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ABSTRACT
Phylogenetic placement is the computational task that places a
query taxon into a reference phylogeny using computational anal-
ysis of biomolecular sequence data or other evolutionary charac-
ters. A chief advantage of phylogenetic placement over one-shot
phylogenetic reconstruction is greatly reduced computational re-
quirements, and the former has been applied in many different
topics in phylogenetics. One of the more recent applications has
been enabled by rapid advances in biomolecular sequencing tech-
nology: classification of genomes, metagenomes, and metagenome-
assembled genomes (MAGs) in large-scale datasets produced by
next-generation sequencing. A number of methods have been de-
veloped for this purpose, and all share the common simplifying
assumption that a phylogenetic tree suffices for modeling the evo-
lutionary history of all genomes and/or metagenomes under study.
Another parallel development in today’s post-genomic era is a
greater understanding of the prevalence and importance of non-
tree-like evolution in the Tree of Life – the evolutionary history of
all life on Earth – which in fact may not be a tree at all. More general
graph representations such as phylogenetic networks have there-
fore been proposed, and a new generation of phylogenetic network
reconstruction methods are under active development. But the sim-
plifying assumption made by phylogenetic tree placement methods
is fundamentally at odds with the non-tree-like evolutionary histo-
ries of many microbes and other organisms. The consequences of
this conflict are poorly understood.

In this study, we conduct a comprehensive performance study
to directly assess the impact of non-tree-like evolution on phylo-
genetic tree placement of genomes and metagenomes. Our study
includes in silico simulation experiments as well as empirical data
analyses. We find that the topological accuracy of phylogenetic
tree placement degrades quickly as genomic sequence evolution
becomes increasingly non-tree-like. We then introduce a new sta-
tistical method for phylogenetic network placement of genomes
and metagenomes, which we refer to as NetPlacer version 0. Initial
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experiments with NetPlacer provide a proof-of-concept, but also
point to the need for greater computational scalability. We conclude
with thoughts on algorithmic techniques to enable fast and accurate
phylogenetic network placement.
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1 INTRODUCTION
Phylogenetic placement is the problem which seeks to place a
new taxon into an existing or reference phylogeny, typically via
computational analysis of biomolecular sequence data. This prob-
lem has been traditionally studied in the context of phylogenetics
and systematics, including large-scale phylogenetic reconstruction
[42], dynamically updated phylogenies [17, 35], and biodiversity
research [6]. Thanks to rapid advances in next generation sequenc-
ing technology, computational phylogenetics has seen many major
advances, and new applications of phylogenetic placement have
emerged. In particular, phylogenetic placement methods are in-
creasingly used in genomic and metagenomic studies.

One particularly important task in genomics and metagenomics
is to classify organisms that are present in a sequenced sample.
Classical approaches like BLAST-based sequence analysis [1, 43]
are widely used for taxonomic classification of next-generation
sequencing (NGS) read data and assembled biomolecular sequences
and related computational tasks [41].

Matsen et al. [26] were early proponents of phylogeny-aware
alternatives. As they noted, phylogenetic analyses of metagenomic
data offer several key advantages that can complement taxonomic
classification. First, phylogenetic placement explicitly accounts for
phylogenetic relatedness, which can be a confounding factor in
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downstream analyses if not properly accounted for [9, 11]. Further-
more, fine grained evolutionary relationships can add substantial
insight into originating processes that underlie present day snap-
shots of microbial genetics. One of the first methods in this class
was pplacer [26]. Other methods have been since developed to
address the phylogenetic placement problem, such as EPA-ng [5],
SEPP [28], TIPP [31], APPLES [4], and APPLES-2 [3]. All of these
methods focus purely on phylogenetic tree placement. This requires
a critical assumption: that phylogenetic relationships in a sample
or study are purely tree-like.

But it is well understood that horizontal gene transfer (HGT)
has played an important role in prokaryotic genome evolution
throughout the Tree of Life [33]. Furthermore, the importance of
reticulate evolution in other microbes has gained greater apprecia-
tion in recent years [25]. The prevalence of non-tree-like evolution
in metagenomic samples is fundamentally at odds with the sim-
plifying assumption inherent to phylogenetic tree placement. The
consequences are not well understood, and solutions are not at
hand. These gaps are partly due to the lack of quantitative experi-
ments to assess the impacts of model violation on state-of-the-art
phylogenetic placement algorithms, as well as the lack of alter-
native methods that relax the simplifying assumption of tree-like
evolution of genomes and metagenomes.

In this study, we directly address both gaps. (1) We conduct a
comprehensive performance study to quantify the impact of non-
tree-like evolution on phylogenetic tree placement of genomes and
metagenomes. (2) We introduce NetPlacer version 0, a new statisti-
cal method for phylogenetic network placement of genomes and
metagenomes. To avoid ambiguity, we refer to traditional phyloge-
netic placement – where the reference phylogeny is restricted to be
a tree – as “tree placement”, and more general phylogenetic place-
ment where the reference phylogeny is a more general phylogenetic
network as “network placement”. Our study focuses on phyloge-
netic placement using aligned biomolecular sequences, and sets
the stage for generalization to other applications of phylogenetic
placement.

2 METHODS
2.1 Preliminaries
We begin with relevant background and definitions. A phylogenetic
tree 𝑇 = (𝑉 , 𝐸) is a connected acyclic graph where, for every pair
of vertices 𝑣,𝑤 ∈ 𝑉 , there is a unique path between 𝑣 and 𝑤 ; fur-
thermore, leaf nodes (or leaves) in the tree are uniquely labeled by
a set of taxa Ξ, as described below. Phylogenetic trees can be of
two types: rooted and unrooted. In a rooted tree, there is a unique
root node 𝑟 ∈ 𝑉 indicating the most recent common ancestor of
all taxa in the tree, and the edge set 𝐸 consists of directed edges.
The root 𝑟 has in-degree 0 and out-degree 2 or greater, internal
nodes have in-degree 1 and out-degree 2 or greater, and leaf nodes
(or leaves) have in-degree 1 and out-degree 0; each leaf node is
uniquely labeled by a taxon in the set of taxa Ξ. A rooted tree is
binary if the root and all internal nodes have out-degree exactly
2. In an unrooted tree, the edge set 𝐸 consists of undirected edges
and every node is either a leaf node if it has degree 1 or an internal
node if it has degree 3 or greater; an unrooted tree is binary if all
internal nodes have degree exactly 3.

Phylogenetic placement is the computational problem that places
a query taxon into a backbone phylogeny using computational
analysis of biomolecular sequence data and other character data. In
the context of phylogenetic tree placement, the problem is defined
as follows. The problem input consists of a backbone tree 𝑇 on
a set of reference taxa 𝑆 where the number of reference taxa is
𝑛 = |𝑆 |, a query taxon 𝑞, and a multiple sequence alignment for
𝑆 ∪ {𝑞}. The problem output is a placement tree 𝑃𝑞 that is obtained
by attaching a leaf edge representing 𝑞 to an existing edge in 𝑇

such that a phylogenetic criterion is optimized.
A range of methods have been developed to address the phylo-

genetic placement problem. One class of phylogenetic placement
methods utilizes maximum likelihood estimation (MLE). Prominent
examples include pplacer [26] and EPA-ng [5]. These methods place
a query taxon’s leaf edge into the backbone tree such that model
likelihood is maximized, where common models include finite-sites
substitution models such as the General Time Reversible (GTR)
model [34] and nested models. Another class of phylogenetic place-
ment methods are distance based. APPLES [4] is a representative
method in this class. APPLES chooses a placement for a query
taxon based on computational analysis of a pairwise distance ma-
trix computed on biomolecular sequence data for the reference taxa
and query taxon. The distance calculations used for computing
the pairwise distance matrix can either be estimated from a mul-
tiple sequence alignment or using an alignment-free method. As
mentioned above, a simplifying assumption common to existing
phylogenetic placement methods is that evolutionary history is
strictly tree-like.

In the presence of reticulate evolutionary processes such as hor-
izontal gene transfer (HGT), hybridization and introgression, and
genetic recombination, the evolutionary relationships among a set
of taxa requires a more complex phylogeny such as a graph-based
representation known as a phylogenetic network.

A phylogenetic network 𝜒 is defined as a 3-tuple (𝜓, 𝜆,𝛾) which
consists of a rooted directed acyclic graph𝜓 = (𝑉 , 𝐸), edge lengths
𝜆, and inheritance probabilities 𝛾 . The vertices 𝑉 consist of the the
following four classes of vertices. The root 𝑟 has indeg(𝑟 ) = 0. Leaf
nodes (or leaves) are𝑉𝐿 where∀𝑣 ∈ 𝑉𝐿 indeg(𝑣) = 1 and outdeg(𝑣) =
0. The tree nodes are𝑉𝑇 where∀𝑣 ∈ 𝑉𝑇 indeg(𝑣) = 1 and outdeg(𝑣) ≥
2. The reticulate nodes are𝑉𝑁 where∀𝑣 ∈ 𝑉𝑁 indeg(𝑣) = 2 and outdeg(𝑣) =
1. A phylogenetic network can be called a phylogenetic tree if
𝑉𝑁 = {}.

2.2 Simulation experiments
Genomic dataset simulations. Random model networks with 𝑛

taxa were sampled using the procedure described in [15], which
we briefly recap here. First, a random tree was sampled under a
random birth-death process using r8s [36] version 1.81. Branch
lengths of the tree were then re-scaled to obtain height ℎ = 5.0. To
obtain a model network, 𝜙 reticulation(s) were added to the model
phylogeny using the following procedure: for each reticulation, a
time 𝑡𝑀 was randomly selected such that 0.01 ≤ 𝑡𝑀 ≤ ℎ

4 . Two pop-
ulations were then selected randomly at time 𝑡𝑀 , and a reticulation
edge with random orientation between the two populations was
added to connect the corresponding pair of tree edges. An outgroup
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was added to the resulting network at time 15.0. Our simulation
conditions included datasets with 𝑛 ∈ {50, 100} and 𝜙 ∈ {0, 5, 10}.

For each model network, ms [19] was used to conduct simula-
tions under the multi-species coalescent and isolation-with migra-
tion (MSC+IM) model. A reticulation at time 𝑡𝑀 was modeled using
a unidirectional migration event from time 𝑡𝑀 − 0.01 to 𝑡𝑀 + 0.01
with migration rate 5.0. A total of 100 local coalescent histories
and associated coalescent trees were sampled from each MSC+IM
simulation.

Coalescent trees with branch lengths in coalescent units were
converted into gene trees with branch lengths in expected numbers
of substitutions using equation 3.1 in [14] and scaled mutation rate
𝜃 ∈ {0.02, 0.06, 0.2}. Gene tree branch lengths were then deviated
away from ultrametricity using the approach of Nakhleh et al. [30]
with deviation factor 𝑐 = 2.0.

DNA sequence evolution on each gene tree was simulated under
a finite-sites model of substitutions, insertions, and deletions using
INDELible version 1.03 [12]. Substitutions were simulated under the
General Time-Reversible (GTR) model [34]. GTR model parameter
values were based on the study of [24], where base frequency param-
eters (𝜋𝑇 , 𝜋𝐶 , 𝜋𝐴, 𝜋𝐺 ) were set to (0.3115, 0.1913, 0.3004, 0.1967), re-
spectively, and substitution rate parameters (𝑟𝑇𝐶 , 𝑟𝑇𝐴, 𝑟𝑇𝐺 , 𝑟𝐶𝐴, 𝑟𝐶𝐺 , 𝑟𝐴𝐺 )
were set to (1.2620, 0.1401, 0.2878, 0.3577, 0.3083, 1.0), respectively.
Insertions and deletions were simulated according to a power law
distribution with insertion/deletion rate 0.004, distribution parame-
ter setting 𝑎 = 1.2, and maximum insertion/deletion length of 50
bp. Ancestral sequence length at the root of each gene tree was set
to 300 bp.

The final step of the genomic data simulation procedure was to
concatenate sequences across all loci in a simulation, resulting in
concatenated unaligned sequence length of around 30 kb for each
simulated dataset. True multiple sequence alignments (MSAs) on
all loci were similarly concatenated to obtain the concatenated true
MSA.
Metagenomic dataset simulations. Metagenomic datasets were sim-
ulated by coupling genomic dataset simulations with an additional
metagenomic data simulation procedure. The latter used CAMISIM
[13] with default settings. The CAMISIM pipeline incorporates the
following stage to simulate NGS short read data from simulated
multi-locus sequences for query taxa: the ART read simulator ver-
sion 2.3.6 [18] was used to generate Illumina 2 × 150 bp paired-end
reads from individual genomes with a HiSeq 2500 error profile
which has been trained on the MBARC-26 training dataset [37].
The reads were generated with 10X coverage.
Experimental replication and summary statistics. For each model
condition, the simulation procedure was repeated to obtain 10 repli-
cate datasets. Results are reported across all replicate datasets in
each model condition. Table 1 lists model parameter values and
summary statistics for the model conditions in the simulation study.
Supplementary Table S1 shows statistics on true gene tree discor-
dance in the simulations.
Phylogenetic tree placement methods. The performance of phyloge-
netic tree placement was evaluated using a leave-one-out approach.
For the genomic datasets, the experimental procedure consisted
of the following steps. (1) Unaligned sequences 𝑆 for the set of
taxa Ξ were aligned using MAFFT [21] version 7.305 with default

Table 1:Model parameter values and summary statistics for
each model condition. The 50- and 100-taxon model condi-
tions were named 50.A through 50.I and 100.A through 100.I,
respectively. Each model condition utilized a fixed setting
for the number of taxa (“# of taxa”), the scaled mutation rate
𝜃 (“Mutation rate”), and the number of reticulations (“# of
retic”); additionally, the simulations utilized migration rate
5.0 and indel rate 0.004. Average sequence length of the true
alignment (“True MSA length”), average normalized Ham-
ming distance (“ANHD”) across all pairs of aligned sequences
in the true MSA and “Gappiness” which is the proportion
of the MSA consisting of indels are reported as an average
across all experimental replicates in each model condition
(𝑛 = 10).

Model # of Mutation # of True
condition taxa rate retic MSA length ANHD Gappiness

50.A 50 0.02 0 31158.6 0.0848 0.0365
50.B 50 0.02 5 31113.7 0.0844 0.0352
50.C 50 0.02 10 31113.6 0.0846 0.0356
50.D 50 0.06 0 33612.8 0.2181 0.1070
50.E 50 0.06 5 33685.6 0.2175 0.1085
50.F 50 0.06 10 33476.8 0.2168 0.1042
50.G 50 0.2 0 42157.3 0.4707 0.2867
50.H 50 0.2 5 42064.1 0.4693 0.2865
50.I 50 0.2 10 41524.8 0.4695 0.2786

100.A 100 0.02 0 32030.3 0.0918 0.0641
100.B 100 0.02 5 31938.0 0.0912 0.0599
100.C 100 0.02 10 32022.7 0.0916 0.0632
100.D 100 0.06 0 35872.1 0.2322 0.1623
100.E 100 0.06 5 35987.1 0.2320 0.1648
100.F 100 0.06 10 35892.0 0.2316 0.1641
100.G 100 0.2 0 49321.9 0.4872 0.3919
100.H 100 0.2 5 49745.7 0.4890 0.3956
100.I 100 0.2 10 49507.5 0.4896 0.3936

settings, resulting in an estimated MSA 𝐴. (2) Using the MSA 𝐴 as
input, RAxML [38] version 8.2.12 was used to perform MLE under
the GTR+Γ substitution model and reconstruct the reference tree
𝑇REF. The tree 𝑇REF was outgroup rooted to facilitate topological
comparisons against ground truth (described below); the outgroup
was then discarded and otherwise not utilized in our experiments.
(3) Each taxon 𝜉 ∈ Ξ was chosen as the query taxon 𝑞 in turn. The
aligned sequence 𝑎𝑞 representing 𝑞 was removed from 𝐴 to obtain
the reference MSA 𝐴REF. The leaf edge for the query taxon 𝑞 was
contracted in the reference tree 𝑇REF, and branch lengths of the
resulting tree were re-estimated using FastME [23] analysis of the
reference MSA 𝐴REF; we refer to this tree as the backbone tree
𝑇 . (4) Using the query sequence 𝑎𝑞 , the reference MSA 𝐴REF, and
backbone tree 𝑇 as input, APPLES [4] version 2.0.5 with default
settings was used to place the query taxon 𝑞 into the backbone tree
𝑇 , resulting in the placement tree 𝑃𝑞 . (5) Steps 3 through 5 were
repeated for all other taxa as query.

The experimental procedure for metagenomic datasets required
several changes compared to the genomic experiment procedure.
(1-3) The first three steps of the metagenomic experiment proce-
dure were identical to the genomic experiment procedure’s first
three steps. (4) The query sequence 𝑎𝑞 for the query taxon 𝑞 was
used to to simulate the metagenomic NGS data (see “Metagenomic
dataset simulations” above). (5) We then used metaSpades [32] ver-
sion 3.13.0 with default settings to assemble NGS reads into contigs.
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The assembled contigs served as the sequence 𝑠𝑞 for query taxon
𝑞. The contigs in 𝑠𝑞 were aligned to the reference MSA 𝐴REF using
MAFFT version 7.305 with an “-addfragments” option. (6) Phyloge-
netic placement of the query taxon 𝑞 into the backbone tree 𝑇 was
performed in an identical manner as step 4 in the genomic experi-
ment procedure. (7) The leave-one-out procedure was repeated for
all other taxa in turn.

2.3 Empirical dataset analyses
Dataset from study of Treangen and Rocha [40]. We utilized ge-
nomic sequence data from the study of Treangen and Rocha [40],
which examined the contribution of HGT to protein family expan-
sion in eight groups of prokaryotes. We focused on two genera of
bacteria – Neisseria and Helicobacter – where Treangen and Rocha
[40]’s reported relative genomic contributions of HGT – 89% versus
97%, respectively (cf. Figure 2 in [40]) – enables differential place-
ment experiments. Table 2 lists summary statistics for the empirical
datasets.

As with the simulation study, the empirical study’s experimen-
tal procedure consisted of multiple steps. (1) Open reading frames
(ORFs) were predicted using Prodigal version 2.6.3 [20]. (2) USE-
ARCH version 11.0.667 [10] was then used to align ORFs in each
genome against 400 reference genes which were curated and used in
PhyloPhlAn [2]. (3) A subset of 50 orthologous geneswere randomly
selected as the basis for the multi-locus dataset. Unaligned gene
sequences for each locus were aligned using MAFFT version 7.305
with the “–auto” setting, and MSAs were concatenated across loci
to obtain the reference alignment. (4) Using the reference alignment
as input, RAxML was used to perform phylogenetic MLE under the
GTR+Γ model and obtain a reference tree. The reference tree was
then midpoint rooted. (5) Similar to the simulation experiments, a
leave-one-out approach was used to perform phylogenetic place-
ment of each taxon in turn: the query taxon was pruned from the
reference tree to obtain a backbone tree, and APPLES version 2.0.5
with default settings was used to perform phylogenetic placement
of the query taxon into the backbone tree.
Augmented Neisseria datasets. We also augmented the Neisseria
dataset with synthetic reticulation events and performed leave-one-
out comparative analysis of two datasets. The original or “control”
dataset corresponded to the empirical Neisseria dataset (see steps 1
through 3 above). The control dataset was then augmented with
simulated reticulation events to obtain the “augmented” dataset.
Data augmentation utilized the following procedure. Beginning
with the control dataset, a reference tree was obtained using step 4
above. Then, 10 random reticulations were added to the reference
tree using the same approach as in the simulation study, resulting in
a species network model. We used ms to simulate local coalescent
histories and gene trees for 10 loci under the species network model.
INDELible was then used to simulate gene sequence evolution along
each gene tree, resulting in a set of gene sequences and true MSAs
for each gene. The species phylogeny and gene tree simulations
utilized the same procedures as in the simulation study. Finally, the
simulated multi-locus unaligned sequences were appended to the
empirical multi-locus unaligned sequences, and similarly for the
aligned sequence data. The resulting dataset is referred to as the
augmented dataset.

A companion pair of metagenomic datasets – control and aug-
mented – was also used to perform leave-one-out comparative
analysis. Each metagenomic dataset was obtained using the corre-
sponding genomic dataset (i.e., a control metagenomic dataset was
obtained using the control genomic dataset, and similarly for aug-
mented datasets). Metagenomic NGS data simulation for a query
taxon, metagenome assembly, and query taxon placement proce-
dures followed steps 4 through 7 in the simulation study’s metage-
nomic data experiments.

2.4 Performance assessments
Topological error assessments. Topological comparisons of phylo-
genetic trees were based on the Robinson-Foulds distance. For two
phylogenetic trees𝑇𝑎 and𝑇𝑏 with respective bipartition sets B(𝑇𝑎)
and B(𝑇𝑏 ), the Robinson-Foulds distance 𝛿 (𝑇𝑎,𝑇𝑏 ) is the size of
the symmetric difference |B(𝑇𝑎) − B(𝑇𝑏 ) | + |B(𝑇𝑏 ) − B(𝑇𝑎) |. The
normalized Robinson-Foulds (nRF) distance is obtained by dividing
absolute Robinson-Foulds distance divided by its maximum, which
is 2(𝑛 − 3).

Topological comparisons of phylogenetic networks utilizedNakhleh
[29]’s distance for comparing a pair of phylogenetic network topolo-
gies. For a pair of phylogenetic networks 𝜒𝑎 and 𝜒𝑏 , the distance
calculation corresponds to the number of rooted sub-networks that
appear in 𝜒𝑎 but not 𝜒𝑏 or vice versa. We used PhyloNet [39] to
calculate topological distances between phylogenetic networks.

To assess the topological accuracy of phylogenetic placement
in our study, we adapted the tree-based placement error calcula-
tions used by [4] and [3]. We refer to the adapted calculation as
network delta error (NDE). Let N denote the model network and
N𝑞 is the model network with query taxon 𝑞 deleted (i.e., with 𝑞’s
leaf edge contracted). Following the above notation, the phyloge-
netic placement problem under study concerns the placement of a
query taxon 𝑞 into a backbone tree 𝑇 , resulting in placement tree
𝑃𝑞 . The absolute NDE is defined as Δ(N , 𝑃𝑞) − Δ(N𝑞,𝑇 ). Relative
topological error was assessed using normalized NDE, where the
above absolute NDE calculation is normalized by a baseline NDE
that reflects a null hypothesis where the noise-to-signal ratio is sat-
urated. The baseline NDE was empirically estimated by repeating
the absolute NDE calculation’s placement procedure for a query
taxon 𝑞, but replacing 𝑞’s original sequence with a sequence of the
same length that was chosen uniformly at random (UAR).

Normalized NDE was also used to assess topological accuracy of
our new network placement method, where the backbone tree 𝑇
and placement tree 𝑃𝑞 were replaced with a backbone network and
placement network.
Phylogenetic placement support. In the empirical study, we con-
ducted phylogenetic bootstrap analyses to assess reproducibility
of phylogenetic placement (i.e., estimated placement of a query
taxon 𝑞 into a backbone tree 𝑇 using an input MSA 𝐴, resulting in
a placement tree 𝑃𝑞). The standard bootstrap method was used to
resample 100 bootstrap replicates from the MSA 𝐴. Then, to obtain
a bootstrap tree on each bootstrap replicate, RAxML version 8.2.12
was used to perform maximum likelihood estimation under the
GTR+Γ substitution model. The resulting set of bootstrap trees 𝛽
were then used to calculate phylogenetic support for the placement
tree 𝑃𝑞 , where the support for an edge 𝑒 in 𝑃𝑞 is the proportion of
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Table 2: Summary statistics for empirical datasets. Genomic sequence data were obtained from Treangen and Rocha [40]’s study
of HGT in eight groups of prokaryotes. Each dataset consisted of 8 taxa from one of two genera – either Neisseria or Helicobacter
– where the latter exhibited relatively higher genomic contributions of HGT compared to the former (“Contribution of HGT”),
based on the findings of Treangen and Rocha [40]. Average unaligned genome sequence length in kb (“Avg genome length”),
and the reference MSA’s length in kb (“Reference MSA length”) and average normalized Hamming distance (“ANHD”) are also
listed.

Contribution of HGT (%) Avg genome Reference
Clade Contribution of HGT (%) length (kb) MSA length (kb) ANHD

Neisseria 89 2201.7 80.1 0.159
Helicobacter 97 1621.8 77.7 0.216

bootstrap trees 𝛽 that display 𝑒; support for the placement of 𝑞 is
based on the support for the edges incident on 𝑞’s leaf edge.

2.5 NetPlacer, a new phylogenetic network
placement algorithm

As an alternative to phylogenetic tree placement, we introduce Net-
Placer – a new computational framework for phylogenetic network
placement of genomes and metagenomes. The current version of
NetPlacer is version zero. A high-level flowchart diagram of Net-
Placer is provided in Supplementary Figure S1.

NetPlacer utilizes a summary-based approach, where gene trees
are used as input to “summarize” multi-locus sequence data. Net-
Placer is thus used as part of a multi-stage computational pipeline,
where gene trees are estimated in an upstream stage and then used
as input to downstream phylogenetic placement. Summary-based
placement offers the potential for improved scalability relative to
sequence-based placement, but requires simplifying assumptions
concerning gene tree estimation accuracy.

NetPlacer performs statistical optimization of placements un-
der the multi-species network coalescent (MSNC) model [27, 44].
Whereas the multi-species coalescent (MSC) model [14, 22] ac-
counts for genetic drift and lineage coalescence during strictly
vertical evolutionary descent, the MSNC model generalizes the
MSC model to also account for horizontal evolutionary processes
in the form of network reticulations.

Under both the MSC and MSNC models, summary-based phylo-
genetic MLE requires calculation of model likelihood for a species
phylogeny given a set of gene trees. [8] and [44] introduced model
likelihood calculations under these respective models, where topo-
logical information from the latter is used as input. The calcula-
tion is defined as follows. Let 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑘 } be the set of
input gene tree topologies for summary-based inference. Following
the definitions in Yu et al. [44], one-shot summary-based infer-
ence of a species network maximizes the MSNC model likelihood
L(𝜓, 𝜆,𝛾 |𝐺) = ∏

𝑔∈𝐺
P(𝑔|𝜓, 𝜆,𝛾).

We begin with the definition of the phylogenetic network place-
ment problem that NetPlacer addresses. The problem input consists
of: a backbone network 𝜒 = (𝜓, 𝜆,𝛾) with topology𝜓 = (𝑉 , 𝐸) for
a set of reference taxa 𝑆 , a query taxon 𝑞, and a set of gene trees𝐺𝑞

and locus alignments𝐴𝑞 for taxa 𝑆 ∪{𝑞}. The output is a placement
network 𝑃𝑞 that is obtained by attaching 𝑞’s leaf edge to an existing
edge in the backbone topology𝜓 , where the placement optimizes a
phylogenetic criterion. NetPlacer’s phylogenetic criterion adapts

one-shot MSNC likelihood maximization to the network placement
problem:

argmax
𝜓 ′∈{𝑃𝑞 :𝑒𝑞 attaches to 𝑒∈𝐸 and results in 𝑃𝑞 }

argmax
𝜆′,𝛾 ′

L(𝜓 ′, 𝜆′, 𝛾 ′ |𝐺)

(1)
We nowdescribe theNetPlacer placement algorithm. Pseudocode

for the NetPlacer MLE algorithm is shown in Algorithm 1. To begin,
multi-locus data for reference taxa 𝑆 consists of the following: a
set of per-locus MSAs 𝐴, a set of estimated gene trees 𝐺 , and an
estimated species network that serves as the backbone network 𝜒 .
In our experiments, a backbone network 𝜒 was estimated using
PhyloNet version 3 with default settings to perform summary-based
maximum MSNC likelihood optimization. The problem input also
includes a de novo assembled metagenome sequence 𝑠𝑞 for query
taxon. The query taxon’s sequence 𝑠𝑞 is aligned using locus MSAs
𝐴, resulting in augmented locus MSAs 𝐴𝑞 ; we used MAFFT version
7.305 with default settings for this purpose. The augmented locus
MSAs are then used to either perform one-shot gene tree estima-
tion or place 𝑞 into gene trees𝐺 , resulting in augmented gene trees
𝐺𝑞 ; our experiments used FastTree version 2.1.10 to estimate the
former. Finally, maximum likelihood optimization under the MSNC
criterion in equation 1 is used to place 𝑞 into 𝜒 . PhyloNet’s local op-
timization heuristics are used to perform the inner optimization of
continuous parameters 𝜆′ and 𝛾 ′, which includes the MSNC model
likelihood calculation as described by Yu et al. [44]. Exhaustive
search is used to perform the outer optimization of the network
topology𝜓 ′.

2.6 NetPlacer experiments
We conducted additional simulation study experiments to assess
NetPlacer’s performance. We utilized the previously described
metagenomic data simulation procedures (see “Metagenomic dataset
simulations” above) to simulate 8-taxon datasets with either zero
or one reticulation and 50 loci, where each locus had sequence
length of 1 kb. Also, the placement experimental procedures used
elsewhere in our simulation study (steps 1 through 7 in second
paragraph under "Phylogenetic tree placement methods" above)
were used in our network placement experiments, where the loci
used for phylogenetic placement were restricted to the three longest
contigs in an assembled metagenome. Model condition parameter
settings and summary statistics for simulated datasets are shown
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Algorithm 1: Pseudocode for NetPlacer algorithm.
Data: Backbone phylogenetic network 𝜒 = (𝜓, 𝜆,𝛾), set of

MSAs 𝐴REF and set of gene trees 𝐺REF for reference
taxa, query sequence 𝑠𝑞

Result: Placement network 𝑃𝑞
𝐴𝑞 ← EstimateAugmentedMSAs(𝐴REF, 𝑠𝑞)
𝐺𝑞 ← EstimateAugmentedGeneTrees(𝐺REF, 𝐴𝑞)
maxLikelihood←lowest value ;
for each directed edge 𝑒 ∈ 𝜓 do

𝜓 ′ ← Add an intermediate node(𝑖) in 𝑒 and attach 𝑞 as a
leaf node to create the edge (𝑖, 𝑞) ;

𝜆′, 𝛾 ′,L(𝜓 ′, 𝜆′, 𝛾 ′ |𝐺𝑞) ← CalGTProb(𝜓 ′,𝐺𝑞) ;
/* calculated using expression 1 and

PhyloNet’s CalGTProb implementation */

𝜒 ′ ← (𝜓 ′, 𝜆′, 𝛾 ′) ;
currL← L(𝜓 ′, 𝜆′, 𝛾 ′ |𝐺𝑞) ;
if currL > maxLikelihood then

𝜒𝑝 ← 𝜒 ′ ;
𝑚𝑎𝑥𝐿 ← 𝑐𝑢𝑟𝑟𝐿 ;

end
end
return 𝜒𝑝 ;

in Table 3. NetPlacer performance was assessed based on topologi-
cal error (using the normalized NDE calculation described above),
computational runtime, and peak main memory usage.

2.7 Computing facilities
Experiments in our studywere conducted using theHigh-Performance
Computing Center at Michigan State University (MSU), which is
hosted and maintained by the MSU Institute for Cyber-Enabled
Research. All experiments were conducted on the amd-20 cluster
which is comprised of compute nodes with 2.595 GHz AMD EPYC
7H12 processors and 0.5, 1, or 2 TB RAM per compute node.

2.8 Data availability
The datasets and scripts used in our study are available under open
copyleft licenses at https://gitlab.msu.edu/liulab/impact-of-non-
tree-like-evolution-on-phylogenetic-placement.

3 RESULTS
3.1 Simulation study
Performance evaluation of tree placement methods. Figure 1 and
Supplementary Table S2 show the impact of reticulations on the
topological error of tree placement using genomes.We first consider
the 50-taxon simulations with the lowest mutation rateℎ = 0.02. For
the simulation condition with 0 reticulations, evolution is strictly
tree-like. It is precisely on the 0-reticulation simulation conditions
that we observed the highest placement accuracies throughout our
study. Consistent with the simulation studies of Balaban et al. [4]
and Balaban et al. [3], normalized delta error averaged 6.5%, which
is far from saturation. As the number of reticulations increases from
0 to 5, normalized topological error increased by multiple factors –
over half an order of magnitude, on average. Then, as the number

of reticulations doubled again from 5 to 10, normalized delta error
topped 50% on average. On 50-taxon simulation conditions with
higher mutation rates, a similar pattern was observed. Increasing
evolutionary divergence was associated with relatively small in-
creases in observed topological error, compared to the effect of
increasing numbers of reticulations.

A companion set of experiments involved tree placement of
metagenomes (Figure 1 and Supplementary Table S2). On the 50-
taxon simulation condition with the lowest mutation rate ℎ = 0.02
and 0 reticulations, normalized topological error of metagenome
placements increased dramatically compared to genome placements
– amounting to an increase of around an order of magnitude, on
average. As the evolutionary simulations became more non-tree-
like – moving from 0 to 5 to 10 reticulations – we consistently
observed concomitant increases in normalized topological error of
metagenome placements, which mirrored the experimental find-
ings for genome placements. At the high end of 10 reticulations,
normalized delta error became as large as 70% to 75%, which begins
to approach error saturation. As in the genome placement experi-
ments, increasing mutation rates – to 0.06 and 0.2 – had a relatively
smaller effect on metagenome placement error, compared to the
effect of increasing reticulations.

Figure 2 and Supplementary Table S3 show results for tree place-
ment error outcomes on the 100-taxon simulation conditions. Over-
all, normalized topological error outcomes on 100-taxon simulation
conditions were qualitatively similar to 50-taxon conditions. Across
different data types (genomic vs. metagenomic) and mutation rates,
we observed the smallest placement error on 0-reticulation condi-
tions, and increasing reticulations consistently resulted in increased
placement error. The impact of increasing reticulations tended to
be larger than those observed for mutation rate and dataset size in
terms of number of taxa. Finally, metagenome placement error was
multiple factors larger than genome placement error, and the rela-
tive influence of other experimental factors became more difficult
to discern as metagenome placement error approached saturation –
with maximum normalized delta error of 85% or so.
Performance evaluation of NetPlacer, a new network placementmethod.
Topological accuracy assessments are shown in Figure 3. For strictly
tree-like simulations (i.e., 0 reticulations), network placement re-
turned normalized delta error of around 27%, on average. On non-
tree-like simulation with a single reticulation, NetPlacer returned
average normalized delta error of around 45%.

NetPlacer’s computational runtime and main memory usage are
shown in Table 4. On tree-like simulations, NetPlacer’s runtime
amounted to a few minutes per placement on average. In com-
parison, NetPlacer’s per-placement runtime increased from a few
minutes to half an hour, on average – an increase of around half an
order of magnitude. Main memory usage increased by 30% as well,
but was under 1 GiB on average – well within the scope of modern
personal computers.

3.2 Empirical study of tree placement methods
Our empirical study included reproducibility assessments using
genomic sequence data from the study of Treangen and Rocha [40].
HGT was the driving factor for 97% of Helicobacter protein family
expansions, versus 89% in Neisseria, indicating a differential role

https://gitlab.msu.edu/liulab/impact-of-non-tree-like-evolution-on-phylogenetic-placement
https://gitlab.msu.edu/liulab/impact-of-non-tree-like-evolution-on-phylogenetic-placement
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Table 3: Model conditions and summary statistics for the NetPlacer experiments in the simulation study. Each model condition
included 10 experimental replicates. True gene tree discordance was assessed using nRF distance, and the average discordance
is reported across a model condition (𝑛 = 10). For each model condition, gene tree estimation error was assessed using using
average nRF distance between an estimated gene tree and true gene tree, and the average error is reported across a model
condition (𝑛 = 10).

Model # Taxa Mutation #Reticulations Migration rate Seq lengths ANHD True gene tree Gene tree
condition rate discordance estimation error

8.A 8 0.2 0 5.0 50 kb 0.6434 0.20 0.26
8.B 8 0.2 1 5.0 50 kb 0.6435 0.28 0.27

Figure 1: Phylogenetic tree placement error in the 50-taxon
simulation experiments.Results are reported for genomic and
metagenomic data simulations with a mutation rate of either
0.02, 0.06 or 0.2 and either 0, 5 or 10 reticulations. APPLESwas
used to perform phylogenetic tree placement. Phylogenetic
placement error was assessed using normalized delta error
(NDE). Average and standard error bars are shown for each
model condition (𝑛 = 10).

of HGT in genome evolution within the two clades (cf. Figure 2 in
[40]).

One set of experiments used bootstrap resampling to evaluate
phylogenetic placement support for query taxa in Helicobacter ver-
sus Neisseria. Consistent with Treangen and Rocha [40]’s relative
findings of HGT in Neisseria and Helicobacter – less for the former
versus the latter – we find that reproducibility of tree placement for
Neisseria genomes exceeds that of Helicobacter genomes – ∼ 85%

Figure 2: Phylogenetic tree placement error in the 100-taxon
simulation experiments. Figure description and layout are
otherwise identical to Figure 1.

Table 4:NetPlacer experiment results: runtime andmainmem-
ory usage. Each simulation condition included 8 taxa and
either 0 or 1 reticulation. Runtime and peak main memory
utilization for a single query placement are reported as an
average for each model condition (𝑛 = 10).

# Reticulations Run time (Minutes) Memory usage (MB)

0 6.17 658.98
1 33.31 858.53



BCB ’23, September 3–6, 2023, Houston, TX, USA Alamin and Liu

Figure 3:NetPlacer experiment results: phylogenetic placement
error. The NetPlacer method was used to perform phyloge-
netic network placement of aligned metagenomes. Phyloge-
netic placement error was assessed using normalized delta
error. Each simulation condition included 8 taxa and either 0
or 1 reticulation. Average and standard error bars are shown
for each model condition (𝑛 = 10).

for the former versus ∼ 50% for the latter, as measured using phy-
logenetic bootstrap support for query taxon placement (Figure 4).
We note a key distinction with respect to the rest of the study: the
analyses utilized reproducibility assessments, rather than direct
accuracy assessments, and our comparative findings are based on
differential HGT reported by [40] in two clades under study. The
choice is a practical one due to the lack of explicit ground truth.

Another set of experiments evaluated reproducibility using aug-
mented empirical dataset analyses. Two forms of augmentation
were used. (1) The first consisted of empirical genomic dataset
augmentation with simulated HGT events, where the Neisseria-
estimated phylogeny was augmented with simulation of additional
reticulations. We will refer to original empirical dataset as "control"
and simulation-augmented dataset as "augmented". (2) The second
consisted of companion metagenomic datasets, where control or
augmented genomic datasets were used to perform metagenomic
data simulations and analysis. The latter followed the procedures
used for simulating metagenomic data in the simulation study. Re-
producibility of the original empirical estimate serves as a “control”
baseline. Artificial reticulations are then added using a simulated
data augmentation procedure, resulting in a hybrid dataset. Dataset
augmentation with simulated reticulation events has the expected
effect of reducing tree placement reproducibility. We saw a reduc-
tion of about 10% on genomic data (Figure 5). A smaller reduction
was seen on metagenomic data, as compared to the genomic data
analyses. We attribute the finding to lower overall reproducibility
due to the added complexity of metagenomic data processing and
analysis, where performance assessment comparisons tend to be-
come more muted as error approaches the saturation point. The
finding is consistent with the genomic versus metagenomic data
comparisons in simulation study.

4 DISCUSSION
Throughout our performance study, we observed a strong impact
of reticulate evolution on topological accuracy and/or repeatabil-
ity of phylogenetic tree placement. The finding was consistently
observed across the model conditions in our study, which spanned

Figure 4: Empirical study: bootstrap analysis results. Phylo-
genetic bootstrap support was calculated for placement trees
in the empirical study. Each bootstrap analysis utilized 100
bootstrap replicates. Each clade (i.e., Neisseria and Helicobac-
ter) has 8 taxa.

Figure 5: Hybrid study: bootstrap analysis results. The hy-
brid genomic and metagenomic datasets were obtained using
augmentation of the empirical study datasets (see Methods
section for details). Phylogenetic bootstrap support was cal-
culated for placement trees using 100 bootstrap replicates.

a range of dataset sizes in terms of number of taxa, evolutionary
divergence, and complexity of model phylogeny in terms of num-
ber of reticulations. Consistent outcomes were also observed in the
empirical study. We interpret the finding to be primarily due to the
violation of the simplifying assumption of tree-like evolution that
is made by state-of-the-art phylogenetic placement methods. As
the number of reticulations increases, the model violation grows
stronger and so too did topological error of tree-based placements
in our simulation study experiments. The impact of increasing num-
bers of reticulations on phylogenetic placement outstrips that of
other factors such as evolutionary divergence and dataset size. And
yet the amount of reticulations in our experiments and analyses is
expected to be an underestimate for most microbial genomic and
metagenomic studies. Depending on the group(s) under study, the
gap may amount to multiple orders of magnitude.

The simulation study experiments yielded a few comparisons
worth noting. We observed an important difference between the
genome placement and metagenome placement experiments: in-
creasing reticulations tended to yield smaller absolute increases in
normalized delta error in the latter versus the former. We attribute
this difference to the higher placement error observed in the latter
versus the former. Performance comparisons at or near error satu-
ration are especially problematic, where metagenome assembly and
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processing error becomes so large as to swamp downstream phy-
logenetic signal for phylogenetic placement and other subsequent
computational tasks. Another difference concerned the 50- and 100-
taxon experiments. On comparable pairs of model conditions that
differed only in terms of the number of taxa, the 0-reticulation con-
ditions yielded tree placement errors that were somewhat higher on
the latter compared to the former; however, the reverse was true on
the 5- and 10-reticulation model conditions. One contributing factor
is the slightly elevated ANHD of the latter versus former, which
is as expected under the simulation models and procedures (i.e.,
increasing dataset size in terms of number of taxa also increases the
sum of branch lengths in the model phylogeny). Slightly greater
sequence divergence may increase the noise to signal ratio in the
zero-reticulation simulation experiments. The non-tree-like simu-
lations (with 5 or 10 reticulations) add extra complicating factors
of model mis-specification and varying model complexity.

Using 8-taxon simulations with either no reticulations or a sin-
gle reticulation, we studied the performance of NetPlacer, our new
method for phylogenetic network placement of aligned genomes
and metagenomes. NetPlacer’s placement error was somewhat
higher for datasets with non-tree-like evolutionary histories, as
compared to those with strictly tree-like histories. While both are
far from error saturation, our study’s other findings suggest that
simulations with more reticulations would see further elevation
of NetPlacer’s placement error. One factor is worth noting: the
NetPlacer experiments added a layer of complexity that is not
present in the rest of our study: estimated gene tree error. This
additional factor likely contributed to more challenging placements.
We surmise that more accurate gene trees may yield more accurate
summary-based phylogenetic placements.

But a bigger concern with network placement is computational
scalability. As with other state-of-the-art statistical methods for
estimating phylogenetic networks from genomic and multi-locus
sequence data, scalability on non-trivially sized datasets is a ma-
jor challenge. The experimental outcomes clearly demonstrate the
tradeoff at hand. A more complex model is a better fit for the data
and can bring topological accuracy improvements, but comes at
the significant cost of greatly increased computational runtime
requirements. The tradeoff motivates the need for scalability en-
hancements as part of future research. This is a primary reason
why our new method is referred to as NetPlacer version 0. The
version number reflects a proof-of-concept status. Later versions
require new algorithmic techniques to enhance scalability by multi-
ple orders of magnitude (and see below for relevant future research
directions).

A brief aside: we caution that it is difficult to make direct com-
parisons between tree placement methods and network placement
methods. Differences in model complexity (i.e., a tree versus a
network with one or more reticulations) greatly complicate head-
to-head evaluation. Similar situations arise in other phylogenetic
contexts (e.g., comparison of non-binary trees versus binary trees).
Another key difference between these method classes is worth
noting as well. The tree placement methods under study use a con-
catenation approach, whereas NetPlacer uses multi-locus statistical
analysis that directly accounts for local gene tree discordance.

5 CONCLUSIONS
In summary, the impact of non-tree-like evolution on tree place-
ment accuracy of genomes and metagenomes was confirmed and
quantified using in silico simulations and empirical data analyses.
We also introduced a new phylogenetic network placement method:
NetPlacer version 0. We evaluated NetPlacer’s performance us-
ing simulated benchmarking datasets, and we found that relaxing
the simplifying assumption of tree-like evolution came at a cost –
namely, computational overhead.

We conclude with some thoughts on future research directions.
In our opinion, the foremost need concerns new network placement
method development. NetPlacer version 0 provides an initial proof
of concept, but scalability-enhancing algorithmic techniques are
clearly needed. Particularly salient is one of our past contributions
to phylogenetic inference and learning using large-scale biomolec-
ular sequence datasets: FastNet, a phylogenetic divide-and-conquer
algorithm for fast and accurate species network reconstruction
[16]. Placement of query taxa into “sub”-networks inferred on sub-
problems – as represented by FastNet’s subproblem decomposition
graph – may prove more tractable than placement into the full
dataset, which is larger and more divergent than any individual
subproblem. Also, phylogenetic network placement using multi-
locus sequence data that integrates over the distribution of all gene
tree placements under a maximum likelihood or other statistical cri-
terion would provide an alternative to NetPlacer’s summary-based
approach. As above, the primary anticipated challenge is scalability.
One possible solution would be to adapt Bryant et al. [7]’s dynamic
programming calculation to this task.
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