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ABSTRACT

Deep neural networks (DNNs) remain vulnerable to backdoor attacks, perpetuating
an arms race between attacks and defenses. Despite their efficacy against classical
threats, mainstream defenses often fail under more advanced, defense-aware attacks,
particularly clean-label variants that can evade decision-boundary shifting and
neuron-pruning defenses. We present UniBP, a universal post-training defense
that operates with only 1% of the original training data and unveils the relationship
between batch normalization (BN) behavior and backdoor effects. At a high level,
UniBP scrutinizes BN layers’ affine parameters and statistics using a small clean
subset (i.e., as small as 1% of the training data) to find the most impactful affine
parameters for reactivating the backdoor, then prunes them and applies masked
fine-tuning to remove the backdoor effects. We compare our method against 9
SOTA defenses, 9 backdoor attacks, and various attack/defense conditions, and
show that UniBP consistently reduces the attack success rate from more than
90% to less than 5% while preserving clean performance, whereas other baselines
degrade under smaller fine-tuning sets or stronger poisoning techniques. Our
code is publicly available at https://anonymous.4open.science/r/
UniBP-BackdoorPostDefense/README . md.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of applications,
including image classification, speech recognition, and natural language processing (Mienye & Swart}
2024; Samek et al.,2021; Noor & Igel [2025). However, their vulnerability to backdoor attacks has
raised serious concerns about their robustness in security-critical settings (Li et al.| [2022; [2023c;
Zhang et al.| 2024; /Wan et al., 2024} Cheng et al., 2025)). In a backdoor attack, an adversary injects
malicious patterns, which are commonly referred to as triggers into the training data. As a result,
the model performs normally on clean inputs but misclassifies inputs containing the trigger in a
controlled manner.

Backdoor attacks. Backdoor strategies have continued to evolve, becoming increasingly stealthy and
effective. Early dirty-label methods such as BadNets (Gu et al., 2019) poison both inputs and labels,
while later attacks like WaNet (Nguyen & Tran| 2021)) apply subtle, visually faithful transformations
that embed nearly-invisible triggers. More recent adaptive variants, including COMBAT (Huynh
et al.}2024) and SBL (Sequential Learning Generates Resilient Backdoors) (Pham et al.} [2024a)), are
explicitly crafted to bypass existing defenses, for example, by operating in clean-label regimes or by
manipulating training dynamics to produce resilient, detection-aware backdoors. These advancements
challenge traditional defense paradigms.

Defenses. In response, the literature spans adversarial training, input sanitization, and post-training
defense. Recent methods increasingly focus on post-training approaches due to their practicality in
the era of transfer learning, where the training phase remains unmodified (Min et al.,2024; [Lin et al.,
2024). Representative methods include Neural Cleanse (Wang et al.,[2019)) and STRIP (Gao et al.,
2019)), which serve as detection-based post-training defenses: Neural Cleanse reverse-engineers class-
wise minimal triggers to expose anomalies, while STRIP perturbs inputs and measures prediction
entropy to detect triggered samples at inference. More recent purification defenses such as NAD (Li
et al.l [2021c), [-BAU (Zeng et al., [2021), ANP (Wu & Wang, [2021), FST (Min et al.| [2024), and
Unit|Cheng et al.|(2024) aim to handle a broader range of attacks using clean datasets. These methods
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Figure 1: t-SNE of feature embeddings on CIFAR-10. Projection of penultimate-layer features for
the backdoored model (PRETRAINED) and after applying defenses (ANP, FST, FT, NAD, TSBD,
and UniBP). Clean samples are colored by class; poisoned samples are shown in black. All baselines
fail in disrupting the overlapping representation of the backdoored data and the clean data of the
targeted class (red).

respectively distill clean behavior from a teacher network (NAD), unlearn backdoors via a minimax
objective on a small clean set (I-BAU), prune adversarially sensitive neurons (ANP), fine-tune to shift
the representation of the backdoored model (FST), and tighten activation magnitudes to suppress
anomalous trigger-induced activations (Unit).

However, these defenses primarily target dirty-label attacks and often rely on strong assumptions
about the adversary’s behavior, such as the use of a universal trigger [Zeng et al.| (2021)) or significant
activation shifts between backdoored and clean data[Cheng et al|(2024); Zheng et al.|(2022b). These
assumptions are fundamentally violated by advanced clean-label attacks. For instance, Narcissus
and Refool craft imperceptible triggers that produce minimal activation differences from clean
samples, while COMBAT explicitly optimizes triggers to be inseparable from legitimate features
of the target class in the feature space(cf. [Figure T). This vulnerability is further exacerbated under
realistic constraints such as limited clean reference data and diverse attack configurations, where the
defenders’ ability to establish reliable decision boundaries becomes severely compromised.

Our approach. In this paper, we present a universal and practical post-training defense grounded in
a key observation: Batch Normalization (BN) layers encode distributional statistics of both clean and
poisoned data, and backdoor behavior exploits these statistics to steer specific activation pathways.
While existing defenses such as BNP [Zheng et al.| (2022b) leverage BN statistics by comparing
stored statistics of the backdoored model against running statistics computed on clean data, this direct
comparison approach is inherently unstable—it operates on the same backdoored model where both
sets of statistics are already contaminated, making it ineffective against sophisticated attacks such as
clean-label backdoors where poisoned and clean distributions are carefully aligned.

Our method takes a fundamentally different approach by simulating the backdoor learning process
itself. Specifically, we (i) rectify and align the BN statistics of a reinitialized clean model toward
those of the backdoored model during fine-tuning, using the Fisher Information Matrix (FIM) to
identify which affine parameters are most responsible for reproducing backdoor-specific activation
patterns, then (ii) selectively reset only the targeted subset of critical BN affine parameters rather
than all normalization layers, and (iii) apply masked gradient fine-tuning to prevent reactivation by
malicious triggers while preserving model utility on clean inputs. This yields effective purification
of pretrained models without prior knowledge of attack type, trigger pattern, or poisoned sample
locations, operating with minimal clean data and assumptions. In practice, our procedure demonstrates
effectiveness across various backdoor attacks and stability across diverse attack scenarios.

To summarize, our main contributions are as follows: (1) We unveil the relationship of BN layers’
affine parameters and statistics toward the backdoor effect, and show that only a subset (i.e., 0.01%)
of these parameters can sustainably disrupt the backdoor’s attack success rate. We then introduce
UniBP, a post-training defense that finds these affine parameters, then conducts pruning and masked
fine-tuning to remove the backdoor from a poisoned model. (2) We empirically show that 9 fine-
tuning defenses are often ineffective and unstable across major backdoor families. In contrast, our
method is universal in that it is consistently effective against nine diverse backdoor attacks: traditional
(BadNets (Gu et al| 2019), WaNet (Nguyen & Tran| [2021), Input-aware (Nguyen & Tran| [2020)),
clean-label (LC (Turner et al.,[2019), Narcissus (Zeng et al.} [2023), Refool [2023)), and
adaptive (COMBAT (Huynh et al.,[2024), SBL (Pham et al., 2024b), Adaptive Patch 2023))

attack families. (3) We rigorously evaluate UniBP across a swath of attack settings and model
architectures. We show that UniBP (i) preserves clean accuracy while maintaining stability and
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resilience against each attack, (ii) requires only a small amount of clean data, and (iii) requires no
assumptions about the implanted backdoor.

2 RELATED WORKS

2.1 BACKDOOR ATTACKS

Backdoor attacks aim to mislead a victim model into predicting a target label when a trigger is
present in the input while maintaining unchanged performance on clean data. Backdoor attacks
are categorized into dirty-label (Chen et al., 2017; |L1 et al., 2021bj [Wang et al., 2022) and clean-
label (Barni et al.,|2019; Ning et al.|, 2021} |Zeng et al., [2023]) based on whether the trigger changes
the underlying ground-truth label of the poisoned image. In dirty-label backdoor attacks, attackers
modify both the image and its label. While the seminal BadNets (Gu et al.,2019)) uses a single patch
or pattern of bright pixels as a trigger, later works focus on making triggers less detectable through
techniques such as image warping (Nguyen & Tran, [2021), input-aware dynamic triggers Nguyen &
Tran| (2020), or blended perturbations (Chen et al.,[2017)). However, the label-image inconsistency in
dirty-label attacks remains visually detectable by humans upon careful inspection. In clean-label
backdoor attacks (Barni et al.;2019; Ning et al., 2021; Zeng et al., 2023), triggers are only added to
samples already belonging to the target class, eliminating label inconsistency and making detection
significantly harder. LC (Turner et al., [2019) crafts adversarial perturbations to ensure the model
associates the trigger with the target class. COMBAT (Huynh et al., 2024) learns an effective
trigger generator through alternating optimization of the generator and a surrogate model, producing
triggers that are difficult to separate from legitimate target-class features. Narcissus [Zeng et al.
(2023) generates instance-specific noise patterns optimized to be imperceptible while maintaining
high attack success rates. Refool [Liu et al.| (2020) leverages class-wise feature representations to
craft natural-looking triggers. Beyond these traditional attack paradigms, recent adaptive attacks are
explicitly designed to evade specific defenses. SBL (Pham et al.,[2024b) improves backdoor resilience
against fine-tuning by trapping the model in sharp minima within the backdoored loss landscape via
continual learning techniques. Adaptive Patch Q1 et al.|(2023)) specifically targets embedding-based
detection methods by optimizing triggers to minimize distributional shifts in feature space, making
separation-based defenses ineffective.

2.2 BACKDOOR DEFENSES

In response to the growing threat of backdoor attacks, various defensive techniques have been
proposed that operate during two stages of model training: (1) training-stage and (2) post-training
defenses. Training-stage defenses. (Huang et al.,[2022) aim to train a clean model even when the
training data has been poisoned by an attacker. ABL (Li et al.| 2021b) first isolates the backdoored
data and then unlearns the isolated data using gradient ascent. D-ST/D-BR (Chen et al., [2022)
leverages the insight that poisoned data are more sensitive to transformation compared to clean
data, so they train a secure model from scratch or unlearn poisoned samples in a backdoored model.
Post-training defenses. (Zheng et al.,|2022a; (Chen et al., 2018}, [Nguyen et al., 2024) aim to mitigate
the backdoor effect on a poisoned model using a small set of known-clean data, typically achieved
through pruning or fine-tuning. ANP (Wu & Wang| [2021)) prunes sensitive neurons under adversarial
neuron perturbation, as they are likely to be related to the injected backdoor. NAD (Li et al., 2021c)
introduces an attention distillation method which uses a teacher network to guide the fine-tuning of
the backdoored network. I-BAU [Zeng et al.| (202 1)) formulates backdoor unlearning as a minimax
optimization problem, using a small clean validation set to isolate and unlearn backdoor-specific
features while preserving model utility. RNP|L1 et al.[(2023a) employs reconstructive neuron pruning
based on the assumption that backdoor-related neurons exhibit distinct activation patterns, using
sparsity constraints during clean data unlearning to identify and prune these neurons. FST (Min
et al., [2024) encourages discrepancy between the fine-tuned model and the original model to achieve
feature shifts that disrupt backdoor pathways. TSBD (Lin et al [2024) leverages the insight that
neuron weight changes are highly correlated between poisoned unlearning and clean unlearning,
and proposes to (1) reinitialize neurons based on weight changes, and (2) fine-tune the model based
on neuron activeness. PBP (Nguyen et al.,[2024) first generates a neuron mask, then uses masked
gradient optimization to eliminate backdoor effects.



Under review as a conference paper at ICLR 2026

BNP [Zheng et al| (2022b) and BNA [Li et al| (2025) are the closest methods to ours, leveraging batch-

normalization statistics to detect and mitigate backdoors. BNP computes the KL divergence between
the stored running statistics of a (potentially) backdoored model and those recomputed on clean
data within the same model to identify suspicious layers, then resets the normalization parameters.
However, this direct comparison on a single contaminated model can fail under sophisticated attacks,
such as clean-label backdoors, where poisoned and clean activations are deliberately aligned. BNA,
in turn, constructs a poisoned dataset using a reversed trigger and explicitly exploits the distributional
shift between clean and triggered activations at each neuron by minimizing their KL divergence, but
it relies on an estimated trigger, which may not be available or reliable in practice. More recently,
Unit [Cheng et al.| (2024)) proposes to tighten activation magnitudes based on the assumption that
backdoor triggers induce anomalously large activations in specific channels. By constraining these
activation ranges during fine-tuning, Unit aims to suppress backdoor pathways while maintaining
clean accuracy. Despite these advances, current state-of-the-art defenses have not effectively tackled
recently proposed resilient backdoor attacks, including SBL. and COMBAT, underscoring the need for
more robust defense mechanisms. Our method addresses this gap by taking a fundamentally different
approach: rather than directly comparing statistics on the same backdoored model, we simulate the
backdoor learning process itself to identify which parameters are most responsible for encoding
backdoor behavior, enabling more precise and effective mitigation.

3 METHODOLOGY

3.1 PROBLEM STATEMENTS

Backdoor attacks often occur during model training (Gu et al.| 2017; [Zheng et al.| 2022bja; [Wang
[2023)), but modern ML workflows such as MLaa$S platforms, transfer learning, and model

marketplaces give users no control over this phase. Users acquire pre-trained models from third
parties without visibility into training data or procedures, creating a fundamental asymmetry: attackers
poison during training while defenders can only intervene post-hoc with limited clean data. Since
backdoored models maintain clean accuracy indistinguishable from legitimate models, standard
validation cannot detect compromise. We adopt a post-training defense setting where defenders
receive a potentially backdoored model and possess only a small clean dataset D, for fine-tuning
et al}[2023b; [2021¢). This reflects practical constraints where original training data is unavailable
due to proprietary restrictions or privacy regulations. The objective is to eliminate backdoor behavior
while preserving clean performance under severe data limitations.

Attacker’s goals. Similar to most backdoor poisoning settings, we assume the attacker’s goal is to
alter the training procedure by using a small poisoned set, such that the resulting trained backdoored
classifier, fy«, differs from a cleanly trained classifier. An ideal fy- has the same response to clean
samples, whereas it generates an adversarially chosen prediction, 7(y), when applied to backdoored
inputs, ¢(z). Defender’s goal. In contrast to the attacker, the defender—who has full access to
the poisoned model fy- and a limited benign fine-tuning set Dy, to get a clean/purified model f;
must (1) remove backdoors from fy« to ensure correct behavior on triggered inputs and (2) preserve
the model’s performance on normal inputs during purification. In this work, following related post-
training defenses Min et al.| (2024)); Wang et al| (2023)); [Lin et al.| (2024)), we adopt the following
assumptions in a compact form: (i) the defender has no information about the backdoor trigger or the
adversary’s accessibility (e.g., poisoning rate, insertion mechanism), and we make no assumptions
about any trigger/watermark; (ii) the defender has no access to the original training procedure and
cannot obtain the full training dataset to retrain a new model; and (iii) the defender can collect or
access a small, clean dataset representative of the training distribution (covering all classes), and
may combine it with any available portion of the training data. This setting aligns with common

post-training defenses (Min et al,[2024; [Wang et al.} [2023).

3.2 RELATIONSHIP OF BN LAYERS AND BACKDOOR EFFECT.

Finding 3.1: Backdoors shift BatchNorm (BN) statistics and affine parameter distributions

Training with a backdoor induces consistent, layer-dependent shifts in BN running means/vari-
ances and alters the distribution of BN affine parameters (v, 3) relative to clean baselines.
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BatchNorm layers are often used in deep neural networks for the purposes of stabilizing and accel-
erating training (by reducing internal covariate shift), permitting larger learning rates, improving
generalization via a mild regularization effect, and offering per-channel control through learnable
affine parameters. Given a mini-batch of feature maps x,, . 5., With batch size N and spatial size
H x W, BN computes:

o 1 2 1 . 2 N _ Tn,c,hw — Me
He = NHW n;w Tn,c,hws  O¢ NHW n;w (xn,c,h,w H’c) y  Tn,ehw /70_2 P
6]

and outputs the affine-transformed activations as Yp c h.w = Ve Tn,c,hw + Be, Where v, and S,
are learned affine (scale/shift) parameters for channel ¢, and ¢ ensures numerical stability. During
training, (pi., 02) are computed from the current mini-batch while exponential moving averages are
accumulated; at inference, these running estimates replace batch statistics. Our key insight (see[3.T) is
that BN layers encode the training distribution via their running moments and affine parameters|Zheng
et al.| (2022b); [Li et al.[(2024); Nguyen et al.|(2024)), and inserting a backdoor unavoidably shifts
the distribution of the BN layers’ statistic and affine parameters (see [Figure 2a). Building on this
observation, we articulate our second finding (3.2)), which is central to our methodology: backdoor
activation is governed by a small subset of BN affine channels; consequently, identifying and
selectively editing these channels serves as an surprisingly effective lever for backdoor mitigation

(ct. [Figure 2c).
Finding 3.2: Backdoor activation is bottlenecked by a sparse subset of BN affine parameters

Claim. A small fraction of BN affine channels (v, ) disproportionately governs trigger activa-
tion; selectively perturbing or resetting these top-ranked channels sharply reduces ASR with
minimal impact on clean accuracy.

3.3 UNIBP: DETAILED DESCRIPTION

High-Level Idea. Motivated by the two findings mentioned above, we introduce a defense method
including four components. (i) batch-norm affine reset to create an initialized model ¢’ from the
backdoored model 6*; (ii) affine mask calculation by calculating FIM while the initialized model
is trained with rectification to align the BN stats with the backdoored model; (iii) this mask will be
used to prune the corresponding highly influential neurons to remove the backdoor effect, achieving a
pruned model 6%; (iv) this pruned model is then fine-tuned using masked-gradient training with a

clean dataset to achieve the purified version [}
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(a) Clean vs. Backdoored Models  (b) Backdoored vs. NAD Models (c) Backdoored vs. Our Models

Figure 2: BatchNorm statistics (u, o) and affine parameters (-, 3) for four model variants—clean,
backdoored, NAD (Li et al.,|2021a), and Ours—illustrating how backdoor training and purification
affect BN layers. NAD leaves the backdoored BN statistics largely unchanged, whereas our method
slightly shifts them while successfully removing the backdoor. ASR: clean 0.67%, backdoored
80.66%, NAD 78.66%, Ours 7.04% (lower is better).
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Figure 3: UniBP includes four phases. (1) Batch-norm affine reset reinitializes ~y, 8 of the backdoored
model 6* to obtain ¢’. (2) Affine-mask calculation rectifies BN moving statistics (fmov, Tmov) and
learns a selection mask M via the BN rectification loss Ly, = ||p/ — pll2 + Allo” — ol|2 (with Lc).
(3) Affine pruning removes suspect channels/affines, yielding 8% with v*, 5%. (4) Masked-gradient
finetuning on a small clean set Dy, updates only unmasked parameters (Vgullce) ® M, producing

the purified model 6.

Batch-norm affine reset. Given a backdoored model 6*, we obtain the corresponding re-initialized
model 0’ by resetting BatchNorm affine parameters. Let BB be the set of BN layers in #*, and for each
¢ € B with Cy channels let (v, 8¢) € R x R denote its affine parameters (if present). For fixed
reinit constants (7o, Bo) (i-e., which are set default as (1,0)), we define the operator RpN:

0 = Rin (0% 70, fo). (1 L) = {(’yo 1¢,, Bole,) if the BN layer ¢ has affine parameters,
- ) ) ’ 0 Fe) —

(e, Be) otherwise.

Affine Mask Calculation. From the initialized model 6, we compute an importance score for each
BN affine parameter that quantifies its contribution to rectifying the BatchNorm statistics of 6’ (11, vy)
toward those of the backdoored model (i}, v;). This procedure mimics the alignment in which
the statistics induced by a small clean fine-tuning set Dy are drawn toward the mixed (clean and
poisoned) distribution used to train 6*. To achieve this goal, we fine-tune the reinitialized model ' by
minimizing the rectification objective, and we quantify per-parameter importance via the (empirical)
Fisher information computed on Dy,. Specifically, we use Lycctify for optimization and estimate the
diagonal Fisher for each parameter ¢; as in equation 3]

Let 55 be the set of BN layers, for each £ € S, let (11}, uj;) denote the per-channel batch mean/variance
computed on the current mini-batch as in[Equation 1} and let (117, v;) be the corresponding references

from the backdoored model. We define the per-layer deviation loss function as follows:
4 ~ * ~ *
L = | e = mzl]y + Moo = v7]]y A = 0.05.

Then, the BN regularizer is calculated as: Lpn = I«%\ D res 51(321)\1- This regularizer encourages the

network’s intermediate distributions to align with the reference (backdoored) normalization statistics,
stabilizing activations without directly constraining (v, 5). We then define the rectification objective
by:

»Crectify = »CCE(‘T» y) + log *CBN' (2)
Let © denote all trainable parameters and ©pn C O the set of BN affine entries {7y¢,c, Brc : £ €

B, 1 <c < Cyp}. We quantify per-parameter sensitivity under the rectification objective Lrecyify Via
the empirical (diagonal) Fisher:

F\é;eCt) = Z ||v01 Erectify (SC, y) H2 ’ 01 S O. (3)

| ft' (z,9) €D
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For BN affines we set the importance score s; := ﬁ(,(:eCt) for each 6; € Opn.

Mask Construction. Let K € N be the pruning budget (optionally K = |r|Ogpn]|| for a ratio
r € (0,1)), and let 7 be the K-th largest value of {s; : §; € Opn}. Define the binary mask
M; € {0,1} by

0, if s; is among the top-K in OpN,
1, otherwise.

M, = 1s; < 7} = { @)

Affine Pruning. Pruning is one of the most popular methods to remove the effect of a subset of
neurons on the model activation and prediction (Li et al., 2021ajc). To remove the backdoor effect,
we prune the BatchNorm affine parameters whose corresponding mask values are zero. Concretely,
for the k-th neuron , we set its weight wy, = 0 if M} = 0 and keep it unchanged if M} = 1. Due to
the binary masks, pruning is a discrete optimization problem that is difficult to solve within feasible
time. To address this, we add a small Gaussian noise to the parameters at the pruned coordinates
during fine-tuning. Given the BN affine parameters © = {6} and the affine mask A/ determined in
the previous step, and = ~ N(0, 021) be i.i.d. noise. We use the masked-and-noised parameters:

" =0=MoO+(1-M)eE. )

Masked-Gradient Finetuning. During this process, we zero out the gradient at the affine parameters
which are pruned in the previous step. The objective for fine-tuning can be stated as follows:

é = Il’lein E(m,y)Eth ﬁCE(f(-T, M® ou) ’ y)v Vg (VG£CE) © M, (6)

where § denotes the current parameters. The mask zeroes gradients only on BN-affine coordinates
and leaves all other parameters trainable, preventing drift back toward the backdoored BatchNorm
statistics while preserving clean behavior.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Attack Setup. We consider nine distinct backdoor attack strategies: (1) BadNet (Gu et al.,[2019), (2)
Label Consistent (LC) (Turner et al.,[2019), (3) WaNet (Nguyen & Tran, [2021), (4) COMBAT (Huynh
et al., [2024), (5) SBL (Pham et al.| [20244a), (6) Narcissus [Zeng et al.| (2023)), (7) Refool |Liu et al.
(2020), (8) Input-aware Nguyen & Tran|(2020), and (9) Adaptive Patch|Q1 et al.[(2023)). BadNet
and LC are representative dirty- and clean-label patch-based attacks, respectively; COMBAT, SBL,
and WaNet capture recent optimized and fine-tuning-resilient backdoor designs; Narcissus, Refool,
Input-aware, and Adaptive Patch cover more adaptive or semantically driven triggers. We leverage
the BackdoorBench (Wu et al.| [2022) framework using the authors’ provided code for COMBAT and
SBL to control trigger pattern, trigger size, and target label. We vary the poisoning rate from 1% to
10%. Unless otherwise stated, we adopt PreAct-ResNet-18 (He et al., 2016)) and a 10% fine-tuning
ratio by default. We evaluate on three benchmark datasets: CIFAR-10 (Krizhevsky et al., [2009),
GTSRB (Stallkamp et al., 2011)), and Tiny-ImageNet|Le & Yang|(2015). Due to space constraints,
we report representative results here; additional details and full results are provided in the Appendix.

Baselines. We consider nine state-of-the-art defenses covering a range of strategies for mitigating
backdoor attacks, from continued training on clean data to model pruning and reinitialization. These
defenses include Fine-tuning (FT), NAD (Li et al.| |2021a), ANP (Wu & Wang, 2021)), FST (Min
et al.,|2024), TSBD (Lin et al.|[2024), I-BAU (Zeng et al.| [2021)), RNP (Li et al.;[2023a), BNP (Zheng
et al.| 2022b)), and UNIT (Cheng et al., |2024). We follow the suggested hyperparameters from
BackdoorBench (Wu et al., |2022)) and the authors’ original codebases.

Metrics. Following (Lin et al., [2024; Min et al., 2023; Zhu et al., 2023), we report C-ACC (clean
accuracy), ASR (attack success rate), and DER (€ [0,1]), which balances ASR reduction against

utility: DER = 2ex(0.AASR) - mdx(o AC-ACOHL \where AASR and AACC are the drop in ASR and
C-ACC after applying defense on the backdoored model, respectively. We expect a good defense to

have a large C-ACC, DER, and a small ASR. We mark [ASR] when ASR > 10% . We highlight

the best and second best among the nine baselines with [DER] and [DER] .
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Table 1: Comparison of SOTA defenses against multiple backdoor attacks with different fine-tuning
ratios on the CIFAR-10 dataset with PreAct-ResNet18.

. | FT=0.1 | FT=0.05
Methods Metrics
‘ BadNet LC COMBAT SBL Wanet Refool Adaptive ‘ Avg. ‘ BadNet LC COMBAT SBL Wanet Refool Adaptive ‘ Avg.
C-Acc | 9144 8419 9394 9052 9267 9165 9308 | 91.07 | 9136  84.51 94.13 8976 9290 9200 9933 | 91.99
Pretrained 4 gp 94.41 100.00 94.47 88.84 99.54 9291 100.00 95.74 95.45 100.00 94.80 87.55 99.54 93.80 100.00 95.88
DER - - - - - - - - - - - - - - - -
C-Acc 90.56 90.00 93.46 90.79 92.50 91.64 92.19 91.59 88.69 90.51 94.01 89.46 92.33 91.73 92.81 91.36
FT ASR 147 17.53 72.83 8385 1391 1554 9994 | 4358 | 222 10000 9617 89.92 1497 1921  100.00 | 60.36
DER 96.03 91.24 60.58 52.50 9273 88.68 49.59 75.90 95.28 50.00 49.94 49.85 92.00 87.16 46.74 67.28
C-Acc 83.51 79.17 85.18 88.77 83.62 86.92 88.33 85.07 84.40 84.51 92.14 84.48 84.83 84.19 86.91 85.92
ANP ASR 0.00 6.65 7.58 0.04 0.02 0.12 0.25 2.09 0.02 100.00 88.81 62.48 0.00 0.13 73.95 46.48
DER 93.24 94.17 89.07 93.53 95.24 94.03 97.50 93.83 94.24 50.00 52.00 59.90 95.74 92.93 56.82 71.66
C-Acc 89.33 88.97 93.48 90.39 91.88 90.67 91.18 90.84 88.13 89.30 94.21 88.94 92.09 90.68 90.68 90.58
NAD ASR 2.08 18.43 70.96 64.80 9.98 9.27 90.03 37.94 2.81 59.06 97.66 73.08 1.83 6.52 65.13 43.73
DER 95.11 90.79 61.52 61.96 94.39 91.33 54.04 78.45 94.71 70.47 50.00 56.83 98.45 92.98 63.11 75.22
C-Acc | 87.06  88.89 9125 9LI7 9240 9170 9204 | 90.64 | 8858  90.90 9420 8995 9243 9173 9284 | 91.52
FST ASR 2.08 234 30.65 024 058 393 0.40 575 113 0.00 90.02 3002 032 591 4191 24.19
DER 9398 9883 80.57 9430 9935 9449 9928 | 9440 | 9577 10000 5239 7877 9938 9381 7580 | 8513
C-Acc 90.13 89.06 9291 91.43 92.48 92.24 92.40 91.52 90.00 90.74 92.28 88.14 92.43 91.85 92.12 91.08
TSBD ASR 1.78 15.16 35.57 84.68 1.08 1.77 4.07 20.59 212 93.00 81.64 79.20 1.29 226 431 37.69
DER 95.66 92.42 78.94 52.08 99.14. 95.57 97.63 87.35 95.99 53.50 55.66 53.37 98.89 95.70 94.24 78.19
C-Acc 88.13 86.33 91.01 88.20 86.52 87.87 89.84 88.27 85.71 86.21 91.85 87.61 85.77 88.17 89.83 87.88
I-BAU ASR 791 245 1.98 0.76 20.04 2.02 1.26 5.20 348 212 87.92 1.34 9.92 12.12 3.74 17.23
DER 91.60 98.78 94.78 92.88 86.68 93.56 97.75 93.72 93.16 98.94 52.30 92.03 91.25 88.93 93.38 87.14
C-Acc | 9127 8331 9140 9033 6569 9174 9234 | 8658 | 9118  82.80 9256 90.56 8848 9234 9252 | 90.06
BNP ASR 13.12 0.00 2423 90.08 4738 355 9.52 2684 | 1651 0.00 13.49 93.06 1422 4007 7206 | 35.63
DER 90.56  99.56 83.85 4991 6259 9468 9487 | 8229 | 8938 9915 89.87 5000 9045 7687 6057 | 79.47
C-Acc 87.63 80.78 92.89 87.57 90.34 54.11 90.28 8337 84.91 82.59 93.99 72.70 86.65 51.28 89.83 80.28
RNP ASR 376 9993 9309 2057 017 000 1167 | 3274 | 007 10000 9539 001 247 000 087 | 2840
DER 93.42 4833 50.17 82.66 98.52 717.69 9277 77.65 94.47 49.04 49.93 85.24 95.41 76.54 94.82 77.92
C-Acc 84.66 81.36 79.70 65.64 88.05 86.75 87.57 81.96 83.30 82.07 81.04 70.15 87.19 86.84 87.09 82.53
Unit ASR 0.89 8.07 22.67 2.58 312 2352 1.76 8.94 0.79 6.49 10.38 1.50 179 10.78 5.19 5.27
DER 9337 9455 78.78 80.69 9590 8225 9637 | 8884 | 9330 9554 85.67 8322 9602 8893 9129 | 90.57
C-Acc 90.67 91.40 91.04 88.91 90.22 89.70 88.31 90.04 90.32 88.94 85.49 86.17 89.45 87.92 89.91 88.31
Ours ASR 112 2.50 10.28 2.18 4.74 1.90 3.76 378 491 5.08 7.30 4.84 2.64 3.54 1.80 430
DER 98.99 98.75 93.02 97.88 96.30 94.53 95.74 96.46 96.86 97.46 91.56 95.24 96.82 93.09 94.39 95.06

4.2 MAIN RESULTS

We compare the performance of our method to five other defenses against five representative backdoor
attacks. In this section, we present the main results on CIFAR-10 and GTSRB with a 10% poisoning
ratio on PreAct-ResNet18 for illustration, which is shown in[Table 1] and [Table 2]

Performance of backdoor defenses on CIFAR-10 dataset. In the CIFAR-10 dataset, our method
demonstrates consistent performance across different fine-tuning ratios and outperforms all state-of-
the-art defenses on average. At a fine-tuning ratio of 0.1, where the defender can access relatively
more clean data, ANP, FST, and our approach are all able to reduce the attack success rate (ASR)
while maintaining high clean accuracy (C-ACC). Among them, our method achieves the highest
average DER of 95.58%. In contrast, NAD and TSBD already show clear deficiencies against stronger
attacks such as COMBAT and SBL, which are either input-dependent or explicitly designed to resist
fine-tuning. When the fine-tuning ratio is reduced to 0.05, ANP fails to mitigate several attacks,
with ASRs of 100.00% in LC, 88.81% in COMBAT, and 62.48% in SBL, while FST achieves an
ASR of 90.06% against COMBAT and 30.02% against SBL. It is worth noting that even some other
defenses can maintain slightly higher C-ACC, such as FT and TSBD; these defenses cannot remove
the backdoor from the model, which leads to ASR more than 20%. By comparison, our method
continues to maintain the most effective defense against all attacks, achieving an average C-ACC of
90.04% and an average ASR of less than 5%.

Performance of backdoor defenses on GTSRB dataset. On the GTSRB dataset, our method
follows a similar trend to that observed on CIFAR-10, consistently outperforming all SOTA defenses
and achieving the highest average DER. At a fine-tuning ratio of 0.1, NAD and TSBD again show
deficiencies, while ANP and FST also fail to effectively reduce ASR under stronger attacks. ANP
achieves a 69.37% ASR and FST achieves 21.65% ASR against COMBAT, illustrating that these
approaches struggle when the dataset becomes more complex. The same pattern is evident at a lower
fine-tuning ratio of 0.05, where most defenses fail to mitigate at least one attack. In contrast, our
method maintains robust performance across all scenarios, achieving the highest DER of 95.58% for
both fine-tuning scenarios.
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Table 2: Comparison of SOTA defenses against multiple backdoor attacks with different fine-tuning

ratios on the GTRSB dataset with PreAct-ResNet18.

M i | FT=0.1 | FT=0.05
ethods  Metrics
| BadNet ~LC ~ COMBAT SBL  Wanet Refool Adaptive | Avg. | BadNet LC  COMBAT SBL  Wanet Refool Adaptive | Avg.
C-Acc | 9685 9245 99.07 97.36  96.19  96.11 9865 | 9667 | 9694 9241 97.97 9729 9745 9674 9876 | 96.79
Pretrained 55z 9429 99.24 69.53 9196  99.53  94.32 100 92.70 | 9461  99.96 76.07 9097  99.14  92.96 100 93.39
DER - - - - - - - - - - - - - - - -
C-Acc | 9758  97.27 98.97 9737 9865 9673 9859 | 97.88 | 9778  97.36 98.57 9741 9893 97.03  98.82 | 97.99
FT ASR 67.35  97.82 65.69 90.18 3499  87.73 100 77.68 | 57.86  99.06 78.18 8927  80.17  90.16 100 84.96
DER 6347 5071 51.87 50.89 8227 5330 4997 | 57.50 | 6838 5045 50.00 50.85 5949 5140 5000 | 54.37
C-Acc | 9597 9155 98.73 9514 9833  90.01 9500 | 9496 | 93.66 9217 97.87 9516  93.60 9423 9500 | 94.53
ANP ASR 1364 131 69.37 107 000 000 0.00 1220 | 000 3534 54.02 000 000 011 0.00 12.78
DER 89.89  98.52 49.91 9434 9976 9411 9818 | 89.24 | 9567  99.78 60.98 9442 9957 9517  99.50 | 89.17
C-Acc | 9761  97.37 99.05 9743 9877 9658  98.68 | 97.93 | 9786  96.16 98.49 97.67  99.04 9698 9878 | 97.85
NAD ASR 2553 037 65.23 6259  23.60  88.39 100 5224 | 844 040 75.15 8772 6491  89.76 1.00 46.77
DER 8438  99.44 52.14 6469 8797 5297 5000 | 70.23 | 93.09  99.78 50.46 5163 6712 5160 99.50 | 73.31
C-Acc | 9450  97.28 97.71 9722 9889 97.88 9845 | 9742 | 93.64 9517 97.81 9733 9866 98.04 9827 | 96.99
FST ASR 000 0.0 21.65 000 000 004 0.00 310 | 000 000 63.15 000 000 008 0.00 9.03
DER 9597 99.62 73.35 95.91 9976 97.14 9990 | 94.52 | 9566  99.98 56.38 9549  99.57 9644 9976 | 91.90
C-Acc | 9820 97.34 99.21 9729 9445 9824 9856 | 97.61 | 9798 9639 98.39 96.65 86.66 97.93 8532 | 94.19
TSBD ASR 000  0.16 66.58 4542 021 2342 0.57 1948 | 0.03 0.80 53.99 1322 000 2374 0.00 13.11
DER 9715 99.29 51.48 7324 9879 8545  99.67 | 8644 | 9729  99.58 61.04 88.56  94.18 8461 9328 | 8836
C-Acc | 9265  95.56 99.04 9381 9801 9601 9637 | 9592 | 93.65  95.09 96.62 9391 9728 9676 9688 | 9574
L-BAU ASR 0.14 0.77 70.31 078 022 50.69 155 17.78 | 0.03 250 89.97 0.81 168 3455 755 19.58
DER 9498 9924 49.99 9382  99.66 7177  98.09 | 8679 | 9565  98.73 49.33 9339 9865 7921 9529 | 87.18
C-Acc | 9673  9L78 96.46 96.88 9848 9736 9854 | 96.60 | 9642  92.11 97.13 96.11 9842 97.88 9857 | 96.66
BNP ASR 4168 0.8 56.42 9197 002 5436 100 4923 | 6511  0.00 73.11 9120 000  67.21 100 56.66
DER 7625 99.20 55.25 4976 9976 69.98 4995 | 7145 | 6449  99.83 51.06 4941 99.57  62.88 4991 | 68.16
C-Acc | 8548 9148 99.07 69.54 9288 8590 6332 | 83.95 | 8643 9033 66.06 84.77 9194 8484 8677 | 8445
RNP ASR 529 8376 69.53 2497 000  0.00 0.29 2626 | 1509 1215 3547 370 000 000 0.00 9.49
DER 8882  57.26 50.00 69.59 9811 9206 8219 | 7686 | 8451  92.87 54.35 87.38 9682 9053 9401 | 8578
C-Acc | 7694  86.67 96.10 6.10 9335 8357 9172 | 7635 | 8589  87.57 94.09 570 9563 90.60  88.10 | 7823
Unit ASR 1603 229 636 99.55 000 5269 3628 | 3046 | 036 085 28.46 100 L17 5081 7359 | 3646
DER 79.18 9559 80.10 437 9835 6455 7840 | 7150 | 9160  97.14 71.87 421 9808 6801  57.88 | 69.82
C-Acc | 9743 9822 97.38 9710 9519 9675  97.93 | 97.14 | 9786  97.40 90.63 9627 9716 9609  98.13 | 96.22
Ours ASR 000 004 123 008 002  3.09 2.65 1.02 0.01 036 430 008 000 008 315 1.14
DER 9715 99.60 8331 9581 9926 9562 9832 | 9558 | 9730 9987 7477 94.99 9943 9612 9811 | 9437
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Figure 4: Defense results (ASR) under various fine-tuning ratio settings with COMBAT and SBL
attacks. The experiments are conducted on the CIFAR-10 dataset.

4.3 ABLATION STUDIES

In this section, we study the performance of different defenses under varied adversary ability and
defender capability. Specifically, we varied the fine-tuning rates from [0.01,0.02,0.05, 0.1], where the
higher fine-tuning ratio, the more data that the defender can collect to conduct backdoor purification.
Then, we vary the poisoning rate to simulate different adversary capability from [0.01,0.02,0.05, 0.1].
A defense should be stable and effective across the varied settings.

Effect of fine-tuning ratio. In this experiment, a larger fine-tuning ratio means a larger amount of
data that the defender owns, while a small ratio is considered a more challenging setting.
reports ASR (%) for two adaptive backdoors, COMBAT and SBL. The figure shows that the other
baselines (FT, NAD, FST, TSBD) are highly sensitive to the fine-tuning ratio: their ASR reduction
diminishes as the fine-tuning ratio decreases. Under COMBAT, these defenses still exhibit high ASR
even at larger fine-tuning ratios. ANP can suppress ASR at favorable ratios but is unstable at smaller
budgets. In contrast, UniBP achieves the lowest ASR across all ratios for both attacks, with the
largest gains when the defender can use more than 2% of data for fine-tuning, highlighting superior
sample efficiency and stability.
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Figure 5: Defense results (ASR) under various poisoned data rate (PDR) settings with LC, COMBAT,
and SBL attacks. The experiments are conducted on the CIFAR-10 dataset.
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Figure 6: Defense results (ASR) under various model architecture settings with BadNet attack. The
experiments are conducted on the CIFAR-10 dataset.

Effect of data poisoning rate. shows the effectiveness of all defenses versus different
poisoned data rates (PDR) on CIFAR-10 across five attacks (BadNet, LC, Wanet, COMBAT, SBL).
From the results, BadNet is the least challenging: all defenses achieve very low ASR. With LC,
baselines are more sensitive to different poisoned data rates; several can only reduce ASR to 70% until
when PDR is 0.05; whereas UniBP reduces ASR to as low as 0 across all ratios. Under COMBAT
and SBL, even more advanced defenses such as TSBD and FST fluctuate widely and often exceed
50% even with larger budgets, and ANP is effective only at selective ratios. In contrast, UniBP is the
most effective and stable across all attacks and fine-tuning ratios.

Analysis on model architecture. [Figure 7| presents the effectiveness of different methods under
various backbones: PreAct-ResNet18 2016), VGG19-BN (Simonyan & Zisserman|, 2014),
DenseNet-161 (Huang et all, 2017), and MobileNetV3-Large (Howard et al., 2019). We report
both pre-defense (Original) and post-defense (Purified) clean accuracy (C-ACC) and attack success
rate (ASR). Baseline fine-tuning defenses (FT, NAD, FST, TSBD) exhibit pronounced backbone
dependence: on VGG19-BN and MobileNetV3-Large, they often leave high purified ASR or incur
nontrivial C-ACC drops. ANP can substantially reduce ASR on some backbones (e.g., VGG19-BN)
but typically at the cost of noticeable accuracy degradation. In contrast, UniBP consistently achieves
the lowest ASR across all four architectures while keeping purified C-ACC close to the original,
indicating model-agnostic effectiveness and a better robustness—accuracy trade-off.

5 CONCLUSION

We presented UniBP, a universal post-training defense for purifying backdoored models. The
approach leverages BatchNorm statistics to expose backdoor footprints, rectifies these statistics on
a small clean set, scores BN-affine parameters via a Fisher-based importance measure, prunes the
most backdoor-sensitive entries, and fine-tunes with masked gradients—removing trigger pathways
without prior knowledge of attack type or location. UniBP consistently attains the lowest ASR while
preserving clean accuracy. It is stable across poisoning rates and fine-tuning budgets and operates
effectively over a broad mask-ratio range, yielding strong robustness—accuracy trade-offs with modest
clean data.

REFERENCES
M. Barni, K. Kallas, and B. Tondi. A new backdoor attack in cnns by training set corruption without

label poisoning. In 2019 IEEE International Conference on Image Processing (ICIP), pp. 101-105,

10



Under review as a conference paper at ICLR 2026

2019. doi: 10.1109/ICIP.2019.8802997.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering, 2018. URL https://arxiv.org/abs/1811.03728\

Weixin Chen, Baoyuan Wu, and Haogian Wang. Effective backdoor defense by exploiting sensitivity
of poisoned samples. Advances in Neural Information Processing Systems, 35:9727-9737, 2022.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Pengzhou Cheng, Zongru Wu, Wei Du, Haodong Zhao, Wei Lu, and Gongshen Liu. Backdoor attacks
and countermeasures in natural language processing models: A comprehensive security review.
IEEE Transactions on Neural Networks and Learning Systems, 2025.

Siyuan Cheng, Guangyu Shen, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Hanxi Guo, Shiqing
Ma, and Xiangyu Zhang. Unit: Backdoor mitigation via automated neural distribution tightening.
In European Conference on Computer Vision, pp. 262-281. Springer, 2024.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th annual
computer security applications conference, pp. 113125, 2019.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. ArXiv, abs/1708.06733, 2017. URL https://api.
semanticscholar.org/CorpusID:26783139.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230-47244, 2019.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630-645. Springer, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 1314-1324, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261-2269, 2017.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process, 2022. URL https://arxiv.org/abs/2202.03423|

Tran Huynh, Dang Nguyen, Tung Pham, and Anh Tran. Combat: Alternated training for effective
clean-label backdoor attacks. In AAAI Conference on Artificial Intelligence, 2024. URL https:
//api.semanticscholar.org/CorpusID:268678332.

Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan. Pytorch. Programming with
TensorFlow: Solution for Edge Computing Applications, pp. 87-104, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Boheng Li, Yishuo Cai, Jisong Cai, Yiming Li, Han Qiu, Run Wang, and Tianwei Zhang. Puri-
fying quantization-conditioned backdoors via layer-wise activation correction with distribution
approximation. In Forty-first International Conference on Machine Learning, 2024.

Xi Li, Zhen Xiang, David J. Miller, and George Kesidis. Correcting the distribution of batch
normalization signals for trojan mitigation. Neurocomputing, 614:128752, 2025. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2024.128752. URL https://www.sciencedirect,
com/science/article/pii1/S0925231224015236.

11


https://arxiv.org/abs/1811.03728
https://api.semanticscholar.org/CorpusID:26783139
https://api.semanticscholar.org/CorpusID:26783139
https://arxiv.org/abs/2202.03423
https://api.semanticscholar.org/CorpusID:268678332
https://api.semanticscholar.org/CorpusID:268678332
https://www.sciencedirect.com/science/article/pii/S0925231224015236
https://www.sciencedirect.com/science/article/pii/S0925231224015236

Under review as a conference paper at ICLR 2026

Yige Li, Nodens Koren, L. Lyu, Xixiang Lyu, Bo Li, and Xingjun Ma. Neural attention distillation:
Erasing backdoor triggers from deep neural networks. ArXiv, abs/2101.05930, 2021a. URL
https://api.semanticscholar.org/CorpusID:2316277909.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34:
14900-14912, 2021b.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Confer-
ence on Learning Representations, 2021c. URL|https://openreview.net/forum?id=
910K40M-oXE.

Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, L. Lyu, Bo Li, and Yugang Jiang. Reconstructive
neuron pruning for backdoor defense. In International Conference on Machine Learning, 2023a.
URLhttps://api.semanticscholar.org/CorpusID:258865980.

Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang.
Reconstructive neuron pruning for backdoor defense. In International Conference on Machine
Learning, pp. 19837-19854. PMLR, 2023b.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. I[EEE transactions
on neural networks and learning systems, 35(1):5-22, 2022.

Yudong Li, Shigeng Zhang, Weiping Wang, and Hong Song. Backdoor attacks to deep learning
models and countermeasures: A survey. IEEE Open Journal of the Computer Society, 4:134—-146,
2023c.

Weilin Lin, Li Liu, Shaokui Wei, Jianze Li, and Hui Xiong. Unveiling and mitigating backdoor
vulnerabilities based on unlearning weight changes and backdoor activeness. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=MfGRUVFtnI.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor attack
on deep neural networks. In European Conference on Computer Vision, pp. 182—199. Springer,
2020.

Ibomoiye Domor Mienye and Theo G Swart. A comprehensive review of deep learning: Architectures,
recent advances, and applications. Information, 15(12):755, 2024.

Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through
feature shift tuning. ArXiv, abs/2310.01875, 2023. URL https://api.semanticscholar!
org/CorpusID:263608763.

Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through
feature shift tuning. Advances in Neural Information Processing Systems, 36, 2024.

Dung Thuy Nguyen, Ngoc N Tran, Taylor T Johnson, and Kevin Leach. Pbp: Post-training backdoor
purification for malware classifiers. arXiv preprint arXiv:2412.03441, 2024.

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454-3464, 2020.

Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack. In
International Conference on Learning Representations, 2021. URL https://openreview,
net/forum?id=eEn8KTtJOX.

Rui Ning, Jiang Li, Chunsheng Xin, and Hongyi Wu. Invisible poison: A blackbox clean label
backdoor attack to deep neural networks. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pp. 1-10, 2021. doi: 10.1109/INFOCOM42981.2021.9488902.

Mohd Halim Mohd Noor and Ayokunle Olalekan Ige. A survey on state-of-the-art deep learning
applications and challenges. Engineering Applications of Artificial Intelligence, 159:111225, 2025.

12


https://api.semanticscholar.org/CorpusID:231627799
https://openreview.net/forum?id=9l0K4OM-oXE
https://openreview.net/forum?id=9l0K4OM-oXE
https://api.semanticscholar.org/CorpusID:258865980
https://openreview.net/forum?id=MfGRUVFtn9
https://openreview.net/forum?id=MfGRUVFtn9
https://api.semanticscholar.org/CorpusID:263608763
https://api.semanticscholar.org/CorpusID:263608763
https://openreview.net/forum?id=eEn8KTtJOx
https://openreview.net/forum?id=eEn8KTtJOx

Under review as a conference paper at ICLR 2026

Hoang Pham, The-Anh Ta, Anh Tran, and Khoa D. Doan. Flatness-aware sequential learning generates
resilient backdoors. ArXiv, abs/2407.14738, 2024a. URLhttps://api.semanticscholar!
org/CorpusID:271328781.

Hoang Pham, The-Anh Ta, Anh Tran, and Khoa D Doan. Flatness-aware sequential learning generates
resilient backdoors. In European Conference on Computer Vision, pp. 89—-107. Springer, 2024b.

Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assump-
tion of latent separability for backdoor defenses. In The eleventh international conference on
learning representations, 2023.

Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-Robert
Miiller. Explaining deep neural networks and beyond: A review of methods and applications.
Proceedings of the IEEE, 109(3):247-278, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In IEEE International Joint
Conference on Neural Networks, pp. 1453-1460, 2011.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

Yichen Wan, Youyang Qu, Wei Ni, Yong Xiang, Longxiang Gao, and Ekram Hossain. Data and
model poisoning backdoor attacks on wireless federated learning, and the defense mechanisms: A
comprehensive survey. IEEE Communications Surveys & Tutorials, 26(3):1861-1897, 2024.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2079
IEEE symposium on security and privacy (SP), pp. 707-723. IEEE, 2019.

Hang Wang, Zhen Xiang, David J. Miller, and George Kesidis. Mm-bd: Post-training detection of
backdoor attacks with arbitrary backdoor pattern types using a maximum margin statistic, 2023.
URLhttps://arxiv.org/abs/2205.06900.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15074-15084,
June 2022.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. Advances in Neural
Information Processing Systems, 35:10546-10559, 2022.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
Advances in Neural Information Processing Systems, 34:16913-16925, 2021.

Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. In International Conference on Learning Representations,
2021.

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A
practical clean-label backdoor attack with limited information. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pp. 771-785, 2023.

Shaobo Zhang, Yimeng Pan, Qin Liu, Zheng Yan, Kim-Kwang Raymond Choo, and Guojun Wang.
Backdoor attacks and defenses targeting multi-domain ai models: A comprehensive review. ACM
Computing Surveys, 57(4):1-35, 2024.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
lipschitzness. In European Conference on Computer Vision, pp. 175-191. Springer, 2022a.

13


https://api.semanticscholar.org/CorpusID:271328781
https://api.semanticscholar.org/CorpusID:271328781
https://arxiv.org/abs/2205.06900

Under review as a conference paper at ICLR 2026

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Pre-activation distributions expose backdoor
neurons. Advances in Neural Information Processing Systems, 35:18667-18680, 2022b.

Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based
backdoor defense with sharpness-aware minimization. 2023 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 4443-4454,2023. URL https://api.semanticscholar,
org/CorpusID:258297949.

14


https://api.semanticscholar.org/CorpusID:258297949
https://api.semanticscholar.org/CorpusID:258297949

Under review as a conference paper at ICLR 2026

APPENDIX

We conduct all the experiments using PyTorch 2.1.0 (Imambi et al.,[2021). All experiments are run
on a computer with an Intel Xeon Gold 6330N CPU and an NVIDIA A6000 GPU.

A DETAILED EXPERIMENTAL SETUP

A.1 DATASETS AND PREPROCESSING

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) comprises 60,000 32 x32 RGB images
evenly distributed across 10 classes. We adopt the official split with 50,000 training images and
10,000 test images (6,000 per class in total; 5,000 train and 1,000 test per class). Unless otherwise
noted, we follow the standard evaluation protocol on the test set.

GTSRB (German Traffic Sign Recognition Benchmark). The GTSRB dataset
contains 51,839 images across 43 classes, with 39,209 images for training and 12,630 for
testing. Following common practice, we use the standard train/test split and resize all images to
32x32 RGB for training and evaluation.

Tiny-ImageNet 2015). The Tiny-ImageNet dataset is a downscaled subset of ImageNet
with 200 classes, each containing 500 training images and 50 validation images, for a total of 100,000
training and 10,000 validation images. All images are 64 x 64 pixels with RGB channels. Following
prior work, we use the official train/validation split and treat the validation set as the test set for
evaluation; images are resized to 3232 when training models that expect CIFAR-style inputs.

A.2 ATTACK DETAILS

We evaluate our defense against nine SOTA backdoor attacks: BadNets 2019), LC (Turner
et al., 2019), WaNet (Nguyen & Tran| 2021), COMBAT (Huynh et al., 2024), SBL (Pham et al.,
2024b), WaNet (Nguyen & Tran, 2021), Narcissus (Zeng et al.,[2023)), Adaptive-patch (Qi et al.| [2023)),
Input-aware (Nguyen & Tranl [2020) and Refool (Liu et al.l . For BadNets, LC, WaNet, Input-
aware, Refool we adopt the implementations provided in the BackdoorBench framework and use the
default configurations. Since COMBAT, SBL, Narcissus, and Adaptive-Batch are not integrated into
BackdoorBench, we incorporated them into our codebase using the official implementations released
by the authorsﬂElElEl To ensure consistency and comparability across all experiments, we fixed the
poisoning ratio at 10%. Examples of poisoned images under each attack is shown in Figure 8.
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Figure 7: Examples of poisoned images on the CIFAR-10 dataset.

A.3 DEFENSE DETAILS

We compare our method against nine SOTA backdoor defenses: FT, ANP (Wu & Wang, 2021),
NAD 20214), FST (Min et al.}[2024), TSBD (Lin et al.,[2024), I-BAU (Zeng et al.,[2021),

'https://github.com/VinAIResearch/COMBAT
Zhttps://github.com/mail-research/SBL-resilient-backdoors
*https://github.com/reds-lab/Narcissus
*nttps://github.com/Unispac/Circumventing-Backdoor-Defenses
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RNP (Li et al.,[2023a)), BNP (Zheng et al.,|2022b), and UNIT (Cheng et al.,2024). For FT, ANP,
NAD, TSBD, I-BAU, RNP, and BNP, we adopt the implementations and default configurations
provided in the BackdoorBench framework. Since FST and Unit are not included in BackdoorBench,
we integrated them into our codebase using the publicly released implementation E”ﬂ To ensure
fairness across methods, we set the batch size to 256 for all defenses, except for FST, where we
follow the original paper and use a batch size of 128. All defenses are trained with a learning rate
of 0.002 for 20 epochs. For TSBD, we follow the settings reported in the original paper, fixing the
neuron ratio at n = 0.15 and the weight ratio at m = 0.7. With FST, the coefficient « is set to 0.1.
For BNP, we set the target mean shift to w = 3, using a search range from Umin = 0 t0 Umax = 10
that is discretized into u,,, = 10 candidate values, and we use a histogram ratio of 0.05. For the
alpha-unlearning procedure, we use o« = 0.2, a clean-classification threshold of 0.80, an unlearning
learning rate of 0.01, and a recovering learning rate of 0.1. We train for 20 unlearning epochs and
20 recovering epochs. Neurons are pruned using a threshold-based rule with a maximum pruning
ratio of 0.90 and a pruning step size of 0.05. For [-BAU, we follow the original configuration and
use K = 5 inner optimization steps. For UNIT, we run 300 optimization steps and allow up to 0.03
degradation in clean accuracy.

A.4 MODEL ARCHITECTURES AND INITIALIZATION

We evaluate four backbone architectures representative of common vision families:

PreAct-ResNet-18. Standard PreAct-ResNet-18; the final classifier is replaced to match the dataset
classes (10 for CIFAR-10; 43 for GTSRB).

VGG19-BN. VGGI19 with batch normalization after each convolutional block; initialized from
ImageNet and refit with a dataset-specific classifier.

DenseNet-161. ImageNet-pretrained DenseNet-161; the classifier head is replaced to match the target
classes.

MobileNetV3-Large. ImageNet-pretrained MobileNetV3-Large; the final fully connected layer is
replaced to fit the dataset classes.

Model modifications for purification: Our purification pipeline interacts primarily with BatchNorm
affine parameters and per-channel statistics. We instrument BatchNorm layers to read and optionally
reset v, 5 and moving averages (fmov, Tmoyv)- For the pruning / affine-mask step we add small,
lightweight selection masks per channel (implemented as binary or continuous gates) that can be
applied to the BN affine scale term ~ during inference and finetuning.

A.5 HYPER-PARAMETERS

The pipeline includes separate hyper-parameters for (A) initial training/victim model creation (poi-
soned model), and (B) purification stages. We list the values used in all experiments unless noted
otherwise.

Training Phase. Unless otherwise noted, poisoned models are trained using PreAct-ResNet-18 with
SGD (momentum 0.9), an initial learning rate of 0.01, weight decay of 5 x 10~4, batch size 128, and
100 epochs. The learning rate follows CosineAnnealingLR. The random seed is fixed to 0. Unless
otherwise specified, standard data augmentation (random horizontal flip and random crop) is applied.

Fine-tuning Phase. During fine-tuning, we use SGD with momentum 0.9 and a learning rate in
the range 1 x 1072 to 2 x 10~%; unless otherwise specified, the training batch size is 128. In the
sensitivity-to-fine-tuning-ratio study, we sweep the fine-tuning ratio over {1%, 2%, 5%, 10%} and
adjust batch sizes accordingly, i.e., training mini-batch is {32, 32, 64, 128}, respectively.
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Table 3: Tiny-ImageNet results under five backdoor attacks. C-Acc = clean accuracy (%), ASR =
attack success rate (%), DER = defense effectiveness ratio (%).

Pretrained FT ANP NAD FST TSBD Ours
Attack C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR
BadNet 47.12 94.16 55.16 9039 47.12 94.16 49.77 29.53 2696 031 52.64 5495 48.73 17.49
DER - 51.89 50.00 82.32 86.85 69.60 88.34
LC 56.78 67.70 56.55 67.33 54.68 59.18 56.53 70.11 2844 0.57 5497 1634 5022 279
DER - 50.07 53.21 49.87 69.40 74.78 79.18
WaNet 5497 99.70 52.71 48.00 5422 76.96 5244 5159 2875 0.06 52.73 0.72 4827 0.51
DER - 74.72 60.99 72.79 86.71 98.37 96.25
Adaptive Patch 53.49 99.93 49.84 96.32 49.11 66.36 50.03 96.34 29.18 0.00 48.67 0.38 45.58 4.02
DER - 49.98 64.60 50.07 87.81 97.37 94.00
Input-aware 46.82 9524 51.60 98.81 4221 9.76 5197 99.36 2425 0.00 54.65 0.12 46.02 3.87
DER - 50.00 90.44 50.00 86.34 97.56 95.29
AVG-DER - 55.33 63.85 61.01 83.42 87.54 90.61

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESULTS WITH TINY-IMAGENET DATASET

We conduct additional experiments on Tiny-ImageNet, which is substantially larger and more complex
than CIFAR-10 and GTSRB, and present the results in TableEl From the results, we can see that
UniBP achieves the highest average DER (90.61%) across all five attack types, outperforming TSBD
(87.54%) and FST (83.42%). UniBP also consistently suppresses ASR to very low levels across
diverse attacks (from standard BadNet to adaptive and input-aware variants) while maintaining
clean accuracy around 46-50%. In contrast, FST attains near-zero ASR but drives clean accuracy
down to roughly 27%, making it impractical in this setting. Overall, UniBP offers a much better
robustness-utility trade-off on Tiny-ImageNet.

B.2 RESULTS WITH ALL BACKDOOR ATTACKS

Due to space constraints, we only present results with seven attacks in the main paper; here we show
all nine attacks in[Table 4] From the results, our method consistently achieves the highest average
DER across both fine-tuning budgets (93.90 for FT=0.1 and 91.42 for FT=0.05), demonstrating
superior robustness to resource constraints. While some baselines perform competitively on specific
attacks, where FST achieves 99.35 DER on Wanet and [-BAU reaches 98.78 on LC under FT=0.1, they
suffer catastrophic failures on adaptive and clean-label attacks. Notably, traditional fine-tuning (FT)
and several specialized defenses (NAD, RNP, BNP) exhibit severe instability against COMBAT and
SBL, with DER frequently dropping below 53, indicating near-random performance. These failures
stem from violated assumptions: COMBAT optimizes triggers to overlap with target-class features,
while SBL explicitly resists fine-tuning through continual learning. In contrast, our method maintains
consistently high DER across all nine attacks and both budget settings, with minimal performance
degradation under reduced data (only a 2.48 DER drop from FT=0.1 to FT=0.05). This stability
across diverse attack families and resource constraints demonstrates the practical effectiveness of our
approach in realistic deployment scenarios where attack types are unknown and data is limited.

B.3 SENSITIVITY TO DATA POISONING RATES

presents a comprehensive evaluation of different defense methods (Pretrained, FT, ANP, NAD,
FST, TSBD, and UniBP) against a range of backdoor attacks including BadNet, LC, COMBAT, SBL,
and Wanet, under varying poisoning data ratios (PDR = 0.1, 0.05, 0.02, 0.01). For each configuration,
both model accuracy (MA) and attack success rate (ASR) are reported to highlight the trade-off
between maintaining clean accuracy and suppressing malicious behavior. Across the board, baseline
Pretrained models show high MA but consistently elevated ASR, indicating vulnerability to all
attacks. Fine-tuning (FT) improves resilience to some extent, though it struggles to reduce ASR under

Shttps://github.com/AISafety-HKUST/stable_backdoor_purification
Shttps://github.com/Meguml/UNIT
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Table 4: Comprehensive evaluation of backdoor defenses across nine attacks under two fine-tuning
budgets (FT = 0.1 and FT = 0.05). We report Clean Accuracy (C-Acc), Attack Success Rate (ASR),
and Defense Effectiveness Rate (DER). Best results are highlighted in bold.

Methods Metrics \ BadNet LC COMBAT SBL  Wanet Narcissus Adaptive Patch Input-Aware Refool \ AVG-DER

FT=0.1

Pretrained C-Acc 91.44 84.19 93.94 90.52  92.67 93.09 93.08 90.39 91.65

ASR 94.41 100.00 94.47 88.84  99.54 94.64 100.00 95.98 9291

C-Acc 88.13 86.33 91.01 8820  86.52 89.27 89.84 89.67 87.87

I-BAU ASR 7.91 2.45 1.98 0.76 20.04 33.01 1.26 50.90 2.02
DER 91.60 98.78 94.78 92.88 86.68 78.91 97.75 72.18 93.56 89.68

C-Acc 84.66 81.36 79.70 65.64  88.05 87.79 87.57 80.05 86.75

UNIT ASR 0.89 8.07 22,67 2.58 3.12 68.44 1.76 5.94 23.52
DER 9337 94.55 78.78 80.69  95.90 60.45 96.37 89.85 82.25 85.80

C-Acc 91.27 83.31 91.40 90.33  65.69 93.11 92.34 89.72 91.74

BNP ASR 13.12 0.00 24.23 90.08  47.38 85.68 9.52 0.88 3.55
DER 90.56 99.56 83.85 49.91 62.59 54.48 94.87 97.22 94.68 80.86

C-Acc 87.63 80.78 92.89 87.57  90.34 92.97 90.28 86.48 54.11

RNP ASR 3.76 99.93 93.09 20.57 0.17 91.52 11.67 0.73 0.00
DER 93.42 48.33 50.17 82.66  98.52 51.50 92.77 95.67 77.69 76.75

C-Acc 90.56 90.00 93.46 90.79  92.50 9235 92.19 91.39 91.64

FT ASR 1.47 17.53 72.83 83.85 13.91 89.81 99.94 96.50 15.54
DER 96.03 91.24 60.58 5250 9273 52.05 49.59 50.00 88.68 70.38

C-Acc 8351 79.17 85.18 88.77 83.62 89.55 89.55 86.17 86.92

ANP ASR 0.00 6.65 7.58 0.04 0.02 86.77 86.77 0.16 0.12
DER 93.24 94.17 89.07 93.53 9524 52.17 54.85 95.80 94.03 84.68

C-Acc 89.33 88.97 93.48 90.39  91.88 91.27 9L.18 9231 90.67

NAD ASR 2.08 18.43 70.96 64.80 9.98 88.06 90.03 98.80 9.27
DER 95.11 90.79 61.52 61.96  94.39 5238 54.04 50.00 91.33 72.39

C-Acc 87.06 88.89 91.25 9L.17  92.40 92.18 92.04 92.67 91.70

FST ASR 2.08 2.34 30.65 0.24 0.58 93.91 0.40 0.00 3.93
DER 93.98 98.83 80.57 9430  99.35 49.91 99.28 97.99 94.49 89.86

C-Acc 90.13 89.06 9291 9143  92.48 92.85 92.40 93.18 92.24

TSBD ASR 1.78 15.16 35.57 84.68 1.08 82.16 4.07 543 1.77
DER 95.66 92.42 78.94 52.08  99.14 56.12 97.63 95.28 95.57 84.76

C-Acc 90.67 91.40 91.04 88.91 90.22 88.37 88.31 90.61 89.70

Ours ASR 112 2.50 10.28 2.18 4.74 14.32 3.76 5.44 1.90
DER 98.99 98.75 93.02 97.88 96.3 87.80 95.74 95.27 94.53 95.36

FT =0.05

Pretrained C-Acc 91.36 84.51 94.13 89.76  93.10 93.79 99.33 91.39 92.00

ASR 95.45 100.00 94.80 87.55  99.88 78.05 100.00 96.50 93.80

C-Acc 85.71 86.21 91.85 87.61 85.77 90.02 89.83 88.54 88.17

I-BAU ASR 3.48 2.12 87.92 1.34 9.92 71.73 3.74 62.88 12.12
DER 93.16 98.94 5230 9203 91.25 51.27 93.38 65.39 88.92 80.74

C-Acc 833 82.07 81.04 70.15 87.19 88.8 87.09 79.8 86.84

UNIT ASR 0.79 6.49 10.38 1.5 1.79 67.23 5.19 4.32 10.78
DER 93.30 95.53 85.67 8322  96.02 5291 91.28 90.30 88.93 86.35

C-Acc 91.18 82.8 92.56 90.56  88.48 93.68 92.52 91.32 92.34

BNP ASR 16.51 0 13.49 93.06 1422 79.98 72.06 2.68 40.07
DER 89.38 99.15 89.87 50.00  90.45 49.95 60.57 96.88 76.87 78.12

C-Acc 84.91 82.59 93.99 72.7 86.65 92.74 89.83 64.96 51.28

RNP ASR 0.07 100 95.39 0.01 2.47 73.17 0.87 0 0
DER 94.47 49.04 49.93 8524 9541 5191 94.81 85.03 76.54 75.82

C-Acc 88.69 90.51 94.01 8946 9233 92.46 92.81 92.61 91.73

FT ASR 222 100.00 96.17 89.92 14.97 80.92 100 97.23 19.21
DER 95.28 0.50 49.94 49.85  92.00 49.34 46.74 50.00 87.16 57.87

C-Acc 84.40 84.51 92.14 84.48 84.83 86.91 86.91 89.28 84.19

ANP  ASR 0.02 100.00 88.81 62.48 0.00 73.95 73.95 0.14 0.13
DER 94.24 0.50 52.00 5990  95.74 48.61 56.82 97.13 92.93 66.43

C-Acc 88.13 89.30 94.21 88.94  92.09 91.35 90.68 92.93 90.68

NAD ASR 2.81 59.06 97.66 73.08 1.83 75.96 65.13 83.74 6.52
DER 94.71 70.47 50.00 56.83  98.45 49.83 63.11 56.38 92.98 70.31

C-Acc 88.58 90.90 94.20 8995 9243 92.84 92.84 93.32 91.73

FST ASR 1.13 0.00 90.02 30.02 0.32 81.2 4191 0.01 5.91
DER 95.77 100.00 52.39 78.77  99.38 49.53 75.80 98.25 93.81 82.63

C-Acc 90.00 90.74 92.28 88.14 9243 90.58 92.12 93.31 91.85

TSBD ASR 2.12 93.00 81.64 79.20 1.29 74.11 4.31 1.69 2.26
DER 95.99 53.50 55.66 5337  98.89 50.37 94.24 97.41 95.70 77.24

C-Acc 90.32 88.94 84.42 81.28 89.45 85.17 89.91 87.30 87.92

Ours ASR 4.91 5.08 13.63 4.13 2.64 9.87 1.80 5.57 3.54
DER 94.75 97.46 85.73 8747  96.73 79.78 94.39 93.42 93.09 91.42
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Table 5: Performance comparison of different defense methods (Pretrained, FT, ANP, NAD, FST,
TSBD, and PBP) against multiple backdoor attacks (BadNet, LC, COMBAT, SBL, and Wanet) under
varying poisoning data ratios (PDR = 0.1, 0.05, 0.02, 0.01). The table reports the model accuracy
(MA) and attack success rate (ASR) in percentage.

Pretrained FT ANP NAD FST TSBD Ours
C-ACC  ASR ‘ C-ACC  ASR ‘ C-ACC ASR ‘ C-ACC  ASR ‘C-ACC ASR ‘C-ACC ASR ‘C-ACC ASR

Attacks PDR

0.1 | 91.44 94.41 91.01 66.94 84.10 0.00 89.62 2.66 91.48 3.13 91.67 2.10 89.82 1.47

BadNet 0.05 | 92.15 90.30 91.37 55.80 85.05 0.00 90.58 4.24 91.37 1.30 92.19 1.43 87.85 1.50
0.02 | 92.81 81.47 91.77 64.78 86.49 0.01 91.34 11.52 92.33 2.58 92.18 1.88 87.59 2.09

0.01 | 93.34 71.21 92.39 63.20 85.05 0.01 91.12 9.63 92.50 0.94 93.02 1.94 87.68 2.51

0.1 | 84.19 100.00 | 92.80  100.00 | 84.67 94.48 | 91.39 75.88 91.08 0.00 91.08  84.27 | 89.09 2.36

LC 0.05 | 9332 100.00 | 9226 100.00 | 91.55 4247 | 90.82 100.00 | 9222 8691 | 91.66 8452 | 86.19 9.13
0.02 | 9339 100.00 | 92.68 100.00 | 84.67 94.48 | 91.57 99.91 9238 97.55 | 9298 99.84 | 83.06 3.67

0.01 | 93.54 99.97 9236 100.00 | 88.77  96.80 | 91.51 99.01 92.59  99.52 | 92778  97.54 | 83.04 5.61

0.1 85.05 99.23 91.90 83.47 8420 6890 | 91.80 52.28 9227 5840 | 9256 3920 | 91.04 10.28

COMBAT 0.05 | 93.94 94.47 93.46 72.83 85.18 7.58 98.41 76.56 91.25 30.65 | 9291 3557 | 87.90 7.18
0.02 | 93.90 85.04 94.20 87.63 85.05  72.56 | 93.61 82.51 9390 8273 | 9276 70.21 | 89.72 6.23

0.01 | 94.14 83.67 93.49 73.76 93.40 78.12 | 93.40 78.12 93.60 78.07 | 9278 5846 | 87.29 7.72

0.1 | 90.52 88.84 90.79 83.85 88.77 0.04 90.39 64.80 91.17 0.24 91.43  84.68 | 83.25 1.86

SBL 0.05 | 90.02 79.35 89.94 68.31 8553  77.16 | 89.68 61.60 90.06 2.58 89.55 12.15 | 87.81 2.33
0.02 | 90.25 68.27 90.33 61.16 87.59  41.98 | 90.03 39.53 90.17 2.48 90.25 12.12 | 88.04 2.13

0.01 | 90.50  47.07 90.39 46.14 90.50  47.07 | 89.98 36.30 90.49 2.08 91.01 433 88.44 2.60

0.1 | 93.40 99.97 93.75 76.73 84.46 0.08 93.72 78.07 93.04 0.30 77.64 0.00 90.22 1.52

Wanet 0.05 | 93.37 99.87 93.89 98.14 85.33 0.01 93.88 98.73 93.32 0.27 70.42 0.70 90.09 1.88
0.02 | 93.43 99.38 93.54 96.54 88.44 0.13 93.77 96.98 93.37 0.50 43.97 1.15 89.47 1.39

0.01 | 93.81 98.48 93.80 74.12 85.88 0.21 93.83 87.26 93.18 1.13 75.40 0.00 89.71 1.73

low PDRs. ANP and NAD demonstrate stronger backdoor mitigation, often reducing ASR close to
zero, but at the cost of a slight drop in MA in some cases. FST and TSBD provide a more balanced
trade-off, achieving high MA while substantially lowering ASR in multiple attack settings. Notably,
UniBP consistently achieves competitive MA while keeping ASR at very low levels, especially
under LC and COMBAT attacks, showcasing its robustness under challenging conditions. Overall,
the results emphasize that while most defenses reduce ASR to some degree, methods like NAD, FST,
TSBD, and particularly UniBP stand out in delivering both strong protection and reliable utility.

B.4 SENSITIVITY TO MODEL ARCHITECTURES
B.4.1 MODEL ARCHITECTURES WITH BATCHNORM LAYERS

Table 6: Comparison of defenses against BadNet across models (original vs. purified). Values are
clean accuracy (C-ACC) and attack success rate (ASR), both in %.

Model Tag FT ANP NAD FST TSBD Ours
C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR C-ACC ASR
VGG19 BN Original ~ 90.84 9341 90.84 9341 90.84 9341 90.84 9341 90.84 9341 90.84 9341
- Purified  89.72  82.77 83.38 0.00 88.09 3215 89.05 3474 90.67 9.38 83.48 2.84
Original 8497 8091 8497 8091 8497 8091 8497 8091 8497 8091 8497 8091
DenseNet161

Purified 8458 71.77 8528 78.18 8251 1030 84.87 10.13  49.72 4.88 82.03 5.70

Original ~ 85.12  94.12  85.12 94.12 85.12 9412 85.12 9412 8512 9412 8512 94.12
Purified 8424 2471 81.74 9336 79.80 15.62 8420 17.15 25.13 5.86 85.78 2.23

Original ~ 91.44 9441 9144 9441 9144 9441 9144 9441 9144 9441 9144 9441
Purified  90.56 1.47 83.51 0.00 89.33 2.08 87.06 2.08 90.13 1.78 89.82 1.47

MobileNetV3-Large

PreAct-ResNet18

Table[6] compares Original vs. Purified C-ACC/ASR under BadNet across four backbones. Baseline
fine-tuning defenses (FT, NAD, FST, TSBD) show pronounced backbone dependence: on VGG19-
BN and DenseNetl61 they often leave high purified ASR (~ 10%), and on DenseNet161 and
MobileNetV3-Large, TSBD substantially reduces C-ACC. ANP lowers ASR on some backbones
(VGG19-BN, PreAct-ResNet18) but with noticeable accuracy drops (7-8%) and fails on the others
(ASR remains high, often above 70-90%). In contrast, UniBP keeps ASR low across all architectures
(about 1-6%) while maintaining purified C-ACC close to the original (typically within a few points),
indicating backbone-agnostic effectiveness and a better robustness—accuracy trade-off.

B.4.2 MODEL ARCHITECTURES WITHOUT BATCHNORM LAYERS

We further investigate an adapted version of our method for non-BN models such as Vision Trans-
formers by recognizing that ViTs use LayerNorm instead of BatchNorm and follow a Pre-LN
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architecture where normalization precedes computation (LN — MLP) rather than following it (Conv
— BN). Since LayerNorm does not maintain running statistics like BatchNorm, we manually collect
reference statistics by hooking LayerNorm inputs during forward passes on clean data, computing
mean and variance across feature dimensions over multiple batches. Our key architectural insight
is that in Pre-LN Transformers, the MLP feed-forward blocks between consecutive LayerNorm
layers directly determine the input distribution to the subsequent normalization—therefore, we
strategically target only MLP parameters (fcl, fc2 weights/biases) for FIM computation while ex-
plicitly excluding LayerNorm parameters themselves through _is_mlp_param() filtering. We
attach hooks to LayerNorm layers to capture their input statistics and compute an alignment loss
L = || finput — fret||? + | Cinput — oref||? against a reinitialized clean baseline model, which serves as
our reference for “normal training dynamics.” When this loss backpropagates, gradients flow through
the LayerNorm back to the upstream MLP blocks, and the accumulated squared gradients (FIM
scores) reveal which MLP parameters are most critical to producing backdoor-specific activation
distributions—parameters with high FIM resist alignment with clean statistics because they were
optimized on poisoned data. Finally, we prune only the top-ranked MLP parameters via noise
injection, preserving the normalization layers while disrupting the backdoor pathway hidden in the
feed-forward sublayers where Transformer backdoors typically reside.

Table 7: Performance of UniBP on Vision Transformer models with different backdoor attacks and
poisoning rates (FT).

Metric BadNet LC
FT=0.1 FT=0.05 FT=0.1 FT=0.05

C-Acc (Pretrained) 09286  0.9062  0.8736  0.8731
ASR (Pretrained) 0.9542  0.9302 1.0000  1.0000

C-Acc (Ours) 09325 09310 0.9529  0.9467
ASR (Ours) 0.0034  0.0101  0.0230  0.0006
DER (Ours) 09754 09601  0.9885  0.9997

As shown in Table[7} our adapted method effectively eliminates backdoors across all attack scenarios
(ASR reduced to near-zero) while preserving or even improving clean accuracy, demonstrating that
targeting MLP parameters via LayerNorm statistics successfully disrupts backdoor pathways without
degrading model performance.

B.5 ABLATION STUDY

We sweep the mask ratio K, the primary control in our method, and summarize the outcomes
in [Fig 8l Across all settings, C-ACC decreases smoothly as K increases, with only a small
drop (typically < 5 points) inside the shaded range and a sharp decline once K > 0.10 x 1073,
ASR remains low overall, generally within 1-5%; LC at 10% poisoning shows a mild bump near
K =~ 0.06 x 1073, but the trend is otherwise flat. Increasing K beyond the shaded range yields little
additional ASR reduction while causing substantial loss in clean accuracy, most notably for BadNet
at 5% poisoning. Small pruning budgets within the highlighted range therefore, provide the best
trade-off, keeping ASR low with minimal impact on clean performance across both attack families
and poisoning rates.

B.6 ADDITIONAL PLOTS

summarizes how different backdoor families distort the representation space and BatchNorm
statistics. The t-SNE plots (top) show that BadNet and LC largely blend poisoned samples into the
target-class manifold, yielding only mild geometric separation; WANET induces a moderate shift
with partially segregated clusters; SBL creates a compact, outlying poisoned cluster that is clearly
detached from clean structure; COMBAT, which mixes patch- and distributional cues, produces
overlap similar to BadNet but with denser target-class concentration. The histograms of BN per-
channel means (bottom) mirror these trends: BadNet and LC exhibit near-overlapping clean vs.
backdoored distributions (small mean shifts), WANET shows a visible but modest shift, and SBL.
displays a pronounced displacement of the backdoored distribution. COMBAT lies between these
extremes. Overall, attacks that strongly perturb intermediate distributions (e.g., SBL) leave a larger
BN footprint, whereas patch-like attacks (BadNet/LC) are more stealthy in BN space—motivating a
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Figure 8: Effect of pruning budget K on clean accuracy (C-ACC, left) and attack success rate (ASR,
right) under BadNet and LC with poisoning rates 5% and 10% on CIFAR-10. The shaded band marks
the stable operating range (K € [0.010,0.070] x 1073).

rectification objective that leverages BN statistics while also requiring parameter-level masking to
handle the subtler cases. Though these attacks are different in manner and how the trigger is crafted,
the shift phenomenon in BN statistics could be leveraged to defend against these attacks.

BADNET LC SBL WANET COMBAT
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Figure 9: t-SNE of feature embeddings of different attack strategies and their effect on BN layers’
statistic CIFAR-10 of different attack families.

C ANALYSIS AND DISCUSSION

C.1 COMPUTATIONAL OVERHEAD

We compare the computational cost of different defenses by measuring their running time on 5000
CIFAR-10 images with a PreAct-ResNet-18 backbone, and present the results in Table[8]and [Fig]
From the results, we can see that our method achieves the highest average DER (93.90%)
among all evaluated defenses while maintaining a moderate running time of 228 seconds. In particular,
it is substantially faster than TSBD (1529s) and ANP (414s), and remains in the same ballpark as
lighter baselines such as NAD (129s) and BNP (153s). Several methods with comparable or lower
DER (e.g., FT, ANP, UNIT) require considerably more computation, indicating that our approach
offers a more favorable robustness—efficiency trade-off. Overall, these results suggest that our defense
is not only effective but also computationally practical for deployment in realistic FL settings.
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Table 8: Running time and average DER of different defenses on 5000 CIFAR-10 images using
PreAct-ResNet-18 under the same hardware setting.

Metric FT ANP NAD FST TSBD BNP I-BAU RNP UNIT Ours
Running Time (s) 95 414 129 157 1529 153 132 181 421 228
Avg. DER 70.38 89.42 7239 89.86 84.76 80.86 89.68 76.75 85.80 93.90

Running time (s) and average DER(%) of different defense methods
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Figure 10: Running time vs. average DER for different defenses on CIFAR-10
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C.2 ADAPTIVE ATTACKS

We evaluate robustness against a strong adaptive adversary who has complete knowledge of
our defense mechanism and explicitly attempts to evade detection by preserving benign batch
normalization statistics. The attacker augments the standard backdoor poisoning objective with a
regularization term that penalizes deviations from clean BN statistics across all layers. Formally,
assuming access to reference statistics ;5 and v from benign data, the adaptive attack minimizes:

L
Eadaplive = ]E(x,y)N’D [DCE(:Z/; f(é(X)))] + /VZEXNX {Hﬂf - /1'(55”2 + >‘||ﬁf - ’U;HQ}ﬂ
(=1

where the first term ensures high attack success rate and the second term explicitly aligns
the backdoored model’s BN statistics with those of a clean model. We systematically evalu-
ate this adaptive attack across regularization strengths spanning five orders of magnitude (y €
{0,0.01,0.1, 1.0, 10.0, 100.0}). TableEl shows that across all viable settings, our defense maintains
ASR below 9% while the pretrained backdoored model exhibits ASR above 94%, demonstrating that
UniBP remains highly effective even when attackers explicitly target the BN-based detection mecha-
nism. This robustness stems from a fundamental tension: backdoor functionality inherently requires
trigger-dependent feature representations that create distributional shifts detectable in BN statistics,
and suppressing these shifts to evade detection directly undermines the attack’s effectiveness.

C.3 MITIGATING THE CLEAN ACCURACY TRADE-OFF

We acknowledge that UniBP may incur a slightly larger clean-accuracy drop compared to some
baselines. However, we view this as an inherent and well-documented trade-off in pruning-based
defenses operating under zero-adversary-knowledge assumptions: any method that aggressively
suppresses backdoor-related capacity without access to the true trigger or strong side information
will inevitably sacrifice some clean performance, as observed in prior work such as ANP and
NAD. Critically, UniBP is the only defense effective against all tested backdoor attacks, including
challenging sample-specific and adaptive variants where other methods fail to provide adequate
protection. In contrast, methods that preserve marginally higher clean accuracy often leave non-trivial
residual backdoor risk, making the comparison fundamentally asymmetric. We further demonstrate
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Table 9: Performance under adaptive attacks with BN-alignment regularization across varying
regularization strengths .

Method Metric v=0 ~v=001 =01 =10 ~=10.0 ~ =100.0

Pretrained ACC 91.44 91.18 89.34 89.06 88.78 — NaN
Pretrained ASR  94.41 94.20 96.24 95.62 95.41 — NaN
Ours ACC  89.82 90.55 87.06 87.22 86.67 — NaN
Ours ASR 1.47 2.39 3.66 8.48 3.01 — NaN

Table 10: Clean accuracy recovery with minimal additional fine-tuning data. Adding a small fraction
r% of extra clean data after UniBP fully recovers accuracy while maintaining strong backdoor
suppression.

Additional BadNet LC
DataRatio \~~" AGR  DER ACC ASR DER
Pretrained 9144 9441 — 8419 10000 —
r=0.00 80.82 147 9566 89.09 236 98.82
r=0.01 92.03 092 9675 92.62 007 99.97
r=0.02 9184 1.12 9665 9261 007 99.97
r=0.05 91.60 1.00 9671 9275 004 99.98

that this trade-off is mitigable rather than fundamental. We conducted an ablation study where an
additional r% of clean training data is used for a third fine-tuning step after UniBP completes its
pruning and recovery phases. As shown in Table[T0] adding even a small fraction of additional clean
data is sufficient to recover—or even exceed fully—the pretrained model’s clean accuracy, while
maintaining near-zero ASR and near-perfect backdoor removal. Notably, using just 1% additional data
improves accuracy by over 2% on BadNet (from 89.82% to 92.03%) and 3.5% on LC (from 89.09%
to 92.62%), surpassing the original pretrained accuracy in both cases while keeping ASR below 1%,
making our method achieve comparable clean accuracy with other baselines. The improvements
plateau beyond this point, with marginal gains at higher data ratios, suggesting that minimal additional
resources are needed for effective mitigation. These results demonstrate that in practical deployment
scenarios, practitioners can achieve a favorable balance between robustness and utility with modest
extra cost, while maintaining the defense’s core advantage of comprehensive protection against
diverse backdoor threats.

D LIMITATIONS

We note several limitations that contextualize our results and suggest directions for future work. First,
the method assumes access to a small hold-out clean set to estimate BatchNorm statistics and to
drive affine-mask learning; its size, class coverage, and label quality materially affect stability and
final accuracy. In extremely low-data or noisy-label regimes, the rectification signal can weaken,
and the fully unsupervised setting (no clean data) is outside our scope. Second, while we evaluate
adaptive variants, a stronger adversary that co-designs triggers to survive BN-affine reset and pruning,
perturbs or hijacks running statistics during poisoning, or disperses triggers to reduce gradient salience
could diminish effectiveness; developing defenses with explicit guarantees against such adaptive
strategies remains open. Third, our study focuses on image classification with BN-based architectures;
extending the approach to other modalities (e.g., audio, NLP) or tasks (e.g., detection, segmentation),
and to models using alternative normalizations (e.g., LayerNorm, GroupNorm), will require adapting
both the rectification objective and the mask parameterization. UniBP currently assumes access
to a small clean subset, which is a common setup in recent defenses (e.g., [-BAU, RNP, ANP).
To relax this assumption, combining UniBP with data-free techniques is a viable direction. For
instance, one could employ generative models (e.g., GANs or diffusion models) trained on benign
data to approximate clean samples and recover BN statistics. The main challenge lies in ensuring
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that generated samples faithfully preserve the statistical structure of the original training data. We
acknowledge this as an exciting area for future work and will add it to the discussion.

E BROADER IMPACT

Positive impacts. The method strengthens deployed classifiers against poisoning/backdoor threats,
improving robustness in safety-critical settings (e.g., automotive perception, medical imaging).

Dual use. Defensive techniques can inform stronger, defense-aware attacks. We will release code
with clear usage guidance and a responsible license, and provide deployment recommendations (e.g.,
separate clean validation, periodic re-evaluation), limiting exploit-ready details to what is necessary
for reproducibility.

Privacy. The approach assumes a small clean dataset; when data are sensitive, practitioners should
minimize collection, de-identify inputs, restrict access, and follow IRB requirements.

Responsible disclosure. We support coordinated disclosure to affected stakeholders and commit to
sharing only information needed for verification and remediation.
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