 | ¥),po(x0 | ¥)) <e+eo
after choosing the step size 1 and the number of inner loops (denoted by K) of the Langevin MCMC
algorithm at all time steps as follows:

_ me? o= 32L2d - log((v/poly(d) - exp(—T) + cond)/€ V Einter/)
- 32Ld? T m2e2 ’

Ui

Here,
Einter += € + €cond + C\/ﬁ . (L Vv dh + ngh) + C\/E(Escore + Ucond)a

and C'is a universal constant.

Proof. Denote g;(-) as the probability measure derived by the backward process of diffusion model.
For the initial step of backward process, we have gr = N (0, I;), whose distance from p shows the
convergence of forward process. According to|Chen et al.| (2022)), the variance-preserving framework
leads to exponential convergence of forward process, i.e.

Dy (pr(xz | 9)IN(0, 1)) < Dk (po(x0 | 4)[IN(0, Ia)) - exp(=T") < poly(d) - exp(-T).
By using Pinsker’s Inequality and Assumption[B.4] we have:

Drv (pr(xr | y)IN(0,1a)) < v/poly(d) - exp(~T) + econd.
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Starting from X7 ~ g7 = N(0, I), we apply Langevin MCMC algorithm with regard to the score
function V log pr(xr | y). By using Lemma B.2} we can make Drv (g7 (xr | y), pr(xr | y)) < ¢
by using step size n = %, and the number of iterations

) = 32L%dlog(Dry (ar[[pr(xr | y))/e)
N m2e2 '
Next, we apply unconditional backward step as well as Langevin MCMC inner loops to
make sure Dry(qen(Xkn | ¥)sPkn(Xkn | y)) < € holds for Vk € [N], including the
last iterate ¥ = 0. We prove it by the method of induction. Assume it holds that
Drv (gt 1yn Ze+1yn 1Y) | k1) (Xgt1yn | y)) < €, then we immediately have

Drv (e )n e 1yn 1Y) | Prryn X yn 1Y) < €+ cond
by using Assumption as well as the triangular inequality of TV distance. After applying a
backward diffusion step with unconditional score estimator $4(-,t) plugged in and obtain Xgp,.
During this backward step, the score estimation error is actually
Ekamh(xkh\y)||=§9(th) — Vlog prn(Xn | Y)||2

< B, 130(%kn) — Vlog prn (Xin) — V1og prn(y | Xkn)
< 2By, [130(xkn) — V10g prn (Xin)||* + 2Bx,,, |V log pra(y | xkn)
S 2(€§core + U020nd) S 2(ESCOre + UCOIld)Q'

Therefore, we substitute the score estimation error 4.ore in Theorem 2 of |Chen et al.| (2022) with
€score + Uconda. We use the results in (Chen et al.[(2022) as well as Girsanov Theorem, and conclude
that:

I

| 2

Dy (Law(%kn) || pen(Xen | ¥)) = Drv (aer1yn (R0 | ¥) | Der1yn (K41yn 1Y)
< C\/ﬁ . (L\/ dh + LmQh) + C\/E(Escore + Ucond)

discretization error score estimation error

where C is a universal constant, which leads to

DTV (LaW()_(kh) || pkh(xkh | Y)) < 5+Econd+c\/ﬁ'(L Vv dh+Lm2h)"‘rc\/ﬁ(gscore""ernd) ‘= Einter-

As the initial step of Langevin MCMC inner loops at time ¢ = kh, we apply the exponential
convergence (Lemma|B.2)) and show that we can make Drv (qin(Xkn | ¥), Prn(Xen | ¥)) < € and

complete the induction by letting the step size n = % and the number of iterations
K 32L2%d - 1og(Einter /€)
N m2e2 '

To sum up, we can guarantee that Dy (qo(x0 | ¥), Po(X0 | ¥)) < € by choosing the step size 1 and
the number of inner loop K of Langevin MCMC algorithm as follows:

B me? - 32L%d - log((1/poly(d) - exp(—=T) + €cond)/€ V Einter/€)

~ 32Ld?’ N m2e2

Ui

where

Einter ‘= € + €cond T C\/ﬁ . (L Vdh + ngh) + C\/E<Escore + Ucond)-
We have Dy (p1(x1 | ¥) || p1(x1 | ¥)) < €cond- For the final step, we do not have conditional
Jensen gap. According to Assumption[B.€] it finally comes to our conclusion as

Drv(po(x0 | y) | po(x0 | ¥)) < e+ €.

C MORE EXPERIMENTAL RESULTS

C.1 SAMPLING TIME

In Table 6] we report the time for generating one sample with DPMC default setting, which sets
T = 200, K = 4 and applies MCMC sampling steps in the middle 60% intermediate distributions.
(See section . T|for more details.) The time is tested on the FFHQ dataset using a single Nvidia A100
GPU.
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Table 6: Running Times of Different Methods for Generating one Sample on FFHQ-1k Validation
Dataset

Model Running Time (Seconds)

DPMC(ours) 54.63
33.07
57.88
70.42
32.93
2.034
73.16
3.595
33.18

Table 7: PSNR and SSIM results of various linear inverse problems on FFHQ 256 x 256-1k validation
set. Bold denotes the best result for each task and underline denotes the second best result. Results
with “*” are reproduced by ourselves.

Methods Super Resolution Inpainting (box) G ian Deblur  Inpainting (random) Motion Deblur
PSNR SSIM PSNR SSIM  PSNR SSIM PSNR SSIM PSNR SSIM
DPMC (Ours) 2752 0.772 2355  0.828 2729 0.758 2640  0.776 2755 0771
g .|(2023] 28.60 0.766 24.15  0.829 27.18  0.750 26.88  0.762
RED-diff] W 27.07  0.686 - - 3034 0.799 - -
TIGD! 28.64 0.820 - - 6.12 0.011 - - - -
2748  0.807 24.17  0.865 2645  0.773 2679  0.820 26.70  0.828
FPS-S. m 20 28.10  0.807 2470 0.862 26.54  0.773 2733 0.819 2739 0.826
W 0 25.67 0.852 2247  0.873 2425 0811 2523  0.851 2492 0.859
DDRM 25.36  0.835 2224 0.869 2336 0.767 9.19 0.319 - -
MCG W{ 20.05  0.559 19.97  0.703 6.72 0.051 21.57 0751
PnP-ADM an et al. 26.55  0.865 11.65  0.642 2493 0.812 8.41 0.325
Score-SDE|Song et al. ; . 1 17.62  0.617 18.51  0.678 7.12 0.109 13.52  0.437
23.86  0.803 17.81 0814 2237 0.801 2203  0.784
RED-diff* (No noise o = 0) 30.75 0875 - - 3343 0910 - -
TIGDM?* (No noise o = 0) 2936  0.842 - - 36.77  0.940 - -

C.2 MORE SAMPLES FOR EACH INVERSE PROBLEMS

In Figure|[6] [8] [7} O} [T0} we show more samples for each inverse problem. DPMC works well across
different tasks and datasets.

ImageNet Dataset FFHQ Dataset

Observationy  Ground Truth x Sample Observationy  Ground Truth x Sample

Figure 6: More Results for Super Resolution Task
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Table 8: PSNR and SSIM results of various linear inverse problems on ImageNet 256 x 256-1k
validation set. Bold denotes the best result for each task and underline denotes the second best result.
Results with “*” are reproduced by ourselves.

Methods Super Resolution Inpainting (box) G ian Deblur Inpainting (random) Motion Deblur
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR  SSIM
DPMC (Ours) 2330 0.594 19.38  0.692 23.05 0.578 21.56  0.586 2347 0597

DDNM [Wang et al.|(2023] 2429 0589 2172 0707 2407 0585 2298 0579
RED-diff{Mardani et al.|(2023b} 2325 0.555 - - 2572 0659 - -
TIGD! Egm 2430 0.662 - - 608 0019 - - - -
FPS[Dou & Song|(2023) 2432 0.724 2016 0752 23.58 0581 2339 0.688 2271 0598
: 2478 0731 2203 0748 2381 0599 2412  0.685 2327 0614

23.87  0.781 1890 0794 2197 0706 2220 0.739 20.55  0.634
2496  0.790 18.66 0.814 2273  0.705 1429  0.403 - -
1339 0227 1736 0.633 1632 0441 19.03 0546
2375 0.761 1270 0.657  21.81  0.669 839  0.300
1225 0256 1648 0612 1597 0436 1862 0517
2217 0.679 1796 0785 1999 0.634 2096 0.676

RED-diff* (No noise o = 0) 25.10  0.701 - - 27.94  0.796 - -
IIGDM* (No noise o = 0) 24.62  0.675 - - 31.86 0.876 - -

ImageNet Dataset FFHQ Dataset

Observationy  Ground Truth x Sample Observation y

Figure 7: More Results for Motion Deblur Task

C.3 PSNR AND SSIM

In Table[7]and Table[8] we report the PSNR and SSIM scores for a reference. As discussed in section
2] we chose to primarily compare models using FID and LPIPS in our paper for two main reasons.
First, as discussed by [Zhang et al.| (2018)), PSNR and SSIM capture shallow, low-level features and
might fail to account for many nuances of human perception. Second, the inverse problem is an
ill-posed problem. Due to information loss in the degradation process, there can be multiple possible
solutions, and the model does not have to 100% faithfully reproduce all the details. As shown in
the quantitative comparison of Figure 2] and Figure [TT} our DPMC can fill in vivid details to the
optimized samples. It is possible that these filled-in details are reasonable but not entirely the same as
the input, resulting in lower scores on PSNR or SSIM. High level features like LPIPS and FID might
work better in judging the quality of the generated samples.
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ImageNet Dataset FFHQ Dataset

Observationy  Ground Truth x Sample Observationy  Ground Truth x Sample

Figure 8: More Results for Gaussian Deblur Task

ImageNet Dataset FFHQ Dataset

»

Observation y  Ground Truth x Sample Observationy  Ground Truth x Sample

Figure 9: More Results for Inpainting (Box) Task
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ImageNet Dataset FFHQ Dataset

Observationy  Ground Truth x Sample Observationy  Ground Truth x Sample

Figure 10: More Results for Inpainting (Random) Task
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1185 Figure 11: Qualitative comparison of different methods on ImageNet 256 x 256-1k dataset. We

1186 highlight the results of DPMC with red rectangles.
1187

Gaussian Deblur

RED-Diff nGDM FPS-SMC
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