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ABSTRACT

Al-generated image (AIGI) detection and source model attribution remain central
challenges in combating deepfake abuses, primarily due to the structural diversity
of generative models. Current detection methods are prone to overfitting specific
forgery traits, whereas source attribution offers a robust alternative through fine-
grained feature discrimination. However, synthetic image attribution remains con-
strained by the scarcity of large-scale, well-categorized synthetic datasets, limiting
its practicality and compatibility with detection systems. In this work, we propose
a new paradigm for image attribution called open-set, few-shot source identifi-
cation. This paradigm is designed to reliably identify unseen generators using
only limited samples, making it highly suitable for real-world application. To this
end, we introduce OmniDFA (Omni Detector and Few-shot Attributor), a novel
framework for AIGI that not only assesses the authenticity of images, but also
determines the synthesis origins in a few-shot manner. To facilitate this work, we
construct OmniFake, a large class-aware synthetic image dataset that curates 1.17
M images from 45 distinct generative models, substantially enriching the founda-
tional resources for research on both AIGI detection and attribution. Experiments
demonstrate that OmniDFA exhibits excellent capability in open-set attribution
and achieves state-of-the-art generalization performance on AIGI detection. The
integration of the new task enhances detection performance and offers an efficient
and scalable path toward practical adoption.

1 INTRODUCTION

Generative models now forge photorealistic images that defy visual scrutiny, collapsing the bound-
ary between authentic and synthetic. The growing threat of widespread misuse requires operational
methods to not only distinguish Al-generated images (AIGI) from real ones but also trace their gen-
erative origins, which is critical for understanding model-specific vulnerabilities. However, existing
tools for detecting and analyzing synthetic content struggle to match the pace of advancing genera-
tion methods. This poses a challenge to such countermeasures in an open-set scenario, where they
must handle data from generative models unseen during training, necessitating robust generalization
ability and strong fine-grained discrimination capability.

Current detection methods aim to extract universal artifacts as discriminative features, yet a com-
mon practice (Zhu et al., [2023) of training on data from a single generator leads to overfitting on
model-specific biases and ignores feature diversity, ultimately impairing the generalization ability.
The coarse-grained nature of the binary classification task fundamentally limits its ability to cap-
ture the rich variety of features. In contrast, image attribution presents itself as a broader and more
fine-grained task for forgery analysis. However, it remains in its early stages and far from settled,
primarily due to two limitations. First, large-scale, well-categorized attribution datasets are still
scarce. Existing synthetic image datasets (Wang et al., [2020; Bird & Lotfi, [2024)) either originate
from a relatively small number of generators, or categorize images based on non-architectural char-
acteristics, which are unsuitable for model attribution. Second, current image attribution paradigms
lack practicality. The two commonly used tasks each have significant shortcomings: closed-set iden-
tification can only trace images back to generators seen during the training phase, while open-set
rejection simply categorizes all samples from unknown sources into a single unknown class, which
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Figure 1: Comparison of task-specific pipelines for synthetic analysis. Our new attribution paradigm
(d) offers dramatically improved scalability over previous works (b) and (c).

impedes further investigation into the distinctions among them. Overall, existing AIGI attribution
methods are constrained to identifying only known generator types. Adapting these approaches to
incorporate new categories necessitates retraining the entire network, which is resource-intensive
and consequently makes them impractical for real-world deployment.

In this work, we investigate image attribution from a novel perspective by identifying the sources of
generated images in an open-set scenario. We observe that generative models produce images with
pronounced and model-specific biases, which can be effectively learned from a minimal number of
support samples. To leverage this insight, we introduce the task of open-set few-shot identification,
as depicted in Figure [T] (d). This task establishes a new paradigm for image attribution, which
challenges models to identify the specific biases of unknown generators using only a few reference
samples. We argue that this out-of-distribution identification task is more reliable and robust for
evaluating model generalization, precisely because it demands the model to quantify, rather than
merely identify, model-specific biases. The few-shot-based setting makes this new paradigm highly
applicable and scalable. Its traceability for new generative models requires only a minimal number
of samples, which significantly reduces the operational costs.

To facilitate our work, we begin by addressing

the lack of a suitable dataset. To this end, we  Table 1: Comparison with existing AIGI datasets.
propose OmniFake, a large-scale, class-aware “Distinct” indicates that each generator in the
dataset specifically designed for multi-class at-  {ataset has a distinct architecture.

tribution. We collect generated images from 45

diSi';il’lCt generative models s.panning GAN:s, dif- AIGI Dataset Generators ~ Fake Images ~ Distinct
fu§10n m(?dels, autoregressive rpodels, and hy- CNNSpot 1 362K v
brid architectures. We maintain a substantial DiffusionForensics 11 439K v
collection of synthetic images for each class, _ Genlmage 8 1.33M X
ensuring comprehensive coverage and diver- Unwerzarltffilzi])etea éz 24 28115/[ i
sity. OmniFake significantly surpasses prior AIGCBenchmark 17 360 K X
datasets (Zhu et al} 2023} [Zhong et al., [2024) ImagiNet 8 100 K v
in both model diversity and up-to-date cover- WildFake 23 255 M X
ol y anc up g DRCT-2M 16 2.00M x
age, with a clear comparison presented in Ta- OmmiFake 5 REEY 7

ble[I] The defining feature of OmniFake is its
strict enforcement of model heterogeneity. In
contrast to previous datasets, where differences in weights, sampling steps, or adaptation modules
often resulted in highly similar forgery clues, our dataset effectively supports the critical task of
image attribution. This significant advancement substantially enriches the fundamental resources
available for both AIGI detection and attribution research.

Leveraging our comprehensive dataset, we propose OmniDFA (Omni Detector and Few-shot Attrib-
utor), an innovative framework that simultaneously addresses authenticity detection and open-set
few-shot identification. We adopt a dual-path architecture that captures image characteristics from
both low-level and high-level perspectives to effectively capture fine-grained details while main-
taining global representations. We employ supervised contrastive learning (Khosla et al., 2020) to
effectively isolate and quantify model-specific biases. This approach encourages the learning of
a more comprehensive forgery subspace that incorporates shared fake features, thereby improving
generalization capability. To constrain the position of authentic data within the feature space, we
specifically process the real images by employing center loss (Wen et al., [2016) to establish a com-
pact centroid and learning a decision boundary that optimally encloses the data.
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Figure 2: Samples of the OmniFake dataset. Our dataset covers a broad spectrum of generative
models, with real images sourced from multiple datasets for comprehensive coverage.

Experimental results show that OmniDFA achieves state-of-the-art performance on our proposed
OmniFake dataset, surpassing previous method by 5.83% in authenticity detection accuracy. Addi-
tionally, it exhibits robust zero-shot detection performance across various benchmarks, confirming
the generalizability and effectiveness of our approach.

Our contributions are summarized as follows:

* We establish open-set few-shot identification as a previously unexplored task for evaluating
model generalization, which better matches practical constraints.

* We construct the OmniFake dataset, a large-scale, class-aware synthetic image dataset that
enables in-depth study of model-specific patterns for image attribution.

* We propose OmniDFA, a novel AIGI analyzer that integrates authenticity detection with
open-set source identification in a cohesive framework.

* Extensive experiments demonstrate the effectiveness of our OmniDFA, which significantly
outperforms current state-of-the-art methods in both detection and attribution tasks.

2 CONSTRUCTION OF OMNIFAKE

As provided in Table [T} most million-scale datasets do not emphasize the uniqueness of each cate-
gory, collecting data from generators with similar model architectures. To support our investigation
in multi-class attribution, we carefully construct a dataset comprising fake images sampled from a
diverse set of models. For a visual overview, a snapshot of our dataset is shown in Figure[2]

2.1 FAKE IMAGE COLLECTION

To ensure comprehensive data diversity, we gather fake images through three distinct channels: (1)
established datasets and benchmarks, (2) community-shared collections, and (3) synthetic images
generated using open-source models. We curate data from open-source datasets including Genlmage
[2023), WildFake 2025)), and MPBench 2023). The final collec-
tion of this channel comprises images produced by 19 distinct generators spanning GANS, diffusion
models, and VAEs. To enrich our dataset with data from closed-source models, we selected 8 syn-
thetic dataset on Hugging Face (HuggingFacel, 2016)), such as DALLE3 2023), Ideogram
(IdeogramAl, 2023)), and Midjourney V6 (Midjourney| 2021). We also select 18 state-of-the-art
open-source models from Hugging Face or their official repositories, generating corresponding im-
ages based on a comprehensive collection of prompts. These include flow-matching models such

as Hunyuan-DiT 2024) and SD3-Medium (Esser et al., [2024), as well as autoregressive
models like Janus-pro (Chen et al., 2025b), BAGEL (Deng et al., 2025), Show-o 2025).

Additionally, we incorporate several cutting-edge multimodal unified models that utilize diffusion-
based decoders for high-fidelity image generation, including OmniGen2 20254), Ovis-Ul

(Wang et al.| [2025a), and UniWorld-V1 2025), among others. Details on the image gen-

erators and the synthesis pipeline are provided in Appendix [C]
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Figure 3: Overview of OmniDFA. Our dual-path architecture captures both low-level and high-level
image features, balancing fine details and global representations. We use contrastive learning to
enhance feature discrimination and apply sphere center loss to compactly cluster real samples.

2.2 REAL IMAGE COLLECTION

To establish a comprehensive benchmark for image forensics research, we curate a diverse col-
lection of authentic images from 10 publicly available datasets spanning multiple domains. We
carefully curate our dataset from two distinct categories: (1) Large-scale raw datasets including
LAION (Schuhmann et al. 2021)), WuKong (Gu et al.l [2022), and CC12M (Changpinyo et al.|
2021])), providing vast amounts of in-the-wild data; (2) Carefully constructed datasets such as Ima-
geNet (Russakovsky et al.l [2015) and COCO (Lin et al., [2014), offering high-quality images from
specific domains. This approach ensures a broad and representative set of real images, facilitating
robust evaluation of forensic techniques across varied contexts.

2.3 ANALYSES OF OMNIFAKE

The OmniFake dataset comprises a total of 2.34 M images in the training set, with a balanced
distribution of 1.17 M real images and 1.17 M synthetic images. The synthetic images originate
from 45 distinct generative models that span a broad spectrum of architectures. Sample images from
our dataset are illustrated in Figure 2] To ensure sufficient intra-class diversity, we guarantee that
each synthetic image category in the training set contains at least 20 K samples. We also construct
a separate test set comprising 90 K synthetic images, with 2 K samples per category. We include an
equal number of real images, resulting in a balanced test set of 180 K images in total. OmniFake
comprises images from cutting-edge generative models and features structural heterogeneity across
different categories, making it the most extensive dataset for the attribution task. It provides a
rich foundation for investigating the impact of model architectures on generalization, which may
contribute to the advances in both AIGI detection and attribution research.

3 METHOD

In this section, we present our OmniDFA in detail, which is a novel Al-generated image (AIGI)
framework that jointly addresses authenticity detection and few-shot open-set identification. Fig-
ure [3]illustrates the overall architecture of our proposed method.

3.1 MULTI-LEVEL FEATURE EXTRACTOR

Since current generative models are able to produce high-resolution images, resizing inputs to a
fixed scale as in prior studies (Zhu et al.| [2023) tends to degrade fine-grained details. Conversely,
maintaining the original resolution without resizing often results in information loss due to com-
putational constraints or limitations of model input. To address this problem, we propose a dual
sampling strategy that captures both local and global features, thereby maximizing the retention of
critical visual information across varying image resolutions.

As illustrated in Figure 3] OmniDFA processes a given image x; through two complementary path-
ways: (1) an aspect-ratio-preserving resize, where the shorter edge is scaled to the target input size
followed by center cropping, to retain holistic global features; and (2) direct high-resolution crop
from the original image, which maximally preserves fine-grained textures and local details. The
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distinct global and local features from the high-level and low-level branches are channel-wise con-
catenated and subsequently processed through a multi-layer perceptron (MLP) to produce the final
feature representation fy(x;), where 6 denotes the set of all trainable parameters in the network.

3.2 SUPERVISED CONTRASTIVE LOSS FOR ATTRIBUTION

To learn a highly discriminative and expressive feature representation for image attribution, we em-
ploy supervised contrastive learning and subdivide fake samples into fine-grained categories based
on their generative sources. Meanwhile, all authentic samples remain grouped under a single class
and are jointly trained with fake ones. This separation guides the model to distribute features of
different forgery types across distinct regions in the embedding space. Thus, unseen fake samples
are likely to fall between these regions, as they share partial artifacts with known forgery types.

Supervised contrastive learning optimizes feature embedding spaces through simultaneously mini-
mizing intra-class variations while maximizing inter-class separability. Specifically, for a batch of N
samples {x1, Xa, ..., Xy } with known categories, we first extract their features fy(x;) and then ap-
ply L2-normalization to obtain the corresponding vectors z; = fy(x;)/||fo(x:)||2- The supervised
contrastive loss can be formulated as follows:

r :i -1 Z Io exp(z; - zp/T) 0
= 2P| Y

pEP(3) aeA(i) ©XP(Zi  2a/T)’

where P(i) denotes the set of samples in the same class with x;, A(7) represents all other samples
in P(i) except p, and 7 denotes the temperature factor that scales the similarity scores.

3.3 SPHERE CENTER LOSS WITH LEARNABLE BOUNDARY

Considering the substantial quantity of real images may lead to feature dispersion in the embed-
ding space, we implement a sphere center loss specifically for the real category to better regularize
its feature distribution and enhance clustering. To ensure compatibility with the feature space of
contrastive training, we directly apply the center loss on the normalized vector z;, formulated as:

1
Leen = 7 > 10—z, ¢, )
pEP,

where c, is a learnable L2-normalized vector representing the feature center of the real class, and
P, denotes the set of all real samples in the current mini-batch. By unifying these constraints, we
formulate the final learning objective with the scaling factor A:

L= Lsup + )\‘Ccen- (3)

To enable direct measurement of image authenticity, we introduce a boundary threshold v defined
as the maximum angular separation between real image features and the real center. We compute
the higher bound using Tukey’s fences and update it via momentum-based adjustment:

YT =By + (1= 8)(Qs + 1.5(Qs — Q1)), 4)

where Q1 and Q3 are the first and third quartiles of the deviation distribution, and 3 is the momentum
coefficient controlling the update strength. This update does not involve backpropagation but is
performed numerically based on real sample inputs. During detection, samples exhibiting angular
separation beyond + are classified as synthetic.

4 EXPERIMENT

In this section, we first present involved benchmarks and our experimental configurations. We then
conduct comprehensive comparisons between OmniDFA and several state-of-the-art synthetic image
detection and attribution models, evaluating performance on both authenticity discrimination and
open-set fake category identification. We primarily focus on evaluating the zero-shot capability of
models, examining their performance across unseen categories.
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Table 2: Results of open-set few-shot identification on OmniFake. Each task is evaluated with 5
support samples. We report accuracy in percentage, with the best results highlighted in boldface.

OmniFake Dataset | Averages (%)
Open-Set Few-Shot Classifiers Part I Part 1L Part III g 7
5-way 15-way | 5-way 15-way | 5-way 15-way | 5-way 15-way
DNA-Det (Yang et al.|[2022) 4393  21.85 | 4440 2336 | 46.13 2564 | 4515 23.62
CPL (Sun et al.|[2023) 42.18 2322 | 43.88 2447 | 51.17 3400 | 4574  29.46

SiameseNet (Abady et al.|[2024) | 41.64  27.66 | 43.88  28.86 | 46.42 31.85 | 4398  29.46
UniversalAttr (Cioni et al.[[2024) | 48.85  29.17 | 52.11  30.35 | 56.27 3841 52.41 32.64
ComFor (Park & Owens![2025) 5390  33.09 | 56.03 3392 | 5647 36.68 | 5547  34.56
FSD (Wu et al.|[2025b) 6396 40.16 | 73.09 50.85 | 7638 5812 | 71.14 49.71

OmniDFA 65.88 4053 | 7533 5252 | 77.37 57.66 | 72.86  50.24

4.1 BENCHMARKS AND EVALUATION METRICS

Datasets and benchmarks. We first conduct comprehensive experiments on our OmniFake dataset.
To adapt our framework for the zero-shot task, we perform our experiments using 3-fold cross-
validation by randomly dividing the OmniFake dataset into three balanced parts. In each validation
round, we perform training on two parts while using the remaining part for testing. For the open-set
few-shot attribution task, the evaluation is conducted under both 5-way 5-shot and 15-way 5-shot
scenarios to assess model capability in recognizing novel categories.

To comprehensively evaluate the generalization capability of our model, we conduct extensive zero-
shot experiments on the Genlmage dataset (Zhu et al.l [2023), comprising images generated by
8 generative models. Furthermore, we also perform additional comparative experiments on the
Chameleon dataset (Yan et al.,2025)). This challenging benchmark contains over 11 K high-fidelity
Al-generated images collected from diverse online sources, specifically designed to simulate real-
world application scenarios.

Evaluation metrics. Following established practices in previous research (Zhu et al., |2023; Wu
et al.| [2025b), we employ accuracy (ACC) and average precision (AP) as our evaluation metrics,
with the threshold step for AP computation set to 0.05.

4.2 EXPERIMENTAL SETTINGS

We adopt the ConvNeXt-Small [Liu et al.[(2022) pretrained on ImageNet as the feature extractor of
our model, which outputs a vector of 512 dimensions. These features are then processed through
an MLP to produce the final 128-dimensional embeddings. Following Park & Owens| (2025)), we
employ RandAugment (Cubuk et al.,|2020), Gaussian blur, and JPEG compression during classifier
training to effectively mitigate potential biases while enhancing the robustness of model.

During training, we sample fake images with a per-GPU batch size of 128 and real images with
a per-GPU batch size of 16, resulting in a total batch size of 1152 to meet the requirements of
contrastive learning. We use AdamW as our optimizer with a base learning rate of 2¢~° and employ
a CosineAnnealing learning rate scheduler for a total of 20 epochs. We set the temperature parameter
7 = 0.07, loss coefficient A = 0.01, and momentum update parameter 5 = 0.99. Additional
implementation details can be found in Appendix[E.2] Our method is implemented with the PyTorch
library and all the experiments are conducted on 8 A100 with 40 GB memory.

4.3  OPEN-SET FEW-SHOT IDENTIFICATION

The out-of-distribution classification task serves as a crucial testbed for evaluating whether a model
genuinely learns essential features of unseen categories, rather than simply memorizing training
patterns. As shown in Table [2] our study evaluates a selection of existing methods, including four
attribution approaches and two synthetic image detection techniques. The attribution methods are
DNA-Det (Yang et al.| 2022), CPL (Sun et al. 2023)), SiameseNet (Abady et al.,|2024), and Uni-
versalAttr (Cioni et al., [2024). We also include AIGI detection methods FSD (Wu et al.l [2025b)
and ComFor (Park & Owens| [2025]), motivated by their extensive training across a large number of
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Table 3: Results of authenticity detection on OmniFake. We evaluate zero-shot detection perfor-
mance across different dataset partitions, reporting both real and fake accuracy (Acc) and average
precision (AP) in percentage. The best results are highlighted in boldface.

\ OmniFake Dataset

‘ Averages (%)

Authenticity Detection Methods Part I Part 11 Part 11

F-Acc R-Acc Acc AP |F-Acc R-Acc Acc AP |F-Acc R-Acc Acc AP | Acc AP
UnivFD (Ojha et al.|[2023b) 7.39 98.66 53.03 56.07|24.08 98.22 61.15 67.78| 16.43 98.64 57.54 62.14|57.24 62.00
NPR (Tan et al.|[2024a) 74.13 82.18 78.16 7698|7599 8221 79.10 78.38|79.26 81.93 80.60 80.35|79.28 78.57
AIDE (Yan et al.[[2025) 77.51 96.28 86.90 94.01| 83.20 96.32 89.76 94.62| 78.53 96.20 87.37 93.68|88.01 94.10
SAFE (Li et al.|[2025a) 76.93 97.76 87.35 91.46|73.73 97.61 85.67 92.01|65.06 97.67 81.37 88.94|84.79 90.80
ComPFor (Park & Owens!|2025) | 75.58 98.96 87.27 89.78| 80.78 99.06 89.92 92.50| 85.06 99.07 92.07 97.10|89.75 93.13
FSD (Wu et al.|[2025b) 90.66 77.15 8391 - |8333 77.80 80.57 - |90.51 75.63 83.07 - |8251 -
OmniDFA | 97.43 95.32 96.38 97.56| 96.36 93.63 95.00 95.93|97.06 93.65 95.36 97.42|95.58 96.97

categories, which suggests a strong potential for capturing diverse feature distributions. Although
these models are not specifically designed for this task, we extract features from the last layer of
their backbone and employ prototypical classification. Specifically, we compute the prototype cen-
ters from the support set and classify each query sample based on its distance to these centers. We
evaluated each model on OmniFake using both 5-way 5-shot and 15-way 5-shot settings across 15
unseen categories from each part. To ensure statistical reliability, we conducted 10, 000 independent
test episodes for each experimental configuration following the episodic testing protocol.

As shown in Table 2] our model exhibits strong few-shot learning capabilities, confirming its ef-
fectiveness in identifying spurious category features and facilitating subsequent research. FSD also
demonstrates competitive performance, underscoring the effectiveness of metric learning for this
task. To our surprise, the standard binary classifier ComFor, though untrained for multi-class tasks,
inherently exhibits certain classification abilities. This can be partly attributed to category overlap
in its training data, as well as its powerful feature extraction capacity developed through large-scale
multi-category training. Other attribution methods perform inadequately in open-set few-shot iden-
tification, primarily for two reasons: first, they often treat unseen categories as a single class without
fine-grained distinction; second, their training sets cover limited categories, leading to overfitting on
a small number of classes. Our results significantly surpass previous methods, demonstrating the
effectiveness of our framework and highlighting promising directions for future research.

4.4 CROSS-GENERATOR AUTHENTICITY DETECTION

Our authenticity detection evaluation prioritizes the zero-shot capability of classifiers, defined as the
generalization performance over previously unseen categories. Our experiments use the OmniFake
dataset and compare against state-of-the-art methods, including UnivFD (Ojha et al.l 2023b), NPR
(Tan et al.|[2024a), AIDE (Yan et al.,[2025), SAFE (L1 et al., | 2025a)), ComFor (Park & Owensl[2025)),
and FSD (Wu et al., 2025b). While these approaches were trained on their respective datasets, we
emphasize their adaptability to novel data, as the ultimate goal is to achieve robust generalization
beyond the training environment. Accordingly, we use their officially released weights to ensure op-
timal generalization. For thorough benchmarking against FSD based on metric learning, we retrain
this model on our dataset. We include ComFor in our comparisons to benchmark against large-scale
pretrained models. Although it incorporates a series of models built upon Stable Diffusion, poten-
tially introducing dataset overlap, we consider this risk tolerable given the vast number of our test
categories. The results are summarized in Table 3]

We observe that our OmniDFA consistently outperforms prior works in fake detection performance
across all components of OminFake, achieving an average improvement of +5.83%. This demon-
strates the strong generalization capability of our model. We also notice that our model exhibits
slightly lower accuracy in real image detection. This is attributed to our boundary update rule, which
actively filters out anomalous data and may consequently exclude some marginal cases. Addition-
ally, ComFor achieves state-of-the-art performance in real image detection, which may be attributed
to potential dataset overlap between its training data and our test set.

Furthermore, our results indicate that training with multiple generators yields better performance
compared to single-generator training approaches like UnivFD, which shows limited effectiveness
when applied to out-of-distribution datasets. Another observation is that FSD demonstrates good
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Table 4: The zero-shot detection results on Genlmage and Chameleon datasets. The best results are
highlighted in boldface, while the second-optimal results are marked with underline. Our method
demonstrates remarkable improvements in detection accuracy.

Methods | Genlmage | Chameleon

| ADM Glide Midjourney SDv1.4 SDv1.5 VQDM wukong BigGAN | Average|F-Acc R-Acc Acc

CNNSpot |60.39 58.07 51.39 50.57 5053 5646 51.03  71.17 56.20 | 9.86 99.55 60.89
UnivFD | 66.87 62.46  56.13 63.66 6349 8531 7093  95.08 7049 |85.52 41.56 60.42
DIRE 75.78 71.75 58.01 49.74 4983 53.68 5446  70.12 60.42 | 2.09 99.73 57.83
PatchCraft | 82.17 83.79  90.12 9538 9530 8891 91.07 95.80 9032 | 1.39 96.52 55.70
NPR 69.69 78.36  77.85 78.63  78.89 78.13 76.61 84.35 77.81 | 1.68 100.00 57.81
AIDE 9343 95.09 77.20 93.00 9285 95.16 93.55 8395 90.53 | 26.8 95.06 65.77

OmniDFA | 85.50 96.71 97.58 9747 9775 9678 9778 9733 | 95.86 |77.46 88.00 83.48

performance in fake detection but performs poorly on real datasets. This limitation stems from
its classification mechanism that relies on the nearest prototypical centroid, which becomes less
effective when dealing with diverse types of fake images. In contrast, our model explicitly addresses
the distribution of real images by incorporating a center loss term, which pulls the features of real
samples closer to their class center in the embedding space, thereby enhancing the discriminative
power for authentic data and significantly boosting the overall detection accuracy.

4.5 CROSS-DATASET EVALUATION

To comprehensively assess the generalization capability of OmniDFA, we selected two represen-
tative datasets: Genlmage and Chemeleon, which serve as benchmarks for standard experimental
evaluation and real-world application scenarios, respectively. To rigorously ensure experimental re-
liability, we train an additional classifier by explicitly excluding all categories in both benchmarks
and their related model families. For instance, we completely removed SD1.5, SDXL, and SD3-
Medium generated samples from our training data to ensure strictly zero-shot testing condition. We
incorporate three additional baseline methods: CNNSpot (Wang et al.| (2020), DIRE (Wang et al.,
2023a)), and PatchCraft (Zhong et al., 2024). All comparative models are developed following |Yan
et al.[(2025)). Since the Chemeleon dataset does not provide fine-grained image categories, we only
report the performance on real and fake images. Table 4| presents the comparative results between
our OmniDFA and other methods.

As shown in Table 4] OmniDFA achieves remarkably high performancein these challenging zero-
shot scenarios. Our model achieves state-of-the-art classification accuracy on the Genlmage bench-
mark, further validating the effectiveness of our multi-generator training strategy. Chemeleon serves
as a high-quality benchmark for evaluating real-world application scenarios. Existing models show
limited fake image detection capability on this benchmark, indicating they overfit to authentic im-
ages in datasets like Genlmage and fail to learn generalizable deepfake detection features. Our
model outperforms the second-best approach by +17.71% in detection accuracy, while maintaining
balanced performance across both image types, which demonstrates its strong practical applicability.

4.6 ABLATION STUDY

Impact of compression and blurring. Since most real-world datasets use JPEG format while syn-
thetic data typically employs PNG format, we conducted JPEG compression and Gaussian blurring
experiments to examine how image quality affects model performance. Using OmniFake part I as
our test dataset, we evaluate the impact of JPEG compression on fake images and Gaussian noise on
both images, as shown in Figure [ The vertical dotted line indicates the augmentation boundaries
adopted during our training.

The results demonstrate that our model maintains robust performance within the augmentation range
but experiences noticeable degradation beyond these boundaries. In contrast, other methods show
significant performance drops even from the outset. Although ComFor demonstrates excellent per-
formance in handling blur due to corresponding enhancements, it still underperforms our method in
compression scenario. These findings confirm that image quality substantially impacts detection per-
formance, while proper augmentation techniques can effectively mitigate this effect. Additionally,
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Figure 4: Robustness to compression and blurring. The vertical lines indicate the perturbation
bounds used during our training. Most studies exhibit great sensitivity to these degradation factors
when trained without perturbations.
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Figure 5: Ablation study on model component.

we found that the higher the degree of Gaussian blur, the more likely an image is to be perceived
as synthetic, which is contrary to the common assumption that blurring makes real and synthetic
images harder to distinguish. This provides strong empirical support for future model development.

Component-wise analysis. To investigate the impact of each component, we perform a series of
ablation studies. We analyze the effects of removing the local and global branches, as well as a
configuration that excludes the center loss and boundary constraints. Additionally, we train a binary
classifier without employing contrastive learning. All models are trained and evaluated under the
same experimental setup, and we report the average detection and attribution performance across all
three parts of the OmniFake dataset. The results are shown in Figure 5]

The results demonstrate the clear advantage of our dual-path model over the single-branch variants,
confirming the superiority of our multi-level feature fusion. Our OmniDFA outperforms a plain bi-
nary classifier by capturing finer inter-class distinctions, which consequently enhances fake image
detection accuracy. Furthermore, compared to the model trained without boundary constraints, our
full framework shows stronger discriminative capability on real images. This underscores the im-
portance of leveraging large-scale, category-rich datasets for training, thereby highlighting a critical
advantage of our dataset.

5 CONCLUSION

In this paper, we introduce open-set, few-shot source identification, which advances the field of
image attribution beyond closed-set recognition and toward practical scenarios. We present Om-
niFake, a comprehensively curated dataset containing 1.17 M images from 45 distinct generative
models. Our dataset is both sufficiently large and meticulously categorized, enabling detailed inves-
tigation into model-specific artifacts. Building upon this foundation, we propose OmniDFA (Omni
Detector and Few-shot Attributor), a unified framework based on supervised contrastive learning that
jointly performs authenticity detection and few-shot source identification. Experiments show that
OmniDFA not only achieves state-of-the-art generalization in synthetic image detection, but also ex-
hibits strong open-set attribution capability with limited reference samples. The results underscore
the real-world applicability of our approach, highlighting how explicit modeling of synthesis origins
can enhance detector robustness, thereby suggesting a promising path for future research.
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A NECESSITY OF CLASS-AWARE DATASET

Most currently available datasets fail to account for the architectural uniqueness of generative mod-
els. For instance, the widely-used Genlmage dataset (Zhu et al.,|2023)) includes three models: Stable
Diffusion 1.4, Stable Diffusion 1.5, and Wukong, all of which share identical backbone structures.
This structural homogeneity results in remarkably similar feature distributions among their gener-
ated images. Such design leads to significant limitations: even a simple CNN classifier trained on
images from any one model demonstrates exceptionally strong generalization performance when
evaluated on the other two models (Zhu et al., 2023). This architectural redundancy severely com-
promises the objectivity and comprehensiveness of model evaluation. Additionally, another study
(Hong et al 2025) demonstrates that this generalization capability remains valid for both fine-
tuning (Ruiz et al.,|2023)) and LoRA adaptation (Hu et al., 2022). Therefore, merely making minor
modifications to the weights or model architecture is insufficient to enable the model to express
fundamentally different representations.

To comprehensively evaluate the generalization ability of deepfake detectors, we argue that models
across all categories must be architecturally distinct, rather than just variations of the same backbone.
To address these requirements and support our experimental objectives, we introduce OmniFake, a
large-scale comprehensive dataset comprising images synthesized by a diverse collection of distinct
generative models. This dataset not only enables systematic investigation of detection generalization
across architectures, but also facilitates out-of-distribution classification tasks. Our dataset includes
an extensive range of state-of-the-art generative models, including autoregressive architectures and
unified Multimodal Large Language Models (MLLMs). We believe our dataset will significantly
advance research in the fields of both synthetic image detection and attribution.

B RELATED WORK

B.1 SYNTHETIC DATASETS

Early datasets for Al-generated image detection primarily relied on Generative Adversarial Net-
works (Goodfellow et al.,[2014). CNNSpot (Wang et al.| 2020) proposes a widely-used dataset and
establishes an evaluation paradigm where detectors are trained on images from ProGAN (Karras
et al.,[2018)) and LSUN (Yu et al.,|2016), then tested across various other models. As diffusion mod-
els (Ho et al., 2020) advance in image synthesis, many datasets |[Epstein et al.| (2023b); |Ojha et al.
(2023a) have incorporated images from these models to evaluate and improve detection methods.
Genlmage (Zhu et al., [2023) introduces the first million-scale synthetic dataset, paired with real
images from ImageNet (Russakovsky et al. 2015). However, these datasets only cover a limited
number of generators, restricting the generalization capability of detectors.

Recent studies (Asnani et al.l 2023) have begun emphasizing synthetic model diversity in dataset
construction. WildFake (Hong et al.l 2025)) introduces a wild-collected dataset featuring diverse
fake images from various generative models, covering a wide range of content and styles. It also
reveals that model architecture is the primary factor of bias, outweighing the effects of personalized
finetuning (Ruiz et al. |2023) or LoRA adaption (Hu et al |[2022). Community Forensics (Park &
Owens, 2025) addresses the diversity limitation by aggregating samples from thousands of genera-
tive models. However, these datasets are suboptimal for attribution, as their categories often consist
of fine-tuned or adapted versions of the same base model, making it difficult to achieve meaning-
ful distinction. Moreover, their heavy reliance on diffusion models also misaligns with the current
paradigm shift toward autoregressive architectures.

B.2 DETECTION METHODS

Previous research on synthetic image detection has been dedicated to feature extraction from mul-
tiple perspectives, such as frequency (Tan et al., 2024b), semantics (Tan et al., 2025)), and recon-
struction difficulty (Wang et al., 2023aj [Luo et al., [2024). Although they have achieved promising
results on previous datasets, recent studies (Grommelt et al.l 2024; |Li et al.l 2025a) suggest that
data augmentation techniques such as resizing and JPEG compression can significantly degrade the
performance of detectors. To extract more robust features, OOC-CLIP (Liu et al., 2024) employs the
pre-trained CLIP model as its feature extractor, whereas FakeReasoning (Gao et al., |2025) utilizes
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vision-language models which not only effectively incorporate textual prompts but also produce
human-interpretable feature descriptions.

Recent studies (Cocchi et al.,|2024) have introduced more sophisticated learning objectives to over-
come the limitations of binary classifiers. |Bi et al.| (2023)) introduce learning with real images only
by analyzing pixel-level distributions. NTF (Liang et al., 2025) employs self-supervised feature
mapping to enhance transfer learning, while FSD (Wu et al.| [2025b)) learns a specialized metric
space to distinguish unseen fake images with given samples. Inspired by these advances, we aim to
fully explore the potential of metric learning for out-of-distribution deepfake detection.

B.3 ATTRIBUTION METHODS

Image attribution aims to identify the source model of generated images. Early studies (Frank et al.,
2020; Bui et al.| 2022)) focus on closed-set classification over GANs, where all generators encoun-
tered during testing are assumed to be known at training time. Their motivations are based on
the observation that models with different architectures exhibit distinct fingerprints. However, the
closed-set setting has limited practicality in real-world scenarios, as new generative models are con-
tinuously being released. To address this limitation, the open-set rejection task has been introduced
(Fang et al., 2023), where a model is required to categorize fake images from unseen generators
into an additional rejection class, thereby distinguishing them from known categories. For instance,
DNA-Det (Yang et al,|2022)) captures globally consistent architectural traces through patch-based
contrastive learning. CPL (Sun et al.} 2023) introduces a global-local voting module to evaluates at-
tribution performance on various GAN-generated face images. DE-FAKE (Sha et al.,|2023) employs
the CLIP model to attribute fake images created by text-to image diffusion models.

Nevertheless, most methods still struggle to fully exploit fine-grained cross-modal fingerprints and
show limited generalization capability in zero-shot scenarios when confronted with novel generators.
We argue that the open-set rejection formulation remains distant from real-world applications, as the
performance of such methods tends to degrade when insufficient data is available for continuously
emerging generative models. Therefore, we propose an open-set few-shot paradigm to mitigate data
scarcity issues and evaluate model performance from detecting forgery clues from unseen, novel
generators. This necessitates that the model rapidly learns to identify salient features from limited
samples, while also distinguishing them from features characteristic of other models.

C COLLECTION OF FAKE SAMPLES

C.1 FAKE IMAGE COMPOSITION

Our dataset comprises synthetic images collected through three primary sources to ensure diversity
and comprehensiveness. First, we incorporate images from established open-source datasets and
benchmarks, including Genlmage (Zhu et al.l [2023), WildFake (Hong et al., |[2025), and MPBench
(Lu et al.|, 2023)), covering a wide range of generative models such as GANSs, diffusion models,
and VAEs. This subset consists of images generated by 19 distinct generators, providing a solid
foundation of varied synthetic content. Second, we augment our dataset with community-shared
collections from platforms like Hugging Face (HuggingFace| 2016)), integrating synthetic images
from 6 closed-source models and 2 popular community models. With the rapid advancement of
generative models, many previously state-of-the-art architectures have become outdated in terms
of both design and performance. To ensure our study reflects the latest progress in the field, we
sourced 18 cutting-edge open-source models from Hugging Face or the official repositories. We
generate synthetic images using these models to ensure the coverage of diverse architectures such as
flow-matching models, autoregressive models and unified MLLMs. We summarize the key details
of these models in Table

Our OmniFake contains 1.17 M synthetic images generated by 45 distinct generative models, span-
ning a broad spectrum of architectures. Our synthetic categories include models from the same
family, but we rigorously ensure that they are not derived from the same backbone. To ensure both
diversity and detectability, each synthetic category includes at least 20 K training samples generated
from a wide distribution of text prompts. For comprehensive evaluation, we provide a separate test
set of 90 K synthetic images (2 K per category). Our dataset features the most structurally diverse
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Table 5: Collections of generators for fake images in our OmniFake dataset.

Generator Training | Test Source Link
ADM 30k 2k
GLIDE 30k 2k
Midjourney V5 30k 2k Genlmage https://github.com/GenImage-Dataset/GenImage
Stable Diffusion V1.5 30k 2k
VQDM 30k 2k
DALLE2 30k 2k
StyleGAN3 30k 2k
DF-GAN 30k 2k
GALIP 30k 2k
GigaGAN 25k 2k
DDg}I]I\]:/I[ :gt zt WildFake https://github.com/hy-zpg/AIGC-Image-Detection-Dataset
Imagen 30k 2k
Midjourney V4 30k 2k
SDXL 30k 2k
VQVAE 30k 2k
Muse 30k 2k
IF 30k 2k - -
) Fake Image Dataset https://huggingface.co/datasets/InfImagine/FakeImageDataset
Cogview2 20k 2k
FLUX-dev 30k 2k https://huggingface.co/datasets/lehduong/flux_generated
GPT4-0 30k 2k https://huggingface.co/datasets/yufan/GPT40_Image_T21I
DALLE3 30k 2k https://huggingface.co/datasets/OpenDatasets/dalle-3-dataset
Phoenix 30k 2k Hugging Face https://huggingface.co/datasets/bigdata-pw/leonardo/
PixArt-Alpha 27k 2k https://huggingface.co/datasets/PixArt-alpha/PixArt-Eval30K
Playground V2.5 30k 2k https://huggingface.co/datasets/bigdata-pw/playground
Ideogram 30k 2k https://huggingface.co/datasets/terminusresearch/ideogram-75k
Midjourney V6 30k 2k https://huggingface.co/datasets/terminusresearch/midjourney-v6-520k-raw
DiT-XL/2 23k 2k https://github.com/facebookresearch/DiT T
Janus-Pro 24k 2k https://github.com/deepseek-ai/Janus
BAGEL 23k 2k https://github.com/ByteDance-Seed/Bagel
OmniGen 23k 2k https://huggingface.co/Shitao/OmniGen-v1l
SD3-Medium 23k 2k https://huggingface.co/stabilityai/stable-diffusion-3-medium
Hunyuan-DiT 23k 2k https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers
Show-o 23k 2k https://github.com/showlab/Show-o
LUMINA-Image 2.0 23k 2k https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0
SANA V1.5 20k 2k Self-synthesized https://huggingface.co/Efficient-Large-Model/SANAl.5_4.8B_1024px_diffusers
CogView4 20k 2k https://huggingface.co/zai-org/CogViewd-6B
OmniGen2 20k 2k https://github.com/VectorSpaceLab/OmniGen2
HiDream-11-Dev 20k 2k https://github.com/HiDream-ai/HiDream-I1
Infinity 20k 2k https://github.com/FoundationVision/Infinity
Llama-Gen 20k 2k https://github.com/FoundationVision/LlamaGen
UniWorld-V1 20k 2k https://github.com/PKU-YuanGroup/UniWorld-v1
BLIP3-0 20k 2k https://github.com/JiuhaiChen/BLIP30
BRIA3.2 20k 2k https://huggingface.co/briaai/BRIA-3.2
Ovis-Ul 20k 2k https://github.com/AIDC-AI/Ovis-Ul

generator categories, along with the latest, most extensive, and top-tier generators. OmniFake con-
tains images with a minimum resolution of 200 x 200 pixels, while most are 512 x 512 or higher.
This comprehensive collection provides a robust foundation for investigating the impact of model
architectures on generalization.

C.2 CusTOM DATA SYNTHESIS

To ensure the diversity and richness of prompts in our self-synthetic categories, we sample text
descriptions from multiple text-image datasets or benchmarks, covering different granularities of
textual inputs. Specifically, we adopt BLIP-30-60k (Chen et al., |2025a) for fine-grained, highly
detailed captions, CC12M (Changpinyo et al.| [2021) for coarse-grained and concise prompts, and
Laion-COCO (Schuhmann et al.,[2021) for in-the-wild descriptions. To maintain representativeness
and diversity in prompt selection, we balance the sampling ratio among these sources at 2 : 5 : 3,
effectively integrating their respective characteristics. Based on these curated prompt lists, we lever-
age 17 distinct generative models to synthesize images, maximizing variety in the generated outputs.
To ensure optimal image generation quality, we adhere to the official recommended resolutions.
When multiple resolutions are provided, we randomly select among them to maintain diversity in
the output image dimensions. For DiT-XL/2, which only accept class labels as conditional input, we
randomly sample from the categories for image generation. Although this approach may introduce
certain domain biases, we argue that the pronounced artifacts inherent to the synthetic generators
could potentially overshadow such biases. Ultimately, our multi-source, multi-granularity prompt
sampling strategy ensures broad coverage and high quality in the synthetic dataset.

17


https://github.com/GenImage-Dataset/GenImage
https://github.com/hy-zpg/AIGC-Image-Detection-Dataset
https://huggingface.co/datasets/InfImagine/FakeImageDataset
https://huggingface.co/datasets/lehduong/flux_generated
https://huggingface.co/datasets/yufan/GPT4O_Image_T2I
https://huggingface.co/datasets/OpenDatasets/dalle-3-dataset
https://huggingface.co/datasets/bigdata-pw/leonardo/
https://huggingface.co/datasets/PixArt-alpha/PixArt-Eval30K
https://huggingface.co/datasets/bigdata-pw/playground
https://huggingface.co/datasets/terminusresearch/ideogram-75k
https://huggingface.co/datasets/terminusresearch/midjourney-v6-520k-raw
https://github.com/facebookresearch/DiT
https://github.com/deepseek-ai/Janus
https://github.com/ByteDance-Seed/Bagel
https://huggingface.co/Shitao/OmniGen-v1
https://huggingface.co/stabilityai/stable-diffusion-3-medium
https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers
https://github.com/showlab/Show-o
https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0
https://huggingface.co/Efficient-Large-Model/SANA1.5_4.8B_1024px_diffusers
https://huggingface.co/zai-org/CogView4-6B
https://github.com/VectorSpaceLab/OmniGen2
https://github.com/HiDream-ai/HiDream-I1
https://github.com/FoundationVision/Infinity
https://github.com/FoundationVision/LlamaGen
https://github.com/PKU-YuanGroup/UniWorld-V1
https://github.com/JiuhaiChen/BLIP3o
https://huggingface.co/briaai/BRIA-3.2
https://github.com/AIDC-AI/Ovis-U1

Under review as a conference paper at ICLR 2026

Table 7: Split of our OmniFake dataset.

Split Part Test Generators
Part I Hunyuan-DiT, Imagen, SANA V1.5, DF-GAN, Janus-Pro, DDPM, Midjourney V5, OmniGen2,
FLUX-dev, BRIA3.2, Ovis-U1, Cogview2, VQVAE, Phoenix, DIT-XL/2
Part IT OmniGen, LUMINA-Image 2.0, Show-o, SD3-Medium, Midjourney V6, GALIP, LlamaGen, Ideogram,

Infinity, Muse, StyleGAN3, ADM, IF, GigaGAN, VQDM
SDXL, Playground V2.5, UniWorld-V1, BLIP3-o0, Midjourney V4, CogView4, PixArt-Alpha, DALLE2,
DDIM, GLIDE, GPT4-o0, HiDream-11-Dev, BAGEL, DALLE3, Stable Diffusion V1.5

Part II1

D COLLECTION OF REAL SAMPLES

Prior image forensics benchmarks (Wang et al.,[2020; Zhu et al., [2023)) often rely on a single source
dataset to represent authentic images. However, this practice can introduce significant real biases
by limiting the diversity and representativeness of the authentic class. To mitigate this limitation
and establish a more robust and generalizable benchmark, we follow Hong et al.| (2025) and curate
our authentic image collection by strategically sampling from a diverse set of 10 publicly available
datasets, spanning multiple domains and collection paradigms. An overview of the source datasets
is provided in Table 6]

Our authentic image dataset is constructed
from two complementary categories of publicly
available sources to ensure both broad coverage
and high quality. Large-scale raw datasets such

Table 6: Collection of datasets for real images in
our OmniFake dataset.

as LAION (Schuhmann et al. [2021), WuKong Real Image Dataset | Training | Test
(Gu et all [2022), and CCI12M (Changpinyo Laion-5B 251k 20k
et al.,[2021) provide essential in-the-wild diver- Wukong 240k 20k
sity by capturing the unfiltered heterogeneity ImageNet-1k 174k 15k
of real-world internet imagery at scale, which CCI2M 160K 15k
is crucial for evaluating forensic models under MSCOCO 113k 10K
realistic conditions. These are balanced with FFHQ 63k 7K
carefully constructed datasets including Ima- CelebA-HQ 78K IR
geNet (Russakovsky et al., |2015), MSCOCO SUN-church 30K K
(Lin et al) 2014) and and several other rep- IMD2020 33K K
resentative collections, which offer domain- FODB K o
specific focus through their manually curated

collections of high-quality images representing

well-composed photographic contexts. To conserve resources and avoid dataset conflicts, we strate-
gically sourced our LAION and Wukong samples from the training set of WildFake, while drawing
ImageNet samples from the Genlmage training collection.

We allocate varying proportions based on dataset size and our requirements, obtaining 1.17 million
authentic images for our training set. We also select 90 K real images matching the size of the fake
images to serve as our test set. By integrating these different components to dataset construction,
we aim to achieve a balanced representation of both uncontrolled web content and professionally
captured images.

E EXPERIMENTS SETTINGS

E.1 SPLIT OF OMNIFAKE

To ensure a fair evaluation in our zero-shot task, we employ a 3-fold cross-validation strategy on the
OmniFake dataset. The dataset is randomly divided into three mutually exclusive and balanced parts,
as shown in Table[/] In each validation round, two folds are used for training, while the remaining
fold serves as the held-out test set. This approach not only maximizes the utilization of limited data
but also guarantees that model performance is evaluated across diverse and representative subsets.
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E.2 IMPLEMENTATION DETAILS

To guarantee the reproducibility of our experiments, we present comprehensive training details for
our model in this work, which we summarize in Table E] and Table E} In Table E], p denotes the
probability of applying the corresponding transformation. It should be noted that in RandAugment
(Cubuk et al., |2020), we deliberately exclude shear and translate transformations to ensure that our
local feature extractor does not capture artifacts from padding regions beyond image boundaries.
The data augmentation is only employed during the training phase. In our cross-dataset validation
experiments, we adopted the following hyperparameters: 40 training epochs and a \ value of 5e — 3,
which are carefully selected to enhance the robustness of our results. Our implementation is carried
out using PyTorch library, with all experiments executed on a cluster of 8 NVIDIA A100 GPUs.

Table 8: Data augmentation configurations during training.

Augmentation Settings
random JPEG p=0.5, quality=(75, 95)
resize scale=(0.5, 2.0)
horizontal flip p=0.5
RandAugment p=0.5, magnitude=9, layers=2
gaussian blur p=0.5, sigma=(0.1, 2.0)
normalize [0,1]

Table 9: Training hyperparameters for our experiments.

Hyperparameter Value
model ConvNeXt-Small
MLP hidden dims 512
MLP out dims 128
input resolution 3x224x224
batch size (fake, per GPU) 128
batch size (real, per GPU) 16
total epochs 20
warmup epochs 2
optimizer AdamW
scheduler CosineAnnealing
learning rate 2e-5
min learning rate 0
weight decay le-2
precision bfloat
world size 8
T 0.07
A 0.01
Ié] 0.99
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