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ABSTRACT

Deep neural networks (DNNs) remain vulnerable to backdoor attacks, perpetuating
an arms race between attacks and defenses. Despite their efficacy against classical
threats, mainstream defenses often fail under more advanced, defense-aware attacks,
particularly clean-label variants that can evade decision-boundary shifting and
neuron-pruning defenses. We present UniBP, a universal post-training defense
that operates with only 1% of the original training data and unveils the relationship
between batch normalization (BN) behavior and backdoor effects. At a high level,
UniBP scrutinizes BN layers’ affine parameters and statistics using a small clean
subset (i.e., as small as 1% of the training data) to find the most impactful affine
parameters for reactivating the backdoor, then prunes them and applies masked
fine-tuning to remove the backdoor effects. We compare our method against 5
SOTA defenses, 5 backdoor attacks, and various attack/defense conditions, and
show that UniBP consistently reduces the attack success rate from more than
90% to less than 5% while preserving clean performance, whereas other baselines
degrade under smaller fine-tuning sets or stronger poisoning techniques. Our
code is publicly available at https://anonymous.4open.science/r/
UniBP-BackdoorPostDefense/README . md.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of applications,
including image classification, speech recognition, and natural language processing (Mienye & Swart}
2024; Samek et al.,2021; Noor & Igel [2025). However, their vulnerability to backdoor attacks has
raised serious concerns about their robustness in security-critical settings (Li et al., 2022} |2023b;
Zhang et al.| 2024; /Wan et al., 2024} Cheng et al., 2025)). In a backdoor attack, an adversary injects
malicious patterns, which are commonly referred to as triggers into the training data. As a result,
the model performs normally on clean inputs but misclassifies inputs containing the trigger in a
controlled manner.

Backdoor attacks. Backdoor strategies have continued to evolve, becoming increasingly stealthy and
effective. Early dirty-label methods such as BadNets (Gu et al., 2019) poison both inputs and labels,
while later attacks like WaNet (Nguyen & Tran| 2021)) apply subtle, visually faithful transformations
that embed nearly-invisible triggers. More recent adaptive variants, including COMBAT (Huynh
et al.}2024) and SBL (Sequential Learning Generates Resilient Backdoors) (Pham et al.} [2024a)), are
explicitly crafted to bypass existing defenses, for example, by operating in clean-label regimes or by
manipulating training dynamics to produce resilient, detection-aware backdoors. These advancements
challenge traditional defense paradigms.

Defenses. In response, the literature spans adversarial training, input sanitization, and post-training
defense. Recent methods are more focusing on the latest approach due to its practiacability in the erea
of transfer learning, and where the training phase is not intervented (Min et al.,2024; |Lin et al., [2024).
epresentative methods include Neural Cleanse (Wang et al., 2019) and STRIP (Gao et al., [2019)),
which serve as post-training defenses: Neural Cleanse reverse-engineers class-wise minimal triggers
to expose anomalies, and STRIP perturbs inputs and measures prediction entropy to detect triggered
samples at inference. More recent defenses such as NAD (Li et al.,2021c), I-BAU (Zeng et al.| [2021)),
ANP (Wu & Wang, [2021)), and FST (Min et al., | 2024)) aim to handle a broader range of attacks using
a clean dataset. They respectively distill clean behavior from a teacher (NAD), unlearn backdoors
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Figure 1: t-SNE of feature embeddings on CIFAR-10. Projection of penultimate-layer features for
the backdoored model (PRETRAINED) and after applying defenses (ANP, FST, FT, NAD, TSBD,
and UniBP). Clean samples are colored by class; poisoned samples are shown in black. All baselines
fail in disrupting the overlapping representation of the backdoored data and the clean data of the
targeted class (red).

with a minimax objective on a small clean set (I-BAU), prune adversarially sensitive neurons (ANP),
and fine-tune to separate backdoor from clean features (FST). However, these defenses still primarily
target dirty-label settings, and empirically we find that they are ineffective or unstable against newer
attacks such as COMBAT (cf. [Figure 1), especially under varying attacker/defender configurations
and data budgets.

Our approach. In this paper, we present a universal and practical post-training defense grounded in
a key observation: Batch Normalization (BN) layers encode distributional statistics of both clean and
poisoned data, and backdoor behavior exploits these statistics to steer specific activation pathways.
Our method (i) rectifies and aligns the backdoored model’s BN statistics during fine-tuning to
find channels most responsible for trigger activation, then (ii) resets a targeted subset of BN affine
parameters and (iii) applies masked-gradient fine-tuning to prevent reactivation by a malicious trigger.
This yields effective purification of pretrained models without prior knowledge of attack type, trigger
pattern, or poisoned locations, and operates with minimal clean data and assumptions. In practice,
the procedure is effective across various backdoor attacks, stable across diverse attack conditions,
and architecture-agnostic.

To summarize, our main contributions are as follows:

* We unveil the relationship of BN layers’ affine parameters and statistics toward the backdoor
effect, and show that only a subset (i.e., 0.01%) of these parameters can sustainably disrupt
the backdoor’s attack success rate.

* We then introduce UniBP, a post-training defense that finds these affine parameters, then
conducts pruning and masked fine-tuning to remove the backdoor from a poisoned model.

* We empirically show that prior fine-tuning defenses are often ineffective and unstable
across major backdoor families. In contrast, our method is universal in that it is consis-
tently effective against traditional (BadNets (Gu et al., |2019), WaNet (Nguyen & Tran}
2021)), clean-label (LC (Turner et al.,|2019)), and adaptive (COMBAT (Huynh et al.| [2024)),
SBL (Pham et al., 2024b)) backdoor attacks.

* We rigorously evaluate UniBP across a swath of attack settings and model architectures.
We show that UniBP (1) preserves clean accuracy while maintaining stability and resilience
against each attack, (2) requires only a small amount of clean data, and (3) requires no
assumptions about the implanted backdoor.

2 RELATED WORKS

2.1 BACKDOOR ATTACKS

Backdoor attacks aim to mislead a victim model into predicting the target label when a trigger is
present in the input while keeping the model performance unchanged on clean data. Backdoor
attacks are categorized into dirty-label (Chen et al.,[2017; [L1 et al.}[2021b; |Wang et al.| 2022) and
clean-label (Barni et al.,2019; |Ning et al., 2021} |Zeng et al., 2023)) based on whether the attacker
crafts a trigger in a way that changes the underlying label of the poisoned image. In dirty-label
backdoor attacks, while the seminal work, Badnet (Gu et al.| | 2019)), uses a single or a pattern of bright
pixels as a trigger, later works have focused on making the trigger undetectable, e.g. by using image
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warping (Nguyen & Tranl 2021). The inconsistency between image and label in dirty-label backdoor
attacks is often visually detectable by humans. In clean-label backdoor attacks (Barni et al.,[2019;
Ning et al.,[2021; |Zeng et al.,[2023), triggers are only added to the data in the target class. LC (Turner
et al., [2019) perturbs the original input to ensure that the model learns the trigger. COMBAT (Huynh
et al.} [2024) aims to learn an effective trigger generator by adopting an alternate training process
that optimizes the generator and a surrogate model. Building on both types of attacks, recent work
seeks to improve resilience of the backdoored model against fine-tuning, e.g., SBL (Pham et al.
2024b)) traps the backdoored model within the backdoored region via continual learning. Specifically
designed to resist fine-tuning defenses, SBL simulates the effects of fine-tuning during its second
stage, allowing the backdoor to remain highly effective even after mainstream defenses are applied.

2.2 BACKDOOR DEFENSES

In response to the growing threat of backdoor attacks, various defensive techniques have been
proposed that operate during two stages of model training: (1) training-stage and (2) post-training
defenses. Training-stage defenses (Huang et al., 2022) aim to train a clean model even when the
training data has been poisoned by an attacker. ABL (L1 et al.| 2021b) first isolates the backdoored
data and then unlearns the isolated data using gradient ascent. D-ST/D-BR (Chen et al.| [2022)
leverages the insight that poisoned data are more sensitive to transformation compared to clean data,
so they train a secure model from scratch or unlearn poisoned samples in a backdoored model. In
contrast, Post-training defenses (Zheng et al.| 2022a}; |Chen et al., 2018 [Nguyen et al., [2024)) aim
to mitigate the backdoor effect on a poisoned model using a small set of known-clean data. This
is usually achieved through pruning or fine-tuning. ANP (Wu & Wang| 2021) prunes sensitive
neurons under adversarial neuron perturbation as they are likely to be related to the injected backdoor.
NAD (Li et al., [2021c¢) introduces an attention distillation method which uses a teacher network to
guide the fine-tuning of the backdoored network. FST (Min et al.| 2024) encourages discrepancy
between fine-tuned model and the original model to achieve feature shifts. Recently, TSBD (Lin et al.}
2024) leverages the insight that neuron weight changes are highly-correlated in poisoned unlearning
and clean unlearning, and (1) reinitialize neurons based on weight changes, and (2) fine-tune the
model based on neuron activeness. PBP (Nguyen et al.| [2024]) first generates a neuron mask, then uses
masked gradient optimization to eliminate backdoor effects. However, current SOTA defenses have
not effectively tackled the newly proposed resilient backdoor attacks, including SBL and COMBAT,
underscoring the need for more robust defense mechanisms.

3 METHODOLOGY

3.1 PROBLEM STATEMENTS

Much of the backdoor attack literature (Gu et al., [2017; |Zheng et al.l [2022bja; Wang et al.| [2023)
assumes an “Outsourced Training Attack,” where adversaries control training and users rely only on
a held-out validation set. However, since backdoored models maintain high clean-data performance,
validation alone is insufficient to verify whether a model is backdoored. To address this challenge,
we adopt a defense setting where the defender acquires a backdoored model from an untrusted source
and assumes access to a small subset of clean training data for fine-tuning Dy, (L1 et al., |2023a;
2021c)). Backdoor defense/purification aims to eliminate the backdoor trigger while maintaining the
model’s performance on clean samples. This approach is particularly relevant when training data is
no longer fully accessible due to retention or privacy policies.

Attacker’s goals. Similar to most backdoor poisoning settings, we assume the attacker’s goal is to
alter the training procedure by using a small poisoned set, such that the resulting trained backdoored
classifier, fy«, differs from a cleanly trained classifier. An ideal fy- has the same response to clean
samples, whereas it generates an adversarially chosen prediction, 7(y), when applied to backdoored

inputs, ().

Defender’s goal. In contrast to the attacker, the defender—who has full access to the poisoned
model fp~ and a limited benign fine-tuning set Dy, to get a clean/purified model f; must (1) remove
backdoors from fy« to ensure correct behavior on triggered inputs and (2) preserve the model’s
performance on normal inputs during purification. In this work, following related post-training
defenses |[Min et al.| (2024)); [Wang et al.|(2023); [Lin et al.|(2024), we adopt the following assumptions
in a compact form: (i) the defender has no information about the backdoor trigger or the adversary’s
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Figure 2: UniBP includes four phases. (1) Batch-norm affine reset reinitializes -y, /3 of the backdoored
model 6* to obtain #'. (2) Affine-mask calculation rectifies BN moving statistics ({moy, Omov) and
learns a selection mask M via the BN rectification loss Ly = ||p' — p]l2 + Allo” — o2 (with L)
(3) Affine pruning removes suspect channels/affines, yielding 8* with v, 5*. (4) Masked-gradient
finetuning on a small clean set D y; updates only unmasked parameters (V@u £Ce) ® M, producing

the purified model 6.

accessibility (e.g., poisoning rate, insertion mechanism), and we make no assumptions about any
trigger/watermark; (ii) the defender has no access to the original training procedure and cannot
obtain the full training dataset to retrain a new model; and (iii) the defender can collect or access a
small, clean dataset representative of the training distribution (covering all classes), and may combine
it with any available portion of the training data. This setting aligns with common post-training
defenses (Min et al., 2024} [Wang et al.| [2023)).

3.2 RELATIONSHIP OF BN LAYERS AND BACKDOOR EFFECT.
Finding 3.1: Backdoors shift BatchNorm (BN) statistics and affine parameter distributions

Training with a backdoor induces consistent, layer-dependent shifts in BN running means/vari-
ances and alters the distribution of BN affine parameters (v, 3) relative to clean baselines.

BatchNorm layers are often used in deep neural networks for the purposes of stabilizing and accel-
erating training (by reducing internal covariate shift), permitting larger learning rates, improving
generalization via a mild regularization effect, and offering per-channel control through learnable
affine parameters. Given a mini-batch of feature maps z,, . 5,., With batch size /N and spatial size
H x W, BN computes:

L 1 Z T 0_2 1 Z (SL' M )2 P Tn,c,hyw — Me
c = n,c,h,ws c — n,c,h,w — Mc) > n,chyw — — ———
NHW 1Ly lly NHW 1 lly 1y lly 2
n,h,w n,h,w V Oc +e

ey
and outputs the affine-transformed activations as Yp.c.h.w = Ve Tn,c,hw + Be, Where v, and B,
are learned gffine (scale/shift) parameters for channel ¢, and € ensures numerical stability. During
training, (fi., 02) are computed from the current mini-batch while exponential moving averages are
accumulated; at inference, these running estimates replace batch statistics. Our key insight (see[3.1))
is that BN layers encode the training distribution via their running moments and affine parameters ??,
and inserting a backdoor unavoidably shifts the distribution of the BN layers’ statistic and affine
parameters (see [Figure 3a)). Building on this observation, we articulate our second finding (3.2),
which is central to our methodology: backdoor activation is governed by a small subset of BN affine
channels; consequently, identifying and selectively editing these channels serves as an surprisingly
effective lever for backdoor mitigation (cf. [Figure 3c|).



Under review as a conference paper at ICLR 2026

Backdoored Clean Backdoored NAD Backdoored Ours

¥ (scale) B (bias) ¥ (scale) B (bias) ¥ (scale) B (bias)

01 02 03 04 05 -02 -01 00 01 02 01 02 03 04 05 -02 -01 00 01 02 00 01 02 03 04 05 -02 -01 00 01 02
v B v B v B

running mean running var o running mean running var o2 running mean running var o?

1o -05 00 05 02 04 o6 08 075 -0.50 -0.25 0.00 025 050 02 04 06 o8 075 050 ~0.25 000 025 0.50 o5 10 15 20
u o u o u o

(a) Clean vs. Backdoored Models  (b) Backdoored vs. NAD Models (c) Backdoored vs. Our Models

Figure 3: BatchNorm statistics (u, o) and affine parameters (v, 8) for four model variants—clean,
backdoored, NAD (L1 et al.,|2021a), and Ours—illustrating how backdoor training and purification
affect BN layers. NAD leaves the backdoored BN statistics largely unchanged, whereas our method
slightly shifts them while successfully removing the backdoor. ASR: clean 0.67%, backdoored
80.66%, NAD 78.66%, Ours 7.04% (lower is better).

Finding 3.2: Backdoor activation is bottlenecked by a sparse subset of BN affine parameters

Claim. A small fraction of BN affine channels (-, /3) disproportionately governs trigger activa-
tion; selectively perturbing or resetting these top-ranked channels sharply reduces ASR with
minimal impact on clean accuracy.

3.3 UNIBP: DETAILED DESCRIPTION

High-Level Idea. Motivated by the two findings mentioned above, we introduce a defense method
including four components. (i) batch-norm affine reset to create an initialized model ¢’ from the
backdoored model 6*; (ii) affine mask calculation by calculating FIM while the initialized model
is trained with rectification to align the BN stats with the backdoored model; (iii) this mask will be
used to prune the corresponding highly influential neurons to remove the backdoor effect, achieving a
pruned model 6%; (iv) this pruned model is then fine-tuned using masked-gradient training with a

clean dataset to achieve the purified version )

Batch-norm affine reset. Given a backdoored model 6, we obtain the corresponding re-initialized
model 0’ by resetting BatchNorm affine parameters. Let B be the set of BN layers in #*, and for each
¢ € B with Cy channels let (7, 3¢) € R x R denote its affine parameters (if present). For fixed
reinit constants (7o, B9) (i.e., which are set default as (1, 0)), we define the operator Rp:

0 = Rex (070, o), (11 BL) = {(70 1¢,, Bole,) if the BN layer £ has affine parameters,

(e, Be) otherwise.

Affine Mask Calculation. From the initialized model 6, we compute an importance score for each
BN affine parameter that quantifies its contribution to rectifying the BatchNorm statistics of 6’ (1, vj)
toward those of the backdoored model (u,v;). This procedure mimics the alignment in which
the statistics induced by a small clean fine-tuning set Dy are drawn toward the mixed (clean and
poisoned) distribution used to train 6*. To achieve this goal, we fine-tune the reinitialized model 6’ by
minimizing the rectification objective, and we quantify per-parameter importance via the (empirical)
Fisher information computed on D¢. Specifically, we use Lycctify for optimization and estimate the
diagonal Fisher for each parameter ¢; as in equation 3]

Let B be the set of BN layers, for each £ € S, let (u),, u@) denote the per-channel batch mean/variance
computed on the current mini-batch as in[Equation 1} and let (1, v} ) be the corresponding references

from the backdoored model. We define the per-layer deviation loss function as follows:

4
£ -

| = pg ||, + M[oe —vi|l,, A =0.05.
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Then, the BN regularizer is calculated as: Lpn = ﬁ Y oies £1(3Z1)\1- This regularizer encourages the

network’s intermediate distributions to align with the reference (backdoored) normalization statistics,
stabilizing activations without directly constraining (v, 3). We then define the rectification objective
by:

‘Crectify = ‘CC’E(m7 y) + log EBN’ (2)
Let © denote all trainable parameters and Ogn C O the set of BN affine entries {y¢,c, B, : £ €

B, 1 < ¢ < Cy}. We quantify per-parameter sensitivity under the rectification objective Lyectify Via
the empirical (diagonal) Fisher:

(rec 1
By = o1 2 Ve L@ )®. Gice. 3)
| ft| (x,y)EDsy,

For BN affines we set the importance score s; := ﬁe(je“) for each 6; € Opn.

Mask Construction. Let K € N be the pruning budget (optionally K = |r |Opn]|| for a ratio
r € (0,1)), and let 7 be the K-th largest value of {s; : §; € Opn}. Define the binary mask
M; € {0,1} by

0, if s; is among the top-K in Ogy,
1, otherwise.

M, = 1s; < 7} = { 4

Affine Pruning. Pruning is one of the most popular methods to remove the effect of a subset of
neurons on the model activation and prediction (Li et al.,[2021ajc). To remove the backdoor effect,
we prune the BatchNorm affine parameters whose corresponding mask values are zero. Concretely,
for the k-th neuron , we set its weight wy, = 0 if M}, = 0 and keep it unchanged if M}, = 1. Due to
the binary masks, pruning is a discrete optimization problem that is difficult to solve within feasible
time. To address this, we add a small Gaussian noise to the parameters at the pruned coordinates
during fine-tuning. Given the BN affine parameters © = {6} and the affine mask M determined in
the previous step, and = ~ N(0, 02I) be i.i.d. noise. We use the masked-and-noised parameters:

0 =0=MoO+(1-M)OE. 5)

Masked-Gradient Finetuning. During this process, we zero out the gradient at the affine parameters
which are pruned in the previous step. The objective for fine-tuning can be stated as follows:

0 := Hbin E(m’y)epﬁ ,CCE(f(IB; Mo 9") , y) , Vo + (V@ﬁCE) oM, (6)

where § denotes the current parameters. The mask zeroes gradients only on BN-affine coordinates
and leaves all other parameters trainable, preventing drift back toward the backdoored BatchNorm
statistics while preserving clean behavior.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Attack Setup. We consider five distinct backdoor attack strategies: (1) BadNet (Gu et al.,[2019), (2)
Label Consistent (LC) (Turner et al.l[2019), (3) Wanet (Nguyen & Tran| 2021), (4) COMBAT (Huynh
et al., 2024)), and (5) SBL (Pham et al., 2024a). BadNet and LC are two mainstream methods for
dirty- and clean-label backdoor attacks, respectively, while COMBAT is the most recent optimized
trigger clean-label backdoor attack. SBL is designed to preserve backdoor durability even when
defenses are applied during fine-tuning. We leverage the BackdoorBench (Wu et al., [2022) framework
using the authors’ provided code for COMBAT and SBL to control trigger pattern, trigger size,
and target label. We vary the poisoning rate from 1% to 10%. Unless otherwise stated, we adopt
PreAct-ResNet-18 (He et al., [2016) and a 10% fine-tuning ratio by default. We evaluate on two
benchmark datasets: CIFAR-10 (Krizhevsky et al.,[2009) and GTSRB (Stallkamp et al.,[2011). Owing
to space constraints, we report a representative subset of results here; additional details and full results
are provided in the Appendix.
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Table 1: Comparison of SOTA defenses against multiple backdoor attacks with different fine-tuning
ratios on the CIFAR-10 dataset with PreAct-ResNet18.

Methods ‘ Metrics ‘ 01 ‘ 005
\ | BadNet ~LC ~ COMBAT SBL  Wanet | Avg. | BadNet ~LC ~ COMBAT SBL  Wanet | Avg.
C-ACC | 9144  84.19 93.94 90.52 9267 | 9055 | 9136 8451 94.13 89.76 9290 | 90.53
Pretrained | ASR | 9441  100.00 94.47 88.84  99.54 | 9545 | 9545  100.00 94.80 87.55  99.54 | 9547
DER - - - - - - - - - - - -
C-ACC | 9056  90.00 93.46 9079 9250 | 91.46 | 88.69  90.51 94.01 89.46 9233 | 91.00
FT ASR 147 17.53 72.83 8385 1391 | 37.92 | 222 100.00 96.17 89.92 1497 | 60.66
DER | 9603  91.24 60.58 5250 9273 | 7862 | 9528  50.00 49.94 49.85 9200 | 57.51
C-ACC | 8351  79.17 85.18 88.77  83.62 | 84.05 | 8440  84.51 92.14 8448  84.83 | 86.07
ANP ASR 0.00 6.65 7.58 0.04 002 2.86 0.02  100.00 88.81 6248 000 | 5026
DER | 9324  94.17 89.07 93.53 9524 | 93.05 | 9424  50.00 52.00 5990 9574 | 60.48
C-ACC | 8933 8897 93.48 90.39  91.88 | 90.81 | 88.13 8930 94.21 88.94 9209 | 90.53
NAD ASR 2.08 18.43 70.96 6480 998 | 3325 | 281 59.06 97.66 73.08  1.83 | 46.89
DER | 9511  90.79 61.52 6196 9439 | 80.75 | 9471 7047 50.00 56.83 9845 | 74.09
C-ACC | 87.06  88.89 91.25 91.17 9240 | 90.15 | 8858  90.90 94.20 89.95 9243 | 9121
EST ASR 2.08 234 30.65 024 058 | 7.8 113 0.00 90.02 3002 032 | 2430
DER | 9398  98.83 80.57 9430 9935 | 9341 | 9577 1.00 52.39 7877 9938 | 65.46
C-ACC | 90.13  89.06 9291 9143 9248 | 9120 | 90.00  90.74 92.28 88.14 9243 | 90.72
TSBD ASR 1.78 15.16 35.57 84.68 108 | 27.65 | 2.12 93.00 81.64 7920 129 | 51.45
DER | 9566  92.42 78.94 5208  99.14 | 83.65 | 9599 5350 55.66 53.37  98.89 | 71.48
C-ACC | 90.67  91.40 91.04 8891  90.22 | 9045 | 90.32  88.94 85.49 86.17  89.45 | 88.07
Ours ASR 112 2.50 10.28 218 474 | 416 491 5.08 7.30 484 264 | 495
DER | 9899 9875 93.02 97.88 19630 | 9699 | 96.86  97.46 91.56 9524  96.82 | 9559

Baselines. We consider five state-of-the-art defenses, representing a range of strategies aimed at
mitigating the impact of backdoor attacks, from continued training on clean data to model pruning
and reinitialization. These defenses include Fine-tuning (FT), NAD (Li et al.l [2021a), ANP (Wu
& Wangl 2021), FST (Min et al.l 2024)), and TSBD (Lin et al., 2024)). We follow the suggested
parameters from BackdoorBench.

Metrics. Following (Lin et al., 2024; Min et al., 2023} Zhu et al., 2023, we report C-ACC (clean
accuracy), ASR (attack success rate), and DER (€ [0, 1]), which balances ASR reduction against

utility: DER = 2ex(0.AASR)— mdx(o ACACOFL \where AASR and AACC are the drop in ASR and
C-ACC after applying defense on the backdoored model, respectively. We expect a good defense to

have a large C-ACC, DER, and a small ASR. Following (Zeng et al., 2022), we mark [ASR] when
ASR > 10% and [C-ACC] when C-ACC decreases by > 10%. We highlight the best among the six

baselines with [DER] . We tag UniBP with [DER] when it is comparable to or better than the best
baseline, where “comparable” means C-ACC gap < 2% and ASR gap < 4%.

4.2 MAIN RESULTS

We compare the performance of our method to five other defenses against five representative backdoor
attacks. In this section, we present the main results on CIFAR-10 and GTSRB with a 10% poisoning
ratio on PreAct-ResNet18 for illustration, which is shown in [Table 1]and [Table 2]

Performance of backdoor defenses on CIFAR-10 dataset. In the CIFAR-10 dataset, our method
demonstrates consistent performance across different fine-tuning ratios and outperforms all state-of-
the-art defenses on average. At a fine-tuning ratio of 0.1, where the defender can access relatively
more clean data, ANP, FST, and our approach are all able to reduce the attack success rate (ASR)
while maintaining high clean accuracy (C-ACC). Among them, our method achieves the highest
average DER of 96.30%. In contrast, NAD and TSBD already show clear deficiencies against stronger
attacks such as COMBAT and SBL, which are either input-dependent or explicitly designed to resist
fine-tuning. When the fine-tuning ratio is reduced to 0.05, ANP fails to mitigate several attacks, with
ASRs of 100.00% in LC, 88.81% in COMBAT and 62.48% in SBL, while FST achieves an ASR
of 90.02% against COMBAT and 30.02% against SBL. By comparison, our method continues to
maintain the most effective defense against all attacks, achieving an average C-ACC of 90.45% and
an average ASR of only less than 5%.
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Figure 4: Defense results (ASR) under various fine-tuning ratio settings with COMBAT and SBL
attacks. The experiments are conducted on the CIFAR-10 dataset.

Performance of backdoor defenses on GTSRB dataset. On the GTSRB dataset, our method
follows a similar trend to that observed on CIFAR-10, consistently outperforming all SOTA defenses
and achieving the highest average DER. At a fine-tuning ratio of 0.1, NAD and TSBD again show
deficiencies, while ANP and FST also fail to effectively reduce ASR under stronger attacks. ANP
achieves a 69.37% ASR and FST achieves 21.65% ASR against COMBAT, illustrating that these
approaches struggle when the dataset becomes more complex. The same pattern is evident at a lower
fine-tuning ratio of 0.05, where most defenses fail to mitigate at least one attack. In contrast, our
method maintains robust performance across all scenarios, achieving the highest DER of 95.43% for
both fine-tuning scenarios.

Table 2: Comparison of SOTA defenses against multiple backdoor attacks with different fine-tuning
ratios on the GTSRB dataset with PreAct-ResNet18.

Methods ‘ Metrics ‘ 0.1 0.05
| | BadNet  LC COMBAT ~ SBL ~ Wanet  Avg. | BadNet LC COMBAT SBL  Wanet  Avg.

C-ACC | 96.85 92.45 99.07 97.36 96.19  96.38 96.94 92.41 97.97 97.29 9745 96.41
Pretrained ASR 94.29 99.24 69.53 91.96  99.53 90.91 94.61 99.96 76.07 90.97 99.14  92.15

DER - - - - - - - - - - - -
C-ACC | 97.58 9727 9897  97.37 9865 9797 | 9778 9736 9857 9741 9893  98.01
FT ASR | 6735 9782 6569  90.18 3499 7121 | 57.86 99.06  78.18 8927 80.17  80.91

DER 63.47  50.71 51.87 50.89 82.27 59.84 68.38 50.45 50.00 50.85 59.49 55.83

C-ACC 9597  91.55 98.73 95.14 9833 95.94 93.66 92.17 97.87 95.16  93.60  94.49
ANP ASR 13.64 1.31 69.37 1.07 0.00 17.08 0.00 35.34 54.02 0.00 0.00 17.87

DER 89.89  98.52 49.91 9434 9976  86.48 95.67 82.19 60.98 9442 97.65 86.18

C-ACC 97.61  97.37 99.05 9743  98.77  98.05 97.86 96.16 98.49 97.67  99.04  97.84
NAD ASR 25.53 0.37 65.23 62.59 2360 3546 8.44 0.40 75.15 87.72 6491 47.32

DER 84.38  99.44 52.14 64.69  87.97 77.72 93.09 99.78 50.46 51.63  67.12 7241
C-ACC 94.50  97.28 97.71 9722  98.89  97.12 93.64 95.17 97.81 97.33  98.66  96.52
FST ASR 0.00  0.00 21.65 0.00 0.00 433 0.00 0.00 63.15 0.00 0.00 12.63

DER 9597  99.62 73.35 95.91 99.76  92.92 95.66 99.98 56.38 9549  99.57 89.41

C-ACC 98.20 97.34 99.21 97.29 9445 9730 97.98 96.39 98.39 96.65 86.66  95.21

TSBD ASR 0.00  0.16 66.58 45.42 0.21 22.47 0.03 0.80 53.99 13.22 0.00 13.61
DER 97.15  99.29 51.48 7324 98.79  83.99 97.29 99.58 61.04 88.56  94.18 88.13

C-ACC | 9743 98.22 97.38 97.10  95.19  97.06 97.86 97.40 90.63 96.27  97.16  95.86

Ours ASR 0.00 0.04 1.23 0.08 0.02 0.27 0.01 0.36 4.30 0.08 0.00 0.95

DER 97.15 99.60 83.31 95.81 99.26 9543 97.30 99.87 74.77 9499 9943  93.27

4.3 ABLATION STUDIES

In this section, we study the performance of different defenses under varied adversary ability and
defender capability. Specifically, we varied the fine-tuning rates from [0.01,0.02, 0.05, 0.1], where the
higher fine-tuning ratio, the more data that the defender can collect to conduct backdoor purification.
Then, we vary the poisoning rate to simulate different adversary capability from [0.01,0.02,0.05, 0.1].
A defense should be stable and effective across the varied settings.

Effect of fine-tuning ratio. In this experiment, a larger fine-tuning ratio means a larger amount of
data that the defender owns, while a small ratio is considered a more challenging setting.
reports ASR (%) for two adaptive backdoors, COMBAT and SBL. The figure shows that the other
baselines (FT, NAD, FST, TSBD) are highly sensitive to the fine-tuning ratio: their ASR reduction
diminishes as the fine-tuning ratio decreases. Under COMBAT, these defenses still exhibit high ASR
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Figure 5: Defense results (ASR) under various poisoned data rate (PDR) settings with LC, COMBAT,
and SBL attacks. The experiments are conducted on the CIFAR-10 dataset.
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Figure 6: Defense results (ASR) under various model architecture settings with BadNet attack. The
experiments are conducted on the CIFAR-10 dataset.

even at larger fine-tuning ratios. ANP can suppress ASR at favorable ratios but is unstable at smaller
budgets. In contrast, UniBP achieves the lowest ASR across all ratios for both attacks, with the
largest gains when the defender can use more than 2% of data for fine-tuning, highlighting superior
sample efficiency and stability.

Effect of data poisoning rate. shows the effectiveness of all defenses versus different
poisoned data rates (PDR) on CIFAR-10 across five attacks (BadNet, LC, Wanet, COMBAT, SBL).
From the results, BadNet is the least challenging: all defenses achieve very low ASR. With LC,
baselines are more sensitive to different poisoned data rates; several can only reduce ASR to 70% until
when PDR is 0.05; whereas UniBP reduces ASR to as low as 0 across all ratios. Under COMBAT
and SBL, even more advanced defenses such as TSBD and FST fluctuate widely and often exceed
50% even with larger budgets, and ANP is effective only at selective ratios. In contrast, UniBP is the
most effective and stable across all attacks and fine-tuning ratios.

Analysis on model architecture. [Figure 7|presents the effectiveness of different methods under
various backbones: PreAct-ResNet18 2016), VGG19-BN (Simonyan & Zisserman, [2014),
DenseNet-161 (Huang et all, 2017), and MobileNetV3-Large (Howard et al., 2019). We report
both pre-defense (Original) and post-defense (Purified) clean accuracy (C-ACC) and attack success
rate (ASR). Baseline fine-tuning defenses (FT, NAD, FST, TSBD) exhibit pronounced backbone
dependence: on VGG19-BN and MobileNetV3-Large, they often leave high purified ASR or incur
nontrivial C-ACC drops. ANP can substantially reduce ASR on some backbones (e.g., VGG19-BN)
but typically at the cost of noticeable accuracy degradation. In contrast, UniBP consistently achieves
the lowest ASR across all four architectures while keeping purified C-ACC close to the original,
indicating model-agnostic effectiveness and a better robustness—accuracy trade-off.

5 CONCLUSION

We presented UniBP, a universal post-training defense for purifying backdoored models. The
approach leverages BatchNorm statistics to expose backdoor footprints, rectifies these statistics on
a small clean set, scores BN-affine parameters via a Fisher-based importance measure, prunes the
most backdoor-sensitive entries, and fine-tunes with masked gradients—removing trigger pathways
without prior knowledge of attack type or location. UniBP consistently attains the lowest ASR while
preserving clean accuracy. It is stable across poisoning rates and fine-tuning budgets and operates
effectively over a broad mask-ratio range, yielding strong robustness—accuracy trade-offs with modest
clean data.
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APPENDIX

We conduct all the experiments using PyTorch 2.1.0 (Imambi et all, 2021). All experiments are run
on a computer with an Intel Xeon Gold 6330N CPU and an NVIDIA A6000 GPU.

A DETAILED EXPERIMENTAL SETUP

A.1 DATASETS AND PREPROCESSING

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al.,2009) comprises 60,000 32x32 RGB images
evenly distributed across 10 classes. We adopt the official split with 50,000 training images and
10,000 test images (6,000 per class in total; 5,000 train and 1,000 test per class). Unless otherwise
noted, we follow the standard evaluation protocol on the test set.

GTSRB (German Traffic Sign Recognition Benchmark). The GTSRB dataset
@[) contains 51,839 images across 43 classes, with 39,209 images for training and 12,630 for
testing. Following common practice, we use the standard train/test split and resize all images to
32x32 RGB for training and evaluation.

A.2 ATTACK DETAILS

We evaluate our defense against five SOTA backdoor attacks: BadNets (Gu et al.,[2019), LC (Turner]
et al,2019), WaNet (Nguyen & Tran|, [2021), COMBAT (Huynh et al.| [2024), and SBL (Pham et al.,
2024b)). For BadNets, LC, and WaNet, we adopt the implementations provided in the BackdoorBench
framework and use the default configurations. Since COMBAT and SBL are not integrated into
BackdoorBench, we incorporated them into our codebase using the official implementations released
by the authorsﬂﬂ To ensure consistency and comparability across all experiments, we fixed the
poisoning ratio at 10%. Examples of poisoned images under each attack is shown in Figure 8.

BadNets LC COMBAT SBL Wanet

Figure 7: Examples of poisoned images on the CIFAR-10 dataset.

A.3 DEFENSE DETAILS

We compare our method against five SOTA backdoor defenses: FT, ANP (Wu & Wang| [2021),
NAD [2021a), FST [2024), and TSBD [2024). For FT, ANP, NAD,
and TSBD, we adopt the implementations and default configurations provided in the BackdoorBench
framework. Since FST is not included in BackdoorBench, we integrated it into our codebase using
the publicly released implementationﬂ To ensure fairness across methods, we set the batch size to
256 for all defenses, except for FST, where we follow the original paper and use a batch size of 128.

https://github.com/VinAIResearch/COMBAT
https://github.com/mail-research/SBL-resilient-backdoors
*https://github.com/AISafety-HKUST/stable_backdoor_purification
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All defenses are trained with a learning rate of 0.002 for 20 epochs. For TSBD, we follow the settings
reported in the original paper, fixing the neuron ratio at n = 0.15 and the weight ratio at m = 0.7.

A.4 MODEL ARCHITECTURES AND INITIALIZATION

We evaluate four backbone architectures representative of common vision families:

PreAct-ResNet-18. Standard PreAct-ResNet-18; the final classifier is replaced to match the dataset
classes (10 for CIFAR-10; 43 for GTSRB).

VGG19-BN. VGG19 with batch normalization after each convolutional block; initialized from
ImageNet and refit with a dataset-specific classifier.

DenseNet-161. ImageNet-pretrained DenseNet-161; the classifier head is replaced to match the target
classes.

MobileNetV3-Large. ImageNet-pretrained MobileNetV3-Large; the final fully connected layer is
replaced to fit the dataset classes.

Model modifications for purification: Our purification pipeline interacts primarily with BatchNorm
affine parameters and per-channel statistics. We instrument BatchNorm layers to read and optionally
reset v, 8 and moving averages ({mov, Omoy). For the pruning / affine-mask step we add small,
lightweight selection masks per channel (implemented as binary or continuous gates) that can be
applied to the BN affine scale term ~ during inference and finetuning.

A.5 HYPER-PARAMETERS

The pipeline includes separate hyper-parameters for (A) initial training/victim model creation (poi-
soned model), and (B) purification stages. We list the values used in all experiments unless noted
otherwise.

Training Phase. Unless otherwise noted, poisoned models are trained using PreAct-ResNet-18 with
SGD (momentum 0.9), an initial learning rate of 0.01, weight decay of 5 x 10~%, batch size 128, and
100 epochs. The learning rate follows CosineAnnealingLR. The random seed is fixed to 0. Unless
otherwise specified, standard data augmentation (random horizontal flip and random crop) is applied.

Fine-tuning Phase. During fine-tuning, we use SGD with momentum 0.9 and a learning rate in
the range 1 x 1072 to 2 x 10~%; unless otherwise specified, the training batch size is 128. In the
sensitivity-to-fine-tuning-ratio study, we sweep the fine-tuning ratio over {1%, 2%, 5%, 10%} and
adjust batch sizes accordingly, i.e., training mini-batch is {32, 32, 64, 128}, respectively.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SENSITIVITY TO DATA POISONING RATES

presents a comprehensive evaluation of different defense methods (Pretrained, FT, ANP, NAD,
FST, TSBD, and UniBP) against a range of backdoor attacks including BadNet, LC, COMBAT, SBL,
and Wanet, under varying poisoning data ratios (PDR = 0.1, 0.05, 0.02, 0.01). For each configuration,
both model accuracy (MA) and attack success rate (ASR) are reported to highlight the trade-off
between maintaining clean accuracy and suppressing malicious behavior. Across the board, baseline
Pretrained models show high MA but consistently elevated ASR, indicating vulnerability to all
attacks. Fine-tuning (FT) improves resilience to some extent, though it struggles to reduce ASR under
low PDRs. ANP and NAD demonstrate stronger backdoor mitigation, often reducing ASR close to
zero, but at the cost of a slight drop in MA in some cases. FST and TSBD provide a more balanced
trade-off, achieving high MA while substantially lowering ASR in multiple attack settings. Notably,
UniBP consistently achieves competitive MA while keeping ASR at very low levels, especially
under LC and COMBAT attacks, showcasing its robustness under challenging conditions. Overall,
the results emphasize that while most defenses reduce ASR to some degree, methods like NAD, FST,
TSBD, and particularly UniBP stand out in delivering both strong protection and reliable utility.
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Table 3: Performance comparison of different defense methods (Pretrained, FT, ANP, NAD, FST,
TSBD, and PBP) against multiple backdoor attacks (BadNet, LC, COMBAT, SBL, and Wanet) under
varying poisoning data ratios (PDR = 0.1, 0.05, 0.02, 0.01). The table reports the model accuracy
(MA) and attack success rate (ASR) in percentage.

Pretrained FT ANP NAD FST TSBD Ours
C-ACC  ASR ‘ C-ACC  ASR ‘ C-ACC ASR ‘ C-ACC  ASR ‘C-ACC ASR ‘C-ACC ASR ‘C-ACC ASR

Attacks PDR

0.1 | 91.44 94.41 91.01 66.94 84.10 0.00 89.62 2.66 91.48 3.13 91.67 2.10 89.82 1.47

BadNet 0.05 | 92.15 90.30 91.37 55.80 85.05 0.00 90.58 4.24 91.37 1.30 92.19 1.43 87.85 1.50
0.02 | 92.81 81.47 91.77 64.78 86.49 0.01 91.34 11.52 92.33 2.58 92.18 1.88 87.59 2.09

0.01 | 93.34 71.21 92.39 63.20 85.05 0.01 91.12 9.63 92.50 0.94 93.02 1.94 87.68 2.51

0.1 | 84.19 100.00 | 92.80  100.00 | 84.67 94.48 | 91.39 75.88 91.08 0.00 91.08  84.27 | 89.09 2.36

LC 0.05 | 9332 100.00 | 9226 100.00 | 91.55 4247 | 90.82 100.00 | 9222 8691 | 91.66 8452 | 86.19 9.13
0.02 | 9339 100.00 | 92.68 100.00 | 84.67 94.48 | 91.57 99.91 9238 97.55 | 9298 99.84 | 83.06 3.67

0.01 | 93.54 99.97 9236 100.00 | 88.77  96.80 | 91.51 99.01 92.59  99.52 | 92778  97.54 | 83.04 5.61

0.1 85.05 99.23 91.90 83.47 8420 6890 | 91.80 52.28 9227 5840 | 9256 3920 | 91.04 10.28

COMBAT 0.05 | 93.94 94.47 93.46 72.83 85.18 7.58 98.41 76.56 91.25 30.65 | 9291 3557 | 87.90 7.18
0.02 | 93.90 85.04 94.20 87.63 85.05  72.56 | 93.61 82.51 9390 8273 | 9276 70.21 | 89.72 6.23

0.01 | 94.14 83.67 93.49 73.76 93.40 78.12 | 93.40 78.12 93.60 78.07 | 9278 5846 | 87.29 7.72

0.1 | 90.52 88.84 90.79 83.85 88.77 0.04 90.39 64.80 91.17 0.24 91.43  84.68 | 83.25 1.86

SBL 0.05 | 90.02 79.35 89.94 68.31 8553  77.16 | 89.68 61.60 90.06 2.58 89.55 12.15 | 87.81 2.33
0.02 | 90.25 68.27 90.33 61.16 87.59  41.98 | 90.03 39.53 90.17 2.48 90.25 12.12 | 88.04 2.13

0.01 | 90.50  47.07 90.39 46.14 90.50  47.07 | 89.98 36.30 90.49 2.08 91.01 433 88.44 2.60

0.1 | 93.40 99.97 93.75 76.73 84.46 0.08 93.72 78.07 93.04 0.30 77.64 0.00 90.22 1.52

Wanet 0.05 | 93.37 99.87 93.89 98.14 85.33 0.01 93.88 98.73 93.32 0.27 70.42 0.70 90.09 1.88
0.02 | 93.43 99.38 93.54 96.54 88.44 0.13 93.77 96.98 93.37 0.50 43.97 1.15 89.47 1.39

0.01 | 93.81 98.48 93.80 74.12 85.88 0.21 93.83 87.26 93.18 1.13 75.40 0.00 89.71 1.73

Table 4: Comparison of defenses against BadNet across models (original vs. purified). Values are
clean accuracy (C-ACC) and attack success rate (ASR), both in %.

FT ANP NAD FST TSBD Ours
C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR

Original ~ 90.84 9341 90.84 9341 90.84 9341 90.84 9341 90.84 9341 90.84 9341
Purified  89.72 8277 8338 0.00 88.09 32.15 89.05 3474 90.67 9.38 83.48 2.84

Original 8497 8091 8497 8091 8497 8091 8497 8091 8497 8091 8497 8091
Purified 8458 71.77 8528 78.18 8251 1030 84.87 10.13  49.72 4.88 82.03 5.70

Original ~ 85.12  94.12 85.12 94.12 85.12 9412 85.12 9412 8512 9412 8512 94.12
Purified 8424 2471 81.74 9336 79.80 1562 8420 17.15 25.13 5.86 85.78 2.23

Original ~ 91.44 9441 9144 9441 9144 9441 9144 9441 9144 9441 9144 9441
Purified  90.56 1.47 83.51 0.00 89.33 2.08 87.06 2.08 90.13 1.78 89.82 1.47

Model Tag

VGG19_BN

DenseNet161

MobileNetV3-Large

PreAct-ResNet18

B.2 SENSITIVITY TO MODEL ARCHITECTURES

Table [d] compares Original vs. Purified C-ACC/ASR under BadNet across four backbones. Baseline
fine-tuning defenses (FT, NAD, FST, TSBD) show pronounced backbone dependence: on VGG19-
BN and DenseNetl61 they often leave high purified ASR (~ 10%), and on DenseNet161 and
MobileNetV3-Large, TSBD substantially reduces C-ACC. ANP lowers ASR on some backbones
(VGG19-BN, PreAct-ResNet18) but with noticeable accuracy drops (7-8%) and fails on the others
(ASR remains high, often above 70-90%). In contrast, UniBP keeps ASR low across all architectures
(about 1-6%) while maintaining purified C-ACC close to the original (typically within a few points),
indicating backbone-agnostic effectiveness and a better robustness—accuracy trade-off.

B.3 ABLATION STUDY

We sweep the mask ratio K, the primary control in our method, and summarize the outcomes
in Across all settings, C-ACC decreases smoothly as K increases, with only a small
drop (typically < 5 points) inside the shaded range and a sharp decline once K > 0.10 x 1073,
ASR remains low overall, generally within 1-5%; LC at 10% poisoning shows a mild bump near
K = 0.06 x 1072, but the trend is otherwise flat. Increasing K beyond the shaded range yields little
additional ASR reduction while causing substantial loss in clean accuracy, most notably for BadNet
at 5% poisoning. Small pruning budgets within the highlighted range therefore, provide the best
trade-off, keeping ASR low with minimal impact on clean performance across both attack families
and poisoning rates.
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Figure 8: Effect of pruning budget / on clean accuracy (C-ACC, left) and attack success rate (ASR,
right) under BadNet and LC with poisoning rates 5% and 10% on CIFAR-10. The shaded band marks
the stable operating range (K € [0.010,0.070] x 1073).

B.4 ADDITIONAL PLOTS

summarizes how different backdoor families distort the representation space and BatchNorm
statistics. The t-SNE plots (top) show that BadNet and LC largely blend poisoned samples into the
target-class manifold, yielding only mild geometric separation; WANET induces a moderate shift
with partially segregated clusters; SBL creates a compact, outlying poisoned cluster that is clearly
detached from clean structure; COMBAT, which mixes patch- and distributional cues, produces
overlap similar to BadNet but with denser target-class concentration. The histograms of BN per-
channel means (bottom) mirror these trends: BadNet and LC exhibit near-overlapping clean vs.
backdoored distributions (small mean shifts), WANET shows a visible but modest shift, and SBL
displays a pronounced displacement of the backdoored distribution. COMBAT lies between these
extremes. Overall, attacks that strongly perturb intermediate distributions (e.g., SBL) leave a larger
BN footprint, whereas patch-like attacks (BadNet/LC) are more stealthy in BN space—motivating a
rectification objective that leverages BN statistics while also requiring parameter-level masking to
handle the subtler cases. Though these attacks are different in manner and how the trigger is crafted,
the shift phenomenon in BN statistics could be leveraged to defend against these attacks.
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Figure 9: t-SNE of feature embeddings of different attack strategies and their effect on BN layers’
statistic CIFAR-10 of different attack families.
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C LIMITATIONS

We note several limitations that contextualize our results and suggest directions for future work. First,
the method assumes access to a small hold-out clean set to estimate BatchNorm statistics and to
drive affine-mask learning; its size, class coverage, and label quality materially affect stability and
final accuracy. In extremely low-data or noisy-label regimes, the rectification signal can weaken,
and the fully unsupervised setting (no clean data) is outside our scope. Second, while we evaluate
adaptive variants, a stronger adversary that co-designs triggers to survive BN-affine reset and pruning,
perturbs or hijacks running statistics during poisoning, or disperses triggers to reduce gradient salience
could diminish effectiveness; developing defenses with explicit guarantees against such adaptive
strategies remains open. Third, our study focuses on image classification with BN-based architectures;
extending the approach to other modalities (e.g., audio, NLP) or tasks (e.g., detection, segmentation),
and to models using alternative normalizations (e.g., LayerNorm, GroupNorm), will require adapting
both the rectification objective and the mask parameterization.

D BROADER IMPACT

Positive impacts. The method strengthens deployed classifiers against poisoning/backdoor threats,
improving robustness in safety-critical settings (e.g., automotive perception, medical imaging).

Dual use. Defensive techniques can inform stronger, defense-aware attacks. We will release code
with clear usage guidance and a responsible license, and provide deployment recommendations (e.g.,
separate clean validation, periodic re-evaluation), limiting exploit-ready details to what is necessary
for reproducibility.

Privacy. The approach assumes a small clean dataset; when data are sensitive, practitioners should
minimize collection, de-identify inputs, restrict access, and follow IRB requirements.

Responsible disclosure. We support coordinated disclosure to affected stakeholders and commit to
sharing only information needed for verification and remediation.
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