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Abstract

Link prediction on dynamic, large-scale graphs is widely used in applications1

such as forecasting customer visits or predicting purchases. However, graph2

data is often localized due to privacy and efficiency concerns. While federated3

learning enables collaborative training without sharing raw data, vanilla FL on4

full historical graphs incurs prohibitive computational costs. Training only on5

recent data reduces overhead but harms accuracy and introduces data imbalance6

across clients. We introduce FedLink, a federated graph training framework for7

solving link prediction tasks on dynamic graphs. By continuously training on fixed-8

size buffers of client data, we can significantly reduce the computation overhead9

compared to training on the entire historical graph, while still training a global10

model across regions. Experiments demonstrate that FedLink matches the accuracy11

of training a centralized model while requiring 3.41× less memory and running12

28.9% faster compared with full-batch federated graph training.13

1 Introduction14

Dynamic graphs are widely used in recommendations and advertisements, where users and items15

form nodes and interactions form links (Figure 1 left) (Kazemi et al., 2020). This formulation enables16

Graph Neural Networks (GNNs) to predict user behavior (Zhang and Chen, 2018; Chen et al., 2022;17

Guo et al., 2023; Wang et al., 2023; Huang et al., 2024) and, by modeling data as evolving graphs,18

capture temporal patterns beyond static models (Pareja et al., 2020; Yu et al., 2023; Huang et al.,19

2023; You et al., 2022; Cong et al., 2023).20

A unified GNN model across regions is desirable, since small regions benefit from shared data and21

users may move between regions (Figure 1 upper right). However, region-specific models fail to22

generalize, as embeddings learned in one region may not transfer well. Centralized training is limited23

by strict data regulations such as GDPR in Europe and PAPG in India, and by the prohibitive cost of24

training on billion-scale graphs (Ching et al., 2015). Federated learning (FL) addresses privacy by25

synchronizing local and global models (Kairouz et al., 2021; Tan et al., 2022; Ghosh et al., 2020;26

Deng et al., 2020; Zhou et al., 2021), but still imposes heavy overhead since each client must train on27

millions of nodes and edges per round.28

Vanilla federated learning methods (e.g., STFL (Lou et al., 2021) and FedGraphnn (He et al., 2021))29

train on the entire historical graph at each iteration. This incurs high overhead, since graphs with30

millions of users and items can contain billions of links that continually grow, requiring massive31

memory and training time. Using only recent snapshots (e.g., a few days of data in 4D-FED-32

GNN+ (Gürler and Rekik, 2022)) reduces cost but sacrifices accuracy by ignoring long-term user33

preferences. Other works (Wang et al., 2020; Yuan et al., 2022) train on time-series graph snapshots34

(e.g., hourly or daily). In practice, some regions may have only a few new links per slot (Jin35

et al., 2022), while others (with larger populations) generate vast interactions (Figure 1 lower right).36

Training only on the latest slot thus introduces spatial and temporal heterogeneity, which hinders FL37

convergence (Ye et al., 2023) by biasing the model toward data-rich clients.38
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Figure 1: (Left) Use cases of federated link prediction. (Upper Right) Federated training on local
dynamic graphs across regions: local graphs vary in size, clients have edges at different timestamps,
and migrating users (gray→green) lose historical links for privacy, requiring new predictions. (Lower
Right) Temporal imbalance across clients: uniform time-interval sampling vs. constant edge buffer.

To overcome data heterogeneity and large training overhead, we realize that maintaining buffers39

to store the same number of previously arrived edges at each client can both reduce computation40

and memory costs and ensure each client contributes equally to training (Figure 1 lower right). This41

enables efficient federated training and allows migrating users to transfer their embeddings across42

regions with minimal re-training. Our key contributions are:43

• We introduce FedLink, a federated framework for link prediction on dynamic graphs. By44

training on fixed-size buffers, FedLink lowers overhead and mitigates client heterogeneity.45

• We provide theoretical analysis and empirical validation of buffer size, showing tradeoffs46

between staleness, dataset size, memory, and training time.47

• Experiments across regions show FedLink reduces GPU memory (up to 3.41×) and training48

time (28.9%) compared to full-batch FL, while matching prediction accuracy.49

Section 2 reviews related work; Section 3 introduces FedLink with theoretical and empirical valida-50

tion; Section 4 presents distributed experiments; and Appendix A concludes.51

2 Related Work52

Graph neural networks learn representations of graph-structured data (Bronstein et al., 2017). Mod-53

els such as GCN (Kipf and Welling, 2016), GraphSage (Hamilton et al., 2017), and GAT (Veličković54

et al., 2017) achieve strong performance on tasks like node classification. Dynamic GNNs extend55

these methods by incorporating temporal information through recurrent structures (Chen et al., 2022;56

Pareja et al., 2020; Yu et al., 2023) or specialized training (Huang et al., 2023; You et al., 2022; Cong57

et al., 2023), with link prediction as a central task (Zhang and Chen, 2018).58

Federated learning (Kairouz et al., 2021; Tan et al., 2022; Ghosh et al., 2020; Deng et al., 2020;59

Zhou et al., 2021) enables distributed training with privacy preservation. Several methods extend60

FL to GNNs on static graphs (Liu et al., 2024; Wang et al., 2022), including GCFL (Xie et al.,61

2021), FedSage+ (Zhang et al., 2021), FedGCN (Yao et al., 2024a), and FedPub (Baek et al., 2023),62

supported by libraries like FedGraph (Yao et al., 2024b). For dynamic graphs, STFL (Lou et al.,63

2021) applies spatio-temporal models, Feddy (Jiang et al., 2022) uses dynamic embeddings, and64

4D-FED-GNN+ (Gürler and Rekik, 2022) handles evolution with missing time points. These methods,65

however, overlook client and temporal imbalance and often require training on full historical graphs,66

which is costly and may include outdated links. To our knowledge, FedLink is the first federated link67

prediction method on dynamic graphs that directly addresses these challenges, as shown in Section 4.68

3 FedLink69

We first formalize the federated link prediction problem and introduce the FedLink algorithm. We70

then present a theoretical rationale and empirical validation of FedLink’s buffer-based design.71
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3.1 Federated Link Prediction72

Federated graph setup. We consider K clients (regions) and a central server. Each client k has users73

{i = 1, . . . , Ik}, items {j = 1, . . . , Jk}, and a local graph Gk,t built from user–item interactions74

e
(i,j)
k,t up to time t. Users may move across regions, but items remain local (e.g., restaurants). The75

graph Gk,t grows as edges accumulate.76

Link prediction formulation. At time T , client k has user set Ik, item set Jk, and local graph77

Gk,T . Training initializes global embeddings I ∈ RN×d and J ∈ RM×d. A GNN with parameters78

w learns user/item representations θ, and a predictor ϕ estimates the probability of future edges:79

P
(
e
(i,j)
k,T ′ ∈ Gk,T ′ | θ,ϕ, Ik,Jk,Gk,T

)
. (1)

We define P(e(i,j)k,t ) = ϕ(s(θi,θj)), where s(θi,θj) =
θi·θj

∥θi∥∥θj∥ is the cosine similarity (Zhang and80

Chen, 2018; Kipf and Welling, 2016; Yao et al., 2024a).81

Federated learning for link prediction. Training proceeds in rounds r = 1, . . . , R. At round r,82

each client k trains on Gk,t with L local SGD steps and uploads updated model w(r)
k and embeddings83

(I
(r)
k ,J

(r)
k ). The server averages updates to obtain the global model (w(r), I(r),J (r)). After R84

rounds, each client predicts future links with its trained model and local graph.85

Federated learning for link prediction. Given the link prediction model above, we next explain how86

federated learning can be used to train this model. As usual in federated learning, training proceeds in87

rounds. Without loss of generality, suppose that training takes place at rounds r = 1, 2, . . . , R; note88

that since we model edge arrivals as a continuous-time process, new edges may arrive in between89

the training rounds. At a specific round r that takes place at time t, each client k trains its local link90

prediction model on the local graph Gk,t with L local stochastic gradient descent steps. Each client91

k then sends its updated GNN model w(r)
k and embedding layers (I(r)

k ,J
(r)
k ) to the global server,92

which averages the received local models to update the global model w(r) and global embedding93

layers (I(r),J (r)). Once R rounds of training have taken place, where R can be chosen to ensure94

convergence, each client k uses the trained model and its local graph Gk,t to predict the future links.95

3.2 FedLink Algorithm96

A key challenge in FL is the growing computation overhead as local graphs Gk,t expand, with97

millions of users and items leading to heavy memory and runtime costs. Beyond reducing overhead,98

FedLink addresses three issues: Client Heterogeneity: Different regions generate vastly different99

numbers of interactions. Temporal Heterogeneity: Link arrivals vary over time and across regions100

(e.g., by time zones). Cross-client Users: Users may move between regions, requiring cross-client101

adaptation. FedLink tackles these challenges with two features: a constant edge buffer and user102

embedding sharing, detailed below.103

3.2.1 Constant Edge Buffer104

Since links arrive continuously, triggering a training round for every new link causes prohibitive105

communication overhead, while fixed-time rounds (e.g., daily) yield imbalance across clients with106

different link rates (Figure 1, bottom middle).107

To address this, we partition the link stream into buffers of a constant number of edges C. For a108

temporal network G with edge stream {e1, . . . , em}, buffers are defined as109

Gs = {ei | C(s− 1) < i ≤ Cs},

with a FIFO policy replacing old edges once capacity is reached (Figure 1, bottom right).110

In FedLink (Algorithm 1), each client receives the global model W (r), performs L local gradient111

steps using one buffer per step, and returns updates for server aggregation. Unlike training on the full112

graph, clients only store current buffer contents, greatly reducing memory and computation. Sampling113

from past buffers also mitigates overfitting to the latest data, maintaining accuracy comparable to114

historical training. Finally, buffers are updated solely by link age: even if users move across regions,115

their past edges remain until expired, avoiding premature deletion.116
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Algorithm 1 FedLink
Model parameters are represented by W = (w, I,J).
Each client k maintains buffer graphs {G1

k,G2
k, . . . ,GS

k }, each with constant number of edges C.
for round r = 1, . . . , R do

for each client k ∈ [K] do in parallel
Receive W (r)

Set W (r,1)
k = W (r)

for local step l = 1, . . . , L do
Choose a buffer Gs

k ∈ {G1
k,G2

k, . . . ,GS
k }

Set g(r,l)
Wk

= ∇fk(W
(r,l)
k ;Gs

k)

W
(r,l+1)
k = W

(r,l)
k − η g

(r,l)
Wk

// Update Parameters
end
∆

(r,L)
Wk

= W
(r,L+1)
k −W

(r,1)
k

Send ∆
(r,L)
Wk

to the server
end
// Server Operations
∆

(r)
W = 1

K

∑K
k=1 ∆

(r,L)
Wk

// Difference Aggregation
W (r+1) = W (r) +∆

(r)
W and broadcast to local clients // Update Global Models

end
// Perform Link Prediction with sharing of user embedding I
for each client k ∈ [K] do in parallel

Predict future links using (1) based on WR+1,Gk,T

end

3.2.2 Cross-Client User Embeddings117

We next outline how FedLink generates link predictions when users move across clients. We take118

advantage of the fact that the link prediction mainly relies on the user and item embeddings (I,J),119

which is shared across clients. In order to generate link predictions for a user newly arrived at a120

client k′, we can reuse the embedding I for this user that was learned at the user’s previous client k.121

Since the items available at client k′ may differ from those at client k, users may receive less accurate122

predictions as their embeddings were not trained to predict link formation for client k′’s items.123

However, these predictions should be more accurate than if client k′ learned the user’s embedding124

from scratch. We empirically validate this intuition in Section 4’s evaluation.125

3.3 Theoretical Analysis of FedLink126

FedLink trains GNNs on buffered past data, so the choice of buffer size strongly affects convergence.127

To study this, we use the dynamic stochastic block model (DSBM) (Abbe, 2018; Keriven and Vaiter,128

2022) (Appendix C) to approximate how buffer size impacts accuracy.129

3.3.1 Buffer Error130

Using Equation (5), we derive the dependence on buffer size. For client k with link arrival rate λk, a131

buffer of size C covers ϵ/λk time and yields a local error:132

Ebuf (C, λk) =

∫ C/λk

0

E(τ)dτ = 2nC/λk − (1− ε)ηC/λk − 1

η log(1− ε)
. (2)

The global error is Eclassification = 1
K

∑K
k Ebuf (C, λk). The first term grows linearly with C (stale-133

ness), while the second decays exponentially and is bounded. Thus, large buffers increase stale data134

but also improve convergence (Ye et al., 2023), since consistent dataset sizes across clients reduce135

gradient variance. Buffer size therefore balances staleness, convergence, and resource costs.136

3.3.2 Buffer Selection137
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Figure 2: Impact of buffer size on AUC scores and GPU
usage for (left) original data and (right) 50% downsam-
pled data across regions. Optimal buffer sizes balancing
AUC and GPU usage are highlighted in yellow.

We empirically test buffer sizes (10k–1M138

for full data, 10k–500k for 50% down-139

sampled) across regions ranging from un-140

der 100k to nearly 2M check-ins (US:141

1,990,327). Figure 2 shows the expected142

trade-off: small buffers fail to capture143

history in large regions, while oversized144

buffers exceed data in small ones, produc-145

ing linear performance drops consistent146

with Equation (2). The concave AUC147

trend validates our theory, and we adopt148

these optimal ranges in experiments.149

4 Experiments150

In experiments, we address the following research questions: RQ1. System Efficiency: Does151

FedLink reduce GPU memory usage and training time compared to baselines? RQ2. Model152

Accuracy: Does the buffer method maintain accuracy comparable to traditional FL while handling153

regional heterogeneity? RQ3. Buffer & Data Efficiency: How do embedding sharing, buffer design,154

and dataset size affect performance and efficiency?155

4.1 Datasets and Baselines156

Datasets: Foursquare (Yang et al., 2016), treating each country as a client with user–venue edges (10157

representative countries, Appendix D.2), and TGBL-Wiki (Huang et al., 2023; Kumar et al., 2019)158

from the Temporal Graph Benchmark, containing temporal user–page interactions (Appendix D.6).159

Baselines: Local (Hamilton et al., 2017): GNN on local graphs only. STFL (Lou et al., 2021):160

Spatio-temporal FL with static GNNs. 4D-FED-GNN+ (Gürler and Rekik, 2022): FL on daily edge161

snapshots. FedDGL (Xie et al., 2024): Dynamic FL with distillation and prototype regularization.162

Feddy (Jiang et al., 2022): Combines spatial and temporal aggregation. FedLink (ours): Edge buffers163

and embedding transfer. FedLink-NoEmb: Without embedding transfer. FedLink-Local: Local164

training only, no aggregation. FedLink-MiniBatch: Mini-batch sampling with buffer-size batches.165

4.2 Experiment Results166

RQ1: System Evaluation: We assess FedLink’s efficiency by measuring training time, GPU memory,167

and AUC (Table 1). With a buffer size of 200k, FedLink matches or outperforms 4D-FED-GNN+168

and FedDGL in speed, while using at least 3.41× less GPU memory than full-batch methods (STFL,169

Feddy), all with competitive AUC. Detailed per-country results are in Table C.1.170
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Figure 3: Comparison of methods: (a) training time vs.
AUC, and (b) GPU memory vs. AUC. FedLink achieves
the best balance of accuracy, time, and memory.

RQ2: Model Accuracy: Table 1 shows171

FedLink attains AUC scores compara-172

ble to the best methods (STFL, Local,173

FedDGL), consistently ranking among174

the top two. As illustrated in Figure 3,175

FedLink achieves high accuracy with176

far lower GPU and training costs, un-177

like 4D-FED-GNN+, which is efficient178

but much less accurate. Thus, FedLink179

uniquely balances efficiency and predic-180

tive performance.181

RQ 3: Ablation Study: In order to eval-182

uate the contribution of each component183

within FedLink, we conduct an ablation184

study comparing four variants of FedLink. FedLink constantly achieves the highest AUC scores185

among all variants, demonstrating the effectiveness of both federated learning setting and FIFO buffer186

mechanisms, as shown in Table 2. The results of isolating only traveled users for different FedLink187

methods are in Table C.4.188
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Table 1: Performance comparison across six experimental settings. Measurements include training
time (seconds), GPU memory usage (GB), and AUC scores. Results are averaged over 10 runs. Bold
indicates best results, bold italics indicate second-best.

Exp 1 (US, BR, ID, TR, JP) Exp 2 (MX, PH, ES, GB, IT)

Methods Time(s) GPU(GB) AUC Methods Time(s) GPU(GB) AUC

STFL 2.406 6.003 0.870 STFL 2.082 1.220 0.848
Local 2.250 5.997 0.877 Local 1.867 1.220 0.847
4D-FED-GNN+ 1.964 2.065 0.579 4D-FED-GNN+ 1.857 0.894 0.567
FedDGL 1.932 1.892 0.873 FedDGL 1.950 0.933 0.832
Feddy 2.759 7.574 0.871 Feddy 2.389 2.386 0.841
FedLink 1.866 2.065 0.876 FedLink 1.997 0.894 0.848

Exp 3 (US, JP, BR, MX, ES) Exp 4 (DE, NL, KR, FR, CA)

Methods Time(s) GPU(GB) AUC Methods Time(s) GPU(GB) AUC

STFL 2.058 5.832 0.869 STFL 1.752 0.886 0.861
Local 1.889 5.812 0.876 Local 1.624 0.869 0.860
4D-FED-GNN+ 1.649 1.789 0.587 4D-FED-GNN+ 1.484 0.678 0.598
FedDGL 1.897 1.773 0.867 FedDGL 1.519 0.790 0.862
Feddy 2.254 6.184 0.871 Feddy 2.081 1.214 0.858
FedLink 1.782 1.789 0.871 FedLink 1.463 0.676 0.864

Exp 5 (TGBL-Wiki, Early Period) Exp 6 (TGBL-Wiki, Later Period)

Methods Time(s) GPU(MB) AUC Methods Time(s) GPU(MB) AUC

STFL 0.735 0.589 0.868 STFL 0.762 0.618 0.859
Local 0.711 0.589 0.866 Local 0.738 0.618 0.852
4D-FED-GNN+ 0.582 0.303 0.824 4D-FED-GNN+ 0.607 0.319 0.806
FedDGL 0.713 0.706 0.869 FedDGL 0.740 0.713 0.855
Feddy 1.185 0.943 0.864 Feddy 1.234 0.996 0.851
FedLink 0.617 0.365 0.875 FedLink (Buffer) 0.649 0.371 0.867

Table 2: Ablation study by removing the FL part and the cross-client embedding part. Federated
aggregation significantly contributes to FedLink’s performance.

Buffer Size = 200,000
Methods US BR ID TR JP
FedLink (FL+Buffer) 0.837±0.003 0.930±0.004 0.834±0.004 0.929±0.003 0.842±0.005
FedLink-Local 0.828±0.003 0.931±0.004 0.827±0.003 0.923±0.004 0.840±0.005
FedLink-NoEmb 0.832±0.003 0.931±0.006 0.829±0.006 0.931±0.005 0.836±0.007
FedLink-MiniBatch 0.823±0.005 0.926±0.004 0.825±0.005 0.921±0.005 0.834±0.006

Buffer Size = 300,000
Methods US BR ID TR JP
FedLink (FL+Buffer) 0.848±0.003 0.940±0.004 0.906±0.004 0.966±0.003 0.950±0.005
FedLink-Local 0.832±0.003 0.926±0.006 0.890±0.006 0.963±0.005 0.946±0.007
FedLink-NoEmb 0.847±0.003 0.938±0.004 0.904±0.004 0.965±0.003 0.946±0.006
FedLink-MiniBatch 0.831±0.005 0.934±0.006 0.893±0.006 0.957±0.004 0.941±0.007

To evaluate FedLink’s performance under different data sizes, we conduct extensive downsampling189

experiments. Our experimental results demonstrate FedLink’s resilience to data reduction, maintain-190

ing among highest accuracy with 50% downsampling of the training data shown in Figure 4. We191

also performed downsampling experiments for 50%, 25%, and 2% data size for different country192

combinations, which can be found in Table C.3.193
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Figure 4: Performance comparison under data downsampling (100% vs 50%).
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the experiments?481

Answer: [Yes]482

Justification: As in appendix.483

Guidelines:484
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• If the authors answer NA or No, they should explain why their work has no societal511

impact or why the paper does not address societal impact.512

• Examples of negative societal impacts include potential malicious or unintended uses513

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations514

(e.g., deployment of technologies that could make decisions that unfairly impact specific515

groups), privacy considerations, and security considerations.516

• The conference expects that many papers will be foundational research and not tied517

to particular applications, let alone deployments. However, if there is a direct path to518

any negative applications, the authors should point it out. For example, it is legitimate519

to point out that an improvement in the quality of generative models could be used to520

13

https://neurips.cc/public/EthicsGuidelines
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11. Safeguards532
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release of data or models that have a high risk for misuse (e.g., pretrained language models,534

image generators, or scraped datasets)?535

Answer: [NA]536

Justification: [NA]537
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that users adhere to usage guidelines or restrictions to access the model or implementing542
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• Datasets that have been scraped from the Internet could pose safety risks. The authors544

should describe how they avoided releasing unsafe images.545

• We recognize that providing effective safeguards is challenging, and many papers do546

not require this, but we encourage authors to take this into account and make a best547

faith effort.548

12. Licenses for existing assets549
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the paper, properly credited and are the license and terms of use explicitly mentioned and551
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Justification: Cited papers.554
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• The answer NA means that the paper does not use existing assets.556
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.560

• For scraped data from a particular source (e.g., website), the copyright and terms of561

service of that source should be provided.562
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• For existing datasets that are re-packaged, both the original license and the license of567
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• The paper should discuss whether and how consent was obtained from people whose581

asset is used.582

• At submission time, remember to anonymize your assets (if applicable). You can either583
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14. Crowdsourcing and research with human subjects585
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well as details about compensation (if any)?588

Answer: [NA]589
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Guidelines:591
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• Including this information in the supplemental material is fine, but if the main contribu-594

tion of the paper involves human subjects, then as much detail as possible should be595

included in the main paper.596

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,597
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15. Institutional review board (IRB) approvals or equivalent for research with human600
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)603

approvals (or an equivalent approval/review based on the requirements of your country or604
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Answer: [NA]606
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Question: Does the paper describe the usage of LLMs if it is an important, original, or620

non-standard component of the core methods in this research? Note that if the LLM is used621

only for writing, editing, or formatting purposes and does not impact the core methodology,622

scientific rigorousness, or originality of the research, declaration is not required.623
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for what should or should not be described.630
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A Conclusion631

In this paper, we propose FedLink, a federated link prediction algorithm for dynamic graphs. FedLink632

is motivated by the problem of recommending items, e.g., restaurants, to users in multiple regions.633

While it is desirable to train a model across regions to take full advantage of all available data,634

privacy constraints, and computational overhead may prohibit centralized training of a dynamic GNN635

model across all regions. FedLink addresses the challenges of computational overhead and privacy636

concerns in situations where graph data is localized, such as recommending restaurants to users in637

multiple countries. This approach has the added benefit of accommodating users who move across638

countries, by allowing them to simply share the user embedding across countries. Moreover, FedLink639

maintains edge buffers of fixed size at each client, thus alleviating the effects of temporal and inter-640

client heterogeneity in link arrivals over time. We show that FedLink significantly reduces memory641

requirements and improves training speed while matching the accuracy of centralized training. Edge642

buffers of fixed size may not fully utilize the temporal information. Future work includes dynamic643

buffer and extending FedLink to other dynamic graph applications and generalizing the standard644

federated learning convergence analysis to address the unique challenges of dynamic graph settings.645

Our methodology also has the potential to extend to time-series data analysis, node classification, and646

graph classification1.647

B Background648

B.1 Graph Convolutional Network649

A multi-layer Graph Convolutional Network (GCN) Kipf and Welling (2016) with row normalization650

has the layer-wise propagation rule651

H(l+1) = ϕ(D̃−1ÃH(l)W (l)), (3)

where Ã = A+ IN , IN is the identity matrix, D̃ii =
∑

j Ãij and W (l) is a layer-specific trainable652

weight matrix. The activation function is ϕ, typically ReLU (rectified linear units), with a softmax in653

the last layer for node classification. The node embedding matrix in the l-th layer is H(l) ∈ RN×D,654

which contains high-level representations of the graph nodes transformed from the initial features;655

H(0) = X .656

C Theoretical Analysis657

C.1 Dynamic Stochastic Block Model658

For positive integers K and n, a probability vector p ∈ [0, 1]K , and a symmetric connectivity matrix659

B ∈ [0, 1]K×K , we define a static SBM as a random graph with n nodes split into K classes. The660

goal of a prediction method for the SBM is to correctly divide nodes into their corresponding classes,661

based on the graph structure. Each node is independently and randomly assigned a class in {1, ...,K}662

according to the distribution p. Undirected edges are independently created between any pair of nodes663

in classes i and j with probability Bij , which equals α if i = j (i and j are in the same class) and µα664

if i ̸= j (i and j are in different classes), where α ∈ (0, 1) and µ ∈ (0, 1) are given parameters.665

We consider a set of discrete time steps t = 1, 2, . . . , T . At each time step t, the Dynamic SBM666

generates new intra- and inter-class edges according to the probabilities α and µα as defined for667

the SBM above. All edges persist over time. We assume a constant number of nodes n, number of668

classes K, and connectivity matrix B. Let Yt ∈ {0, 1}n×K denote the matrix representing the nodes’669

class memberships at each time t, where Yik = 1 indicates that node i belongs to the k-th class, and670

is 0 otherwise. We model changes in nodes’ class memberships as a Markov process with a constant671

transition probability matrix H ∈ [0, 1]K×K . Let ε ∈ (0, 1) denote the probability a node changes672

its membership. At each time step, node vi in class j changes its membership to class k with the673

1Code and data will be made publicly available upon acceptance.
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following probability (independently from other nodes):674

Hj,k = P
[
Y t
ik = 1|Y t−1

ij = 1
]
=

 1− ε, j = k
ε

K − 1
, j ̸= k,

While ε may vary across classes j in practice, for simplicity we suppose it is the same for each class.675

We suppose that our learning task is to classify the nodes of the graph, i.e., to group nodes together676

so as to recover the membership matrix Y up to column permutation at each time t. We expect link677

prediction to give similar convergence results, but as the analysis is more involved we present the678

node classification analysis for simplicity. We thus evaluate estimates Ŷ of the membership matrix679

by defining the relative error of a classification estimate Ŷ as680

E(Ŷ , Y ) = min
π∈P

∥Ŷ π − Y ∥0, (4)

where P is the set of all K × K permutation matrices and ∥.∥0 counts the number of non-zero681

elements of a matrix.682

C.2 Class Behavior Over Time683

We observe the behavior of class evolution over time by using the relative error function in (4) to684

characterize the change in classification over time, i.e. E(Yt−τ , Yt). Without loss of generality, we685

remove the permutation and keep class indices for columns of Y constant for all membership matrices.686

Since node transitions are independent, the probability matrix E[Yt|Yt−1] = Yt−1H
T allows us to687

find the expectation of the relative error between adjacent time steps. This is obtained by modeling688

the error as n individual Markov chains between correct and incorrect classifications for each node.689

The probability of incorrectly predicting a node’s class using the previous time step’s information is690

ε (the probability of class shifting between time steps). Therefore, E[E(Yt−1, Yt)] = 2∥Yt−1∥0ε =691

2∥Yt∥0ε = 2nε, since every classification mistake increments the error metric by 2. For further time692

steps, due to the penalty function used in E(·, ·), we construct a two-state Markov chain for each user,693

where the states denote whether the user is in the same or different class as the current time. Then as694

t → ∞, the system reaches a stationary distribution and E[E(Yt−τ , Yt)] = 2nK−1
K ≈ 2n for large695

K. We will approximate the error over time by the following continuous function:696

E(t) = 2n− 2n(1− ε)ηt (5)

with an arbitrary convergence factor η (Li and Orabona, 2019).697

D Additional Experiments698

D.1 Experiment Settings699

Building upon our baseline methods, we evaluate FedLink’s link prediction performance in our four700

subsets of countries in the Foursquare dataset. Based on the buffer size analysis in Section 3.3.2, we701

employ buffer sizes of 200,000 and 300,000, which demonstrated an optimal range for computational702

efficiency and model performance. In order to capture patterns of check-in behaviors and sufficient703

user travel across countries, we analyze the data over a 30-day period. The training settings for each704

model are as follows: Local Training (Local and FedLink-Local): Both methods perform 60 local705

training iterations. Local uses the complete dataset, while FedLink-Local uses a single buffer per706

iteration. Federated Training (STFL, 4D-Fed-GNN+,FedDGL, and Feddy): All methods perform707

20 global training rounds with 3 local iterations per client. STFL, FedDGL and Feddy processes708

full historical data, while 4D-FED-GNN+ uses single-day data, representing scenarios with limited709

computational capacity. FedDGL selectively processes 10% of nodes as sensitive information for710

temporal knowledge distillation. Federated Training with Buffer (FedLink, FedLink-NoEmb,711

and FedLink-MiniBatch): All methods perform 20 global training rounds with 3 local iterations712

per client, processing one buffer per iteration. FedLink shares user embeddings across clients713

for traveled users, while FedLink-NoEmb operates without this cross-client information sharing.714

FedLink-MiniBatch uses random sampling within buffers instead of FIFO sequential processing.715
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Figure C.2: Distribution of check-ins across selected 10 countries in the Foursquare dataset.

D.2 Foursquare Dataset716

We present the Foursquare dataset with the following statistics: Check-ins: 7,705,646 check-ins717

made by 40,484 users across 1,273,946 venues. Population Distribution: Selected countries show718

significant variation in user population sizes, reflecting real-world demographic differences, shown in719

Figure C.1. Check-in Distribution: The check-in volumes also vary across countries, with the United720

States (US) having 1,990,327 check-ins, while Spain (ES) having 212,161 check-ins for example,721

shown in Figure C.2. Traveled user percentage: Approximately 1.39% of users have check-ins across722

multiple countries, which we refer to as traveled users. We organize our experiments into four sets723

according to different country sizes as follows:724

Large Countries (EXP 1): Top five countries with the highest check-in volumes: United States (US),725

Brazil (BR), Indonesia (ID), Turkey (TR), and Japan (JP) ;726

Midsized countries (EXP 2): Five countries with relatively limited data: Mexico (MX), Philippines727

(PH), Spain(ES), UK(GB), and Italy(IT);728

Combinations (EXPs 3): Combinations of large and small countries (US, JP, BR, MX, ES) to assess729

FedLink’s performance under client data heterogeneity;730

Small Countries (EXP 4)Five small countries with size around 5% of the size of US: Germany(DE),731

Netherlands(NL), South Korea(KR), France(FR), and Canada(CA).732

We present Fig C.1 to show the population distribution across the ten countries selected for our733

experiments. This population heterogeneity allow us to assess our model’s ability to handle different734

levels of data density and user activity patterns.735
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Figure C.1: Distribution of user population across selected 10 countries in the Foursquare dataset.

D.3 Experimental Results736

We present detailed performance metrics for different country combinations in Table C.1, showing737

training time for each country, total completion time, and GPU memory usage during training. The738

total training time per round is determined by the slowest client, as federated learning requires all739

clients to complete their local training before proceeding with global model updates. These detailed740

19



Table C.1: Training Time of FedLink with buffer size 200,000 on clients for 1200 Iterations. Each
result represents the total training time, averaged over 10 runs. FedLink consistently trains faster and
has lower GPU memory usage, than all other algorithms except 4D-FED-GNN+ which has a much
lower AUC.

US BR ID TR JP Total Time (s) Training GPU (GB)
STFL 2.172 2.085 2.293 2.312 2.406 2.406 5.997
Local 2.009 1.998 2.223 2.250 2.210 2.250 5.997
4D-FED-GNN+ 1.864 1.637 1.768 1.714 1.730 1.864 2.065
FedLink 1.758 1.630 1.650 1.673 1.766 1.766 2.065

MX PH ES GB IT Total Time (s) Training GPU (GB)
STFL 1.688 2.082 1.755 1.624 1.551 2.082 1.220
Local 1.540 1.867 1.580 1.577 1.549 1.867 1.220
4D-FED-GNN+ 1.493 1.857 1.488 1.481 1.480 1.857 0.894
FedLink 1.583 1.996 1.602 1.689 1.690 1.996 0.894

US BR JP MX ES Total Time (s) Training GPU (GB)
STFL 2.058 1.881 1.711 1.866 1.994 2.058 5.832
Local 1.798 1.837 1.650 1.889 1.809 1.889 5.830
4D-FED-GNN+ 1.606 1.601 1.594 1.649 1.583 1.649 1.789
FedLink 1.648 1.630 1.630 1.782 1.781 1.782 1.789

US IT GB TR ES Total Time(s) Training GPU(GB)
STFL 2.015 1.894 1.723 1.879 1.982 2.015 4.449
Local 1.806 1.860 1.662 1.867 1.814 1.860 4.447
4D-FED-GNN+ 1.650 1.614 1.607 1.643 1.596 1.650 1.302
FedLink 1.554 1.627 1.624 1.632 1.639 1.639 1.301

DE NL KR FR CA Total Time(s) Training GPU(GB)
STFL 1.552 1.684 1.752 1.651 1.696 1.752 0.886
Local 1.487 1.624 1.583 1.598 1.554 1.624 0.886
4D-FED-GNN+ 1.393 1.401 1.484 1.422 1.379 1.484 0.678
FedLink 1.347 1.408 1.395 1.463 1.421 1.463 0.676

measurements demonstrate FedLink’s computational efficiency compared to baseline methods. We741

also present detailed test AUCs for different experiments, showing AUC score for each country in742

Table C.2. To ensure model convergence, we monitor AUC scores over increasing training rounds.
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Figure C.3: Buffer Size Effect on AUC scores for five countries(US, BR, ID, TR, JP) on original data
(left) and 50% downsampled data (right).

743
Our experiments use 180 global rounds, as we observe that model performance stabilizes well around744

this point, as shown in Figure C.4 for the convergence patterns.745

D.4 Buffer Selection746

As shown in Fig C.3, we performed experiments on varying buffer size and evaluated its effect on747

model AUC and GPU usage. Detailed buffer size analysis on different countries are as follows:748
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Table C.2: Test AUCs on different test sets with varied countries combination. Each result is tested
over a 30-day period with a 200,000 buffer size. The result is averaged over 10 runs. FedLink
consistently achieves the best (bold) or second-best (bold italics) AUC compared with local training
and STFL which require significantly more training time.

US BR ID TR JP
STFL 0.842±0.004 0.927±0.006 0.832±0.006 0.922±0.004 0.828±0.008
Local 0.841±0.008 0.931±0.007 0.836±0.009 0.931±0.006 0.851±0.008
4D-FED-GNN+ 0.561±0.006 0.595±0.007 0.539±0.012 0.614±0.004 0.588±0.014
FedLink 0.847±0.003 0.930±0.004 0.834±0.004 0.929±0.003 0.842±0.005

MX PH ES GB IT
STFL 0.876±0.004 0.865±0.004 0.839±0.003 0.824±0.004 0.836±0.004
Local 0.873±0.006 0.865±0.009 0.838±0.009 0.822±0.010 0.837±0.010
4D-FED-GNN+ 0.640±0.002 0.544±0.002 0.546±0.002 0.568±0.002 0.536±0.001
FedLink 0.877±0.004 0.865±0.003 0.839±0.005 0.821±0.006 0.837±0.005

US BR JP MX ES
STFL 0.831±0.003 0.929±0.006 0.832±0.008 0.899±0.005 0.853±0.008
Local 0.838±0.008 0.931±0.007 0.843±0.009 0.908±0.006 0.865±0.008
4D-FED-GNN+ 0.560±0.012 0.594±0.013 0.590±0.012 0.646±0.012 0.547±0.014
FedLink 0.828±0.005 0.929±0.001 0.835±0.004 0.903±0.005 0.859±0.003

US IT GB TR ES
STFL 0.842±0.005 0.853±0.007 0.872±0.004 0.871±0.003 0.854±0.009
Local 0.843±0.010 0.864±0.007 0.864±0.008 0.879±0.004 0.866±0.007
4D-FED-GNN+ 0.552±0.007 0.563±0.009 0.571±0.011 0.583±0.008 0.547±0.013
FedLink 0.840±0.006 0.861±0.003 0.873±0.007 0.874±0.003 0.863±0.004

Figure C.4: AUC scores convergence analysis for FedLink over global training rounds

1. For the US dataset, it is the largest country in number of check-ins, and is the only one749

that will benefit from increasing buffer size even beyond 500K with continuously improved750

AUC, as it haven’t reach its full batch check-in size.751

2. For medium-sized countries (BR, TR, MX), the improvement plateaus around 200K, and752

actual performance decreases beyond 500K.753

3. For smaller countries (JP, GB, ES), and the downsampled version of medium sized countries754

in Figure C.3(right), optimal performance is achieved at even smaller buffer sizes between755

100K-150K.756

D.5 Ablation Study757

We also present detailed experimental results for ablation study for downsampling data in Figure C.5.758

Table C.3 presents model performance under various data reduction scenarios (50%, 25%, and 2% of759

original data) across different country combinations.760
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Table C.3: Test AUCs on down-sampled test sets with varied countries combination with 50%, 25%,
2% size reduction on different country combination’s data input. Each result is tested over a 30-day
period with a 200,000 buffer size. The result is averaged over 10 runs. FedLink consistently achieves
the best (bold) or second-best (bold italics) AUC compared with local training and STFL which
require significantly more training time.

US(50%) BR(50%) ID(50%) TR(50%) JP(50%)
STFL 0.836±0.004 0.915±0.003 0.835±0.006 0.920±0.004 0.804±0.007
Local 0.835±0.008 0.926±0.008 0.8412±0.008 0.928±0.005 0.843±0.007
4D-FED-GNN+ 0.549±0.007 0.586±0.008 0.529±0.010 0.613±0.003 0.579±0.010
FedLink 0.843±0.004 0.928±0.004 0.833±0.003 0.917±0.003 0.847±0.005

US(50%) BR(50%) JP(50%) MX(50%) ES(50%)
STFL 0.831±0.004 0.929±0.006 0.832±0.006 0.899±0.005 0.853±0.008
Local 0.838±0.008 0.931±0.007 0.843±0.009 0.908±0.006 0.865±0.008
4D-FED-GNN+ 0.560±0.012 0.594±0.013 0.590±0.012 0.646±0.012 0.547±0.014
FedLink 0.828±0.005 0.929±0.001 0.835±0.004 0.903±0.005 0.859±0.003

US(25%) BR(25%) JP(25%) MX(25%) ES(25%)
STFL 0.683±0.006 0.834±0.006 0.720±0.005 0.780±0.008 0.701±0.006
Local 0.687±0.008 0.835±0.007 0.735±0.009 0.798±0.006 0.713±0.008
4D-FED-GNN+ 0.508±0.012 0.519±0.013 0.538±0.012 0.546±0.012 0.509±0.014
FedLink 0.693±0.005 0.837±0.001 0.731±0.004 0.793±0.005 0.709±0.003

US(2%) BR(2%) JP(2%) MX(2%) ES(2%)
STFL 0.831±0.004 0.929±0.006 0.832±0.006 0.899±0.005 0.853±0.008
Local 0.838±0.008 0.931±0.007 0.843±0.009 0.908±0.006 0.865±0.008
4D-FED-GNN+ 0.560±0.012 0.594±0.013 0.590±0.012 0.646±0.012 0.547±0.014
FedLink 0.828±0.005 0.929±0.001 0.835±0.004 0.903±0.005 0.859±0.003
Method Full Data 50% Large 50% Small 25% Data 2% Data
STFL 0.913±0.004 0.859±0.005 0.869±0.006 0.744±0.006 0.869±0.006
Local 0.915±0.008 0.870±0.009 0.754±0.008 0.877±0.008 0.877±0.008
4D-FED-GNN+ 0.567±0.009 0.566±0.009 0.587±0.013 0.509±0.014 0.549±0.010
FedLink 0.916±0.003 0.874±0.004 0.871±0.004 0.802±0.004 0.889±0.007

Table C.4: Test AUCs for only traveled users under the three ablation study methods of FedLink,
FedLink-Local and FedLink-NoEmb.

US BR ID TR JP
FedLink (FL+Buffer) 0.808±0.001 1.000±0.001 0.964±0.036 0.833±0.001 0.923±0.182
FedLink-Local 0.552±0.002 0.732±0.158 0.548±0.124 0.531±0.004 0.610±0.215
FedLink-NoEmb 0.759±0.003 0.724±0.086 0.813±0.108 0.783±0.164 0.811±0.007

Table C.4 specifically focuses on traveled users, comparing performance across three variants:761

FedLink, FedLink-Local, and FedLink-NoEmb. This analysis shows the importance of both federated762

learning and embedding sharing mechanisms for predicting traveled users. FedLink consistently out-763

performs other variants on traveled users, demonstrating the effectiveness of cross-client information764

sharing for users who move between regions.765

D.6 TGBL-Wiki766

The dataset of TGBL-Wiki includes 157474 edges with timestamps from 0 to 2678373. There are767

total of 4613 users and 4614 items, with 133892 user-item interactions.768

To evaluate temporal performance across different time periods, we partition the TGBL-Wiki dataset769

into two temporal subsets based on timestamp ordering: an earlier period containing the first half of770

interactions (timestamps 0 to 1339186) and a later period containing the second half (timestamps771

1339187 to 2678373). This temporal split allows us to assess how federated learning methods772

perform on older versus newer interaction patterns, providing insights into temporal generalization773

capabilities.774
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Figure C.5: Performance comparison under data downsampling (100% vs 50%). Results demonstrate
that FedLink maintains consistent AUC scores even with down-sampled data across both country
sets. FedLink maintains comparable AUC scores with 50% data size across both country sets, while
achieving reduced GPU memory consumption and faster training time.

E Example Use Cases775

E.1 Link Prediction on Tabular Data776

Most user data is stored in tabular format, where each row in the table represents information on a user777

information (e.g., user IP address, location, website, and purchased product). User information is also778

updated with time. However, entries in this table may be missing, e.g., due to faulty data collection.779

By modeling the user table information as a dynamic graph, we can perform link prediction on the780

tabular data and fill in the missing part of the table, allowing us to more easily use it for various tasks781

(e.g., purchase behavior prediction).782

E.2 Website Behavior Prediction783

Predicting websites to be visited by users allows dynamic pre-caching of the site content, reducing784

communication costs and response latency. By modeling visits as a user-website bipartite graph, we785

can predict frequently visited websites. Such visit behavior is cyclic and dynamic, requiring regular786

updates and on-time predictions.787

E.3 User Identity Verification788

Identity verification helps to validate users’ product subscriptions. By modeling users and their789

behavior as nodes in a dynamic graph, we can detect anomalous behavior and classify nodes as “good”790

users and “bad” actors.791
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