© ® N O g A~ W N =

o

11

Federated Link Prediction on Dynamic Graphs

Anonymous Author(s)
Affiliation
Address

email

Abstract

Link prediction on dynamic, large-scale graphs is widely used in applications
such as forecasting customer visits or predicting purchases. However, graph
data is often localized due to privacy and efficiency concerns. While federated
learning enables collaborative training without sharing raw data, vanilla FL on
full historical graphs incurs prohibitive computational costs. Training only on
recent data reduces overhead but harms accuracy and introduces data imbalance
across clients. We introduce FedLink, a federated graph training framework for
solving link prediction tasks on dynamic graphs. By continuously training on fixed-
size buffers of client data, we can significantly reduce the computation overhead
compared to training on the entire historical graph, while still training a global
model across regions. Experiments demonstrate that FedLink matches the accuracy
of training a centralized model while requiring 3.41 x less memory and running
28.9% faster compared with full-batch federated graph training.

1 Introduction

Dynamic graphs are widely used in recommendations and advertisements, where users and items
form nodes and interactions form links (Figureﬂ] left) (Kazemi et al.,[2020). This formulation enables
Graph Neural Networks (GNNs) to predict user behavior (Zhang and Chen, 2018} (Chen et al., 2022
Guo et al.|[2023; |Wang et al.| 2023} |Huang et al.,2024) and, by modeling data as evolving graphs,
capture temporal patterns beyond static models (Pareja et al., [2020; |Yu et al.| |2023; [Huang et al.,
2023} |You et al.,2022;|Cong et al., 2023)).

A unified GNN model across regions is desirable, since small regions benefit from shared data and
users may move between regions (Figure [T| upper right). However, region-specific models fail to
generalize, as embeddings learned in one region may not transfer well. Centralized training is limited
by strict data regulations such as GDPR in Europe and PAPG in India, and by the prohibitive cost of
training on billion-scale graphs (Ching et al.,[2015)). Federated learning (FL) addresses privacy by
synchronizing local and global models (Kairouz et al.,|[2021; [Tan et al., 2022} \Ghosh et al., [2020;
Deng et al.| 20205 Zhou et al.,|2021)), but still imposes heavy overhead since each client must train on
millions of nodes and edges per round.

Vanilla federated learning methods (e.g., STFL (Lou et al.,|2021) and FedGraphnn (He et al.,|2021))
train on the entire historical graph at each iteration. This incurs high overhead, since graphs with
millions of users and items can contain billions of links that continually grow, requiring massive
memory and training time. Using only recent snapshots (e.g., a few days of data in 4D-FED-
GNN+ (Giirler and Rekik, [2022))) reduces cost but sacrifices accuracy by ignoring long-term user
preferences. Other works (Wang et al.l 20205 [Yuan et al., 2022) train on time-series graph snapshots
(e.g., hourly or daily). In practice, some regions may have only a few new links per slot (Jin
et al.| [2022)), while others (with larger populations) generate vast interactions (Figure [T|lower right).
Training only on the latest slot thus introduces spatial and temporal heterogeneity, which hinders FL.
convergence (Ye et al.,2023) by biasing the model toward data-rich clients.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

39
40
41
42
43

44
45

46
47

48
49

50
51

52

53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68

69

70
71

Tabular Data

Name | Region | Website Purchased
Visited Products

Bob | RegionA | Shopping

Cindy | RegionB ? Omakase

David | RegionC ? Tamarind

User Behavior User Identity

£<3 o -
[/6 v\rlw/\@
N () [a0

A / N\

L] Tee

Figure 1: (Left) Use cases of federated link prediction. (Upper Right) Federated training on local
dynamic graphs across regions: local graphs vary in size, clients have edges at different timestamps,
and migrating users (gray—green) lose historical links for privacy, requiring new predictions. (Lower
Right) Temporal imbalance across clients: uniform time-interval sampling vs. constant edge buffer.

To overcome data heterogeneity and large training overhead, we realize that maintaining buffers
to store the same number of previously arrived edges at each client can both reduce computation
and memory costs and ensure each client contributes equally to training (Figure[T]lower right). This
enables efficient federated training and allows migrating users to transfer their embeddings across
regions with minimal re-training. Our key contributions are:

* We introduce FedLink, a federated framework for link prediction on dynamic graphs. By
training on fixed-size buffers, FedLink lowers overhead and mitigates client heterogeneity.

* We provide theoretical analysis and empirical validation of buffer size, showing tradeoffs
between staleness, dataset size, memory, and training time.

» Experiments across regions show FedLink reduces GPU memory (up to 3.41x) and training
time (28.9%) compared to full-batch FL, while matching prediction accuracy.

Section 2] reviews related work; Section [3]introduces FedLink with theoretical and empirical valida-
tion; Section [presents distributed experiments; and Appendix [A]concludes.

2 Related Work

Graph neural networks learn representations of graph-structured data (Bronstein et al.,|2017). Mod-
els such as GCN (Kipf and Welling, |2016), GraphSage (Hamilton et al., 2017), and GAT (Velickovié
et al.,|2017) achieve strong performance on tasks like node classification. Dynamic GNNs extend
these methods by incorporating temporal information through recurrent structures (Chen et al., [2022;
Pareja et al., [2020; [Yu et al.| 2023) or specialized training (Huang et al., 2023} You et al.| 2022; |Cong
et al.,[2023)), with link prediction as a central task (Zhang and Chen, [2018]).

Federated learning (Kairouz et al., 2021} |Tan et al., 2022; \Ghosh et al., |2020; [Deng et al., [2020;
Zhou et al., [2021) enables distributed training with privacy preservation. Several methods extend
FL to GNNSs on static graphs (Liu et al., [2024; Wang et al.l [2022)), including GCFL (Xie et al.,
2021)), FedSage+ (Zhang et al., [2021)), FedGCN (Yao et al.,[2024a)), and FedPub (Baek et al., 2023),
supported by libraries like FedGraph (Yao et al., 2024b). For dynamic graphs, STFL (Lou et al.,
2021) applies spatio-temporal models, Feddy (Jiang et al.| 2022) uses dynamic embeddings, and
4D-FED-GNN+ (Giirler and Rekik} [2022) handles evolution with missing time points. These methods,
however, overlook client and temporal imbalance and often require training on full historical graphs,
which is costly and may include outdated links. To our knowledge, FedLink is the first federated link
prediction method on dynamic graphs that directly addresses these challenges, as shown in Section 4]

3 FedLink

We first formalize the federated link prediction problem and introduce the FedLink algorithm. We
then present a theoretical rationale and empirical validation of FedLink’s buffer-based design.

72

73
74

75
76

77
78
79

80
81

82
83

84
85

86
87
88
89
90
91

92
93

94
95

96

97
98
99
100
101
102
103

104

105
106
107

108
109

110

111
112
113
114
115
116

3.1 Federated Link Prediction

Federated graph setup. We consider K clients (regions) and a central server. Each client k has users
{i=1,...,I;},items {j = 1,..., J}, and a local graph Gy ; built from user—item interactions
e,(;_’tj) up to time ¢. Users may move across regions, but items remain local (e.g., restaurants). The
graph G, + grows as edges accumulate.

Link prediction formulation. At time 7', client k has user set Zj, item set Jj, and local graph
G 7. Training initializes global embeddings I € RV*? and J € RM*4 A GNN with parameters
w learns user/item representations @, and a predictor ¢ estimates the probability of future edges:

P(egj%), € G |6, d)»Ikajkagk,T) . 6]
We define P(e('7)) = ¢(s(6;,6;)), where 5(6;,8;) = H :ﬂ'ugé-u is the cosine similarity (Zhang and
5 02 J
Chen, [2018; [Kipf and Welling}, 2016} |Yao et al.| 2024a).
Federated learning for link prediction. Training proceeds in rounds » = 1, ..., R. Atround 7,

each client £ trains on Gy, ; with L local SGD steps and uploads updated model w](:) and embeddings

(11", J("). The server averages updates to obtain the global model (w(™), I, J(). After R
rounds, each client predicts future links with its trained model and local graph.

Federated learning for link prediction. Given the link prediction model above, we next explain how
federated learning can be used to train this model. As usual in federated learning, training proceeds in
rounds. Without loss of generality, suppose that training takes place at rounds » = 1,2, ..., R; note
that since we model edge arrivals as a continuous-time process, new edges may arrive in between
the training rounds. At a specific round r that takes place at time ¢, each client k trains its local link
prediction model on the local graph Gy, ; with L local stochastic gradient descent steps. Each client

k then sends its updated GNN model w,(f) and embedding layers (I ,(CT), J ,gr)) to the global server,
which averages the received local models to update the global model w ™) and global embedding

layers (I"), J(")). Once R rounds of training have taken place, where R can be chosen to ensure
convergence, each client k uses the trained model and its local graph Gy, ; to predict the future links.

3.2 FedLink Algorithm

A key challenge in FL is the growing computation overhead as local graphs Gy, ; expand, with
millions of users and items leading to heavy memory and runtime costs. Beyond reducing overhead,
FedLink addresses three issues: Client Heterogeneity: Different regions generate vastly different
numbers of interactions. Temporal Heterogeneity: Link arrivals vary over time and across regions
(e.g., by time zones). Cross-client Users: Users may move between regions, requiring cross-client
adaptation. FedLink tackles these challenges with two features: a constant edge buffer and user
embedding sharing, detailed below.

3.2.1 Constant Edge Buffer

Since links arrive continuously, triggering a training round for every new link causes prohibitive
communication overhead, while fixed-time rounds (e.g., daily) yield imbalance across clients with
different link rates (Figure[T] bottom middle).

To address this, we partition the link stream into buffers of a constant number of edges C'. For a
temporal network G with edge stream {e, ..., e™}, buffers are defined as

G ={e"|C(s—1) <i<Cs},
with a FIFO policy replacing old edges once capacity is reached (Figure[T] bottom right).

In FedLink (Algorithm , each client receives the global model W ("), performs L local gradient
steps using one buffer per step, and returns updates for server aggregation. Unlike training on the full
graph, clients only store current buffer contents, greatly reducing memory and computation. Sampling
from past buffers also mitigates overfitting to the latest data, maintaining accuracy comparable to
historical training. Finally, buffers are updated solely by link age: even if users move across regions,
their past edges remain until expired, avoiding premature deletion.

17

118
119
120
121
122
123
124
125

126

127
128
129

130

131
132

133
134
135
136

137

Algorithm 1 FedLink
Model parameters are represented by W = (w, I, J).
Each client k& maintains buffer graphs {Gi, G2, ..., Gf }, each with constant number of edges C.

for roundr =1,...,Rdo
for each client k € [K] do in parallel

Receive W (™
Set W™ = w
for local stepl =1,...,L do
Choose a buffer G§ € {G+,G2,...,GP}
1l 7l s
Set gy = VAW G7)
W,ir’l'*'l) = Wér’l) - gg,’,i) // Update Parameters
end
(r,L) __ (r,L+1) (r,1)
Ay, =W, -W,

Send Ag,’kL) to the server

end
// Server Operations

Aw =+ Zszl A&}f) // Difference Aggregation
W) = w® + A% and broadcast to local clients // Update Global Models

end
// Perform Link Prediction with sharing of user embedding I
for each client k € [K] do in parallel
| Predict future links using (T) based on W51 G 7
end

3.2.2 Cross-Client User Embeddings

We next outline how FedLink generates link predictions when users move across clients. We take
advantage of the fact that the link prediction mainly relies on the user and item embeddings (I, J),
which is shared across clients. In order to generate link predictions for a user newly arrived at a
client k', we can reuse the embedding I for this user that was learned at the user’s previous client k.
Since the items available at client &’ may differ from those at client &, users may receive less accurate
predictions as their embeddings were not trained to predict link formation for client &’’s items.
However, these predictions should be more accurate than if client &’ learned the user’s embedding
from scratch. We empirically validate this intuition in Section[d]s evaluation.

3.3 Theoretical Analysis of FedLink

FedLink trains GNNs on buffered past data, so the choice of buffer size strongly affects convergence.
To study this, we use the dynamic stochastic block model (DSBM) (Abbel [2018}; [Keriven and Vaiter,
2022) (Appendix [C) to approximate how buffer size impacts accuracy.

3.3.1 Buffer Error

Using Equation (3)), we derive the dependence on buffer size. For client k& with link arrival rate Az, a
buffer of size C covers €/ time and yields a local error:

C/)\k (1_8)7]0/)\k _1
s (C, \) = / E(r)dr = 2002 — @)
0

nlog(l—¢)

The globz}l error is Fjassification = % ZkK By (C., Ak)- The first term grows linegrly with C' (stale-
ness), while the second decays exponentially and is bounded. Thus, large buffers increase stale data
but also improve convergence (Ye et al.,[2023), since consistent dataset sizes across clients reduce
gradient variance. Buffer size therefore balances staleness, convergence, and resource costs.

3.3.2 Buffer Selection

138
139
140
141
142
143
144
145
146
147
148
149

150

151
152
153
154
155

156

157
158
159
160
161
162
163
164
165

166

167

169
170

171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188

We empirically test buffer sizes (10k—1M s 10 150 1o

0.8700 150R * 0.855

for full data, 10k—500k for 50% down- gosens| 1o s 1o 0s

1 3 & 0.8650 - £ 0850 5 .
sampled) across regions ranging from un- &' osf § | " Joos
der 100k to nearly 2M check-ins (US: goss| g 455 043
1,990,327). Figure [shows the expected ~ ,,7;* Y

trade-off: small buffers fail to capture
history in large regions, while oversized

buffe.r s exceed data in small ones, pr.oduc- Figure 2: Impact of buffer size on AUC scores and GPU
ing linear performance drops consistent ygage for (left) original data and (right) 50% downsam-
with Equation (2). The concave AUC pled data across regions. Optimal buffer sizes balancing

trend validates our theory, and we adopt AUC and GPU usage are highlighted in yellow.
these optimal ranges in experiments.

3 i 3] i 2 3 i
GPU Memory Usage (GB) GPU Memory Usage (GB)

4 Experiments

In experiments, we address the following research questions: RQ1. System Efficiency: Does
FedLink reduce GPU memory usage and training time compared to baselines? RQ2. Model
Accuracy: Does the buffer method maintain accuracy comparable to traditional FL while handling
regional heterogeneity? RQ3. Buffer & Data Efficiency: How do embedding sharing, buffer design,
and dataset size affect performance and efficiency?

4.1 Datasets and Baselines

Datasets: Foursquare (Yang et al.,|2016), treating each country as a client with user—venue edges (10
representative countries, Appendix , and TGBL-Wiki (Huang et al.| 2023} [Kumar et al.,|2019)
from the Temporal Graph Benchmark, containing temporal user—page interactions (Appendix [D.6).
Baselines: Local (Hamilton et al|2017): GNN on local graphs only. STFL (Lou et al., |2021):
Spatio-temporal FL with static GNNs. 4D-FED-GNN+ (Giirler and Rekik} 2022): FL on daily edge
snapshots. FedDGL (Xie et al.,|2024): Dynamic FL with distillation and prototype regularization.
Feddy (Jiang et al.|[2022): Combines spatial and temporal aggregation. FedLink (ours): Edge buffers
and embedding transfer. FedLink-NoEmb: Without embedding transfer. FedLink-Local: Local
training only, no aggregation. FedLink-MiniBatch: Mini-batch sampling with buffer-size batches.

4.2 Experiment Results

RQ1: System Evaluation: We assess FedLink’s efficiency by measuring training time, GPU memory,
and AUC (Table[T). With a buffer size of 200k, FedLink matches or outperforms 4D-FED-GNN+
and FedDGL in speed, while using at least 3.41x less GPU memory than full-batch methods (STFL,
Feddy), all with competitive AUC. Detailed per-country results are in Table

RQZ: Model Accuracy: Table ShOWS o (a) Training Time vs Performance 1o (b) Memory Usage vs Performance
FedLink attains AUC scores compara- o
ble to the best methods (STFL, Local, ’ * e | e * xe & =

0.8

FedDGL), consistently ranking among
the top two. As illustrated in Figure [3]

o
3

AUC Score
e
3

AUC Score

FedLink achieves high accuracy with s . 08l 4

far lower GPU and training costs, un- o

like 4D-FED-GNN+, which is efficient ™ " fumngTme® ** ™ ° Gru semory Usage o)
but much less accurate. Thus, FedLink o sl A el e ey

uniquely balances efficiency and predic- B Lol @ FedoGL * Fedik

tive performance.)) o .
Figure 3: Comparison of methods: (a) training time vs.

RQ 3: Ablation Study: In order to eval- AUC, and (b) GPU memory vs. AUC. FedLink achieves

uate the contribution of each component the pest balance of accuracy, time, and memory.
within FedLink, we conduct an ablation

study comparing four variants of FedLink. FedLink constantly achieves the highest AUC scores
among all variants, demonstrating the effectiveness of both federated learning setting and FIFO buffer
mechanisms, as shown in Table[2] The results of isolating only traveled users for different FedLink
methods are in Table

Table 1: Performance comparison across six experimental settings. Measurements include training
time (seconds), GPU memory usage (GB), and AUC scores. Results are averaged over 10 runs. Bold
indicates best results, bold italics indicate second-best.

Exp 1 (US, BR, ID, TR, JP) \ Exp 2 (MX, PH, ES, GB, IT)
Methods | Time(s) GPU(GB) AUC | Methods | Time(s) GPU(GB) AUC
STFL 2.406 6.003 0.870 | STFL 2.082 1.220 0.848
Local 2.250 5.997 0.877 | Local 1.867 1.220 0.847
4D-FED-GNN+ 1.964 2.065 0.579 | 4D-FED-GNN+ 1.857 0.894 0.567
FedDGL 1.932 1.892 0.873 | FedDGL 1.950 0.933 0.832
Feddy 2.759 7.574 0.871 Feddy 2.389 2.386 0.841
FedLink 1.866 2.065 0.876 | FedLink 1.997 0.894 0.848
Exp 3 (US, JP, BR, MX, ES) \ Exp 4 (DE, NL, KR, FR, CA)
Methods \ Time(s) GPU(GB) AUC \ Methods \ Time(s) GPU(GB) AUC
STFL 2.058 5.832 0.869 | STFL 1.752 0.886 0.861
Local 1.889 5.812 0.876 | Local 1.624 0.869 0.860
4D-FED-GNN+ 1.649 1.789 0.587 | 4D-FED-GNN+ 1.484 0.678 0.598
FedDGL 1.897 1.773 0.867 | FedDGL 1.519 0.790 0.862
Feddy 2.254 6.184 0.871 Feddy 2.081 1.214 0.858
FedLink 1.782 1.789 0.871 FedLink 1.463 0.676 0.864
Exp 5 (TGBL-Wiki, Early Period) \ Exp 6 (TGBL-Wiki, Later Period)
Methods \ Time(s) GPU(MB) AUC \ Methods \ Time(s) GPU(MB) AUC
STFL 0.735 0.589 0.868 | STFL 0.762 0.618 0.859
Local 0.711 0.589 0.866 | Local 0.738 0.618 0.852
4D-FED-GNN+ 0.582 0.303 0.824 | 4D-FED-GNN+ 0.607 0.319 0.806
FedDGL 0.713 0.706 0.869 | FedDGL 0.740 0.713 0.855
Feddy 1.185 0.943 0.864 | Feddy 1.234 0.996 0.851
FedLink 0.617 0.365 0.875 | FedLink (Buffer) 0.649 0.371 0.867

Table 2: Ablation study by removing the FL part and the cross-client embedding part. Federated

aggregation significantly contributes to FedLink’s performance.
Buffer Size = 200,000

Methods US BR ID TR JP

FedLink (FL+Buffer) 0.837£0.003 0.930£0.004 0.834+0.004 0.929+0.003 0.84210.005
FedLink-Local 0.828+0.003 0.931+0.004 0.8274+0.003 0.9234+0.004 0.840+0.005
FedLink-NoEmb 0.832+0.003 0.931+0.006 0.8294+0.006 0.931+£0.005 0.836+0.007

FedLink-MiniBatch 0.823+0.005 0.926+0.004 0.8254+0.005 0.9214+0.005 0.834£0.006
Buffer Size = 300,000

Methods US BR 1D TR JP

FedLink (FL+Buffer) 0.848+£0.003 0.940£0.004 0.906+0.004 0.966+0.003 0.950+0.005
FedLink-Local 0.832+0.003 0.926+0.006 0.890£0.006 0.963+0.005 0.946+0.007
FedLink-NoEmb 0.847+0.003 0.9384+0.004 0.90440.004 0.9654+0.003 0.946£0.006

FedLink-MiniBatch 0.831+0.005 0.934+0.006 0.8934+0.006 0.95740.004 0.941£0.007

189 To evaluate FedLink’s performance under different data sizes, we conduct extensive downsampling
190 experiments. Our experimental results demonstrate FedLink’s resilience to data reduction, maintain-
191 ing among highest accuracy with 50% downsampling of the training data shown in Figure [d] We
192 also performed downsampling experiments for 50%, 25%, and 2% data size for different country
193 combinations, which can be found in Table [C.3]

Country Set 1 (US-BR-ID-TR-JP) Country Set 1 (US-BR-ID-TR-JP)
100% Data 50% Data
1.0 1.0

8 8 Methods

0.8 g0.8 s STFL

7]] Local

8 8 4D-FED-GNN+

< 0.6 < 0.6 FedLink

US BR ID TR JP US BR ID TR JP

Countries Countries

Figure 4: Performance comparison under data downsampling (100% vs 50%).

194

195

197
198

199
200
201

202

204
205
206

207
208
209

210
211

212
213
214

215
216
217

218
219
220

221
222
223

224
225
226

227
228
229
230

231
232
233
234

235
236
237

239
240

References

Emmanuel Abbe. 2018. Community detection and stochastic block models: recent developments.
Journal of Machine Learning Research 18, 177 (2018), 1-86.

Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jachong Yoon, and Sung Ju Hwang. 2023. Personalized
subgraph federated learning. In International conference on machine learning. PMLR, 1396-1415.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4
(2017), 18-42.

Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2022. GC-LSTM: Graph convolution embedded
LSTM for dynamic network link prediction. Applied Intelligence (2022), 1-16.

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. 2015.
One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB Endowment 8,
12 (2015), 1804-1815.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and Mehrdad
Mahdavi. 2023. Do we really need complicated model architectures for temporal networks? arXiv
preprint arXiv:2302.11636 (2023).

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. 2020. Adaptive personalized
federated learning. arXiv preprint arXiv:2003.13461 (2020).

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An efficient framework
for clustered federated learning. Advances in Neural Information Processing Systems 33 (2020),
19586-19597.

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and Tong
Zhao. 2023. Linkless link prediction via relational distillation. In International Conference on
Machine Learning. PMLR, 12012-12033.

Zeynep Giirler and Islem Rekik. 2022. Federated Brain Graph Evolution Prediction using Decentral-
ized Connectivity Datasets with Temporally-varying Acquisitions. IEEE Transactions on Medical
Imaging (2022).

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems. 1025-1035.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He,
Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145 (2021).

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. 2023. Temporal
graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems 36 (2023), 2056-2073.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. 2024. Temporal
graph benchmark for machine learning on temporal graphs. Advances in Neural Information
Processing Systems 36 (2024).

Meng Jiang, Taeho Jung, Ryan Karl, and Tong Zhao. 2022. Federated Dynamic Graph Neural
Networks with Secure Aggregation for Video-based Distributed Surveillance. ACM Transactions
on Intelligent Systems and Technology (TIST) 13, 4 (2022), 1-23.

Di Jin, Sungchul Kim, Ryan A Rossi, and Danai Koutra. 2022. On Generalizing Static Node
Embedding to Dynamic Settings. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining. 410—420.

241
242
243
244

245
246
247

248
249
250

251
252

253
254
255

256
257

259
260
261

262
263

264
265

267

268
269

270
271

272
273
274

275
276
277

278
279
280

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2021.
Advances and open problems in federated learning. Foundations and trends® in machine learning
14, 1-2 (2021), 1-210.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. 2020. Representation learning for dynamic graphs: A survey. The Journal of
Machine Learning Research 21, 1 (2020), 2648-2720.

Nicolas Keriven and Samuel Vaiter. 2022. Sparse and smooth: improved guarantees for spectral
clustering in the dynamic stochastic block model. Electronic Journal of Statistics 16, 1 (2022),
1330-1366.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining. 1269—1278.

Xiaoyu Li and Francesco Orabona. 2019. On the convergence of stochastic gradient descent with

adaptive stepsizes. In The 22nd international conference on artificial intelligence and statistics.
PMLR, 983-992.

Rui Liu, Pengwei Xing, Zichao Deng, Anran Li, Cuntai Guan, and Han Yu. 2024. Federated graph
neural networks: Overview, techniques, and challenges. IEEE Transactions on Neural Networks
and Learning Systems (2024).

Guannan Lou, Yuze Liu, Tiehua Zhang, and Xi Zheng. 2021. STFL: A temporal-spatial federated
learning framework for graph neural networks. arXiv preprint arXiv:2111.06750 (2021).

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegen: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 34. 5363-5370.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards personalized federated
learning. IEEE transactions on neural networks and learning systems 34, 12 (2022), 9587-9603.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).

Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. 2022. Graphfl: A federated learn-
ing framework for semi-supervised node classification on graphs. In 2022 IEEE International
Conference on Data Mining (ICDM). IEEE, 498-507.

Huan Wang, Ziwen Cui, Ruigang Liu, Lei Fang, and Ying Sha. 2023. A multi-type transferable
method for missing link prediction in heterogeneous social networks. IEEE Transactions on
Knowledge and Data Engineering 35, 11 (2023), 10981-10991.

Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neural networks via
continual learning. In Proceedings of the 29th ACM international conference on information &
knowledge management. 1515-1524.

Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification over non-iid graphs.
Advances in neural information processing systems 34 (2021), 18839-18852.

Zaipeng Xie, Li Likun, Xiangbin Chen, Hao Yu, and Qian Huang. 2024. FedDGL: Federated
Dynamic Graph Learning for Temporal Evolution and Data Heterogeneity. In The 16th Asian
Conference on Machine Learning (Conference Track).

Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory cultural mapping based on
collective behavior data in location-based social networks. ACM Transactions on Intelligent
Systems and Technology (TIST) 7, 3 (2016), 1-23.

289
290
291

292
293
294

295
296

297
298
299

300
301
302

303
304
305

306
307

308
309

310
311
312

Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. 2024a. FedGCN: Convergence-
communication tradeoffs in federated training of graph convolutional networks. Advances in neural
information processing systems 36 (2024).

Yuhang Yao, Yuan Li, Xinyi Fan, Junhao Li, Kay Liu, Weizhao Jin, Srivatsan Ravi, Philip S Yu, and
Carlee Joe-Wong. 2024b. FedGraph: A Research Library and Benchmark for Federated Graph
Learning. arXiv preprint arXiv:2410.06340 (2024).

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. 2023. Heterogeneous federated
learning: State-of-the-art and research challenges. Comput. Surveys 56, 3 (2023), 1-44.

Jiaxuan You, Tianyu Du, and Jure Leskovec. 2022. ROLAND: graph learning framework for dynamic
graphs. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data
mining. 2358-2366.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. 2023. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems 36 (2023),
67686—67700.

Xiaoming Yuan, Jiahui Chen, Jiayu Yang, Ning Zhang, Tingting Yang, Tao Han, and Amir Taherkordi.
2022. FedSTN: Graph Representation Driven Federated Learning for Edge Computing Enabled
Urban Traffic Flow Prediction. IEEE Transactions on Intelligent Transportation Systems (2022).

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Subgraph federated learning
with missing neighbor generation. Advances in Neural Information Processing Systems 34 (2021).

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural networks. Advances in
neural information processing systems 31 (2018).

Zirui Zhou, Lingyang Chu, Changxin Liu, Lanjun Wang, Jian Pei, and Yong Zhang. 2021. Towards
fair federated learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 4100-4101.

3

3

314

315
316

317

318

319

320
321
322
323
324
325
326
327
328

329

330

331

332

333

334
335

336

337
338
339
340
341
342
343
344

345
346
347
348
349
350
351

352
353

354
355
356
357
358
359

360

361
362

363

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: As in abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Discussed in conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

10

364

365

366
367

369
370
371
372
373
374

375

376

377
378
379

380

381

382

383

384
385
386

387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412
413

414

415
416
417

Justification: Provided in appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: As in Appendix. Code and data will also be open-source.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

11

418

419

420

421

422
423

424
425
426
427

428
429
430

431
432

433
434
435

436
437

438
439
440

441
442
443

444

445

446

447

448
449

450
451
452

453
454

456

457

458
459

461
462

464

465
466

467

468
469

Answer: [Yes]
Justification: The workshop does not have a code submission portal but can be provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In main paper and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: As in Table 2.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

12

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

470
471
472

473
474
475

476
477
478

479
480
481

482

484

485

486
487

488
489

490
491
492

493

494
495

496

497

498

499

500
501

502
503
504

505
506

507

508

509

510

511
512

513
514
515
516
517
518
519
520

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: As in appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Follows the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: As in conclusion
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

13

https://neurips.cc/public/EthicsGuidelines

521
522
523

524

526
527

528
529
530
531

532

533
534
535

536

537

538

539
540
541
542
543
544
545

546
547

549

550
551
552

553

554

555

556

558
559

560
561
562
563
564
565
566

568
569
570
571

572
573

11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Cited papers.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

14

paperswithcode.com/datasets

574

575

576

577

578
579
580
581
582

583

585

586
587
588

589

590

591

592

593

594
595
596
597
598
599

600
601

602
603
604
605

606

607

608

609

610

611
612
613
614
615
616
617
618

619

620
621
622
623

624

14.

15.

16.

Answer: [Yes]
Justification: Documented in a github repo.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

15

625

626

627
628
629
630

Justification: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

16

https://neurips.cc/Conferences/2025/LLM

631

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648

649

650
651

652
653
654
655
656

657

658

659
660
661
662
663
664
665

666
667
668
669
670
671
672
673

A Conclusion

In this paper, we propose FedLink, a federated link prediction algorithm for dynamic graphs. FedLink
is motivated by the problem of recommending items, e.g., restaurants, to users in multiple regions.
While it is desirable to train a model across regions to take full advantage of all available data,
privacy constraints, and computational overhead may prohibit centralized training of a dynamic GNN
model across all regions. FedLink addresses the challenges of computational overhead and privacy
concerns in situations where graph data is localized, such as recommending restaurants to users in
multiple countries. This approach has the added benefit of accommodating users who move across
countries, by allowing them to simply share the user embedding across countries. Moreover, FedLink
maintains edge buffers of fixed size at each client, thus alleviating the effects of temporal and inter-
client heterogeneity in link arrivals over time. We show that FedLink significantly reduces memory
requirements and improves training speed while matching the accuracy of centralized training. Edge
buffers of fixed size may not fully utilize the temporal information. Future work includes dynamic
buffer and extending FedLink to other dynamic graph applications and generalizing the standard
federated learning convergence analysis to address the unique challenges of dynamic graph settings.
Our methodology also has the potential to extend to time-series data analysis, node classification, and
graph classificatio

B Background

B.1 Graph Convolutional Network

A multi-layer Graph Convolutional Network (GCN) |Kipf and Welling| (2016)) with row normalization
has the layer-wise propagation rule

HY = (DT AHOW!), 3)

where A = A + In, I is the identity matrix, 5“ => i Zij and WO isa layer-specific trainable
weight matrix. The activation function is ¢, typically ReLU (rectified linear units), with a softmax in
the last layer for node classification. The node embedding matrix in the I-th layer is H) € RV*P,
which contains high-level representations of the graph nodes transformed from the initial features;
HO® = X.

C Theoretical Analysis

C.1 Dynamic Stochastic Block Model

For positive integers K and n, a probability vector p € [0, 1], and a symmetric connectivity matrix
B € [0,1)5*E we define a static SBM as a random graph with n nodes split into K classes. The
goal of a prediction method for the SBM is to correctly divide nodes into their corresponding classes,
based on the graph structure. Each node is independently and randomly assigned a class in {1, ..., K'}
according to the distribution p. Undirected edges are independently created between any pair of nodes
in classes 4 and j with probability B;;, which equals «vif 7 = j (¢ and j are in the same class) and po
if i # j (¢ and j are in different classes), where oo € (0,1) and p € (0, 1) are given parameters.

We consider a set of discrete time steps t = 1,2,...,7T. At each time step ¢, the Dynamic SBM
generates new intra- and inter-class edges according to the probabilities o and pav as defined for
the SBM above. All edges persist over time. We assume a constant number of nodes n, number of
classes K, and connectivity matrix B. Let Y; € {0, 1}”XK denote the matrix representing the nodes’
class memberships at each time ¢, where Y;;, = 1 indicates that node ¢ belongs to the k-th class, and
is 0 otherwise. We model changes in nodes’ class memberships as a Markov process with a constant
transition probability matrix H € [0, 1]X*%_ Let ¢ € (0, 1) denote the probability a node changes
its membership. At each time step, node v; in class j changes its membership to class k& with the

'Code and data will be made publicly available upon acceptance.

17

674

675

676
677
678
679
680

682

683

684
685
686
687
688
689
690

692
693
694
695
696

697

698

699

701
702
703
704
705

707
708
709
710
711
712
713
714
715

following probability (independently from other nodes):

l—e, j=k
H..=P[yt =11yt 1 =1] =
7.k [ik | i] K‘i:l’]75]{5,

While € may vary across classes j in practice, for simplicity we suppose it is the same for each class.

We suppose that our learning task is to classify the nodes of the graph, i.e., to group nodes together
S0 as to recover the membership matrix Y up to column permutation at each time ¢. We expect link
prediction to give similar convergence results, but as the analysis is more involved we present the

node classification analysis for simplicity. We thus evaluate estimates Y of the membership matrix
by defining the relative error of a classification estimate Y as

E(Y.,Y)=min|Yr-Y 4
(7) frnelg”’fr HOv ()

where P is the set of all K x K permutation matrices and ||.||o counts the number of non-zero
elements of a matrix.

C.2 Class Behavior Over Time

We observe the behavior of class evolution over time by using the relative error function in @) to
characterize the change in classification over time, i.e. F(Y;_,,Y;). Without loss of generality, we
remove the permutation and keep class indices for columns of Y constant for all membership matrices.
Since node transitions are independent, the probability matrix E[Y;|Y;_1] = Y;_1 H” allows us to
find the expectation of the relative error between adjacent time steps. This is obtained by modeling
the error as n individual Markov chains between correct and incorrect classifications for each node.
The probability of incorrectly predicting a node’s class using the previous time step’s information is
e (the probability of class shifting between time steps). Therefore, E[E(Y;_1,Y:)] = 2||Yi-1]loe =
2||Y]loe = 2ne, since every classification mistake increments the error metric by 2. For further time
steps, due to the penalty function used in E(-, -), we construct a two-state Markov chain for each user,
where the states denote whether the user is in the same or different class as the current time. Then as
t — 0o, the system reaches a stationary distribution and E[E(Y;_,,Y})] = 222 ~ 2n for large
K. We will approximate the error over time by the following continuous function:

E(t)=2n—2n(1 —¢)" 6)

with an arbitrary convergence factor 7 (Li and Orabona, [2019).

D Additional Experiments

D.1 Experiment Settings

Building upon our baseline methods, we evaluate FedLink’s link prediction performance in our four
subsets of countries in the Foursquare dataset. Based on the buffer size analysis in Section[3.3.2] we
employ buffer sizes of 200,000 and 300,000, which demonstrated an optimal range for computational
efficiency and model performance. In order to capture patterns of check-in behaviors and sufficient
user travel across countries, we analyze the data over a 30-day period. The training settings for each
model are as follows: Local Training (Local and FedLink-Local): Both methods perform 60 local
training iterations. Local uses the complete dataset, while FedLink-Local uses a single buffer per
iteration. Federated Training (STFL, 4D-Fed-GNN+,FedDGL, and Feddy): All methods perform
20 global training rounds with 3 local iterations per client. STFL, FedDGL and Feddy processes
full historical data, while 4D-FED-GNN+ uses single-day data, representing scenarios with limited
computational capacity. FedDGL selectively processes 10% of nodes as sensitive information for
temporal knowledge distillation. Federated Training with Buffer (FedLink, FedLink-NoEmb,
and FedLink-MiniBatch): All methods perform 20 global training rounds with 3 local iterations
per client, processing one buffer per iteration. FedLink shares user embeddings across clients
for traveled users, while FedLink-NoEmb operates without this cross-client information sharing.
FedLink-MiniBatch uses random sampling within buffers instead of FIFO sequential processing.

18

716

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

733
734
735

736

737

739
740

1,990,327

1,198,611
1'159'2581,098,373

546,532 519,409

408,434 353,444

219,097 212,161

Number of Check-ins

us D BR TR MX JP PH IT GB ES
Countries

Figure C.2: Distribution of check-ins across selected 10 countries in the Foursquare dataset.

D.2 Foursquare Dataset

We present the Foursquare dataset with the following statistics: Check-ins: 7,705,646 check-ins
made by 40,484 users across 1,273,946 venues. Population Distribution: Selected countries show
significant variation in user population sizes, reflecting real-world demographic differences, shown in
Figure@ Check-in Distribution: The check-in volumes also vary across countries, with the United
States (US) having 1,990,327 check-ins, while Spain (ES) having 212,161 check-ins for example,
shown in Figure [C.2] Traveled user percentage: Approximately 1.39% of users have check-ins across
multiple countries, which we refer to as traveled users. We organize our experiments into four sets
according to different country sizes as follows:

Large Countries (EXP 1): Top five countries with the highest check-in volumes: United States (US),
Brazil (BR), Indonesia (ID), Turkey (TR), and Japan (JP) ;

Midsized countries (EXP 2): Five countries with relatively limited data: Mexico (MX), Philippines
(PH), Spain(ES), UK(GB), and Italy(IT);

Combinations (EXPs 3): Combinations of large and small countries (US, JP, BR, MX, ES) to assess
FedLink’s performance under client data heterogeneity;

Small Countries (EXP 4)Five small countries with size around 5% of the size of US: Germany(DE),
Netherlands(NL), South Korea(KR), France(FR), and Canada(CA).

We present Fig to show the population distribution across the ten countries selected for our
experiments. This population heterogeneity allow us to assess our model’s ability to handle different
levels of data density and user activity patterns.

7,325
6,489
5,621

Number of Users

1 892
1 168 1 134

us MX S
Countnes

Figure C.1: Distribution of user population across selected 10 countries in the Foursquare dataset.

D.3 Experimental Results

We present detailed performance metrics for different country combinations in Table|C.I] showing
training time for each country, total completion time, and GPU memory usage during training. The
total training time per round is determined by the slowest client, as federated learning requires all
clients to complete their local training before proceeding with global model updates. These detailed

19

741
742

743
744

745

746

747
748

Table C.1: Training Time of FedLink with buffer size 200,000 on clients for 1200 Iterations. Each
result represents the total training time, averaged over 10 runs. FedLink consistently trains faster and
has lower GPU memory usage, than all other algorithms except 4D-FED-GNN+ which has a much

lower AUC.

US BR ID TR JP Total Time (s) Training GPU (GB)
STFL 2172 2.085 2293 2312 2406 2.406 5.997
Local 2.009 1.998 2.223 2250 2210 2.250 5.997
4D-FED-GNN+ 1.864 1.637 1.768 1.714 1.730 1.864 2.065
FedLink 1.758 1.630 1.650 1.673 1.766 1.766 2.065

MX PH ES GB 1T Total Time (s) Training GPU (GB)
STFL 1.688 2.082 1.755 1.624 1.551 2.082 1.220
Local 1.540 1.867 1.580 1.577 1.549 1.867 1.220
4D-FED-GNN+ 1.493 1.857 1.488 1.481 1.480 1.857 0.894
FedLink 1.583 1996 1.602 1.689 1.690 1.996 0.894

US BR JP MX ES Total Time (s) Training GPU (GB)
STFL 2.058 1.881 1.711 1.866 1.994 2.058 5.832
Local 1.798 1.837 1.650 1.889 1.809 1.889 5.830
4D-FED-GNN+ 1.606 1.601 1.594 1.649 1.583 1.649 1.789
FedLink 1.648 1.630 1.630 1.782 1.781 1.782 1.789

US IT GB TR ES Total Time(s) Training GPU(GB)
STFL 2.015 1.894 1.723 1.879 1.982 2.015 4.449
Local 1.806 1.860 1.662 1.867 1.814 1.860 4.447
4D-FED-GNN+ 1.650 1.614 1.607 1.643 1.596 1.650 1.302
FedLink 1.554 1.627 1.624 1.632 1.639 1.639 1.301

DE NL KR FR CA Total Time(s) Training GPU(GB)
STFL 1.552 1.684 1.752 1.651 1.696 1.752 0.886
Local 1.487 1.624 1583 1.598 1.554 1.624 0.886
4D-FED-GNN+ 1.393 1.401 1.484 1.422 1379 1.484 0.678
FedLink 1.347 1408 1395 1463 1421 1.463 0.676

measurements demonstrate FedLink’s computational efficiency compared to baseline methods. We
also present detailed test AUCs for different experiments, showing AUC score for each country in
Table[C.2] To ensure model convergence, we monitor AUC scores over increasing training rounds.

Optimal
Range(200k-300k)

v

Buffer Size

Countries

S
AUC Score
<)
©
w

Optimal Range
(100k-250k)

$. —3 Countries

INY \SREPANDANPINY O
S SESY S
Buffer Size

Figure C.3: Buffer Size Effect on AUC scores for five countries(US, BR, ID, TR, JP) on original data
(left) and 50% downsampled data (right).

Our experiments use 180 global rounds, as we observe that model performance stabilizes well around

this point, as shown in Figure [C.4]for the convergence patterns.

D.4 Buffer Selection

As shown in Fig C.3, we performed experiments on varying buffer size and evaluated its effect on
model AUC and GPU usage. Detailed buffer size analysis on different countries are as follows:

20

749
750
751

752
753

754
755
756

757

759
760

Table C.2: Test AUCs on different test sets with varied countries combination. Each result is tested
over a 30-day period with a 200,000 buffer size. The result is averaged over 10 runs. FedLink
consistently achieves the best (bold) or second-best (bold italics) AUC compared with local training
and STFL which require significantly more training time.

US BR ID TR JP
STFL 0.842+0.004 0.927£0.006 0.832+0.006 0.9224+0.004 0.828+0.008
Local 0.8414+0.008 0.931£0.007 0.836£0.009 0.931+0.006 0.851+0.008
4D-FED-GNN+ 0.561+0.006 0.595+0.007 0.539+0.012 0.614+0.004 0.588+0.014
FedLink 0.8471+0.003 0.930+£0.004 0.834+0.004 0.9291+0.003 0.842+0.005
MX PH ES GB IT
STFL 0.8761+0.004 0.865+£0.004 0.839+0.003 0.824+0.004 0.836+0.004
Local 0.873+0.006 0.865+0.009 0.838+0.009 0.822+0.010 0.837+0.010
4D-FED-GNN+ 0.640£0.002 0.544+0.002 0.546+0.002 0.568+0.002 0.536+0.001
FedLink 0.877+0.004 0.865+0.003 0.839+0.005 0.821+0.006 0.837+0.005
US BR JP MX ES
STFL 0.831+0.003 0.929+0.006 0.832+0.008 0.899+0.005 0.853+£0.008
Local 0.838+0.008 0.931+£0.007 0.843+0.009 0.908+0.006 0.865+0.008
4D-FED-GNN+ 0.560+0.012 0.594+£0.013 0.590+0.012 0.646+0.012 0.547+0.014
FedLink 0.8284+0.005 0.929+£0.001 0.835+0.004 0.903+0.005 0.859+0.003
US IT GB TR ES
STFL 0.842+0.005 0.853+0.007 0.872+0.004 0.871+0.003 0.854+0.009
Local 0.843+0.010 0.864+0.007 0.864+0.008 0.879+0.004 0.866+0.007
4D-FED-GNN+ 0.552+0.007 0.563+0.009 0.571£0.011 0.583+0.008 0.547+0.013
FedLink 0.840£0.006 0.861+0.003 0.873+0.007 0.874+0.003 0.863+0.004

AUC Score vs. Number of Global Rounds

AUC Score
°
3

e
3

25 50 75 125 150 175 200

00
Number of Global Rounds

Figure C.4: AUC scores convergence analysis for FedLink over global training rounds

1. For the US dataset, it is the largest country in number of check-ins, and is the only one
that will benefit from increasing buffer size even beyond 500K with continuously improved
AUC, as it haven’t reach its full batch check-in size.

2. For medium-sized countries (BR, TR, MX), the improvement plateaus around 200K, and
actual performance decreases beyond 500K.

3. For smaller countries (JP, GB, ES), and the downsampled version of medium sized countries
in Figure C.3(right), optimal performance is achieved at even smaller buffer sizes between
100K-150K.

D.5 Ablation Study
We also present detailed experimental results for ablation study for downsampling data in Figure

Table @] presents model performance under various data reduction scenarios (50%, 25%, and 2% of
original data) across different country combinations.

21

761
762
763
764
765

767
768

769
770
771
772
773
774

Table C.3: Test AUCs on down-sampled test sets with varied countries combination with 50%, 25%,
2% size reduction on different country combination’s data input. Each result is tested over a 30-day
period with a 200,000 buffer size. The result is averaged over 10 runs. FedLink consistently achieves
the best (bold) or second-best (bold italics) AUC compared with local training and STFL which
require significantly more training time.

US(50%) BR(50%) ID(50%) TR(50%) JP(50%)
STFL 0.836+£0.004 0.915£0.003 0.8354+0.006 0.920+0.004 0.804=+0.007
Local 0.8354+0.008 0.926+£0.008 0.8412-+0.008 0.928+0.005 0.843+0.007
4D-FED-GNN+ 0.549+0.007 0.586£0.008 0.529+0.010 0.613+0.003 0.579£0.010
FedLink 0.843+0.004 0.928+0.004 0.833+0.003 0.917+0.003 0.847+0.005
US(50%) BR(50%) JP(50%) MX(50%) ES(50%)
STFL 0.831+0.004 0.929+0.006 0.832+£0.006 0.899+0.005 0.853+0.008
Local 0.838+0.008 0.931+£0.007 0.843-+£0.009 0.908+0.006 0.865+0.008
4D-FED-GNN+ 0.560+0.012 0.594+0.013 0.590+0.012 0.646+0.012 0.547+0.014
FedLink 0.82840.005 0.929+0.001 0.835+0.004 0.903+0.005 0.859+0.003
US(25%) BR(25%) JP(25%) MX(25%) ES(25%)
STFL 0.6834+0.006 0.834+£0.006 0.720+0.005 0.7804+0.008 0.701+£0.006
Local 0.6874+0.008 0.835+£0.007 0.735+0.009 0.798+0.006 0.713+£0.008
4D-FED-GNN+ 0.508+0.012 0.519+0.013 0.538+0.012 0.546£0.012 0.509+0.014
FedLink 0.693+0.005 0.837+£0.001 0.731+0.004 0.793+0.005 0.709-+0.003
US(2%) BR(2%) JP(2%) MX(2%) ES(2%)
STFL 0.831+£0.004 0.929+0.006 0.8324+0.006 0.8994+0.005 0.853+0.008
Local 0.838+0.008 0.931+£0.007 0.843-+£0.009 0.908+0.006 0.865+0.008
4D-FED-GNN+ 0.560+0.012 0.594+£0.013 0.590+0.012 0.646+0.012 0.547+0.014
FedLink 0.82840.005 0.929+0.001 0.835+0.004 0.903+0.005 0.859+0.003
Method Full Data 50% Large 50% Small 25% Data 2% Data
STFL 0.9134+0.004 0.859+£0.005 0.869+0.006 0.7444+0.006 0.869+0.006
Local 0.9154+0.008 0.870+£0.009 0.754+0.008 0.877+0.008 0.877+0.008
4D-FED-GNN+ 0.5674+0.009 0.566+0.009 0.5874+0.013 0.509+0.014 0.549+0.010
FedLink 0.9161+0.003 0.874+0.004 0.871+0.004 0.802+0.004 0.889-+0.007

Table C.4: Test AUCs for only traveled users under the three ablation study methods of FedLink,

FedLink-Local and FedLink-NoEmb.
US

BR ID TR JP
FedLink (FL+Buffer) 0.808+0.001 1.000£0.001 0.964+0.036 0.833+0.001 0.923+0.182
FedLink-Local 0.5524+0.002 0.732+0.158 0.548+0.124 0.531+0.004 0.610+£0.215
FedLink-NoEmb 0.7594+0.003 0.724+0.086 0.813+0.108 0.783+0.164 0.811+£0.007

Table [C.4] specifically focuses on traveled users, comparing performance across three variants:
FedLink, FedLink-Local, and FedLink-NoEmb. This analysis shows the importance of both federated
learning and embedding sharing mechanisms for predicting traveled users. FedLink consistently out-
performs other variants on traveled users, demonstrating the effectiveness of cross-client information
sharing for users who move between regions.

D.6 TGBL-Wiki

The dataset of TGBL-Wiki includes 157474 edges with timestamps from 0 to 2678373. There are
total of 4613 users and 4614 items, with 133892 user-item interactions.

To evaluate temporal performance across different time periods, we partition the TGBL-Wiki dataset
into two temporal subsets based on timestamp ordering: an earlier period containing the first half of
interactions (timestamps O to 1339186) and a later period containing the second half (timestamps
1339187 to 2678373). This temporal split allows us to assess how federated learning methods
perform on older versus newer interaction patterns, providing insights into temporal generalization
capabilities.

22

775

776

77
778
779
780
781
782

783

784
785
786
787

788

789
790
791

Country Set 2 (US-BR-JP-MX-ES) Country Set 2 (US-BR-JP-MX-ES)

100% Data 50% Data
1.0 1.0
0.9 0.9
. © Methods
0.8 50.8 B STFL
Q Q
7]] Local
S 0.7 o 0.7 4D-FED-GNN+
<« 0.6 < 0.6 FedLink
0.5 0.5
US BR JP MX ES US BR JP MX ES
Countries Countries

Figure C.5: Performance comparison under data downsampling (100% vs 50%). Results demonstrate
that FedLink maintains consistent AUC scores even with down-sampled data across both country
sets. FedLink maintains comparable AUC scores with 50% data size across both country sets, while
achieving reduced GPU memory consumption and faster training time.

E Example Use Cases

E.1 Link Prediction on Tabular Data

Most user data is stored in tabular format, where each row in the table represents information on a user
information (e.g., user IP address, location, website, and purchased product). User information is also
updated with time. However, entries in this table may be missing, e.g., due to faulty data collection.
By modeling the user table information as a dynamic graph, we can perform link prediction on the
tabular data and fill in the missing part of the table, allowing us to more easily use it for various tasks
(e.g., purchase behavior prediction).

E.2 Website Behavior Prediction

Predicting websites to be visited by users allows dynamic pre-caching of the site content, reducing
communication costs and response latency. By modeling visits as a user-website bipartite graph, we
can predict frequently visited websites. Such visit behavior is cyclic and dynamic, requiring regular
updates and on-time predictions.

E.3 User Identity Verification

Identity verification helps to validate users’ product subscriptions. By modeling users and their
behavior as nodes in a dynamic graph, we can detect anomalous behavior and classify nodes as “good”
users and “bad” actors.

23

	Introduction
	Related Work
	FedLink
	Federated Link Prediction
	FedLink Algorithm
	Constant Edge Buffer
	Cross-Client User Embeddings

	Theoretical Analysis of FedLink
	Buffer Error
	Buffer Selection

	Experiments
	Datasets and Baselines
	Experiment Results

	Conclusion
	Background
	Graph Convolutional Network

	Theoretical Analysis
	Dynamic Stochastic Block Model
	Class Behavior Over Time

	Additional Experiments
	Experiment Settings
	Foursquare Dataset
	Experimental Results
	Buffer Selection
	Ablation Study
	TGBL-Wiki

	Example Use Cases
	Link Prediction on Tabular Data
	Website Behavior Prediction
	User Identity Verification

