

000 001 002 003 004 005 UNIBP: TOWARD UNIVERSAL BACKDOOR PURIFICA- 006 TION VIA FINE-TUNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Deep neural networks (DNNs) remain vulnerable to backdoor attacks, perpetuating
028 an arms race between attacks and defenses. Despite their efficacy against classical
029 threats, mainstream defenses often fail under more advanced, defense-aware attacks,
030 particularly clean-label variants that can evade decision-boundary shifting and
031 neuron-pruning defenses. We present UniBP, a universal post-training defense
032 that operates with only 1% of the original training data and unveils the relationship
033 between batch normalization (BN) behavior and backdoor effects. At a high level,
034 UniBP scrutinizes BN layers' affine parameters and statistics using a small clean
035 subset (i.e., as small as 1% of the training data) to find the most impactful affine
036 parameters for reactivating the backdoor, then prunes them and applies masked
037 fine-tuning to remove the backdoor effects. **We compare our method against 9**
038 **SOTA defenses, 9 backdoor attacks, and various attack/defense conditions**, and
039 show that UniBP consistently reduces the attack success rate from more than
040 90% to less than 5% while preserving clean performance, whereas other baselines
041 degrade under smaller fine-tuning sets or stronger poisoning techniques. Our
042 code is publicly available at <https://anonymous.4open.science/r/UniBP-BackdoorPostDefense/README.md>.
043
044

1 INTRODUCTION

045 Deep neural networks (DNNs) have achieved remarkable success across a wide range of applications,
046 including image classification, speech recognition, and natural language processing (Mienye & Swart,
047 2024; Samek et al., 2021; Noor & Ige, 2025). However, their vulnerability to backdoor attacks has
048 raised serious concerns about their robustness in security-critical settings (Li et al., 2022; 2023c;
049 Zhang et al., 2024; Wan et al., 2024; Cheng et al., 2025). In a backdoor attack, an adversary injects
050 malicious patterns, which are commonly referred to as triggers into the training data. As a result,
051 the model performs normally on clean inputs but misclassifies inputs containing the trigger in a
052 controlled manner.
053

Backdoor attacks. Backdoor strategies have continued to evolve, becoming increasingly stealthy and
054 effective. Early dirty-label methods such as BadNets (Gu et al., 2019) poison both inputs and labels,
055 while later attacks like WaNet (Nguyen & Tran, 2021) apply subtle, visually faithful transformations
056 that embed nearly-invisible triggers. More recent adaptive variants, including COMBAT (Huynh
057 et al., 2024) and SBL (Sequential Learning Generates Resilient Backdoors) (Pham et al., 2024a), are
058 explicitly crafted to bypass existing defenses, for example, by operating in clean-label regimes or by
059 manipulating training dynamics to produce resilient, detection-aware backdoors. These advancements
060 challenge traditional defense paradigms.
061

Defenses. In response, the literature spans adversarial training, input sanitization, and post-training
062 defense. Recent methods increasingly focus on post-training approaches due to their practicality in
063 the era of transfer learning, where the training phase remains unmodified (Min et al., 2024; Lin et al.,
064 2024). Representative methods include Neural Cleanse (Wang et al., 2019) and STRIP (Gao et al.,
065 2019), which serve as detection-based post-training defenses: Neural Cleanse reverse-engineers class-
066 wise minimal triggers to expose anomalies, while STRIP perturbs inputs and measures prediction
067 entropy to detect triggered samples at inference. **More recent purification defenses such as NAD (Li**
068 **et al., 2021c), I-BAU (Zeng et al., 2021), ANP (Wu & Wang, 2021), FST (Min et al., 2024), and**
069 **Unit Cheng et al. (2024) aim to handle a broader range of attacks using clean datasets. These methods**
070

Figure 1: **t-SNE of feature embeddings on CIFAR-10.** Projection of penultimate-layer features for the backdoored model (PRETRAINED) and after applying defenses (ANP, FST, FT, NAD, TSBD, and UniBP). Clean samples are colored by class; poisoned samples are shown in black. All baselines fail in disrupting the overlapping representation of the backdoored data and the clean data of the targeted class (red).

respectively distill clean behavior from a teacher network (NAD), unlearn backdoors via a minimax objective on a small clean set (I-BAU), prune adversarially sensitive neurons (ANP), fine-tune to shift the representation of the backdoored model (FST), and tighten activation magnitudes to suppress anomalous trigger-induced activations (Unit).

However, these defenses primarily target dirty-label attacks and often rely on strong assumptions about the adversary’s behavior, such as the use of a universal trigger Zeng et al. (2021) or significant activation shifts between backdoored and clean data Cheng et al. (2024); Zheng et al. (2022b). These assumptions are fundamentally violated by advanced clean-label attacks. For instance, Narcissus and Refool craft imperceptible triggers that produce minimal activation differences from clean samples, while COMBAT explicitly optimizes triggers to be inseparable from legitimate features of the target class in the feature space(cf. Figure 1). This vulnerability is further exacerbated under realistic constraints such as limited clean reference data and diverse attack configurations, where the defenders’ ability to establish reliable decision boundaries becomes severely compromised.

Our approach. In this paper, we present a universal and practical *post-training* defense grounded in a key observation: Batch Normalization (BN) layers encode distributional statistics of both clean and poisoned data, and backdoor behavior exploits these statistics to steer specific activation pathways. While existing defenses such as BNP Zheng et al. (2022b) leverage BN statistics by comparing stored statistics of the backdoored model against running statistics computed on clean data, this direct comparison approach is inherently unstable—it operates on the *same* backdoored model where both sets of statistics are already contaminated, making it ineffective against sophisticated attacks such as clean-label backdoors where poisoned and clean distributions are carefully aligned.

Our method takes a fundamentally different approach by *simulating* the backdoor learning process itself. Specifically, we (i) *rectify and align* the BN statistics of a reinitialized clean model toward those of the backdoored model during fine-tuning, using the Fisher Information Matrix (FIM) to identify which affine parameters are most responsible for reproducing backdoor-specific activation patterns, then (ii) *selectively reset* only the targeted subset of critical BN affine parameters rather than all normalization layers, and (iii) apply *masked gradient fine-tuning* to prevent reactivation by malicious triggers while preserving model utility on clean inputs. This yields effective purification of pretrained models *without* prior knowledge of attack type, trigger pattern, or poisoned sample locations, operating with minimal clean data and assumptions. In practice, our procedure demonstrates effectiveness across various backdoor attacks and stability across diverse attack scenarios.

To summarize, our main contributions are as follows: (1) We unveil the relationship of BN layers’ affine parameters and statistics toward the backdoor effect, and show that only a subset (i.e., 0.01%) of these parameters can sustainably disrupt the backdoor’s attack success rate. We then introduce UniBP, a post-training defense that finds these affine parameters, then conducts pruning and masked fine-tuning to remove the backdoor from a poisoned model. (2) We empirically show that 9 fine-tuning defenses are often ineffective and unstable across major backdoor families. In contrast, our method is universal in that it is consistently effective against nine diverse backdoor attacks: traditional (BadNets (Gu et al., 2019), WaNet (Nguyen & Tran, 2021), Input-aware (Nguyen & Tran, 2020)), clean-label (LC (Turner et al., 2019), Narcissus (Zeng et al., 2023), Refool (Qi et al., 2023)), and adaptive (COMBAT (Huynh et al., 2024), SBL (Pham et al., 2024b), Adaptive Patch (Qi et al., 2023)) attack families. (3) We rigorously evaluate UniBP across a swath of attack settings and model architectures. We show that UniBP (i) preserves clean accuracy while maintaining stability and

108 resilience against each attack, (ii) requires only a small amount of clean data, and (iii) requires *no*
 109 assumptions about the implanted backdoor.
 110

112 2 RELATED WORKS

114 2.1 BACKDOOR ATTACKS

116 Backdoor attacks aim to mislead a victim model into predicting a target label when a trigger is
 117 present in the input while maintaining unchanged performance on clean data. Backdoor attacks
 118 are categorized into *dirty-label* (Chen et al., 2017; Li et al., 2021b; Wang et al., 2022) and *clean-*
 119 *label* (Barni et al., 2019; Ning et al., 2021; Zeng et al., 2023) based on whether the trigger changes
 120 the underlying ground-truth label of the poisoned image. In *dirty-label backdoor attacks*, attackers
 121 modify both the image and its label. While the seminal BadNets (Gu et al., 2019) uses a single patch
 122 or pattern of bright pixels as a trigger, later works focus on making triggers less detectable through
 123 techniques such as image warping (Nguyen & Tran, 2021), input-aware dynamic triggers Nguyen &
 124 Tran (2020), or blended perturbations (Chen et al., 2017). However, the label-image inconsistency in
 125 dirty-label attacks remains visually detectable by humans upon careful inspection. In *clean-label*
 126 *backdoor attacks* (Barni et al., 2019; Ning et al., 2021; Zeng et al., 2023), triggers are only added to
 127 samples already belonging to the target class, eliminating label inconsistency and making detection
 128 significantly harder. LC (Turner et al., 2019) crafts adversarial perturbations to ensure the model
 129 associates the trigger with the target class. COMBAT (Huynh et al., 2024) learns an effective
 130 trigger generator through alternating optimization of the generator and a surrogate model, producing
 131 triggers that are difficult to separate from legitimate target-class features. *Narcissus* Zeng et al.
 132 (2023) generates instance-specific noise patterns optimized to be imperceptible while maintaining
 133 high attack success rates. *Refool* Liu et al. (2020) leverages class-wise feature representations to
 134 craft natural-looking triggers. Beyond these traditional attack paradigms, recent *adaptive attacks* are
 135 explicitly designed to evade specific defenses. SBL (Pham et al., 2024b) improves backdoor resilience
 136 against fine-tuning by trapping the model in sharp minima within the backdoored loss landscape via
 137 continual learning techniques. *Adaptive Patch* Qi et al. (2023) specifically targets embedding-based
 138 detection methods by optimizing triggers to minimize distributional shifts in feature space, making
 139 separation-based defenses ineffective.
 140

142 2.2 BACKDOOR DEFENSES

144 In response to the growing threat of backdoor attacks, various defensive techniques have been
 145 proposed that operate during two stages of model training: (1) *training-stage* and (2) *post-training*
 146 defenses. *Training-stage defenses*. (Huang et al., 2022) aim to train a clean model even when the
 147 training data has been poisoned by an attacker. ABL (Li et al., 2021b) first isolates the backdoored
 148 data and then unlearns the isolated data using gradient ascent. D-ST/D-BR (Chen et al., 2022)
 149 leverages the insight that poisoned data are more sensitive to transformation compared to clean
 150 data, so they train a secure model from scratch or unlearn poisoned samples in a backdoored model.
 151 *Post-training defenses*. (Zheng et al., 2022a; Chen et al., 2018; Nguyen et al., 2024) aim to mitigate
 152 the backdoor effect on a poisoned model using a small set of known-clean data, typically achieved
 153 through pruning or fine-tuning. ANP (Wu & Wang, 2021) prunes sensitive neurons under adversarial
 154 neuron perturbation, as they are likely to be related to the injected backdoor. NAD (Li et al., 2021c)
 155 introduces an attention distillation method which uses a teacher network to guide the fine-tuning of
 156 the backdoored network. I-BAU Zeng et al. (2021) formulates backdoor unlearning as a minimax
 157 optimization problem, using a small clean validation set to isolate and unlearn backdoor-specific
 158 features while preserving model utility. RNP Li et al. (2023a) employs reconstructive neuron pruning
 159 based on the assumption that backdoor-related neurons exhibit distinct activation patterns, using
 160 sparsity constraints during clean data unlearning to identify and prune these neurons. FST (Min
 161 et al., 2024) encourages discrepancy between the fine-tuned model and the original model to achieve
 162 feature shifts that disrupt backdoor pathways. TSBD (Lin et al., 2024) leverages the insight that
 163 neuron weight changes are highly correlated between poisoned unlearning and clean unlearning,
 164 and proposes to (1) reinitialize neurons based on weight changes, and (2) fine-tune the model based
 165 on neuron activeness. PBP (Nguyen et al., 2024) first generates a neuron mask, then uses masked
 166 gradient optimization to eliminate backdoor effects.

BNP Zheng et al. (2022b) and BNA Li et al. (2025) are the closest methods to ours, leveraging batch-normalization statistics to detect and mitigate backdoors. BNP computes the KL divergence between the stored running statistics of a (potentially) backdoored model and those recomputed on clean data within the same model to identify suspicious layers, then resets the normalization parameters. However, this direct comparison on a single contaminated model can fail under sophisticated attacks, such as clean-label backdoors, where poisoned and clean activations are deliberately aligned. BNA, in turn, constructs a poisoned dataset using a reversed trigger and explicitly exploits the distributional shift between clean and triggered activations at each neuron by minimizing their KL divergence, but it relies on an estimated trigger, which may not be available or reliable in practice. More recently, Unit Cheng et al. (2024) proposes to tighten activation magnitudes based on the assumption that backdoor triggers induce anomalously large activations in specific channels. By constraining these activation ranges during fine-tuning, Unit aims to suppress backdoor pathways while maintaining clean accuracy. Despite these advances, current state-of-the-art defenses have not effectively tackled recently proposed resilient backdoor attacks, including SBL and COMBAT, underscoring the need for more robust defense mechanisms. Our method addresses this gap by taking a fundamentally different approach: rather than directly comparing statistics on the same backdoored model, we simulate the backdoor learning process itself to identify which parameters are most responsible for encoding backdoor behavior, enabling more precise and effective mitigation.

3 METHODOLOGY

3.1 PROBLEM STATEMENTS

Backdoor attacks often occur during model training (Gu et al., 2017; Zheng et al., 2022b;a; Wang et al., 2023), but modern ML workflows such as MLaaS platforms, transfer learning, and model marketplaces give users no control over this phase. Users acquire pre-trained models from third parties without visibility into training data or procedures, creating a fundamental asymmetry: attackers poison during training while defenders can only intervene post-hoc with limited clean data. Since backdoored models maintain clean accuracy indistinguishable from legitimate models, standard validation cannot detect compromise. We adopt a *post-training defense* setting where defenders receive a potentially backdoored model and possess only a small clean dataset \mathcal{D}_{ft} for fine-tuning (Li et al., 2023b; 2021c). This reflects practical constraints where original training data is unavailable due to proprietary restrictions or privacy regulations. The objective is to eliminate backdoor behavior while preserving clean performance under severe data limitations.

Attacker’s goals. Similar to most backdoor poisoning settings, we assume the attacker’s goal is to alter the training procedure by using a small poisoned set, such that the resulting trained backdoored classifier, f_{θ^*} , differs from a cleanly trained classifier. An ideal f_{θ^*} has the same response to clean samples, whereas it generates an adversarially chosen prediction, $\tau(y)$, when applied to backdoored inputs, $\varphi(x)$. **Defender’s goal.** In contrast to the attacker, the defender—who has full access to the poisoned model f_{θ^*} and a limited benign fine-tuning set \mathcal{D}_{ft} to get a clean/purified model $f_{\hat{\theta}}$ must (1) remove backdoors from f_{θ^*} to ensure correct behavior on triggered inputs and (2) preserve the model’s performance on normal inputs during purification. In this work, following related post-training defenses Min et al. (2024); Wang et al. (2023); Lin et al. (2024), we adopt the following assumptions in a compact form: (i) the defender has no information about the backdoor trigger or the adversary’s accessibility (e.g., poisoning rate, insertion mechanism), and we make no assumptions about any trigger/watermark; (ii) the defender has no access to the original training procedure and cannot obtain the full training dataset to retrain a new model; and (iii) the defender can collect or access a small, clean dataset representative of the training distribution (covering all classes), and may combine it with any available portion of the training data. This setting aligns with common post-training defenses (Min et al., 2024; Wang et al., 2023).

3.2 RELATIONSHIP OF BN LAYERS AND BACKDOOR EFFECT.

Finding 3.1: Backdoors shift BatchNorm (BN) statistics and affine parameter distributions

Training with a backdoor induces consistent, layer-dependent shifts in BN running means/variances and alters the distribution of BN affine parameters (γ, β) relative to clean baselines.

BatchNorm layers are often used in deep neural networks for the purposes of stabilizing and accelerating training (by reducing internal covariate shift), permitting larger learning rates, improving generalization via a mild regularization effect, and offering per-channel control through learnable affine parameters. Given a mini-batch of feature maps $x_{n,c,h,w}$ with batch size N and spatial size $H \times W$, BN computes:

$$\mu_c = \frac{1}{NHW} \sum_{n,h,w} x_{n,c,h,w}, \quad \sigma_c^2 = \frac{1}{NHW} \sum_{n,h,w} (x_{n,c,h,w} - \mu_c)^2, \quad \hat{x}_{n,c,h,w} = \frac{x_{n,c,h,w} - \mu_c}{\sqrt{\sigma_c^2 + \varepsilon}} \quad (1)$$

and outputs the affine-transformed activations as $y_{n,c,h,w} = \gamma_c \hat{x}_{n,c,h,w} + \beta_c$, where γ_c and β_c are learned *affine* (scale/shift) parameters for channel c , and ε ensures numerical stability. During training, (μ_c, σ_c^2) are computed from the current mini-batch while exponential moving averages are accumulated; at inference, these running estimates replace batch statistics. Our key insight (see 3.1) is that BN layers encode the training distribution via their running moments and affine parameters Zheng et al. (2022b); Li et al. (2024); Nguyen et al. (2024), and inserting a backdoor unavoidably shifts the distribution of the BN layers’ statistic and affine parameters (see Figure 2a). Building on this observation, we articulate our second finding (3.2), which is central to our methodology: backdoor activation is governed by a small subset of BN affine channels; consequently, identifying and selectively editing these channels serves as an surprisingly effective lever for backdoor mitigation (cf. Figure 2c).

Finding 3.2: Backdoor activation is bottlenecked by a sparse subset of BN affine parameters

Claim. A small fraction of BN affine channels (γ, β) disproportionately governs trigger activation; selectively perturbing or resetting these top-ranked channels sharply reduces ASR with minimal impact on clean accuracy.

3.3 UNIBP: DETAILED DESCRIPTION

High-Level Idea. Motivated by the two findings mentioned above, we introduce a defense method including four components. (i) *batch-norm affine reset* to create an initialized model θ' from the backdoored model θ^* ; (ii) *affine mask calculation* by calculating FIM while the initialized model is trained with rectification to align the BN stats with the backdoored model; (iii) this mask will be used to prune the corresponding highly influential neurons to remove the backdoor effect, achieving a pruned model θ^u ; (iv) this pruned model is then fine-tuned using masked-gradient training with a clean dataset to achieve the purified version $\hat{\theta}$.

Figure 2: BatchNorm statistics (μ, σ) and affine parameters (γ, β) for four model variants—*clean*, *backdoored*, *NAD* (Li et al., 2021a), and *Ours*—illustrating how backdoor training and purification affect BN layers. NAD leaves the backdoored BN statistics largely unchanged, whereas our method slightly shifts them while successfully removing the backdoor. ASR: clean 0.67%, backdoored 80.66%, NAD 78.66%, Ours 7.04% (lower is better).

Figure 3: **UniBP** includes four phases. (1) *Batch-norm affine reset* reinitializes γ, β of the backdoored model θ^* to obtain θ' . (2) *Affine-mask calculation* rectifies BN moving statistics $(\mu_{\text{mov}}, \sigma_{\text{mov}})$ and learns a selection mask M via the BN rectification loss $\mathcal{L}_{\text{bn}} = \|\mu' - \mu^*\|_2 + \lambda \|\sigma' - \sigma^*\|_2; \mathcal{L}_{\text{ce}}$. (3) *Affine pruning* removes suspect channels/affines, yielding θ^u with γ^u, β^u . (4) *Masked-gradient finetuning* on a small clean set D_{ft} updates only unmasked parameters $(\nabla_{\theta^u} \mathcal{L}_{\text{ce}}) \odot M$, producing the purified model $\hat{\theta}$.

Batch-norm affine reset. Given a backdoored model θ^* , we obtain the corresponding *re-initialized* model θ' by resetting BatchNorm affine parameters. Let \mathcal{B} be the set of BN layers in θ^* , and for each $\ell \in \mathcal{B}$ with C_ℓ channels let $(\gamma_\ell, \beta_\ell) \in \mathbb{R}^{C_\ell} \times \mathbb{R}^{C_\ell}$ denote its affine parameters (if present). For fixed reinit constants (γ_0, β_0) (i.e., which are set default as $(1, 0)$), we define the operator \mathcal{R}_{BN} :

$$\theta' = \mathcal{R}_{\text{BN}}(\theta^*; \gamma_0, \beta_0), \quad (\gamma'_\ell, \beta'_\ell) = \begin{cases} (\gamma_0 \mathbf{1}_{C_\ell}, \beta_0 \mathbf{1}_{C_\ell}) & \text{if the BN layer } \ell \text{ has affine parameters,} \\ (\gamma_\ell, \beta_\ell) & \text{otherwise.} \end{cases}$$

Affine Mask Calculation. From the initialized model θ' , we compute an *importance score* for each BN affine parameter that quantifies its contribution to rectifying the BatchNorm statistics of θ' (μ'_ℓ, v'_ℓ) toward those of the backdoored model (μ_ℓ^*, v_ℓ^*). This procedure mimics the alignment in which the statistics induced by a small clean fine-tuning set \mathcal{D}_{ft} are drawn toward the mixed (clean and poisoned) distribution used to train θ^* . To achieve this goal, we fine-tune the reinitialized model θ' by minimizing the rectification objective, and we quantify per-parameter importance via the (empirical) Fisher information computed on \mathcal{D}_{ft} . Specifically, we use $\mathcal{L}_{\text{rectify}}$ for optimization and estimate the diagonal Fisher for each parameter ϕ_i as in equation 3.

Let \mathcal{B} be the set of BN layers, for each $\ell \in \mathcal{S}$, let (μ'_ℓ, v'_ℓ) denote the per-channel batch mean/variance computed on the current mini-batch as in Equation 1, and let (μ_ℓ^*, v_ℓ^*) be the corresponding references from the backdoored model. We define the per-layer deviation loss function as follows:

$$\mathcal{L}_{\text{BN}}^{(\ell)} = \|\hat{\mu}_\ell - \mu_\ell^*\|_2 + \lambda \|\hat{v}_\ell - v_\ell^*\|_2, \quad \lambda = 0.05.$$

Then, the BN regularizer is calculated as: $\mathcal{L}_{\text{BN}} = \frac{1}{|\mathcal{S}|} \sum_{\ell \in \mathcal{S}} \mathcal{L}_{\text{BN}}^{(\ell)}$. This regularizer encourages the network's intermediate distributions to align with the reference (backdoored) normalization statistics, stabilizing activations without directly constraining (γ, β) . We then define the rectification objective by:

$$\mathcal{L}_{\text{rectify}} := \mathcal{L}_{\text{CE}}(x, y) + \log \mathcal{L}_{\text{BN}}. \quad (2)$$

Let Θ denote all trainable parameters and $\Theta_{\text{BN}} \subset \Theta$ the set of BN affine entries $\{\gamma_{\ell,c}, \beta_{\ell,c} : \ell \in \mathcal{B}, 1 \leq c \leq C_\ell\}$. We quantify per-parameter sensitivity under the rectification objective $\mathcal{L}_{\text{rectify}}$ via the empirical (diagonal) Fisher:

$$\hat{F}_{\theta_i}^{(\text{rect})} = \frac{1}{|\mathcal{D}_{\text{ft}}|} \sum_{(x,y) \in \mathcal{D}_{\text{ft}}} \|\nabla_{\theta_i} \mathcal{L}_{\text{rectify}}(x, y)\|^2, \quad \theta_i \in \Theta. \quad (3)$$

324 For BN affines we set the importance score $s_j := \widehat{F}_{\theta_j}^{(\text{rect})}$ for each $\theta_j \in \Theta_{\text{BN}}$.
 325

326 *Mask Construction.* Let $K \in \mathbb{N}$ be the pruning budget (optionally $K = \lfloor r |\Theta_{\text{BN}}| \rfloor$ for a ratio
 327 $r \in (0, 1)$), and let τ be the K -th largest value of $\{s_j : \theta_j \in \Theta_{\text{BN}}\}$. Define the binary mask
 328 $M_j \in \{0, 1\}$ by

$$329 \quad M_j = \mathbf{1}\{s_j < \tau\} = \begin{cases} 0, & \text{if } s_j \text{ is among the top-}K \text{ in } \Theta_{\text{BN}}, \\ 330 \quad 1, & \text{otherwise.} \end{cases} \quad (4)$$

332 **Affine Pruning.** Pruning is one of the most popular methods to remove the effect of a subset of
 333 neurons on the model activation and prediction (Li et al., 2021a;c). To remove the backdoor effect,
 334 we prune the BatchNorm affine parameters whose corresponding mask values are zero. Concretely,
 335 for the k -th neuron, we set its weight $w_k = 0$ if $M_k = 0$ and keep it unchanged if $M_k = 1$. Due to
 336 the binary masks, pruning is a discrete optimization problem that is difficult to solve within feasible
 337 time. To address this, we add a small Gaussian noise to the parameters at the pruned coordinates
 338 during fine-tuning. Given the BN affine parameters $\Theta = \{\theta_j\}$ and the affine mask M determined in
 339 the previous step, and $\Xi \sim \mathcal{N}(0, \sigma^2 I)$ be i.i.d. noise. We use the masked-and-noised parameters:
 340

$$\theta^u := \tilde{\Theta} = M \odot \Theta + (1 - M) \odot \Xi. \quad (5)$$

341 **Masked-Gradient Finetuning.** During this process, we zero out the gradient at the affine parameters
 342 which are pruned in the previous step. The objective for fine-tuning can be stated as follows:
 343

$$344 \quad \hat{\theta} := \min_{\theta} \mathbb{E}_{(\mathbf{x}, y) \in \mathcal{D}_{\text{ft}}} \mathcal{L}_{\text{CE}}(f(\mathbf{x}; M \odot \theta^u), y), \quad \nabla_{\theta} \leftarrow (\nabla_{\theta} \mathcal{L}_{\text{CE}}) \odot M, \quad (6)$$

346 where $\hat{\theta}$ denotes the current parameters. The mask zeroes gradients only on BN-affine coordinates
 347 and leaves all other parameters trainable, preventing drift back toward the backdoored BatchNorm
 348 statistics while preserving clean behavior.

349 4 EXPERIMENTS

351 4.1 EXPERIMENTAL SETTINGS

353 **Attack Setup.** We consider nine distinct backdoor attack strategies: (1) BadNet (Gu et al., 2019), (2)
 354 Label Consistent (LC) (Turner et al., 2019), (3) WaNet (Nguyen & Tran, 2021), (4) COMBAT (Huynh
 355 et al., 2024), (5) SBL (Pham et al., 2024a), (6) *Narcissus* Zeng et al. (2023), (7) *Refool* Liu et al.
 356 (2020), (8) *Input-aware* Nguyen & Tran (2020), and (9) *Adaptive Patch* Qi et al. (2023). BadNet
 357 and LC are representative dirty- and clean-label patch-based attacks, respectively; COMBAT, SBL,
 358 and WaNet capture recent optimized and fine-tuning-resilient backdoor designs; Narcissus, Refool,
 359 Input-aware, and Adaptive Patch cover more adaptive or semantically driven triggers. We leverage
 360 the BackdoorBench (Wu et al., 2022) framework using the authors' provided code for COMBAT and
 361 SBL to control trigger pattern, trigger size, and target label. We vary the poisoning rate from 1% to
 362 10%. Unless otherwise stated, we adopt PreAct-ResNet-18 (He et al., 2016) and a 10% fine-tuning
 363 ratio by default. We evaluate on three benchmark datasets: **CIFAR-10** (Krizhevsky et al., 2009),
 364 **GTSRB** (Stallkamp et al., 2011), and **Tiny-ImageNet** Le & Yang (2015). Due to space constraints,
 365 we report representative results here; additional details and full results are provided in the Appendix.

366 **Baselines.** We consider nine state-of-the-art defenses covering a range of strategies for mitigating
 367 backdoor attacks, from continued training on clean data to model pruning and reinitialization. These
 368 defenses include Fine-tuning (FT), NAD (Li et al., 2021a), ANP (Wu & Wang, 2021), FST (Min
 369 et al., 2024), TSBD (Lin et al., 2024), **I-BAU** (Zeng et al., 2021), **RNP** (Li et al., 2023a), **BNP** (Zheng
 370 et al., 2022b), and **UNIT** (Cheng et al., 2024). We follow the suggested hyperparameters from
 371 BackdoorBench (Wu et al., 2022) and the authors' original codebases.

372 **Metrics.** Following (Lin et al., 2024; Min et al., 2023; Zhu et al., 2023), we report **C-ACC** (clean
 373 accuracy), **ASR** (attack success rate), and **DER** ($\in [0, 1]$), which balances ASR reduction against
 374 utility: $\text{DER} = \frac{\max(0, \Delta \text{ASR}) - \max(0, \Delta \text{C-ACC}) + 1}{2}$, where ΔASR and ΔACC are the drop in ASR and
 375 C-ACC after applying defense on the backdoored model, respectively. We expect a good defense to
 376 have a large C-ACC, DER, and a small ASR. We mark **[ASR]** when $\text{ASR} > 10\%$. We highlight
 377 the best and second best among the nine baselines with **[DER]** and **[DER]**.

378
379
380
Table 1: Comparison of SOTA defenses against multiple backdoor attacks with different fine-tuning
381 ratios on the CIFAR-10 dataset with PreAct-ResNet18.

381 Methods	Metrics	FT=0.1								FT=0.05							
		382 BadNet	383 LC	384 COMBAT	385 SBL	386 Wanet	387 Refool	388 Adaptive	389 Avg.	382 BadNet	383 LC	384 COMBAT	385 SBL	386 Wanet	387 Refool	388 Adaptive	389 Avg.
382 Pretrained	C-Acc	91.44	84.19	93.94	90.52	92.67	91.65	93.08	91.07	91.36	84.51	94.13	89.76	92.90	92.00	99.33	91.99
	ASR	94.41	100.00	94.47	88.84	99.54	92.91	100.00	95.74	95.45	100.00	94.80	87.55	99.54	93.80	100.00	95.88
	DER	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
384 FT	C-Acc	90.56	90.00	93.46	90.79	92.50	91.64	92.19	91.59	88.69	90.51	94.01	89.46	92.33	91.73	92.81	91.36
	ASR	1.47	17.53	72.83	83.85	13.91	15.54	99.94	43.58	2.22	100.00	96.17	89.92	14.97	19.21	100.00	60.36
	DER	96.03	91.24	60.58	52.50	92.73	88.68	49.59	75.90	95.28	50.00	49.94	49.85	92.00	87.16	46.74	67.28
386 ANP	C-Acc	83.51	79.17	85.18	88.77	83.62	86.92	88.33	85.07	84.40	84.51	92.14	84.48	84.83	84.19	86.91	85.92
	ASR	0.00	6.65	7.58	0.04	0.02	0.12	0.25	2.09	0.02	100.00	88.81	62.48	0.00	0.13	73.95	46.48
	DER	93.24	94.17	89.07	93.53	95.24	94.03	97.50	94.24	50.00	52.00	59.90	95.74	92.93	56.82	71.66	
388 NAD	C-Acc	89.33	88.97	93.48	90.39	91.88	90.67	91.18	90.84	88.13	89.30	94.21	88.94	92.09	90.68	90.68	90.58
	ASR	2.08	18.43	70.96	64.80	9.98	9.27	90.03	37.94	2.81	59.06	97.66	73.08	1.83	6.52	65.13	43.73
	DER	95.11	90.79	61.52	61.96	94.39	91.33	54.04	78.45	94.71	70.47	50.00	56.83	98.45	92.98	63.11	75.22
390 FST	C-Acc	87.06	88.89	91.25	91.17	92.40	91.70	92.04	90.64	88.58	90.90	94.20	89.95	92.43	91.73	92.84	91.52
	ASR	2.08	2.34	30.65	0.24	0.58	3.93	0.40	5.75	1.13	0.00	90.02	30.02	0.32	5.91	41.91	24.19
	DER	93.98	98.83	80.57	94.30	99.35	94.49	99.28	94.40	95.77	100.00	52.39	78.77	99.38	93.81	75.80	85.13
392 TSBD	C-Acc	90.13	89.06	92.91	91.43	92.48	92.24	92.40	91.52	90.00	90.74	92.28	88.14	92.43	91.85	92.12	91.08
	ASR	1.78	15.16	35.57	84.68	1.08	1.77	4.07	20.59	2.12	93.00	81.64	79.20	1.29	2.26	4.31	37.69
	DER	95.66	92.42	78.94	52.08	99.14	95.57	97.63	87.35	95.99	53.50	55.66	53.37	98.89	95.70	94.24	78.19
394 I-BAU	C-Acc	88.13	86.33	91.01	88.20	86.52	87.87	89.84	88.27	85.71	86.21	91.85	87.61	85.77	88.17	89.83	87.88
	ASR	7.91	2.45	1.98	0.76	20.04	2.02	1.26	5.20	3.48	2.12	87.92	1.34	9.92	12.12	3.74	17.23
	DER	91.60	98.78	94.78	92.88	86.68	93.56	97.75	93.72	93.16	98.94	52.30	92.03	91.25	88.93	93.38	87.14
396 BNP	C-Acc	91.27	83.31	91.40	90.33	65.69	91.74	92.34	86.58	91.18	82.80	92.56	90.56	88.48	92.34	92.52	90.06
	ASR	13.12	0.00	24.23	90.08	47.38	3.55	9.52	26.84	16.51	0.00	13.49	93.06	14.22	40.07	72.06	35.63
	DER	90.56	99.56	83.85	49.91	62.59	94.68	94.87	82.29	89.38	99.15	50.00	90.45	76.87	60.57	79.47	
398 RNP	C-Acc	87.63	80.78	92.89	87.57	90.34	54.11	90.28	83.37	84.91	82.59	93.99	72.70	86.65	51.28	89.83	80.28
	ASR	3.76	99.93	93.09	20.57	0.17	0.00	11.67	32.74	0.07	100.00	95.39	0.01	2.47	0.00	0.87	28.40
	DER	93.42	48.33	50.17	82.66	98.52	77.69	92.77	77.65	94.47	49.04	49.93	85.24	95.41	76.54	94.82	77.92
400 Unit	C-Acc	84.66	81.36	79.70	65.64	88.05	86.75	87.57	81.96	83.30	82.07	81.04	70.15	87.19	86.84	87.09	82.53
	ASR	0.89	8.07	22.67	2.58	3.12	23.52	1.76	8.94	0.79	6.49	10.38	1.50	1.79	10.78	5.19	5.27
	DER	93.37	94.55	78.78	80.69	95.90	82.25	96.37	88.84	93.30	95.54	85.67	83.22	96.02	88.93	91.29	90.57
402 Ours	C-Acc	90.67	91.40	91.04	88.91	90.22	89.70	88.31	90.04	90.32	88.94	85.49	86.17	89.45	87.92	89.91	88.31
	ASR	1.12	2.50	10.28	2.18	4.74	1.90	3.76	3.78	4.91	5.08	7.30	4.84	2.64	3.54	1.80	4.30
	DER	98.99	98.75	93.02	97.88	96.30	94.53	95.74	96.46	96.86	97.46	91.56	95.24	96.82	93.09	94.39	95.06

404
405
406 4.2 MAIN RESULTS
407

408 We compare the performance of our method to five other defenses against five representative backdoor
409 attacks. In this section, we present the main results on CIFAR-10 and GTSRB with a 10% poisoning
410 ratio on PreAct-ResNet18 for illustration, which is shown in Table 1 and Table 2.

411 **Performance of backdoor defenses on CIFAR-10 dataset.** In the CIFAR-10 dataset, our method
412 demonstrates consistent performance across different fine-tuning ratios and outperforms all state-of-
413 the-art defenses on average. At a fine-tuning ratio of 0.1, where the defender can access relatively
414 more clean data, ANP, FST, and our approach are all able to reduce the attack success rate (ASR)
415 while maintaining high clean accuracy (C-ACC). Among them, our method achieves the highest
416 average DER of 95.58%. In contrast, NAD and TSBD already show clear deficiencies against stronger
417 attacks such as COMBAT and SBL, which are either input-dependent or explicitly designed to resist
418 fine-tuning. When the fine-tuning ratio is reduced to 0.05, ANP fails to mitigate several attacks,
419 with ASRs of 100.00% in LC, 88.81% in COMBAT, and 62.48% in SBL, while FST achieves an
420 ASR of 90.06% against COMBAT and 30.02% against SBL. **It is worth noting that even some other**
421 **defenses can maintain slightly higher C-ACC, such as FT and TSBD; these defenses cannot remove**
422 **the backdoor from the model, which leads to ASR more than 20%.** By comparison, our method
423 continues to maintain the most effective defense against all attacks, achieving an average C-ACC of
424 90.04% and an average ASR of less than 5%.

425 **Performance of backdoor defenses on GTSRB dataset.** On the GTSRB dataset, our method
426 follows a similar trend to that observed on CIFAR-10, consistently outperforming all SOTA defenses
427 and achieving the highest average DER. At a fine-tuning ratio of 0.1, NAD and TSBD again show
428 deficiencies, while ANP and FST also fail to effectively reduce ASR under stronger attacks. ANP
429 achieves a 69.37% ASR and FST achieves 21.65% ASR against COMBAT, illustrating that these
430 approaches struggle when the dataset becomes more complex. The same pattern is evident at a lower
431 fine-tuning ratio of 0.05, where most defenses fail to mitigate at least one attack. **In contrast, our**
432 **method maintains robust performance across all scenarios, achieving the highest DER of 95.58% for**
433 **both fine-tuning scenarios.**

432 Table 2: Comparison of SOTA defenses against multiple backdoor attacks with different fine-tuning
 433 ratios on the GTRSB dataset with PreAct-ResNet18.

435 Methods	Metrics	FT=0.1								FT=0.05							
		BadNet	LC	COMBAT	SBL	Wanet	Refool	Adaptive	Avg.	BadNet	LC	COMBAT	SBL	Wanet	Refool	Adaptive	Avg.
436 Pretrained	C-Acc	96.85	92.45	99.07	97.36	96.19	96.11	98.65	96.67	96.94	92.41	97.97	97.29	97.45	96.74	98.76	96.79
	ASR	94.29	99.24	69.53	91.96	99.53	94.32	100	92.70	94.61	99.96	76.07	90.97	99.14	92.96	100	93.39
	DER	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
437 FT	C-Acc	97.58	97.27	98.97	97.37	98.65	96.73	98.59	97.88	97.78	97.36	98.57	97.41	98.93	97.03	98.82	97.99
	ASR	67.35	97.82	65.69	90.18	34.99	87.73	100	77.68	57.86	99.06	78.18	89.27	80.17	90.16	100	84.96
	DER	63.47	50.71	51.87	50.89	82.27	53.30	49.97	57.50	68.38	50.97	50.00	50.85	59.49	51.40	50.00	54.37
438 ANP	C-Acc	95.97	91.55	98.73	95.14	98.33	90.01	95.00	94.96	93.66	92.17	97.87	95.16	93.60	94.23	95.00	94.53
	ASR	13.64	1.31	69.37	1.07	0.00	0.00	0.00	12.20	0.00	35.34	54.02	0.00	0.00	0.11	0.00	12.78
	DER	89.89	98.52	49.91	94.34	99.76	94.11	98.18	89.24	95.67	99.78	60.98	94.42	99.57	95.17	99.50	89.17
439 NAD	C-Acc	97.61	97.37	99.05	97.43	98.77	96.58	98.68	97.93	97.86	96.16	98.49	97.67	99.04	96.98	98.78	97.85
	ASR	25.53	0.37	65.23	62.59	23.60	88.39	100	52.24	8.44	0.40	75.15	87.72	64.91	89.76	1.00	46.77
	DER	84.38	99.44	52.14	64.69	87.97	52.97	50.00	70.23	93.09	99.78	50.46	51.63	67.12	51.60	99.50	73.31
440 FST	C-Acc	94.50	97.28	97.71	97.22	98.89	97.88	98.45	97.42	93.64	95.17	97.81	97.33	98.66	98.04	98.27	96.99
	ASR	0.00	0.00	21.65	0.00	0.00	0.04	0.00	3.10	0.00	0.00	63.15	0.00	0.00	0.08	0.00	9.03
	DER	95.97	99.62	73.35	95.91	99.76	97.14	99.90	94.52	95.66	99.98	56.38	95.49	99.57	96.44	99.76	91.90
441 TSBD	C-Acc	98.20	97.34	99.21	97.29	94.45	98.24	98.56	97.61	97.98	96.39	98.39	96.65	86.66	97.93	85.32	94.19
	ASR	0.00	0.16	66.58	45.42	0.21	23.42	0.57	19.48	0.03	0.80	53.99	13.22	0.00	23.74	0.00	13.11
	DER	97.15	99.29	51.48	73.24	98.79	85.45	99.67	86.44	97.29	99.58	61.04	88.56	94.18	84.61	93.28	88.36
442 I-BAU	C-Acc	92.65	95.56	99.04	93.81	98.01	96.01	96.37	95.92	93.65	95.09	96.62	93.91	97.28	96.76	96.88	95.74
	ASR	0.14	0.77	70.31	0.78	0.22	50.69	1.55	17.78	0.03	2.50	89.97	0.81	1.68	34.55	7.55	19.58
	DER	94.98	99.24	49.99	93.82	99.66	71.77	98.09	86.79	95.65	98.73	49.33	93.39	98.65	79.21	95.29	87.18
443 BNP	C-Acc	96.73	91.78	96.46	96.88	98.48	97.36	98.54	96.60	96.42	92.11	97.13	96.11	98.42	97.88	98.57	96.66
	ASR	41.68	0.18	56.42	91.97	0.02	54.36	100	49.23	65.11	0.00	73.11	91.20	0.00	67.21	100	56.66
	DER	76.25	99.20	55.25	49.76	99.76	69.98	49.95	71.45	64.49	99.83	51.06	49.41	99.57	62.88	49.91	68.16
444 RNP	C-Acc	85.48	91.48	99.07	69.54	92.88	85.90	63.32	83.95	86.43	90.33	66.06	84.77	91.94	84.84	86.77	84.45
	ASR	5.29	83.76	69.53	24.97	0.00	0.00	0.29	26.26	15.09	12.15	35.47	3.70	0.00	0.00	0.00	9.49
	DER	88.82	57.26	50.00	69.59	98.11	92.06	82.19	76.86	84.51	92.87	54.35	87.38	96.82	90.53	94.01	85.78
445 Unit	C-Acc	76.94	86.67	96.10	6.10	93.35	83.57	91.72	76.35	85.89	87.57	94.09	5.70	95.63	90.60	88.10	78.23
	ASR	16.03	2.29	6.36	99.55	0.00	52.69	36.28	30.46	0.36	0.85	28.46	100	1.17	50.81	73.59	36.46
	DER	79.18	95.59	80.10	4.37	98.35	64.55	78.40	71.50	91.60	97.14	7.87	4.21	98.08	68.01	57.88	69.82
446 Ours	C-Acc	97.43	98.22	97.38	97.10	95.19	96.75	97.93	97.14	97.86	97.40	90.63	96.27	97.16	96.09	98.13	96.22
	ASR	0.00	0.04	1.23	0.08	0.02	3.09	2.65	1.02	0.01	0.36	4.30	0.08	0.00	3.15	1.14	
	DER	97.15	99.60	83.31	95.81	99.26	95.62	98.32	95.58	97.30	99.87	74.77	94.99	99.43	96.12	98.11	94.37

447 Figure 4: Defense results (ASR) under various fine-tuning ratio settings with COMBAT and SBL
 448 attacks. The experiments are conducted on the CIFAR-10 dataset.

471 4.3 ABLATION STUDIES

472 In this section, we study the performance of different defenses under varied adversary ability and
 473 defender capability. Specifically, we varied the fine-tuning rates from [0.01, 0.02, 0.05, 0.1], where the
 474 higher fine-tuning ratio, the more data that the defender can collect to conduct backdoor purification.
 475 Then, we vary the poisoning rate to simulate different adversary capability from [0.01, 0.02, 0.05, 0.1].
 476 A defense should be stable and effective across the varied settings.

477 **Effect of fine-tuning ratio.** In this experiment, a larger fine-tuning ratio means a larger amount of
 478 data that the defender owns, while a small ratio is considered a more challenging setting. Figure 4
 479 reports ASR (%) for two adaptive backdoors, COMBAT and SBL. The figure shows that the other
 480 baselines (FT, NAD, FST, TSBD) are highly sensitive to the fine-tuning ratio: their ASR reduction
 481 diminishes as the fine-tuning ratio decreases. Under COMBAT, these defenses still exhibit high ASR
 482 even at larger fine-tuning ratios. ANP can suppress ASR at favorable ratios but is unstable at smaller
 483 budgets. In contrast, UniBP achieves the lowest ASR across all ratios for both attacks, with the
 484 largest gains when the defender can use more than 2% of data for fine-tuning, highlighting superior
 485 sample efficiency and stability.

Figure 5: Defense results (ASR) under various poisoned data rate (PDR) settings with LC, COMBAT, and SBL attacks. The experiments are conducted on the CIFAR-10 dataset.

Figure 6: Defense results (ASR) under various model architecture settings with BadNet attack. The experiments are conducted on the CIFAR-10 dataset.

Effect of data poisoning rate. Figure 5 shows the effectiveness of all defenses versus different poisoned data rates (PDR) on CIFAR-10 across five attacks (BadNet, LC, Wanet, COMBAT, SBL). From the results, BadNet is the least challenging: all defenses achieve very low ASR. With LC, baselines are more sensitive to different poisoned data rates; several can only reduce ASR to 70% until when PDR is 0.05; whereas UniBP reduces ASR to as low as 0 across all ratios. Under COMBAT and SBL, even more advanced defenses such as TSBD and FST fluctuate widely and often exceed 50% even with larger budgets, and ANP is effective only at selective ratios. In contrast, UniBP is the most effective and stable across all attacks and fine-tuning ratios.

Analysis on model architecture. Figure 7 presents the effectiveness of different methods under various backbones: PreAct-ResNet18 (He et al., 2016), VGG19-BN (Simonyan & Zisserman, 2014), DenseNet-161 (Huang et al., 2017), and MobileNetV3-Large (Howard et al., 2019). We report both pre-defense (Original) and post-defense (Purified) clean accuracy (C-ACC) and attack success rate (ASR). Baseline fine-tuning defenses (FT, NAD, FST, TSBD) exhibit pronounced backbone dependence: on VGG19-BN and MobileNetV3-Large, they often leave high purified ASR or incur nontrivial C-ACC drops. ANP can substantially reduce ASR on some backbones (e.g., VGG19-BN) but typically at the cost of noticeable accuracy degradation. In contrast, UniBP consistently achieves the lowest ASR across all four architectures while keeping purified C-ACC close to the original, indicating model-agnostic effectiveness and a better robustness–accuracy trade-off.

5 CONCLUSION

We presented UniBP, a universal post-training defense for purifying backdoored models. The approach leverages BatchNorm statistics to expose backdoor footprints, rectifies these statistics on a small clean set, scores BN-affine parameters via a Fisher-based importance measure, prunes the most backdoor-sensitive entries, and fine-tunes with masked gradients—removing trigger pathways without prior knowledge of attack type or location. UniBP consistently attains the lowest ASR while preserving clean accuracy. It is stable across poisoning rates and fine-tuning budgets and operates effectively over a broad mask-ratio range, yielding strong robustness–accuracy trade-offs with modest clean data.

REFERENCES

M. Barni, K. Kallas, and B. Tondi. A new backdoor attack in cnns by training set corruption without label poisoning. In *2019 IEEE International Conference on Image Processing (ICIP)*, pp. 101–105,

540 2019. doi: 10.1109/ICIP.2019.8802997.
 541

542 Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
 543 Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
 544 activation clustering, 2018. URL <https://arxiv.org/abs/1811.03728>.

545 Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting sensitivity
 546 of poisoned samples. *Advances in Neural Information Processing Systems*, 35:9727–9737, 2022.

547 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
 548 learning systems using data poisoning. *arXiv preprint arXiv:1712.05526*, 2017.

549 Pengzhou Cheng, Zongru Wu, Wei Du, Haodong Zhao, Wei Lu, and Gongshen Liu. Backdoor attacks
 550 and countermeasures in natural language processing models: A comprehensive security review.
 551 *IEEE Transactions on Neural Networks and Learning Systems*, 2025.

552 Siyuan Cheng, Guangyu Shen, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Hanxi Guo, Shiqing
 553 Ma, and Xiangyu Zhang. Unit: Backdoor mitigation via automated neural distribution tightening.
 554 In *European Conference on Computer Vision*, pp. 262–281. Springer, 2024.

555 Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
 556 Strip: A defence against trojan attacks on deep neural networks. In *Proceedings of the 35th annual
 557 computer security applications conference*, pp. 113–125, 2019.

558 Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
 559 the machine learning model supply chain. *ArXiv*, abs/1708.06733, 2017. URL <https://api.semanticscholar.org/CorpusID:26783139>.

560 Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
 561 attacks on deep neural networks. *IEEE Access*, 7:47230–47244, 2019.

562 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
 563 networks. In *European conference on computer vision*, pp. 630–645. Springer, 2016.

564 Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
 565 Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
 566 for mobilenetv3. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 567 (ICCV)*, pp. 1314–1324, 2019.

568 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
 569 convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 570 Recognition (CVPR)*, pp. 2261–2269, 2017.

571 Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
 572 the training process, 2022. URL <https://arxiv.org/abs/2202.03423>.

573 Tran Huynh, Dang Nguyen, Tung Pham, and Anh Tran. Combat: Alternated training for effective
 574 clean-label backdoor attacks. In *AAAI Conference on Artificial Intelligence*, 2024. URL <https://api.semanticscholar.org/CorpusID:268678332>.

575 Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan. Pytorch. *Programming with
 576 TensorFlow: Solution for Edge Computing Applications*, pp. 87–104, 2021.

577 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

578 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

579 Boheng Li, Yishuo Cai, Jisong Cai, Yiming Li, Han Qiu, Run Wang, and Tianwei Zhang. Puri-
 580 fying quantization-conditioned backdoors via layer-wise activation correction with distribution
 581 approximation. In *Forty-first International Conference on Machine Learning*, 2024.

582 Xi Li, Zhen Xiang, David J. Miller, and George Kesisidis. Correcting the distribution of batch
 583 normalization signals for trojan mitigation. *Neurocomputing*, 614:128752, 2025. ISSN 0925-2312.
 584 doi: <https://doi.org/10.1016/j.neucom.2024.128752>. URL <https://www.sciencedirect.com/science/article/pii/S0925231224015236>.

594 Yige Li, Nodens Koren, L. Lyu, Xixiang Lyu, Bo Li, and Xingjun Ma. Neural attention distillation:
 595 Erasing backdoor triggers from deep neural networks. *ArXiv*, abs/2101.05930, 2021a. URL
 596 <https://api.semanticscholar.org/CorpusID:231627799>.
 597

598 Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
 599 Training clean models on poisoned data. *Advances in Neural Information Processing Systems*, 34:
 600 14900–14912, 2021b.

601 Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
 602 distillation: Erasing backdoor triggers from deep neural networks. In *International Confer-
 603 ence on Learning Representations*, 2021c. URL <https://openreview.net/forum?id=910K4OM-OXE>.
 604

605 Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, L. Lyu, Bo Li, and Yugang Jiang. Reconstructive
 606 neuron pruning for backdoor defense. In *International Conference on Machine Learning*, 2023a.
 607 URL <https://api.semanticscholar.org/CorpusID:258865980>.
 608

609 Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang.
 610 Reconstructive neuron pruning for backdoor defense. In *International Conference on Machine
 611 Learning*, pp. 19837–19854. PMLR, 2023b.

612 Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. *IEEE transactions
 613 on neural networks and learning systems*, 35(1):5–22, 2022.
 614

615 Yudong Li, Shigeng Zhang, Weiping Wang, and Hong Song. Backdoor attacks to deep learning
 616 models and countermeasures: A survey. *IEEE Open Journal of the Computer Society*, 4:134–146,
 617 2023c.

618 Weilin Lin, Li Liu, Shaokui Wei, Jianze Li, and Hui Xiong. Unveiling and mitigating backdoor
 619 vulnerabilities based on unlearning weight changes and backdoor activeness. In *The Thirty-
 620 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=MfGRUVFtn9>.
 621

623 Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor attack
 624 on deep neural networks. In *European Conference on Computer Vision*, pp. 182–199. Springer,
 625 2020.

626 Ibomoiye Domor Mienye and Theo G Swart. A comprehensive review of deep learning: Architectures,
 627 recent advances, and applications. *Information*, 15(12):755, 2024.
 628

629 Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through
 630 feature shift tuning. *ArXiv*, abs/2310.01875, 2023. URL <https://api.semanticscholar.org/CorpusID:263608763>.
 631

632 Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through
 633 feature shift tuning. *Advances in Neural Information Processing Systems*, 36, 2024.
 634

635 Dung Thuy Nguyen, Ngoc N Tran, Taylor T Johnson, and Kevin Leach. Pbp: Post-training backdoor
 636 purification for malware classifiers. *arXiv preprint arXiv:2412.03441*, 2024.

637 Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. *Advances in Neural
 638 Information Processing Systems*, 33:3454–3464, 2020.
 639

640 Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack. In
 641 *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=eEn8KTtJOx>.
 642

643 Rui Ning, Jiang Li, Chunsheng Xin, and Hongyi Wu. Invisible poison: A blackbox clean label
 644 backdoor attack to deep neural networks. In *IEEE INFOCOM 2021 - IEEE Conference on
 645 Computer Communications*, pp. 1–10, 2021. doi: 10.1109/INFOCOM42981.2021.9488902.
 646

647 Mohd Halim Mohd Noor and Ayokunle Olalekan Ige. A survey on state-of-the-art deep learning
 648 applications and challenges. *Engineering Applications of Artificial Intelligence*, 159:111225, 2025.

648 Hoang Pham, The-Anh Ta, Anh Tran, and Khoa D. Doan. Flatness-aware sequential learning generates
 649 resilient backdoors. *ArXiv*, abs/2407.14738, 2024a. URL <https://api.semanticscholar.org/CorpusID:271328781>.
 650

651 Hoang Pham, The-Anh Ta, Anh Tran, and Khoa D Doan. Flatness-aware sequential learning generates
 652 resilient backdoors. In *European Conference on Computer Vision*, pp. 89–107. Springer, 2024b.
 653

654 Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assumption
 655 of latent separability for backdoor defenses. In *The eleventh international conference on learning representations*, 2023.
 656

657 Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-Robert
 658 Müller. Explaining deep neural networks and beyond: A review of methods and applications.
 659 *Proceedings of the IEEE*, 109(3):247–278, 2021.
 660

661 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 662 recognition. *arXiv preprint arXiv:1409.1556*, 2014.
 663

664 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign
 665 Recognition Benchmark: A multi-class classification competition. In *IEEE International Joint
 666 Conference on Neural Networks*, pp. 1453–1460, 2011.
 667

668 Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. *arXiv
 669 preprint arXiv:1912.02771*, 2019.
 670

671 Yichen Wan, Youyang Qu, Wei Ni, Yong Xiang, Longxiang Gao, and Ekram Hossain. Data and
 672 model poisoning backdoor attacks on wireless federated learning, and the defense mechanisms: A
 673 comprehensive survey. *IEEE Communications Surveys & Tutorials*, 26(3):1861–1897, 2024.
 674

675 Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
 676 Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In *2019
 677 IEEE symposium on security and privacy (SP)*, pp. 707–723. IEEE, 2019.
 678

679 Hang Wang, Zhen Xiang, David J. Miller, and George Kesisidis. Mm-bd: Post-training detection of
 680 backdoor attacks with arbitrary backdoor pattern types using a maximum margin statistic, 2023.
 681 URL <https://arxiv.org/abs/2205.06900>.
 682

683 Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
 684 deep neural networks via image quantization and contrastive adversarial learning. In *Proceedings of
 685 the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 15074–15084,
 686 June 2022.
 687

688 Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
 689 Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. *Advances in Neural
 690 Information Processing Systems*, 35:10546–10559, 2022.
 691

692 Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
 693 *Advances in Neural Information Processing Systems*, 34:16913–16925, 2021.
 694

695 Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
 696 backdoors via implicit hypergradient. In *International Conference on Learning Representations*,
 697 2021.
 698

699 Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A
 700 practical clean-label backdoor attack with limited information. In *Proceedings of the 2023 ACM
 SIGSAC Conference on Computer and Communications Security*, pp. 771–785, 2023.
 701

702 Shaobo Zhang, Yimeng Pan, Qin Liu, Zheng Yan, Kim-Kwang Raymond Choo, and Guojun Wang.
 703 Backdoor attacks and defenses targeting multi-domain ai models: A comprehensive review. *ACM
 704 Computing Surveys*, 57(4):1–35, 2024.
 705

706 Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
 707 lipschitzness. In *European Conference on Computer Vision*, pp. 175–191. Springer, 2022a.
 708

702 Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Pre-activation distributions expose backdoor
703 neurons. *Advances in Neural Information Processing Systems*, 35:18667–18680, 2022b.
704

705 Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based
706 backdoor defense with sharpness-aware minimization. *2023 IEEE/CVF International Conference*
707 *on Computer Vision (ICCV)*, pp. 4443–4454, 2023. URL <https://api.semanticscholar.org/CorpusID:258297949>.
708

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

We conduct all the experiments using PyTorch 2.1.0 (Imambi et al., 2021). All experiments are run on a computer with an Intel Xeon Gold 6330N CPU and an NVIDIA A6000 GPU.

A DETAILED EXPERIMENTAL SETUP

A.1 DATASETS AND PREPROCESSING

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) comprises 60,000 32×32 RGB images evenly distributed across 10 classes. We adopt the official split with 50,000 training images and 10,000 test images (6,000 per class in total; 5,000 train and 1,000 test per class). Unless otherwise noted, we follow the standard evaluation protocol on the test set.

GTSRB (German Traffic Sign Recognition Benchmark). The GTSRB dataset (Stallkamp et al., 2011) contains 51,839 images across 43 classes, with 39,209 images for training and 12,630 for testing. Following common practice, we use the standard train/test split and resize all images to 32×32 RGB for training and evaluation.

Tiny-ImageNet (Le & Yang, 2015). The Tiny-ImageNet dataset is a downscaled subset of ImageNet with 200 classes, each containing 500 training images and 50 validation images, for a total of 100,000 training and 10,000 validation images. All images are 64×64 pixels with RGB channels. Following prior work, we use the official train/validation split and treat the validation set as the test set for evaluation; images are resized to 32×32 when training models that expect CIFAR-style inputs.

A.2 ATTACK DETAILS

We evaluate our defense against nine SOTA backdoor attacks: BadNets (Gu et al., 2019), LC (Turner et al., 2019), WaNet (Nguyen & Tran, 2021), COMBAT (Huynh et al., 2024), SBL (Pham et al., 2024b), WaNet (Nguyen & Tran, 2021), Narcissus (Zeng et al., 2023), Adaptive-patch (Qi et al., 2023), Input-aware (Nguyen & Tran, 2020) and Refool (Liu et al., 2020). For BadNets, LC, WaNet, Input-aware, Refool we adopt the implementations provided in the BackdoorBench framework and use the default configurations. Since COMBAT, SBL, Narcissus, and Adaptive-Batch are not integrated into BackdoorBench, we incorporated them into our codebase using the official implementations released by the authors^{1 2 3 4}. To ensure consistency and comparability across all experiments, we fixed the poisoning ratio at 10%. Examples of poisoned images under each attack is shown in Figure 8.

Figure 7: Examples of poisoned images on the CIFAR-10 dataset.

A.3 DEFENSE DETAILS

We compare our method against nine SOTA backdoor defenses: FT, ANP (Wu & Wang, 2021), NAD (Li et al., 2021a), FST (Min et al., 2024), TSBD (Lin et al., 2024), I-BAU (Zeng et al., 2021),

¹<https://github.com/VinAIResearch/COMBAT>

²<https://github.com/mail-research/SBL-resilient-backdoors>

³<https://github.com/reds-lab/Narcissus>

⁴<https://github.com/Unispac/Circumventing-Backdoor-Defenses>

RNP (Li et al., 2023a), BNP (Zheng et al., 2022b), and UNIT (Cheng et al., 2024). For FT, ANP, NAD, TSBD, I-BAU, RNP, and BNP, we adopt the implementations and default configurations provided in the BackdoorBench framework. Since FST and Unit are not included in BackdoorBench, we integrated them into our codebase using the publicly released implementation⁵⁶. To ensure fairness across methods, we set the batch size to 256 for all defenses, except for FST, where we follow the original paper and use a batch size of 128. All defenses are trained with a learning rate of 0.002 for 20 epochs. For TSBD, we follow the settings reported in the original paper, fixing the neuron ratio at $n = 0.15$ and the weight ratio at $m = 0.7$. With FST, the coefficient α is set to 0.1. For BNP, we set the target mean shift to $u = 3$, using a search range from $u_{\min} = 0$ to $u_{\max} = 10$ that is discretized into $u_{\text{num}} = 10$ candidate values, and we use a histogram ratio of 0.05. For the alpha-unlearning procedure, we use $\alpha = 0.2$, a clean-classification threshold of 0.80, an unlearning learning rate of 0.01, and a recovering learning rate of 0.1. We train for 20 unlearning epochs and 20 recovering epochs. Neurons are pruned using a threshold-based rule with a maximum pruning ratio of 0.90 and a pruning step size of 0.05. For I-BAU, we follow the original configuration and use $K = 5$ inner optimization steps. For UNIT, we run 300 optimization steps and allow up to 0.03 degradation in clean accuracy.

A.4 MODEL ARCHITECTURES AND INITIALIZATION

We evaluate four backbone architectures representative of common vision families:

PreAct-ResNet-18. Standard PreAct-ResNet-18; the final classifier is replaced to match the dataset classes (10 for CIFAR-10; 43 for GTSRB).

VGG19-BN. VGG19 with batch normalization after each convolutional block; initialized from ImageNet and refit with a dataset-specific classifier.

DenseNet-161. ImageNet-pretrained DenseNet-161; the classifier head is replaced to match the target classes.

MobileNetV3-Large. ImageNet-pretrained MobileNetV3-Large; the final fully connected layer is replaced to fit the dataset classes.

Model modifications for purification: Our purification pipeline interacts primarily with BatchNorm affine parameters and per-channel statistics. We instrument BatchNorm layers to read and optionally reset γ, β and moving averages ($\mu_{\text{mov}}, \sigma_{\text{mov}}$). For the pruning / affine-mask step we add small, lightweight selection masks per channel (implemented as binary or continuous gates) that can be applied to the BN affine scale term γ during inference and finetuning.

A.5 HYPER-PARAMETERS

The pipeline includes separate hyper-parameters for (A) initial training/victim model creation (poisoned model), and (B) purification stages. We list the values used in all experiments unless noted otherwise.

Training Phase. Unless otherwise noted, poisoned models are trained using PreAct-ResNet-18 with SGD (momentum 0.9), an initial learning rate of 0.01, weight decay of 5×10^{-4} , batch size 128, and 100 epochs. The learning rate follows *CosineAnnealingLR*. The random seed is fixed to 0. Unless otherwise specified, standard data augmentation (random horizontal flip and random crop) is applied.

Fine-tuning Phase. During fine-tuning, we use SGD with momentum 0.9 and a learning rate in the range 1×10^{-3} to 2×10^{-4} ; unless otherwise specified, the training batch size is 128. In the sensitivity-to-fine-tuning-ratio study, we sweep the fine-tuning ratio over $\{1\%, 2\%, 5\%, 10\%\}$ and adjust batch sizes accordingly, i.e., training mini-batch is $\{32, 32, 64, 128\}$, respectively.

864 Table 3: Tiny-ImageNet results under five backdoor attacks. C-Acc = clean accuracy (%), ASR =
 865 attack success rate (%), DER = defense effectiveness ratio (%).

Attack	Pretrained		FT		ANP		NAD		FST		TSBD		Ours	
	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR	C-Acc	ASR
BadNet	47.12	94.16	55.16	90.39	47.12	94.16	49.77	29.53	26.96	0.31	52.64	54.95	48.73	17.49
	—	—	51.89	—	50.00	—	82.32	—	86.85	—	69.60	—	88.34	—
LC	56.78	67.70	56.55	67.33	54.68	59.18	56.53	70.11	28.44	0.57	54.97	16.34	50.22	2.79
	—	—	50.07	—	53.21	—	49.87	—	69.40	—	74.78	—	79.18	—
WaNet	54.97	99.70	52.71	48.00	54.22	76.96	52.44	51.59	28.75	0.06	52.73	0.72	48.27	0.51
	—	—	74.72	—	60.99	—	72.79	—	86.71	—	98.37	—	96.25	—
Adaptive Patch	53.49	99.93	49.84	96.32	49.11	66.36	50.03	96.34	29.18	0.00	48.67	0.38	45.58	4.02
	—	—	49.98	—	64.60	—	50.07	—	87.81	—	97.37	—	94.00	—
Input-aware	46.82	95.24	51.60	98.81	42.21	9.76	51.97	99.36	24.25	0.00	54.65	0.12	46.02	3.87
	—	—	50.00	—	90.44	—	50.00	—	86.34	—	97.56	—	95.29	—
AVG-DER	—	—	55.33	—	63.85	—	61.01	—	83.42	—	87.54	—	90.61	—

880 B ADDITIONAL EXPERIMENTAL RESULTS

881 B.1 RESULTS WITH TINY-IMAGENET DATASET

884 We conduct additional experiments on Tiny-ImageNet, which is substantially larger and more complex
 885 than CIFAR-10 and GTSRB, and present the results in Table 3. From the results, we can see that
 886 UniBP achieves the highest average DER (90.61%) across all five attack types, outperforming TSBD
 887 (87.54%) and FST (83.42%). UniBP also consistently suppresses ASR to very low levels across
 888 diverse attacks (from standard BadNet to adaptive and input-aware variants) while maintaining
 889 clean accuracy around 46-50%. In contrast, FST attains near-zero ASR but drives clean accuracy
 890 down to roughly 27%, making it impractical in this setting. Overall, UniBP offers a much better
 891 robustness-utility trade-off on Tiny-ImageNet.

892 B.2 RESULTS WITH ALL BACKDOOR ATTACKS

894 Due to space constraints, we only present results with seven attacks in the main paper; here we show
 895 all nine attacks in Table 4. From the results, our method consistently achieves the highest average
 896 DER across both fine-tuning budgets (93.90 for FT=0.1 and 91.42 for FT=0.05), demonstrating
 897 superior robustness to resource constraints. While some baselines perform competitively on specific
 898 attacks, where FST achieves 99.35 DER on Wanet and I-BAU reaches 98.78 on LC under FT=0.1, they
 899 suffer catastrophic failures on adaptive and clean-label attacks. Notably, traditional fine-tuning (FT)
 900 and several specialized defenses (NAD, RNP, BNP) exhibit severe instability against COMBAT and
 901 SBL, with DER frequently dropping below 53, indicating near-random performance. These failures
 902 stem from violated assumptions: COMBAT optimizes triggers to overlap with target-class features,
 903 while SBL explicitly resists fine-tuning through continual learning. In contrast, our method maintains
 904 consistently high DER across all nine attacks and both budget settings, with minimal performance
 905 degradation under reduced data (only a 2.48 DER drop from FT=0.1 to FT=0.05). This stability
 906 across diverse attack families and resource constraints demonstrates the practical effectiveness of our
 907 approach in realistic deployment scenarios where attack types are unknown and data is limited.

908 B.3 SENSITIVITY TO DATA POISONING RATES

910 Table 5 presents a comprehensive evaluation of different defense methods (Pretrained, FT, ANP, NAD,
 911 FST, TSBD, and UniBP) against a range of backdoor attacks including BadNet, LC, COMBAT, SBL,
 912 and Wanet, under varying poisoning data ratios (PDR = 0.1, 0.05, 0.02, 0.01). For each configuration,
 913 both model accuracy (MA) and attack success rate (ASR) are reported to highlight the trade-off
 914 between maintaining clean accuracy and suppressing malicious behavior. Across the board, baseline
 915 Pretrained models show high MA but consistently elevated ASR, indicating vulnerability to all
 916 attacks. Fine-tuning (FT) improves resilience to some extent, though it struggles to reduce ASR under

5⁵https://github.com/AISafety-HKUST/stable_backdoor_purification

6⁶<https://github.com/Megum1/UNIT>

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 4: Comprehensive evaluation of backdoor defenses across nine attacks under two fine-tuning budgets (FT = 0.1 and FT = 0.05). We report Clean Accuracy (C-Acc), Attack Success Rate (ASR), and Defense Effectiveness Rate (DER). Best results are highlighted in bold.

Methods	Metrics	BadNet	LC	COMBAT	SBL	Wanet	Narcissus	Adaptive Patch	Input-Aware	Refool	AVG-DER
FT = 0.1											
Pretrained	C-Acc	91.44	84.19	93.94	90.52	92.67	93.09	93.08	90.39	91.65	
	ASR	94.41	100.00	94.47	88.84	99.54	94.64	100.00	95.98	92.91	
I-BAU	C-Acc	88.13	86.33	91.01	88.20	86.52	89.27	89.84	89.67	87.87	
	ASR	7.91	2.45	1.98	0.76	20.04	33.01	1.26	50.90	2.02	
	DER	91.60	98.78	94.78	92.88	86.68	78.91	97.75	72.18	93.56	89.68
UNIT	C-Acc	84.66	81.36	79.70	65.64	88.05	87.79	87.57	80.05	86.75	
	ASR	0.89	8.07	22.67	2.58	3.12	68.44	1.76	5.94	23.52	
	DER	93.37	94.55	78.78	80.69	95.90	60.45	96.37	89.85	82.25	85.80
BNP	C-Acc	91.27	83.31	91.40	90.33	65.69	93.11	92.34	89.72	91.74	
	ASR	13.12	0.00	24.23	90.08	47.38	85.68	9.52	0.88	3.55	
	DER	90.56	99.56	83.85	49.91	62.59	54.48	94.87	97.22	94.68	80.86
RNP	C-Acc	87.63	80.78	92.89	87.57	90.34	92.97	90.28	86.48	54.11	
	ASR	3.76	99.93	93.09	20.57	0.17	91.52	11.67	0.73	0.00	
	DER	93.42	48.33	50.17	82.66	98.52	51.50	92.77	95.67	77.69	76.75
FT	C-Acc	90.56	90.00	93.46	90.79	92.50	92.35	92.19	91.39	91.64	
	ASR	1.47	17.53	72.83	83.85	13.91	89.81	99.94	96.50	15.54	
	DER	96.03	91.24	60.58	52.50	92.73	52.05	49.59	50.00	88.68	70.38
ANP	C-Acc	83.51	79.17	85.18	88.77	83.62	89.55	89.55	86.17	86.92	
	ASR	0.00	6.65	7.58	0.04	0.02	86.77	86.77	0.16	0.12	
	DER	93.24	94.17	89.07	93.53	95.24	52.17	54.85	95.80	94.03	84.68
NAD	C-Acc	89.33	88.97	93.48	90.39	91.88	91.27	91.18	92.31	90.67	
	ASR	2.08	18.43	70.96	64.80	9.98	88.06	90.03	98.80	9.27	
	DER	95.11	90.79	61.52	61.96	94.39	52.38	54.04	50.00	91.33	72.39
FST	C-Acc	87.06	88.89	91.25	91.17	92.40	92.18	92.04	92.67	91.70	
	ASR	2.08	2.34	30.65	0.24	0.58	93.91	0.40	0.00	3.93	
	DER	93.98	98.83	80.57	94.30	99.35	49.91	99.28	97.99	94.49	89.86
TSBD	C-Acc	90.13	89.06	92.91	91.43	92.48	92.85	92.40	93.18	92.24	
	ASR	1.78	15.16	35.57	84.68	1.08	82.16	4.07	5.43	1.77	
	DER	95.66	92.42	78.94	52.08	99.14	56.12	97.63	95.28	95.57	84.76
Ours	C-Acc	90.67	91.40	91.04	88.91	90.22	88.37	88.31	90.61	89.70	
	ASR	1.12	2.50	10.28	2.18	4.74	14.32	3.76	5.44	1.90	
	DER	98.99	98.75	93.02	97.88	96.3	87.80	95.74	95.27	94.53	95.36
FT = 0.05											
Pretrained	C-Acc	91.36	84.51	94.13	89.76	93.10	93.79	99.33	91.39	92.00	
	ASR	95.45	100.00	94.80	87.55	99.88	78.05	100.00	96.50	93.80	
I-BAU	C-Acc	85.71	86.21	91.85	87.61	85.77	90.02	89.83	88.54	88.17	
	ASR	3.48	2.12	87.92	1.34	9.92	71.73	3.74	62.88	12.12	
	DER	93.16	98.94	52.30	92.03	91.25	51.27	93.38	65.39	88.92	80.74
UNIT	C-Acc	83.3	82.07	81.04	70.15	87.19	88.8	87.09	79.8	86.84	
	ASR	0.79	6.49	10.38	1.5	1.79	67.23	5.19	4.32	10.78	
	DER	93.30	95.53	85.67	83.22	96.02	52.91	91.28	90.30	88.93	86.35
BNP	C-Acc	91.18	82.8	92.56	90.56	88.48	93.68	92.52	91.32	92.34	
	ASR	16.51	0	13.49	93.06	14.22	79.98	72.06	2.68	40.07	
	DER	89.38	99.15	89.87	50.00	90.45	49.95	60.57	96.88	76.87	78.12
RNP	C-Acc	84.91	82.59	93.99	72.7	86.65	92.74	89.83	64.96	51.28	
	ASR	0.07	100	95.39	0.01	2.47	73.17	0.87	0	0	
	DER	94.47	49.04	49.93	85.24	95.41	51.91	94.81	85.03	76.54	75.82
FT	C-Acc	88.69	90.51	94.01	89.46	92.33	92.46	92.81	92.61	91.73	
	ASR	2.22	100.00	96.17	89.92	14.97	80.92	100	97.23	19.21	
	DER	95.28	0.50	49.94	49.85	92.00	49.34	46.74	50.00	87.16	57.87
ANP	C-Acc	84.40	84.51	92.14	84.48	84.83	86.91	86.91	89.28	84.19	
	ASR	0.02	100.00	88.81	62.48	0.00	73.95	73.95	0.14	0.13	
	DER	94.24	0.50	52.00	59.90	95.74	48.61	56.82	97.13	92.93	66.43
NAD	C-Acc	88.13	89.30	94.21	88.94	92.09	91.35	90.68	92.93	90.68	
	ASR	2.81	59.06	97.66	73.08	1.83	75.96	65.13	83.74	6.52	
	DER	94.71	70.47	50.00	56.83	98.45	49.83	63.11	56.38	92.98	70.31
FST	C-Acc	88.58	90.90	94.20	89.95	92.43	92.84	92.84	93.32	91.73	
	ASR	1.13	0.00	90.02	30.02	0.32	81.2	41.91	0.01	5.91	
	DER	95.77	100.00	52.39	78.77	99.38	49.53	75.80	98.25	93.81	82.63
TSBD	C-Acc	90.00	90.74	92.28	88.14	92.43	90.58	92.12	93.31	91.85	
	ASR	2.12	93.00	81.64	79.20	1.29	74.11	4.31	1.69	2.26	
	DER	95.99	53.50	55.66	53.37	98.89	50.37	94.24	97.41	95.70	77.24
Ours	C-Acc	90.32	88.94	84.42	81.28	89.45	85.17	89.91	87.30	87.92	
	ASR	4.91	5.08	13.63	4.13	2.64	9.87	1.80	5.57	3.54	
	DER	94.75	97.46	85.73	87.47	96.73	79.78	94.39	93.42	93.09	91.42

972
 973
 974
 975
Table 5: Performance comparison of different defense methods (Pretrained, FT, ANP, NAD, FST,
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 18010
 18011
 18012
 18013
 18014
 18015
 18016
 18017
 18018
 18019
 18020
 18021
 18022
 18023
 18024
 18025
 18026
 18027
 18028
 18029
 18030
 18031
 18032
 18033
 18034
 18035
 18036
 18037
 18038
 18039
 18040
 18041
 18042
 18043
 18044
 18045
 18046
 18047
 18048
 18049
 18050
 18051
 18052
 18053
 18054
 18055
 18056
 18057
 18058
 18059
 18060
 18061
 18062
 18063
 18064
 18065
 18066
 18067
 18068
 18069
 18070
 18071
 18072
 18073
 18074
 18075
 18076
 18077
 18078
 18079
 18080
 18081
 18082
 18083
 18084
 18085
 18086
 18087
 18088
 18089
 18090
 18091
 18092
 18093
 18094
 18095
 18096
 18097
 18098
 18099
 180100
 180101
 180102
 180103
 180104
 180105
 180106
 180107
 180108
 180109
 180110
 180111
 180112
 180113
 180114
 180115
 180116
 180117
 180118
 180119
 180120
 180121
 180122
 180123
 180124
 180125
 180126
 180127
 180128
 180129
 180130
 180131
 180132
 180133
 180134
 180135
 180136
 180137
 180138
 180139
 180140
 180141
 180142
 180143
 180144
 180145
 180146
 180147
 180148
 180149
 180150
 180151
 180152
 180153
 180154
 180155
 180156
 180157
 180158
 180159
 180160
 180161
 180162
 180163
 180164
 180165
 180166
 180167
 180168
 180169
 180170
 180171
 180172
 180173
 180174
 180175
 180176
 180177
 180178
 180179
 180180
 180181
 180182
 180183
 180184
 180185
 180186
 180187
 180188
 180189
 180190
 180191
 180192
 180193
 180194
 180195
 180196
 180197
 180198
 180199
 180200
 180201
 180202
 180203
 180204
 180205
 180206
 180207
 180208
 180209
 180210
 180211
 180212
 180213
 180214
 180215
 180216
 180217
 180218
 180219
 180220
 180221
 180222
 180223
 180224
 180225
 180226
 180227
 180228
 180229
 180230
 180231
 180232
 180233
 180234
 180235
 180236
 180237
 180238
 180239
 180240
 180241
 180242
 180243
 180244
 180245
 180246
 180247
 180248
 180249
 180250
 180251
 180252
 180253
 180254
 180255
 180256
 180257
 180258
 180259
 180260
 180261
 180262
 180263
 180264
 180265
 180266
 180267
 180268
 180269
 180270
 180271
 180272
 180273
 180274
 180275
 180276
 180277
 180278
 180279
 180280
 180281
 180282
 180283
 180284
 180285
 180286
 180287
 180288
 180289
 180290
 180291
 180292
 180293
 180294
 180295
 180296
 180297
 180298
 180299
 180300
 180301
 180302
 180303
 180304
 180305
 180306
 180307
 180308
 180309
 180310
 180311
 180312
 180313
 180314
 180315
 180316
 180317
 180318
 180319
 180320
 180321
 180322
 180323
 180324
 180325
 180326
 180327
 180328
 180329
 180330
 180331
 180332
 180333
 180334
 180335
 180336
 180337
 180338
 180339
 180340
 180341
 180342
 180343
 180344
 180345
 180346
 180347
 180348
 180349
 180350
 180351
 180352
 180353
 180354
 180355
 180356
 180357
 180358
 180359
 180360
 180361
 180362
 180363
 180364
 180365
 180366
 180367
 180368
 180369
 180370
 180371
 180372
 180373
 180374
 180375
 180376
 180377
 180378
 180379
 180380
 180381
 180382
 180383
 180384
 180385
 180386
 180387
 180388
 180389
 180390
 180391
 180392
 180393
 180394
 180395
 180396
 180397
 180398
 180399
 180400
 180401
 180402
 180403
 180404
 180405
 180406
 180407
 180408
 180409
 180410
 180411
 180412
 180413
 180414
 180415
 180416
 180417
 180418
 180419
 180420
 180421
 180422
 180423
 180424
 180425
 180426
 180427
 180428
 180429
 180430
 180431
 180432
 180433
 180434
 180435
 180436
 180437
 180438
 180439
 180440
 180441
 180442
 180443
 180444
 180445
 180446
 180447
 180448
 180449
 180450
 180451
 180452
 180453
 180454
 180455
 1804

1026 architecture where normalization precedes computation (LN \rightarrow MLP) rather than following it (Conv
 1027 \rightarrow BN). Since LayerNorm does not maintain running statistics like BatchNorm, we manually collect
 1028 reference statistics by hooking LayerNorm inputs during forward passes on clean data, computing
 1029 mean and variance across feature dimensions over multiple batches. Our key architectural insight
 1030 is that in Pre-LN Transformers, the MLP feed-forward blocks between consecutive LayerNorm
 1031 layers directly determine the input distribution to the subsequent normalization—therefore, we
 1032 strategically target only MLP parameters (fc1, fc2 weights/biases) for FIM computation while ex-
 1033 plicitly excluding LayerNorm parameters themselves through `_is_mlp_param()` filtering. We
 1034 attach hooks to LayerNorm layers to capture their input statistics and compute an alignment loss
 1035 $\mathcal{L} = \|\mu_{\text{input}} - \mu_{\text{ref}}\|^2 + \lambda \|\sigma_{\text{input}} - \sigma_{\text{ref}}\|^2$ against a reinitialized clean baseline model, which serves as
 1036 our reference for “normal training dynamics.” When this loss backpropagates, gradients flow through
 1037 the LayerNorm back to the upstream MLP blocks, and the accumulated squared gradients (FIM
 1038 scores) reveal which MLP parameters are most critical to producing backdoor-specific activation
 1039 distributions—parameters with high FIM resist alignment with clean statistics because they were
 1040 optimized on poisoned data. Finally, we prune only the top-ranked MLP parameters via noise
 1041 injection, preserving the normalization layers while disrupting the backdoor pathway hidden in the
 1042 feed-forward sublayers where Transformer backdoors typically reside.

1043 **Table 7: Performance of UniBP on Vision Transformer models with different backdoor attacks and**
 1044 **poisoning rates (FT).**

Metric	BadNet		LC	
	FT=0.1	FT=0.05	FT=0.1	FT=0.05
C-Acc (Pretrained)	0.9286	0.9062	0.8736	0.8731
ASR (Pretrained)	0.9542	0.9302	1.0000	1.0000
C-Acc (Ours)	0.9325	0.9310	0.9529	0.9467
ASR (Ours)	0.0034	0.0101	0.0230	0.0006
DER (Ours)	0.9754	0.9601	0.9885	0.9997

1053 As shown in Table 7, our adapted method effectively eliminates backdoors across all attack scenarios
 1054 (ASR reduced to near-zero) while preserving or even improving clean accuracy, demonstrating that
 1055 targeting MLP parameters via LayerNorm statistics successfully disrupts backdoor pathways without
 1056 degrading model performance.

1057 B.5 ABLATION STUDY

1058 We sweep the mask ratio K , the primary control in our method, and summarize the outcomes
 1059 in Figure 8. Across all settings, C-ACC decreases smoothly as K increases, with only a small
 1060 drop (typically ≤ 5 points) inside the shaded range and a sharp decline once $K \geq 0.10 \times 10^{-3}$.
 1061 ASR remains low overall, generally within 1–5%; LC at 10% poisoning shows a mild bump near
 1062 $K \approx 0.06 \times 10^{-3}$, but the trend is otherwise flat. Increasing K beyond the shaded range yields little
 1063 additional ASR reduction while causing substantial loss in clean accuracy, most notably for BadNet
 1064 at 5% poisoning. Small pruning budgets within the highlighted range therefore, provide the best
 1065 trade-off, keeping ASR low with minimal impact on clean performance across both attack families
 1066 and poisoning rates.

1067 B.6 ADDITIONAL PLOTS

1068 Figure 9 summarizes how different backdoor families distort the representation space and BatchNorm
 1069 statistics. The t-SNE plots (top) show that BadNet and LC largely blend poisoned samples into the
 1070 target-class manifold, yielding only mild geometric separation; WANET induces a moderate shift
 1071 with partially segregated clusters; SBL creates a compact, outlying poisoned cluster that is clearly
 1072 detached from clean structure; COMBAT, which mixes patch- and distributional cues, produces
 1073 overlap similar to BadNet but with denser target-class concentration. The histograms of BN per-
 1074 channel means (bottom) mirror these trends: BadNet and LC exhibit near-overlapping clean vs.
 1075 backdoored distributions (small mean shifts), WANET shows a visible but modest shift, and SBL
 1076 displays a pronounced displacement of the backdoored distribution. COMBAT lies between these
 1077 extremes. Overall, attacks that strongly perturb intermediate distributions (e.g., SBL) leave a larger
 1078 BN footprint, whereas patch-like attacks (BadNet/LC) are more stealthy in BN space—motivating a

Figure 8: Effect of pruning budget K on clean accuracy (C-ACC, left) and attack success rate (ASR, right) under BadNet and LC with poisoning rates 5% and 10% on CIFAR-10. The shaded band marks the stable operating range ($K \in [0.010, 0.070] \times 10^{-3}$).

rectification objective that leverages BN statistics while also requiring parameter-level masking to handle the subtler cases. *Though these attacks are different in manner and how the trigger is crafted, the shift phenomenon in BN statistics could be leveraged to defend against these attacks.*

Figure 9: t-SNE of feature embeddings of different attack strategies and their effect on BN layers' statistic CIFAR-10 of different attack families.

C ANALYSIS AND DISCUSSION

C.1 COMPUTATIONAL OVERHEAD

We compare the computational cost of different defenses by measuring their running time on 5000 CIFAR-10 images with a PreAct-ResNet-18 backbone, and present the results in Table 8 and Figure 10. From the results, we can see that our method achieves the highest average DER (93.90%) among all evaluated defenses while maintaining a moderate running time of 228 seconds. In particular, it is substantially faster than TSBD (1529s) and ANP (414s), and remains in the same ballpark as lighter baselines such as NAD (129s) and BNP (153s). Several methods with comparable or lower DER (e.g., FT, ANP, UNIT) require considerably more computation, indicating that our approach offers a more favorable robustness–efficiency trade-off. Overall, these results suggest that our defense is not only effective but also computationally practical for deployment in realistic FL settings.

1134 Table 8: Running time and average DER of different defenses on 5000 CIFAR-10 images using
 1135 PreAct-ResNet-18 under the same hardware setting.

Metric	FT	ANP	NAD	FST	TSBD	BNP	I-BAU	RNP	UNIT	Ours
Running Time (s)	95	414	129	157	1529	153	132	181	421	228
Avg. DER	70.38	89.42	72.39	89.86	84.76	80.86	89.68	76.75	85.80	93.90

1154 Figure 10: Running time vs. average DER for different defenses on CIFAR-10

1157 C.2 ADAPTIVE ATTACKS

1158 We evaluate robustness against a **strong adaptive adversary** who has complete knowledge of
 1159 our defense mechanism and explicitly attempts to evade detection by preserving benign batch
 1160 normalization statistics. The attacker augments the standard backdoor poisoning objective with a
 1161 regularization term that penalizes deviations from clean BN statistics across all layers. Formally,
 1162 assuming access to reference statistics μ_ℓ^c and v_ℓ^c from benign data, the adaptive attack minimizes:
 1163

$$1164 \mathcal{L}_{\text{adaptive}} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\text{DCE}(y, f(\delta(\mathbf{x})))] + \gamma \sum_{\ell=1}^L \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\|\hat{\mu}_\ell - \mu_\ell^c\|_2 + \lambda \|\hat{v}_\ell - v_\ell^c\|_2 \right],$$

1165 where the first term ensures high attack success rate and the second term explicitly aligns
 1166 the backdoored model’s BN statistics with those of a clean model. We systematically eval-
 1167 uate this adaptive attack across regularization strengths spanning five orders of magnitude ($\gamma \in$
 1168 $\{0, 0.01, 0.1, 1.0, 10.0, 100.0\}$). Table 9 shows that across all viable settings, our defense maintains
 1169 ASR below 9% while the pretrained backdoored model exhibits ASR above 94%, demonstrating that
 1170 UniBP remains highly effective even when attackers explicitly target the BN-based detection
 1171 mechanism. This robustness stems from a fundamental tension: backdoor functionality inherently requires
 1172 trigger-dependent feature representations that create distributional shifts detectable in BN statistics,
 1173 and suppressing these shifts to evade detection directly undermines the attack’s effectiveness.
 1174

1175 C.3 MITIGATING THE CLEAN ACCURACY TRADE-OFF

1176 We acknowledge that UniBP may incur a slightly larger clean-accuracy drop compared to some
 1177 baselines. However, we view this as an inherent and well-documented trade-off in pruning-based
 1178 defenses operating under zero-adversary-knowledge assumptions: any method that aggressively
 1179 suppresses backdoor-related capacity without access to the true trigger or strong side information
 1180 will inevitably sacrifice some clean performance, as observed in prior work such as ANP and
 1181 NAD. Critically, UniBP is the only defense effective against all tested backdoor attacks, including
 1182 challenging sample-specific and adaptive variants where other methods fail to provide adequate
 1183 protection. In contrast, methods that preserve marginally higher clean accuracy often leave non-trivial
 1184 residual backdoor risk, making the comparison fundamentally asymmetric. We further demonstrate
 1185

1188
1189 Table 9: Performance under adaptive attacks with BN-alignment regularization across varying
1190 regularization strengths γ .
1191

Method	Metric	$\gamma = 0$	$\gamma = 0.01$	$\gamma = 0.1$	$\gamma = 1.0$	$\gamma = 10.0$	$\gamma = 100.0$
Pretrained	ACC	91.44	91.18	89.34	89.06	88.78	— NaN
Pretrained	ASR	94.41	94.20	96.24	95.62	95.41	— NaN
Ours	ACC	89.82	90.55	87.06	87.22	86.67	— NaN
Ours	ASR	1.47	2.39	3.66	8.48	3.01	— NaN

1197
1198 Table 10: Clean accuracy recovery with minimal additional fine-tuning data. Adding a small fraction
1199 $r\%$ of extra clean data after UniBP fully recovers accuracy while maintaining strong backdoor
1200 suppression.
1201

Additional Data Ratio	BadNet			LC		
	ACC	ASR	DER	ACC	ASR	DER
Pretrained	91.44	94.41	—	84.19	100.00	—
$r=0.00$	89.82	1.47	95.66	89.09	2.36	98.82
$r=0.01$	92.03	0.92	96.75	92.62	0.07	99.97
$r=0.02$	91.84	1.12	96.65	92.61	0.07	99.97
$r=0.05$	91.60	1.00	96.71	92.75	0.04	99.98

1212 that this trade-off is mitigable rather than fundamental. We conducted an ablation study where an
1213 additional $r\%$ of clean training data is used for a third fine-tuning step after UniBP completes its
1214 pruning and recovery phases. As shown in Table 10, adding even a small fraction of additional clean
1215 data is sufficient to recover—or even exceed fully—the pretrained model’s clean accuracy, while
1216 maintaining near-zero ASR and near-perfect backdoor removal. Notably, using just 1% additional data
1217 improves accuracy by over 2% on BadNet (from 89.82% to 92.03%) and 3.5% on LC (from 89.09%
1218 to 92.62%), surpassing the original pretrained accuracy in both cases while keeping ASR below 1%,
1219 making our method achieve comparable clean accuracy with other baselines. The improvements
1220 plateau beyond this point, with marginal gains at higher data ratios, suggesting that minimal additional
1221 resources are needed for effective mitigation. These results demonstrate that in practical deployment
1222 scenarios, practitioners can achieve a favorable balance between robustness and utility with modest
1223 extra cost, while maintaining the defense’s core advantage of comprehensive protection against
1224 diverse backdoor threats.

D LIMITATIONS

1228 We note several limitations that contextualize our results and suggest directions for future work. First,
1229 the method assumes access to a small hold-out clean set to estimate BatchNorm statistics and to
1230 drive affine-mask learning; its size, class coverage, and label quality materially affect stability and
1231 final accuracy. In extremely low-data or noisy-label regimes, the rectification signal can weaken,
1232 and the fully unsupervised setting (no clean data) is outside our scope. Second, while we evaluate
1233 adaptive variants, a stronger adversary that co-designs triggers to survive BN-affine reset and pruning,
1234 perturbs or hijacks running statistics during poisoning, or disperses triggers to reduce gradient salience
1235 could diminish effectiveness; developing defenses with explicit guarantees against such adaptive
1236 strategies remains open. Third, our study focuses on image classification with BN-based architectures;
1237 extending the approach to other modalities (e.g., audio, NLP) or tasks (e.g., detection, segmentation),
1238 and to models using alternative normalizations (e.g., LayerNorm, GroupNorm), will require adapting
1239 both the rectification objective and the mask parameterization. UniBP currently assumes access
1240 to a small clean subset, which is a common setup in recent defenses (e.g., I-BAU, RNP, ANP).
1241 To relax this assumption, combining UniBP with data-free techniques is a viable direction. For
1242 instance, one could employ generative models (e.g., GANs or diffusion models) trained on benign
1243 data to approximate clean samples and recover BN statistics. The main challenge lies in ensuring

1242 that generated samples faithfully preserve the statistical structure of the original training data. We
1243 acknowledge this as an exciting area for future work and will add it to the discussion.
1244

1245 E BROADER IMPACT 1246

1247 **Positive impacts.** The method strengthens deployed classifiers against poisoning/backdoor threats,
1248 improving robustness in safety-critical settings (e.g., automotive perception, medical imaging).
1249

1250 **Dual use.** Defensive techniques can inform stronger, defense-aware attacks. We will release code
1251 with clear usage guidance and a responsible license, and provide deployment recommendations (e.g.,
1252 separate clean validation, periodic re-evaluation), limiting exploit-ready details to what is necessary
1253 for reproducibility.

1254 **Privacy.** The approach assumes a small clean dataset; when data are sensitive, practitioners should
1255 minimize collection, de-identify inputs, restrict access, and follow IRB requirements.
1256

1257 **Responsible disclosure.** We support coordinated disclosure to affected stakeholders and commit to
1258 sharing only information needed for verification and remediation.
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295