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Abstract

Neural activity forecasting is central to understanding neural systems and enabling
closed-loop control. While deep learning has recently advanced the state-of-
the-art in the time series forecasting literature, its application to neural activity
forecasting remains limited. To bridge this gap, we systematically evaluated
eight probabilistic deep learning models, including two foundation models, that
have demonstrated strong performance on general forecasting benchmarks. We
compared them against four classical statistical models and two baseline methods
on spontaneous neural activity recorded from mouse cortex via widefield imaging.
Across prediction horizons, several deep learning models consistently outperformed
classical approaches, with the best model producing informative forecasts up to 1.5
seconds into the future. Our findings point toward future control applications and
open new avenues for probing the intrinsic temporal structure of neural activity.

1 Introduction

Predicting the future state of a system is central to understanding its underlying dynamics. Beyond its
value from the basic science perspective, time series forecasting is also critical to a wide range of real-
world applications – including weather prediction[1], renewable energy planning[2], and financial
market analysis[3] – guiding decisions ranging from everyday choices to high-stakes operations.
Among the most challenging and rewarding domains for forecasting is the brain – one of the most
complex and sophisticated systems known to science. Accurate forecasting of brain activity can not
only offer insights into the underlying neural mechanisms but also enable transformative applications,
including early intervention for neurological disorders[4], the development of therapeutic brain
stimulation paradigms[5], and the advancement of brain–machine interfaces[6].

The field of time series forecasting has evolved dramatically over the past decade, driven by the
rise of machine learning and deep neural networks[7]. Several studies have assembled datasets
across various domains including energy, sales, climate, and healthcare, and systematically assessed
the performance of both modern deep learning-based models and classical statistical methods on
them[8, 9, 10, 11, 12, 13, 14]. However, with the exception of one recent study[15] which focuses on
brain activity of zebrafish, neural time series have been largely absent from established forecasting
benchmarks, and their markedly different characteristics from the included series make it unclear
whether prior conclusions would apply to them. For instance, neural recordings are often sampled or
binned at seconds to milliseconds resolutions, whereas most benchmark datasets are sampled at much
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coarser intervals (hourly, daily, or monthly). Furthermore, while oscillations are an important feature
of brain activity[16], there is also a substantial amount of activity that does not exhibit persistent
trends or periodicity/seasonality. In contrast, many real-world time series, such as climate records or
energy consumption, are dominated by these patterns. These differences highlight the importance of
systematically reassessing forecasting methods in the context of neural data.

Among neural recordings from different species, mouse data bring many important opportunities for
time series forecasting. Foremost among the reasons is their relevance for developing and testing
future neural control systems: recent advances in optogenetics[17, 18, 19] have enabled targeted
manipulation of brain activity in mice, making accurate forecasts immediately applicable to the
design of closed-loop control systems[20]. Moreover, modern recording technologies – such as
Neuropixels probes[21, 22] for high-density, single-neuron resolution measurements and widefield
calcium imaging[23] for simultaneously capturing activity across all dorsal cortical areas – allow
large-scale monitoring at multiple spatial and temporal scales. Additional modalities, including
behavior tracking[24, 25], cell-type labeling[26], and connectivity mapping[27], can further en-
hance forecasting performance and expand the range of scientific questions that forecasting can
address. Finally, the abundance of publicly available mouse neural datasets[28, 29] provides a unique
opportunity to develop large-scale foundation models[30] for neural activity forecasting in mice.

2 Related Work

Forecasting has long been an important approach in studying neural dynamics. Many earlier models,
while not explicitly trained to optimize forecasting accuracy, are generative in nature and therefore can
produce one-step-ahead or multi-step-ahead forecasts in an autoregressive fashion (e.g. [31, 32, 33]).
As forecasting was only a secondary objective in these works, evaluations were generally restricted
to a fixed prediction horizon, without systematic assessment across multiple horizons, and lack
comparisons against forecasting baselines, such as the average of past activity or models capable
of making direct-multi-step forecasts. Another major line of forecasting studies in neuroscience is
motivated by brain-machine interface applications, where predicting neural activity is closely tied to
predicting behavior. In this setting, models have been trained to solely predict behavior [34, 35, 36]
or to jointly predict neural activity and behavior [37, 38]. However, since such experiments often
involve highly structured tasks (e.g., a monkey reaching to target), the resulting neural dynamics tend
to be stereotyped (e.g., with rotational structure[39]), making them easier to forecast compared to
less structured scenarios such as spontaneous activity. Forecasting accuracy has also been combined
with other performance measures for both training and evaluation, for example in [40, 41].

More recently, a growing number of models have begun explicitly adopting forecasting accuracy as
their primary training objective. For example, [42] proposed a graph neural network based model
for multi-channel neural activity forecasting; [43] used a low-rank linear autoregressive model to
predict neural responses to holographic photostimulation; [44] developed a transformer-based model
leveraging multi-modal inputs to autoregressively predict neural responses to visual stimuli; [45]
introduced a diffusion-based model for joint forecasting of neural activity and behavior across sessions
and subjects; [46] proposed a convolutional neural network based video model to directly forecast
future frames of neural imaging videos; and [47] demonstrated forecasting of spontaneous neural
activity across multiple sessions and subjects with a forecaster in the form of multilayer perceptron.
While presented as neuroscience-specific applications, these models are fundamentally instances
of general time series forecasting methods. Nevertheless, only a few ([46, 47]) have compared
their performance against models from the broader time series forecasting literature, and even in
those cases, the comparisons were limited. For example no recent foundation models (e.g., [48, 49])
were included. Moreover, all of these models produce only point forecasts. However, given the
measurement and intrinsic noise in neural data [50], probabilistic forecasting [51] – which provides
prediction intervals to quantify uncertainty – is particularly important, but remains unexplored in the
context of neural time series forecasting.

To fill these gaps, we systematically benchmarked common baseline methods, classical statistical
approaches, and state-of-the-art deep learning models from the probabilistic time series forecasting
literature on spontaneous mice neural activity. By drawing on the broader forecasting literature, we
aim to identify strong model backbones that future neuroscience-specific applications can build upon
for more accurate and uncertainty-aware neural activity predictions.
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Figure 1: a. Widefield imaging data aligned to Allen CCF, with example activity traces from one session. b.
True and predicted activity in three test samples; dashed lines mark forecast start. Shaded regions: prediction

intervals (P.I.): dark = 20%, light = 60%. Top: PatchTST and AR perform similarly, both outperforming Naive.
Middle: PatchTST outperforms both AR and Naive. Bottom: PatchTST and AR perform comparably to Naive.
Quantitative performance in each sample is listed on the right. c. Model performance at three forecast horizons.
Models sorted by mean performance across sessions. The y-axis indicates relative performance, computed as the

Mean Weighted Quantile Loss (MWQL, see AppendixA.2 for definition) across all predicted steps of each
model divided by that of the Naive baseline (i.e., y=1 corresponds to Naive performance). Colors indicate

different sessions. Errorbar: mean ± std across 5 random seeds; fine-tuning Chronos yielded identical results
across random seeds, likely due to an issue in the AutoGluon implementation. Performances of Theta and

Average are omitted, as they are close to Naive and worse than all other models shown; for 70-step forecast,
Average outperforms Naive but still not the others. AR(aicc) vs. AR(valQL): order chosen by AICC vs.

validation MWQL. Models in bold significantly outperform AR(valQL) (one-sided paired t-test, p < 0.05). d.
MWQL by forecast step. Errorbar: mean ± std across sessions. Bars and stars indicate steps where PatchTST
significantly outperforms Naive and AR, respectively (one-sided paired t-test, p < 0.05). PatchTST and AR

losses exceed 95% of the Average model loss (solid line) after 1.80s and 1.28s, respectively. e. Ratio of
predicted distribution standard deviation (std) to training data std across forecast steps. Errorbar: mean ± std

across sessions. Stars indicate steps where the PatchTST ratio is significantly less than 1 (one-sided t-test,
p < 0.05). In b, d, e, AR(valQL) is used as AR. For PatchTST, in each session the model achieving median

MWQL across 5 random seeds is used.
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3 Results

We systematically evaluated 12 univariate probabilistic forecasting models and 2 baseline methods
on spontaneous neural activity in mouse cortex recorded using widefield calcium imaging[23]
from five experimental sessions (details in AppendixA.1). Such data can be combined with cortex-
wide optogenetic perturbations[18] to test forecast-driven closed-loop control. Widefield imaging
was performed at 35 Hz, yielding recordings of spontaneous activity lasting 24.5 ± 3.7 minutes
(corresponding to 51,495± 7,784 timesteps, mean ± std across five sessions). Data were registered
to the Allen Mouse Brain Common Coordinate Framework (CCFv3)[52], and we extracted average
activity traces from four major brain regions: somatosensory (SS), motor (MO), visual (VIS), and
retrosplenial (RSP) (Figure 1a).

For baselines, we consider the Naive method which repeats the last observed activity, and the Average
method which takes the mean of past observed activity as prediction. Among the 12 models, 4 are
classical statistical methods: the autoregressive (AR) model, autoregressive integrated moving average
(ARIMA)[53], autoregressive hidden Markov model (AR-HMM)[54], and the Theta model[55]; 6 are
deep learning based models: DeepAR[56], DLinear[57], Temporal Fusion Transformer (TFT)[58],
PatchTST[59], Time-series Dense Encoder (TiDE)[60], and WaveNet[61]; and 2 are time series
foundation models[30]: Chronos[48] and Moirai[49], for which we evaluated both zero-shot and
fine-tuned performance. More details on models and training are provided in AppendixA.2, A.4.

The forecasting task was defined as predicting activity in the interval [i, i+ L) from the preceding
observations in [i −H, i), where L is the forecast horizon and H is the history length. Following
previous forecasting literature[56, 58, 62], we partitioned all time series chronologically, using the
earliest 60% of timesteps for training ([0, Ttrain)), the next 20% for validation ([Ttrain, Tval)), and
the final 20% for testing ([Tval, Ttest)). Validation and test samples were generated using sliding
windows with non-overlapping targets. For instance, the first test sample forecasts [Ttest, Ttest + L)
from [Ttest −H,Ttest), the second forecasts [Ttest +L, Ttest +2L) from [Ttest +L−H,Ttest +L), and
so on. In this way the forecast targets for evaluation remain fixed while varying the history length.
We experimented with L = 18, 35, and 70, which correspond to about 0.5, 1, and 2 seconds. H is
treated as a hyperparameter and is tuned for each L and each model individually.

In aggregated performance over test samples, all methods outperformed the Naive and Average
controls (Figure 1c, also see AppendixA.5, Figure 2 for evaluation on additional metrics). Classical
autoregressive models provided competitive baselines, but several deep learning models – PatchTST,
TiDE, and fine-tuned Chronos – consistently achieved higher accuracy across different prediction
horizons. The strong performance of PatchTST aligns with findings from a recent benchmarking
study on time series from various domains, such as economics, energy, and retail[14]. In contrast,
foundation models (Chronos and Moirai) pretrained on these domains transferred poorly to neural
activity in a zero-shot setting, indicating that neural time series exhibit distinct characteristics from
the data used for pretraining. Nevertheless, Chronos becomes competitive after fine-tuning on neural
activity, suggesting that its architecture is sufficiently flexible to capture neural dynamics. At the
level of individual test samples, we found that while some features of activity were captured by the
models, there also exist large fluctuations that were not predicted by any model (Figure 1b).

The improved performance of models over controls extended across a range of forecast steps, out to
more than 1 second. Note that in Figure 1c, model performance is aggregated across all predicted
steps. Therefore, it is actually unclear whether models still outperform baselines specifically at step
70, as the advantage may arise from better performance at earlier steps. When ploting error as a
function of prediction step (Figure 1d), we observed that performance of Naive, AR, and PatchTST all
deteriorates with increasing horizon. While the Naive model continues to worsen, AR and PatchTST
converge toward the Average model’s score. This behavior is expected for AR models: it can be
verified that for stationary time series, h-step-ahead AR forecast will converge to the mean as h → ∞.
A similar pattern can be found in other metrics (AppendixA.5, Figure 3). As PatchTST predicts
all future steps simultaneously rather than autoregressively, separate models are optimized for each
forecast horizon (18, 35, and 70 steps). We verified that the step-wise error curves are consistent
across these models: for example, the first 18 steps of the 35- and 70-step models closely overlap
with the 18-step model (AppendixA.5, Figure 4).

In addition, we quantified the uncertainty of probabilistic forecasts across steps, computed as the
standard deviation of the predicted distribution over that of the training data (Figure 1e). For both

4



AR and PatchTST, this ratio of standard deviations increases with forecast horizon and approaches
one (which is again expected for the AR model). Importantly, while wider prediction intervals (as
suggested by larger ratio here) may be less informative for encompassing too many possibilities,
intervals that are narrower are not necessarily better, as they may miss sources of uncertainty[63].
Figure 1d, e suggest that forecasts are most reliable within 35 steps (1 sec), and informative predictions
may extend to about 50 steps (1.5 sec); beyond this, even the best of the current models (PatchTST)
performs no better than simply predicting the mean and standard deviation of training data.

4 Discussion

Several recent studies have proposed models tailored to forecasting neural time series. Nevertheless,
models developed in the broader forecasting literature have not been systematically evaluated on
neural activity, and the important aspect of uncertainty quantification has been largely overlooked.
Here we bridged this gap by benchmarking models ranging from classical autoregressive methods to
modern deep learning and foundation models on widefield imaging data. Several deep learning models
consistently outperformed the strong baseline set by classical statistical models, yet both accuracy
and uncertainty estimates indicate that current forecasts may only be informative up to a certain
horizon. Whether this limit comes from model design constraints of existing methods or instead
reflects intrinsic sources of variability and time scales in neural activity remains an open question.
To probe the former, it may be of interest to develop neural time series forecasting foundation
models by combining strong backbones identified here with neuroscience-specific innovations, such
as cross-subject training[34, 36, 47, 45]. Meanwhile, closed-loop control experiments informed by
forecasting performance may help reveal the temporal structure inherent to neural system.
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A Appendix

A.1 Data collection and preprocessing

All experimental protocols were conducted according to US National Institutes of Health guidelines
for animal research and approved by the Institutional Animal Care and Use Committee at the
University of Washington.

We analyzed five sessions of widefield imaging experiments collected from five male and female
mice from multiple GCaMP-expressing genotypes: two expressed GCaMP8s (tetO-GCaMP8s), one
expressed GCaMP6s (tetO-GCaMP6s), and two expressed jGCaMP7f (Ai210 and Ai210 triple). Some
of the data has been used in [18] or [64], and the readers should refer to them for more experimental
details. Briefly, images were collected with a CMOS camera with 17.3 um/pixel resolution (Basler
acA2440-75m) and 560× 560 pixel frame size. The camera was fitted with a 0.63x objective lens
(Leica Planapo 0.63x). The true frame rate is 70 Hz, but the effective rate is 35 Hz due to alternating
405 nm and 470 nm excitation for hemodynamic correction. Mice were head-fixed facing a dark
screen, and were free to turn a wheel. In two of the five sessions, 10% sucrose rewards were given
in random 2-5 seconds intervals to keep mice at an awake and alert state. Three of the five sessions
were solely spontaneous activity. In the other two sessions, receptive field mapping experiments were
performed prior to spontaneous activity recording, and we analyzed spontaneous activity starting at
least 2 minutes after the receptive field mapping experiments were turned off. Non-neuronal signals
arising from hemodynamic changes were removed by subtracting the violet-light evoked signals from
the blue-light evoked signals with linear regression, as previously described in [17, 64]. To store and
process the data, we compressed the widefield data (D) into spatial components (U ) and temporal
components (SV ⊤) with singular value decomposition in the form D = USV ⊤. For each of the
four brain regions (SS, MO, RSP, VIS), activity was reconstructed using the top 500 (four sessions)
or 200 (one session) SVD components and was averaged across pixels within that region. It was
reported in [18] and [64] that over 97% of the total variance before SVD compression was captured
within the top 50 components. As we have used hundreds of components here, the information lost in
compression and reconstruction should be negligible.

A.2 Univariate time series models

A.2.1 Baselines [65]

1. Naive (repeat-last-step). Let yt denote the time series at timestep t, and {ϵt} be white
noise with mean 0 and variance σ2. The Naive baseline assumes yt follows a random walk:
yt = yt−1 + ϵt. Thus, to forecast from yT , we have

yT+1 = yT + ϵT+1

yT+2 = yT+1 + ϵT+2 = yT + ϵT+1 + ϵT+2

. . .

yT+h = yT +

h∑
i=1

ϵT+i

Let yT+h|T denote the forecast of yT+h using previous observations up to (and including)
yT . It follows that

ŷT+h|T := E[yT+h|T ] = yT ,

σ̂2
h := Var(yT+h|T ) = Var(

h∑
i=1

ϵT+i) =

h∑
i=1

Var(ϵT+i) = hσ2,

where σ2 can be estimated from fitted residuals:

σ2 =
1

T − 1

T∑
i=2

(yi − yi|i−1)
2 =

1

T − 1

T∑
i=2

(yi − yi−1)
2.

Assuming ϵt is normal, then a 100(1− α)% prediction interval is[
ŷT+h|T − zα

2
σ̂h, ŷT+h|T + zα

2
σ̂h

]
,
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where zα
2

is the value above which a fraction of α
2 of the data in a standard normal distribution

falls.
2. Average. Again let yt denote the time series at timestep t, and {ϵt} be white noise with

mean 0 and variance σ2. The Average baseline assumes yt randomly fluctuates around
some mean value: yt = c + ϵt, where c is some constant to be estimated from the past
observations. To forecast from yT , we first compute the least-squares estimate of c:

ĉ =
1

T

T−1∑
j=0

yT−j ,

then for i = 1, 2, . . . ,
yT+i = ĉ+ ϵT+i.

It follows that

ŷT+h|T := E[yT+h|T ] = ĉ,

σ̂2
h := Var(yT+h|T ) = Var(ĉ) + Var(ϵT+i) =

1

T
σ2 + σ2,

where σ2 can be estimated from fitted residuals:

σ2 =
1

T − 1

T−1∑
j=0

(yT−j − ĉ)2.

The prediction interval can be constructed in the same manner as in the Naive method. Note
that σ̂h is actually independent of h, and thus the width of prediction interval is constant
through all forecasting steps.

A.2.2 Local models

The following models are “local" in the sense that we need to fit separate models to each series if
there are multiple time series in one dataset.

1. Autoregressive integrated moving average (ARIMA) family [53]. Let yt denote the time
series at timestep t, and {ϵt} be white noise. An ARIMA(p, q, d) model is of the form

y′t = c+ ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1ϵt−1 + · · ·+ θqϵt−q + ϵt

where y′t is a d-th order differenced version of yt. We applied both the KPSS test and the
augmented Dickey–Fuller test to each time series here and found that they all satisfy the
stationarity condition. So we take d = 0, y′t = yt, and the ARIMA model simplifies to an
ARMA model. The autoregressive (AR) model can be seen as a special case of ARIMA,
where d = 0, and the θ′s are taken to be zero. During fitting, for fixed p, q, the parameters
c, ϕi, θi are determined by maximizing the likelihood of observed data under the assumption
that {ϵt} is Gaussian

L(c, {ϕi}pi=1, {θi}
q
i=1) =

n∏
t=1

f(y′t|y′t−1, . . . , y
′
1, c, {ϕi}pi=1, {θi}

q
i=1).

To find the most appropriate value of (p, q), a common approach is to compute the likeli-
hood for various values of (p, q), and choose the pair achieving the minimum AICC[66].
Alternatively, we can evaluate fitted models on a validation set, and selected the (p, q) pair
achieving the best score on the validation set.
The autoregressive hidden Markov model (AR-HMM) extends the AR model, allowing
the parameters to switch among different values. It can be written as

yt = cSt + ϕSt
1 yt−1 + · · ·+ ϕSt

p yt−p + ϵSt
t ,

where St denotes the state (assumed to be hidden, unobserved) at timestep t, and ϵSt
t ∼

N (0, (σSt)2). St switches among a set of discrete values following a first-order Markov
chain. Since it is possible to transition into several different states at each step (although
some states are more probable than others), AR-HMM can make probabilistic forecasts by
sampling multiple trajectories from the forecast start.
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2. Theta family [55, 67]. The general idea of Theta model is to decompose the time series
into multiple components with different curvatures (as controlled by second derivatives),
extrapolate each component separately into the future, and then combine their extrapolations.
In its most basic form proposed in [55], two Theta lines are drawn from the original time
series: one with second derivative equal to 0 (Θ = 0) for extracting long-term linear trend,
and the other with second derivative double that of the original series (Θ = 2) for extracting
local fluctuations. During prediction, the first Theta line (Θ = 0) continues to follow
the linear trend, and the second Theta line (Θ = 2) is extrapolated via simple exponential
smoothing. A simple average of their extrapolations is taken to be the final forecast. Methods
to further improve Θ-parameter selection and extrapolations were later proposed in [67]. In
a recent benchmark study [14], the Theta family demonstrates competitive performance on
time series with high sampling frequency (10 sec). Nonetheless, as those series are from a
very different domain (cloud operations) than neuroscience, it is unclear whether the Theta
family is also effective for forecasting widefield imaging data.

A.2.3 Global models

The following models are “global" in the sense that one model can simultaneous fit all time series in
a dataset.

1. DeepAR[56]. DeepAR model makes probabilistic forecasts with an autoregressive recurrent
neural network (RNN). The value of the time series at the next timestep is assumed to be
drawn from some probability distribution, which is usually taken to be Gaussian or Student-t
for continuous data. The parameters of the distribution (e.g., the mean and variance for
Gaussian distribution) are determined by the output of a multi-layer RNN: Let yt denote time
series observations and xt denote some known covariate. At timestep t, the RNN computes
ht from ht−1, yt−1, xt, and assumes yt ∼ θ(ht), where θ(·) is some fixed distribution. In
practice, it is often advantageous to also incorporate lagged versions of yt−1 and xt (e.g.
yt−2, xt−1) when computing ht. During inference, to forecast L steps from t = T + 1,
the model will first run from t = T −H (where H is the relevant history context length)
to T to generate hT+1, sample one ŷT+1 from θ(hT+1), and then use ŷT+1,hT+1, xT+1

to compute hT+2 and generate a sample trajectory in this autoregressive form. To make
probabilistic forecasts, multiple sample trajectories will be generated, and the prediction
interval at each time step will be estimated from the sample trajectories.

2. DLinear[57]. DLinear model is a one-layer linear feedforward network for direct multi-
step forecasting. It was originally proposed to showcase that the advantage of many
transformer-based models in time series forecasting mainly comes from the direct multi-
step-ahead forecasting strategy (as opposed to autoregressive one-step-ahead), instead of
the transformer architecture. Suppose we want to forecast yfuture = [yT , . . . , yT+L] from
yhistory = [yT−H , . . . , yT ]. Using a moving average smoother, yhistory is first decomposed
into a trend and a remainder component: yhistory = yhistory, trend + yhistory, remainder. Each
of the two components is passed through a one-layer linear feedforward network, and
then summed together as the future forecast: ŷfuture = W1y

history, trend +W2y
history, remainder,

where W1,W2 are L × H matrices. If the time series is multivariate, i.e., for the i-
th variate, y(i),future =

[
y
(i)
T , . . . , y

(i)
T+L

]
, y(i),history =

[
y
(i)
T−H , . . . , y

(i)
T

]
, then W1,W2

will be shared across all variates and no cross-variate relationship will be modeled, i.e.,
ŷ(i),future = W1y

(i),history, trend +W2y
(i),history, remainder for all i.

The original DLinear model only produces point forecasts, but the GluonTS package[68]
adds an additional simple transformation step to make it output the parameters of the desired
distribution and thus make the forecasts probabilistic. For example, for the Gaussian distribu-
tion, ŷfuture

t ∼ N (µ(yfeature), σ(yfeature)), where yfeature ∈ RD. yfeature = W1y
history, trend +

W2y
history, remainder as in the original DLinear model. µ(yfeature) = w⊤

µ y
feature + bµ, and

σ(yfeature) = log(1 + exp(w⊤
σ y

feature + bσ)).
3. TFT[58]. Temporal fusion transformer (TFT) is a versatile model that can incorporate static

covariates, covariates that are only known in the past, and covariates that are known for
the forecasting horizon. It first uses recurrent layers to extract local temporal information
that is shared across neighboring time steps, and then uses the attention mechanism to
process global temporal information that are spread across a wider time frame. It performs
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probabilistic forecasting by optimizing the quantile loss. However, one caveat is that it does
not address the problem of quantile crossing[69]. For instance, the predicted 0.5-quantile
may be larger than the predicted 0.9-quantile.

4. PatchTST[59]. PatchTST model uses the vanilla transformer encoder[70] as backbone,
together with two key designs: channel-independence and patching. Suppose we want to
forecast a M -dimensional multivariate time series yfuture = [yT , . . . ,yT+L] from yhistory =
[yT−H , . . . ,yT ], where yt ∈ RM . PatchTST models each variate individually using a
shared model F (“channel-independence"): y(i),future = F(y(i),history), where y(i),future =[
y
(i)
T , . . . , y

(i)
T+L

]
,y(i),history =

[
y
(i)
T−H , . . . , y

(i)
T

]
. For each variate i, neighboring timesteps

are grouped together as one “patch" (or token), and then fed into the transformer encoder.
The patches may or may not be overlapping, and the number of patches is typically smaller
than the number of history context timesteps. Each patch will be linearly mapped to a
high-dimensional vector, and go through nonlinear transformations (such as self-attention
and feed-forward networks) in the transformer encoder. ŷ(i),future is computed from linear
transformation of the transformer encoder output. Similar to DLinear, the original PatchTST
model only produces point forecasts, but is adapted for probabilistic forecasting by the
GluonTS[68] package.

5. TiDE[60]. Time-series Dense Encoder (TiDE) can be thought as a nonlinear extension of
the DLinear model. While DLinear only accounts for the linear relationship, TiDE uses the
classical multi-layer perceptron and residual connections to capture the potentially nonlinear
relationship between future and observed activity. When there are multiple time series in the
dataset, it operates in a channel-independent manner, as PatchTST, and does not model the
relationship between different time series. Similar to DLinear and PatchTST, the original
TiDE model only produces point forecasts, but is adapted for probabilistic forecasting by
the GluonTS[68] package.

6. WaveNet[61]. WaveNet is a convolutional neural network-based autoregressive model.
For a sequence [y1, . . . , yT ], it learns p(yt|yt−1, . . . , y1) for all t. WaveNet is originally
proposed for modeling audio signals, which are usually stored as 16-bit integers so only take
a finite number of values. Thus WaveNet can learn p(yt| · · · ) as categorical distributions
and can be trained using the cross-entropy loss. GluonTS[68] adapts WaveNet to model
general time series by discretizing the real-valued observations into a fixed number of bins
so they can be modeled as categorical distributions too. Similar to DeepAR, WaveNet
generates probabilistic forecasts by autoregressively sampling different trajectories. In
a recent study[71], WaveNet was applied to forecast resting-state EEG signal and was
observed to outperform the classical AR model.

A.2.4 Foundation models

1. Chronos[48]. Chronos is a large language model (LLM)-based method for forecasting
univariate time series, using the T5 model[72] as backbone. The idea is that, upon proper
tokenization, time series can be forecast in the same way as text using LLM. Since LLMs
work with a finite dictionary of tokens (i.e., words), Chronos discretizes a real-valued time
series into a fixed number of bins, and is trained using the cross-entropy loss (similar to the
adapted WaveNet). During prediction, the original Chronos model proposed in [48] follows
the autoregressive one-step-ahead forecasting strategy, similar to DeepAR. The later version,
Chronos-Bolt[73], adopts the direct multi-step-ahead strategy, which generates estimates
of quantiles 0.1, . . . , 0.9 of all predicted steps simultaneously using a feedforward network
applied to decoder output. However, similar to TFT, Chronos-Bolt also faces the problem of
quantile crossing[69].
As with other LLMs, Chronos has been trained on a huge amount of data. Its training set
consists of 28 real-world datasets with about 890K univariate time series spanning multiple
domains (weather, finance, transportation, etc). It is trained with maximum context length
of 512 and maximum forecast horizon of 64 time steps. Because of its rich training history,
Chronos may be capable to perform zero-shot forecasting on time series that have never
been seen by the model before. Nonetheless, since the majority of the time series in the
training set of Chronos is of low frequency (sampled at hourly or lower rate), it is unclear
whether the pretraining of Chronos can actually benefit it in forecasting widefield data.
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2. Moirai[49]. Moirai is another LLM-based time series forecasting model. Its main differ-
ences from Chronos are that it can handle time series with covariates and does not require
discretizing time series into categorical variables. To achieve the former, it flattens the
multivariate time series (e.g., a matrix of shape d× T ) into one sequence (e.g. a vector of
length d × T ), while keeping track of the variate identities and time steps. Also, similar
to PatchTST, instead of defining each time step as a separate token input to the underlying
transformer model, Moirai forms “patches" by grouping nearby time steps of the same
variate, and take each patch as a token. The patch size is set based on the frequency of the
data. To model time series with diverse distributions of values without mapping them to
categorical variables, Moirai is trained by maximizing the log-likelihood with respect to a
mixture of probability distributions:

l(θ) = log p(yT+1, . . . , yT+h|fθ(yT−C , . . . , yT )),with p(·) =
4∑

i=1

wipi(·),

where the w′
is are also learnable parameters and the p′is are taken to be the Student’s t,

negative binomial, log-normal, and normal distributions. Probabilistic forecasts can be
generated by sampling from this mixed distribution. Just like Chronos, Moirai has also been
trained on a huge amount of data with a total of 27 billion observations, and thus may be
capable of zero-shot forecasting. During training, Moirai uses samples with randomized
history and prediction length to further improve its applicability to diverse forecasting
problems.

A.3 Metrics

Let yi,t denote the true activity at t-th forecast step in the i-th test sample, yi,t ∼ Di,t, t =
1, . . . ,H, i = 1, . . . , N . Let fq

i,t denote the predicted q-th quantile of Di,t.

1. Mean Weighted Quantile Loss (MWQL): When aggregating across all test samples and
prediction steps (Figure 1c), we computed

MWQL =

∑N
i=1

∑H
t=1

1
Q

∑
q ρq(yi,t, f

q
i,t)∑N

i=1

∑H
t=1 |yi,t|

.

When aggregating across all test samples for each prediction steps t (Figure 1d), we com-
puted

MWQLt =

∑N
i=1

1
Q

∑
q ρq(yi,t, f

q
i,t)∑N

i=1 |yi,t|
.

In both cases, q = 0.1, 0.2, . . . , 0.9, Q = 9. ρq is the quantile score[62]:

ρq(yi,t, f
q
i,t) =

{
2(1− q)(fq

i,t − yi,t), if yi,t < fq
i,t

2q(yi,t − fq
i,t), if yi,t ≥ fq

i,t

MWQL has been popularly used for evaluating probabilistic forecasts, e.g., in [69, 48, 49].
2. Mean Scaled Interval Score (MSIS):

MSIS =
1

N

N∑
i=1

∑H
t=1 W

α
i,t(yi,t, u

α
i,t, l

α
i,t)∑H

t=1 |yi,t|

Here [lαi,t, u
α
i,t] define a 100(1 − α)% prediction interval for yi,t, typically lαi,t = f

α
2
i,t,

uα
i,t = f

1−α
2

i,t . Wα is the Winkler score[62], which combines penalties for the width of the
interval and for lack of coverage:

Wα(yi,t, u
α
i,t, l

α
i,t) = (uα

i,t−lαi,t)+
2

α
(lαi,t−yi,t)1(yi,t < lαi,t)+

2

α
(yi,t−uα

i,t)1(yi,t > uα
i,t)

In this paper we took α = 0.2. [69, 49] used a similar metric to evaluate prediction intervals,
where the denominator is the absolute seasonal error. Since seasonality is not obvious in
neural time series, we used the absolute target value instead.
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3. Mean Absolute Error (MAE) and Mean Squared Error (MSE): When aggregating
across all test samples and prediction steps (Figure 2), we computed

MAE =

∑N
i=1

∑H
t=1 |yi,t − ŷi,t|∑N

i=1

∑H
t=1 |yi,t|

, MSE =

∑N
i=1

∑H
t=1 |yi,t − ŷi,t|2∑N

i=1

∑H
t=1 |yi,t|2

When aggregating across all test samples for each prediction steps t (Figures 3,4), we
computed

MAEt =

∑N
i=1 |yi,t − ŷi,t|∑N

i=1 |yi,t|
, MSEt =

∑N
i=1 |yi,t − ŷi,t|2∑N

i=1 |yi,t|2

Here ŷi,t is a point forecast of yi,t, and is taken to be the median value of probabilistic
forecasts, i.e., f0.5

i,t . MAE was also used in [56], where it was called Normalized Deviation.
4. Correlation: We computed the Pearson’s correlation coefficient r between yi =

{yi,t}t=1,...,H and ŷi = {ŷi,t}t=1,...,H for each test sample. The median r across of
all test samples is reported is Figure 2.

A.4 Model implementation and training details

For the Naive and Average baselines, we used the implementations from the StatsForecast package
[74]. These models have no trainable parameters or hyperparameters.

For the AR model, we considered two order–selection strategies:

1. AICC-based (AR(aicc)): we used AutoARIMA from StatsForecast, which by default uses
the Hyndman-Khandakar stepwise search algorithm to find the model order and parameter
achieving the lowest AICC[62]. Models were fitted using both training and validation sets.
We set the limit on the number of models to explore to 100.

2. Validation-based (AR(valQL)): we used AutoRegressive from StatsForecast. Starting
from lag order 1, we fitted the model on the training set and computed its MWQL on the
validation set. The lag order was increased by one until validation MWQL failed to improve
for 10 consecutive orders; the best-performing model so far was then chosen and evaluated
on the test set.

For ARIMA, we again used AutoARIMA from StatsForecast. The AR order (p) was initialized with
the optimal order found by AR(aicc), and the MA order (q) was initialized to 0. Models were fitted
using both training and validation sets. We set the limit on the number of models to explore to 100.

For Theta, we fitted four variants provided in StatsForecast (standard, optimized, dynamic standard,
and dynamic optimized) on the training set. The variant with the lowest validation MWQL was
evaluated on the test set.

For AR-HMM, we used LinearAutoregressiveHMM from the Dynamax package[75]. We
fitted models with number of states S ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10} and number of lags L ∈
{1, 2, 4, 6, . . . , 40, 44, 48, . . . , 80} on the training set, and evaluated their log likelihoods of the
validation data (LLval). The optimal S was chosen as the smallest value whose LLval was within 0.1%
of the maximum across all models (i.e., ≥ 1.001× max LLval, since LLs are negative). The optimal
L was chosen as the smallest value whose LLval was within 0.1% of the maximum across all lags at
the selected S. We then fitted models with the optimal (S,L) with 5 random seeds on the training set
and evaluated them on the test set. For each test sample, we generated 100 forecast trajectories to
compute prediction intervals.

For Global models, we used the implementation from GluonTS[68]. Some models (DLinear,
PatchTST, TiDE) was originally proposed for point forecast, but were adapted to generate prob-
abilistic forecasts by GluonTS. See the DLinear section in A.2 for an example of such adaption.
All models assumed Student-t output distributions. During training, all models employed early
stopping based on validation loss, terminating if no improvement occurred for 10 epochs. Since
widefield data does not clear seasonality, we disabled automatically added time features (e.g., hour of
day, day of week) in TiDE and WaveNet. Hyperparameters were tuned by random search[76]: for
each model, 40 hyperparameter configurations were randomly sampled from a grid, and the optimal
configuration was selected as the one with the lowest validation MWQL. Finally, we trained models
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with the optimal hyperparameter configuration using 5 random seeds, and evaluated them on the
test set. Table 1 lists the names and candidate values of the hyperparameters for each model. Note
that the values of context_length include all candidate values for all prediction lengths, but the
candidates may vary across prediction lengths: for each session, we first performed hyperparameter
search for forecasting 35 steps. Depending on the validation results, we may adjust the candidates for
forecasting 70 and 18 steps. The candidate values of all other hyperparameters were the same across
all sessions and prediction lengths.

For Chronos, we used chronos-bolt-base from AutoGluon[77]. For fine-tuning,
we fixed fine_tune_batch_size = 128, fine_tune_lr = 10−5, and varied
fine_tune_steps ∈ {100, 200, 400, 600, 800, 1000}. The configuration achieving the low-
est validation MWQL was then evaluated on the test set. Fine-tuning Chronos yielded identical
results across random seeds, likely due to an issue in the AutoGluon implementation.

For Moirai, we used moirai-1.0-R-base from the official implementation of [49]. Since
Moirai randomly samples prediction and context length during training, for zero-shot evalua-
tion, we performed inference tuning as in [49]. Specifically, we varied context length C ∈
{50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000} and patch size P ∈ {8, 16, 32, 64, 128}, and
evaluated all pairs with the desired prediction horizon on the validation set. The pair with the lowest
validation MWQL was then evaluated on the test set. Note that there is not a default patch size for the
sampling frequency of widefield data, so we swept through all possible patch sizes of Moirai. 32 and
64 generally work the best. For fine-tuning, we fixed batch_size = 64 (due to memory constraint)
and varied learning_rate ∈ {10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6}, while
keeping other setting as default. The optimal learning rate was chosen as the one with the lowest
validation loss when evaluated with the specific prediction length, patch_sizes = [32, 64], and
context_lengths = [1000, 2000, 3000, 4000, 5000]. The best hyperparameter configuration
was then fine-tuned with 5 different random seeds. For each seed, we computed the validation MWQL
across multiple (C,P ) pairs as in the zero-shot setting. The pair with the lowest validation MWQL
across 5 seeds was evaluated on the test set.

A.5 Supplementary figures
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Table 1: Hyperparameter search space for GluonTS models.

Model Hyperparameter Values

DeepAR

lr {2.5e-05, 5.0e-05, 7.5e-05, 1.0e-04, 7.5e-04}
batch_size {32, 64, 128}
hidden_size {64, 128, 256}
num_layers {1, 2, 3}
context_length {35, 70, 140, 175, 210, 245}
lags_seq {1,2, . . . , L-1}, where L ∈ {5, 10, 20, 30, 40}

PatchTST

context_length {35, 70, 140, 175, 210, 245}
patch_len {24, 32, 40}
stride s× patch_len, where s ∈ {0.25, 0.5, 1}
d_model {32, 64, 128, 256}
nhead {1, 4}
dim_feedforward r × d_model, where r ∈ {1, 2}
activation ‘relu’
num_encoder_layers {1, 2, 3}
lr {0.0001, 0.00025, 0.0005, 0.00075, 0.001}
batch_size {128, 256, 512}

DLinear

context_length {140, 175, 210, 245, 280, 315}
hidden_dimension {16, 32, 64, 128, 256}
lr {0.0001, 0.0005}
kernel_size {5}
batch_size {128, 256, 512}

TiDE

context_length {35, 70, 105, 140, 175, 210}
feat_proj_hidden_dim 4
encoder_hidden_dim {64, 128, 256, 512, 1024}
decoder_hidden_dim same as encoder_hidden_dim
temporal_hidden_dim {64, 128}
distr_hidden_dim {4, 8, 16, 32, 64, 128}
num_layers_encoder {1, 2}
num_layers_decoder {1, 2, 3}
decoder_output_dim {4, 8, 16, 32}
dropout_rate {0.3, 0.5}
num_feat_dynamic_proj 2
layer_norm False
lr {1.e-05, 5.e-05, 1.e-04, 5.e-04}
batch_size {128, 256, 512}

TFT

context_length {70, 105, 140, 175, 210, 245, 280, 315}
quantiles [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]
num_heads {1, 2, 4}
hidden_dim {64, 128, 256}
variable_dim same as hidden_dim
dropout_rate {0.2, 0.4, 0.6}
lr {0.00075, 0.001, 0.0025}
batch_size {128, 256, 512}

WaveNet

num_bins {1024, 2048}
num_residual_channels {4, 8, 12, 24, 36, 48}
num_skip_channels {4, 8, 16, 32, 48, 64}
dilation_depth {2, 4, 8, 10}
num_stacks {1, 2, 3}
lr {1.e-05, 5.e-05, 1.e-04, 5.e-04, 1.e-03}
batch_size {32, 64, 128, 256}
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Figure 2: Evaluation on additional metrics. Models sorted by mean performance across sessions. Models in bold
significantly outperform AR(valQL) (one-sided paired t-test, p < 0.05). For Chronos and Moirai, -FT indicates

the finetuned version, -ZS indicates zeroshot version.
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Figure 3: Additional metrics over prediction steps. Bars and stars indicate steps where PatchTST significantly
outperforms Naive and AR, respectively (one-sided t-test, p < 0.05). PatchTST loss exceeds 95% of the

Average model loss (solid line) after 1.80s (top), 1.65s (middle), 1.97s (bottom). AR loss exceeds 95% of the
Average model loss after 1.28s (top), 1.23s (middle), 1.60s (bottom).
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Figure 4: Performance across PatchTST models trained with different forecast horizons. PatchTST (18),
PatchTST (35), PatchTST (70): PatchTST trained with forecast horizon of 18, 35, and 70 steps.
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