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Exploring Li-Ion Transport Properties of Li;TiCls: A Machine

Learning Molecular Dynamics Study
Selva Chandrasekaran Selvaraj,"*® Volodymyr Koverga,"* and Anh T. Ngo'**

! Department of Chemical Engineering, University of Illinois Chicago, Chicago, llinois 60608, United States of America
2Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States of America

We performed large-scale molecular dynamics simulations based on a machine-learning force field (MLFF) to investigate the Li-
ion transport mechanism in cation-disordered LizTiClg cathode at six different temperatures, ranging from 25°C to 100°C. In this
work, deep neural network method and data generated by ab — initio molecular dynamics (AIMD) simulations were deployed to
build a high-fidelity MLFF. Radial distribution functions, Li-ion mean square displacements (MSD), diffusion coefficients, ionic
conductivity, activation energy, and crystallographic direction-dependent migration barriers were calculated and compared with
corresponding AIMD and experimental data to benchmark the accuracy of the MLFF. From MSD analysis, we captured both the
self and distinct parts of Li-ion dynamics. The latter reveals that the Li-ions are involved in anti-correlation motion that was rarely
reported for solid-state materials. Similarly, the self and distinct parts of Li-ion dynamics were used to determine Haven’s ratio to
describe the Li-ion transport mechanism in Li;TiCls. Obtained trajectory from molecular dynamics infers that the Li-ion
transportation is mainly through interstitial hopping which was confirmed by intra- and inter-layer Li-ion displacement with respect
to simulation time. Ionic conductivity (1.06 mS/cm) and activation energy (0.29eV) calculated by our simulation are highly
comparable with that of experimental values. Overall, the combination of machine-learning methods and AIMD simulations
explains the intricate electrochemical properties of the Li5;TiClg cathode with remarkably reduced computational time. Thus, our
work strongly suggests that the deep neural network-based MLFF could be a promising method for large-scale complex materials.
© 2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/

1945-7111/ad4ac9]

Manuscript submitted March 8, 2024; revised manuscript received April 26, 2024. Published May 22, 2024.

Addressing the increasing energy demands in the face of climate
change concerns requires a sustainable zero-carbon energy future.
Rechargeable batteries that are capable of converting electrical
energy to chemical energy and vice versa, are pivotal for energy
storage in this context. While lithium-ion batteries have proven
successful for portable devices, all-solid-state batteries (ASSLBs)
present a promising solution for the next generation. ASSLBs offer
enhanced safety and a longer lifespan compared to traditional
lithium-ion electric vehicle batteries and are aligning with goals
for achieving zero-carbon emissions.

In ASSBs, the cathode is a crucial component and it is playing a
vital role in determining their overall performance. Particularly, energy
storage capacity, voltage, cycle life, safety, cost, and environmental
impact, are intricately linked to the cathode material. Among the widely
used sulfide- and oxide-based cathode materials, latter take a leading
position in energy storage manufacturing. Indeed, such commercial
attention is also facilitated by the use of transition metals, including
single- LiMO,, multi- LiNi; _,_,Mn,Co,0,, and polyanionic-TM-based
LiMPO, (M = 3d-block elements of 3 group; x =y = 0.1 to 0.33),1_10
which essentially improve the performance of ASSLB devices. Since
the projected annual production of Li-ion batteries is expected to reach
several terawatt hours, demand for Fe, Co, and Ni based cathode
materials increases rapidly.!' However, Co and Ni prove to be
expensive. Consequently, ongoing efforts include both simulations
and experimental studies, aiming to identify more cost-efficient
alternatives for cathodes.'

Among various studies on cathode materials, a recent research
has shown that LisTiClg is both cost-effective and outperforms
previous benchmarks for ASSLBs.'* However, the experimental
investigation'® of LizTiCle falls short of providing a comprehensive
understanding of the underlying physics and chemistry governing
the Li-ion transport mechanism, which is a key factor to determine
the performance entire battery. Thus, we turn to atomic simulation
techniques to study the underlying Li-ion transport mechanism in
Li3TiClg.

“E-mail: anhngo@uic.edu

The conventional atomic simulation based on density functional
theory (DFT) is well known for predicting structural, electroche-
mical, and Li-ion transport properties'*'* with few hundred atoms.
Nevertheless, it requires extensive computational resources and is
helpless for large-scale demand posed by Li-ion intercalation-driven
electrochemical studies. To facilitate this challenge, various machine
learning (ML) methods are utilized in conjunction with molecular
dynamics simulations.'>'® Among the variety of ML techniques, e.
g., artificial neural networks,'”'® kernel-based methods,'®, Gaussian
approximation potentials,”® and atomic cluster expansion,?' Deep
Learning Potential (DLP) stands out as versatile tool, capable of
producing accurate potential models on the basis of quantum-
chemical calculations.****

Therefore, our approach in this work involves the integration of
AIMD, machine learning methods based on deep neural networks,
and classical molecular dynamics. This integrated approach is
collectively referred to as deep learning molecular dynamics
(DLMD) simulations?*** to investigate the structural and Li-ion
transport properties of the Li;TiClg cathode. With this, we organize
the manuscript as follows: Simulation Methodologies section
describes detailed simulation techniques, as illustrated in Fig. 1.
Results and Discussion section is composed of structural parameters,
RDF, MSD, self and correlated motion of Li-ion displacement,
diffusion coefficient, Li-ion transport mechanism, ionic conduc-
tivity, and activation energy of Li;TiClg. The calculated values of
ionic conductivity and activation energy are in good agreement with
those of experimental values.'® Finally, we conclude our results and
discussions in Conclusions section.

Simulation Methodologies

AIMD simulation.—DFT-based calculations were employed to
optimize the crystal structure of LizTiClg using the Vienna
Ab — initio Simulation Package (VASP).**** The initial structure of
Li;TiClg in monoclinic cell with C2/m space group for VASP was
adopted from experimental results.'? The projector augmented wave
(PAW) formalism described the valence electrons of Li, Cl, and Ti
atoms using plane wave-based wave functions was employed.”® The
structure optimization, involving the minimization of ground state
energy, utilized the generalized gradient approximation of Perdew
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and Wang method with different U-parameters.”’® A set of U —J
values, 0 and 4eV were chosen to taking into account of strong
correlation effect of Ti-3d electrons.?*** A kinetic cutoff energy of
450 eV was set to enhance calculation accuracy. The Brillouin zone
of the supercell with 160 and 320 atoms was sampled with 4 x 2 x 4
and 4 x 2 x 2 k-meshes for ionic optimization, respectively. lonic
and electronic optimizations were alternately performed until the
forces on each ion reached less than 10 meV/A.

The designed simulation cells were optimized and subjected to
AIMD simulations. The time step for the AIMD simulations was set
to 1 fs, and the simulations were continued for a duration considered
separately within the canonical NVT ensemble to generate the
dataset for the DLP model.

Deep learning potential.—The DLP was developed using the
deep neural network method implemented in DeePMD-kit
(v2.271).2" The deep neural network algorithm in DeePMD is
designed using the TensorFlow Python library.*> The deep poten-
tial-smooth edition (DeepPot-SE), an end-to-end machine learning-
based potential energy surface (PES) model, was employed with a
cutoff radius of 7 A to include more neighbour atoms in the
featurization process. Indeed, it efficiently represents the PES of a
wide variety of systems with the accuracy of ab — initio models.**

In the process of constructing DLP, local coordinate matrix, R

and local atomic environment matrix, {R,-j}fil are represented as

shown in Egs. 1 and 2.
R={rl. . L)

(1]

where r; = (x;, y;, z;) which contains 3 Cartesian coordinates of atom
and N is total number of atoms. And R can be transformed into local

environment matrices as

(R¥Ly = {ri rhee 1 |j € NG, Re =700} [2]
where j and Nk, (i) are indexes and number of neighbors of ™ atom
within the cutoff radius r.=7.0A, and rj;=r; —r; is defined as the
relative coordinate.

An embedding neural network with three layers, each containing

32, 64, and 128 neurons, was used to convert the local atomic
coordinates (R € R¥*3) into atomic descriptors Di = Di (R },-Ail)
that preserves the structural symmetries of the system.’!3*
Descriptor values were input into a fitting neural network with three
layers, each comprising 256 neurons, that maps descriptors to atomic
energies E;,>'** and thus the total energy and force of each atom in
the system are calculated by Eqgs. 3 and 4.

i=N i=N
E=) E=) ED) [3]
i=0 i=0
oE
Fo=-— 4
“= o [4]

The hyperbolic tangent (tanh) activation function was applied in
the neural network, introducing non-linearity to effectively train the
intricate atomic descriptor data D;. The training process consisted of
10* steps, utilizing mean squared error for both energies and forces
as the loss function at each training step. The optimization was
facilitated by the Adam optimizer, initiating with a learning rate of
1072 and concluding at 1078, with a decay parameter set to 5000.
With these specified parameters, a dataset comprising 1.3 million

(a)
iy - I B TR > D - > ® S
AIMD Extracting atomic Generating atomic Calculating atomic Large-scale
trajectory  coordinates Ry with descriptors Dj using energies E; using DLMD
cutoff radius R¢ embedding neural network  fitting neural network
(b) _ © (d) _
o 2 oL 1| oL S| i F
- ¢ &
s = F e’ Fy
_1 = '_ o 3 - .
3 E =l 327 Ti .ty
L —2 (' Yau e w aill NITE I
| ] O N -1 0 1 -2 0 2
cT R A
Pttt (eV/ﬂ\) Fammp (eV/A) Fammp (eV/A)
(T e (8)~
g_ = 3 B
O 150k | o 40 -
E 4 - E -
00k | B
2 E S 2
B 50k F o "
2] E w0 B
i 0 EL L L L1 I Ll I Ser? 0 Ll Ll I L L1 I
+J 2
o 0 5 10 o 0 5 10

AIMD Time (ps)

DLMD Time (ps)

Figure 1. (a) Schematic diagram of the protocol of DLMD development (see Simulation Methodologies section for the details). (b—d) DLMD predicted forces
corresponding to AIMD forces for ClI (b), Li (c) and Ti (d) elements, as well as the respective forces along x, y, and z directions. (¢) DLMD predicted energies
corresponding to AIMD energies. (e-f) Simulation time (C,) of AIMD(e) and DLMD(f) approaches, respectively.Methodology of machine learning force field

development by Selva Chandrasekaran Selvaraj.



Journal of The Electrochemical Society, 2024 171 050544

Table 1. The calculated loss function parameter expressed by mean
absolute error (MAE) and root mean square error (RMSE) of deep
learning potential model.

Metric Value Unit
Energy MAE 6.723 x 10°* eV/atom
Energy RMSE 8.389 x 107* eV/atom
Force MAE 5.959 x 1073 eV/A
Force RMSE 7.827 x 1073 eV/A

training samples and 10 000 test samples from diverse trajectories
were employed to construct the DLP model. The calculated loss
function parameters such as mean absolute error and root mean
square error during validation of developed DLP model is tabulated
in Table I. Accuracy of the predicted data of force and energy is
more than 99 % and data points of predicted versus trained are
shown in Fig. 1b to Fig. le.

Deep learning molecular dynamic simulation.—Similarly to
AIMD conditions, The simulations of DLMD was conducted in the
NVT ensemble using the LAMMPS simulation package®> coupled
with the DeepMD plugin.** The simulation cell was designed to
accommodate 20,000 atoms. Simulations were carried out at six
different temperatures 298, 313, 328, 333, 358, and 373K controlled
by the Nose-Hoover thermostat.

Prior to NVT simulation, the energy minimization was conducted
using conjugate gradient algorithm. The temperature damping
parameter was set to 100 fs, and a uniform integration time-step
of 1 fs was employed for all simulations, extending over a total
duration of 5.5 ns. Computing time for AIMD and DLMD simula-
tion for 10 ps per atom on one computing core was calculated and
plotted in Fig. 1f and Fig. 1g, respectively and it reveals that DLMD
is 3730 times faster than AIMD simulation. The unit-cell of AIMD
simulations were visualized using VESTA software®® and the
trajectories of AIMD and DLMD simulations were visualized using
OVITO software.*’

Results and Discussion

Radial distribution.—The monoclinic simulation cells, com-
prising 160 and 320 atoms, were employed to create three distinct
Ti occupancies at the 2a and 4g sites, aiming to reproduce the
experimentally reported structure of LisTiCle'® (Fig. 2). The three
different occupancies, along with the corresponding experimental Ti
occupancy, are summarized in Table II.

Subsequently, the designed cells underwent optimization, and
their structural parameters closely matched experimental values'? for
DFT+U calculation with U =4.0 eV. The slight variations, when
compared to their experimental values, may be attributed to the
small change in the Ti occupancy within the designed simulation
cells as well as the overestimation of GGA functional that used in
the DFT simulation. Based on the structural optimization results, we
selected the Li;TiClg structure with Ti-sites at 0.754 on 2a and 0.123
on 4g, which represents experimentally annealed structure at 300 °C
and exhibited a maximum Li-ion conductivity of 1.04 mS/cm at
room temperature.'

Atomic trajectories produced by AIMD and DLMD at 298 K
were compared in the framework of radial distribution function
(RDF), calculated by the equation given below:

N
1 1
g =—Y ¥ —5—5(r—ry [5]
N 3 P dzri Ar

where, N, r;, and Ar represent the total number of atoms in the
radius r, the distance between atoms i and j, and the width of each
bin, respectively.

Generally, RDFs between pairs of atoms in the same material,
estimated using AIMD and DLMD, may provide valuable confirma-
tion of reliability, accuracy, and consistency in capturing the
structural features of the system under investigation. Thus, results
of the RDF analyzed using two theoretical approximations for CI-Ti,
CI-Li, Ti-Li, Li-Li, and CI-Cl pairs of atoms are presented in Fig. 3.
As can be clearly seen, all the peak positions, shapes, and heights of
RDF obtained by means of DLMD exhibit good agreement with
AIMD results, even at larger distance, confirming the ability of
DLMD to predict other static properties with high-level accuracy.

Considering the RDF results more carefully, one can observe
multiple peaks along the large separation distances which indicates a

Figure 2. Ball and stick model of LizTiClg structure with three different Ti occupancies at 2a and 4g sites.
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Table II. Calculated lattice parameters of monoclinic Li;TiClg with different Ti occupancy at 4h and 2a sites.

0.875Ti@2a 0.844Ti@2a 0.750Ti@2a
0.851Ti@2a 0.754Ti@2a
0.063Ti@4g 0.078Ti@4g 0.125Ti@4g
0.075Ti@4g 0.123Ti@4g
U= 0.0 U= 4.0 Expt'? U= 0.0 Uy = 4.0 Expt'? U= 0.0 Uyr=4.0
Lattice constant, a(A) 6.434 6.401 6.350 6.415 6.396 6.350 6.451 6.398
Lattice constant, b(A) 11.05 10.91 10.88 10.96 11.93 10.89 11.02 10.95
Lattice constant, c(A) 6.351 6.340 6.337 6.383 6.348 6.353 6.413 6.381
Angle 5°) 110.7 110.6 110.2 110.6 110.4 110.1 110.9 110.8
L — 298K
8 o (@) MSDggie = 313K
iLS 2 = 328K
E_-)_, =— 343K
L = 358K
() — 373K
o

o

RDF (CI-Ti)
[

o

N

3
21
(1
(a]
oc

o

RDF (Ti-Li)
N
I

Distance (4)

Figure 3. Comparison of radial distribution function of Li;TiCls analyzed
based on AIMD with U =4.0 eV and DLMD trajectories at 298 K.

relatively high degree of atomic structuring in LizTiCle. For CI-Ti
and CI-Li pairs, the first peak position is nearly the same at a
distance of 2.53 A, while other pair combinations are situated at
larger distances of 3.5 A. At the same time, the height of the Li-CI
peak is greater than that of Ti-Cl, which reveals that a relatively
higher probability of Li-Cl interactions compared to Ti-Cl. This is

Time(ns)

Figure 4. Time-evolution of mean squared displacement (MSD) of Li atoms
calculated at 298, 313, 328, 333, 358, and 373 K for uncorrelated, MSDy.ys,
and correlated part, MSD gigtinct. (2) and (b) are MSDs calculated from DLMD
simulation with U= 0.0 eV and U = 4.0 eV, respectively.

evident when comparing the peak heights of Li-Li, Ti-Li, and CI-Cl
pairs.

Diffusion coefficients.—The diffusion of Li-ions was determined
from DLMD trajectories, where the positions of Li atoms, denoted as
{r(®)}N_ |, are tracked as a function of time # for all N Li atoms. This

involves calculating the mean square displacement of Li atoms,
MSDror > as follows.

2

MSD g = (6]

1
N

N
2 Ar
i=1

We compute uncorrelated motion of MSD as follows.

N
1
MSDr = - D7 1An (1) 71
i=1

From Eqgs. 6 and 7, distinct part of MSD is calculated by
MSDyigtinet = MSD a1 — MSDyej¢ [8]

When MSDg;ginet < 0 describes negative correlation between Li-
ions and, hence, negatively affect the Li-ion transport. Based on
Egs. 6-8, we calculated MSDy); and MSDy;ginee and collect the
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translations corresponding to (a) and (b) as a function of time. Illustration of inter-layer Li-ion movement (gray balls) along Li;TiCl (d) [010], and (e) [110]
view-point directions. (f) Translation distance of Li atoms corresponding to (d) and (e) as a function of time.
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Figure 6. Arrhenius plot for ionic conductivity as a function of temperature
calculated using of DLMD at 298, 313, 328, 333, 358, and 375 K with
U =0.0 and U= 4.0 eV in comparison with experimental data.'?

results in Fig. 4. It is seen that MSDg;gine Values for Li;TiClg at
different temperatures show negative correlation (or anti-correlation)
between Li atoms during their dynamics. To quantify this observa-
tion the diffusion coefficient was calculated on the basis of MSD
using

_ MSD(A)

2d At ©]

where d is dimensionless quantity which is equal to 3 for three
dimensional transport. Since, Li3TiClg has anti-correlated Li-ion
dynamics, calculated Dy, is hi;hly overestimated about 14 times of
Dyorar, Which is 1.6 x 10~ *cm?/s at 298 K with DLP generated from
DFT+U =4.00 eV.

One way to understand this phenomenon is by analyzing Haven’s
ratio (Hg)*® which is defined as the ratio of the self-diffusion
coefficient of Li-ions ( D) to the total diffusion coefficient ( Do)

using Eq. 9.

HR _ Dse]f

= [10]
DTotal

Here, D, represents the individual motion of ions which is
independent of overall charge transport. On the other hand, Dz,
is the diffusion coefficient calculated from the material’s conduc-
tivity by considering the collective motion of ions that contributes to
overall charge transport. In the case of uncorrelated Li-ion dynamics,
Drotal = Dgerr, and Hg becomes 1. If Hy is less than 1, D gigine Should
have been positively correlated with Li-ion dynamics, typically
observed in liquid and glass electrolytes.**** In our case, since Hpg is
greater than one, we propose that Li-ion dynamics may involve an
interstitial and/or inter-layer transport mechanism.

Transport mechanism.—Furthermore, we analyzed the Li-ion
path to confirm the inter- and intra-layer diffusion of the ions.
Among all the Li atoms in the trajectory simulated at 298 K, we
arbitrarily selected two Li atoms to track the ionic motion over time
(in Fig. 5). Figures 5a and 5b clearly illustrate the Li atom (gray-
colored dots) moving within the Li layer through interstitial hopping.
Simultaneously, inter-layer motion between Li- and Ti-layers is also
observed through interstitial migration, as shown in Fig. 5d and Se.

The movements of ionic movement corresponding to intra- and
inter-layer migration are shown in Fig. 5c and 5f. More interestingly,
Fig. 5f demonstrates that inter-layer Li-ion migration reaches the
third cation layer at 4.7 ns through interstitial sites, proving multiple-
site hopping of Li-ion. Since the LizTiClg crystal structure has
partially occupied Ti-2a as well as Ti-4g, the structure possesses
inherent voids that can also possibly act as hopping sites for Li-ion
migration. Therefore, our study confirms that Li;TiClg has an inter-
and intra-layer interstitial hopping-based Li-ion transport me-
chanism.

Ionic conductivity.—The ionic conductivity, denoted as o, can
be determined from the self-diffusion coefficient using the Nernst-
Einstein equation:*'

272

neZ

o= Dygeit [11]
HpkgT

Here, n represents the ion density of Li, e is the elementary electron
charge, Z denotes the valence of Li, and kg is the Boltzmann
constant. The calculated ionic conductivity values from diffusion
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coefficients align well with experimental values,'® as demonstrated in
Fig. 6. Additionally, when considering the temperature dependence of
ionic conductivity in solid-state electrolytes, high-temperature ionic
conductivities obtained from DLMD simulations can be leveraged to
estimate the activation barrier of the electrolytes at lower temperatures
using the Arrhenius relationship: ¢ = 6oe=%/®87) The calculated
activation energy is 0.29 eV(Fig. 6), closely matching the experi-
mental value of 0.32 eV. In addition, Li-ion migration barriers were
calculated using the DFT-based NEB method along different crystal-
lographic directions. The barriers along [110], [101], [010], [100] are
0.30, 0.303, 0.312, and 1.14 eV, respectively. The inter-layer ([110]
and [101]) migration barriers are considered along interstitial sites and
are very close to the activation energy calculated in DLMD simula-
tions. Thus, the calculated activation energy and Li-ion barrier energy
confirm the accuracy of both DLMD and DFT simulations, respec-
tively.

Conclusions

We performed large-scale and MLFF-driven molecular dynamics
simulations to investigate the Li-ion transport mechanism in cation-
disordered Li;TiClg cathode at six different temperatures, ranging
from 298K to 373K. Deep neural network method along with data
generated by AIMD simulation were used to build a high-fidelity
MLFF. Predicting accuracy of atomic forces, energy, and structure
by our trained MLFF was confirmed with set of new AIMD data and
corresponding RDF. The calculated self and distinct part of Li-ion
MSD reveal that the Li-ions are involved in anti-correlation motion
that was rarely reported for solid-state materials.

In the same way, analysis of trajectory from DLMD infers that
the Li-ion transportation occurs through interstitial hopping which
was confirmed by intra- and inter-layer Li-ion movement as a
function of simulation time. The temperature dependent ionic
conductivity and, thus, activation barrier values for LiszTiClg
demonstrate a decreasing trend with temperature, aligning with
typical behavior of ionic conductors. Moreover, activation energy of
0.29 eV, which is in close agreement with experimental result,
matches well with inter-layer ionic diffusion barrier calculated by
DFT along [110] crystallographic direction. Overall, the combina-
tion of machine-learning methods and AIMD simulations elucidates
the complex Li-ion electrochemical properties of the LizTiClg
cathode by significantly reducing computational time. Hence, our
work strongly suggests that the MLFF using deep neural networks
could be promising for studying large-scale complex materials.
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