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Abstract
As ML models are increasingly deployed in crit-
ical applications, robustness against adversarial
perturbations is crucial. While numerous defenses
have been proposed to counter such attacks, they
typically assume that all adversarial transforma-
tions are equally important, an assumption that
rarely aligns with real-world applications. To ad-
dress this, we study the problem of robust learn-
ing against adversarial perturbations under cost-
sensitive scenarios, where the potential harm of
different types of misclassifications is encoded
in a cost matrix. Our solution introduces a prov-
ably robust learning algorithm to certify and opti-
mize for cost-sensitive robustness, building on the
scalable certification framework of randomized
smoothing. Specifically, we formalize the defini-
tion of cost-sensitive certified radius and propose
our novel adaptation of the standard certification
algorithm to generate tight robustness certificates
tailored to any cost matrix. In addition, we design
a robust training method that improves certified
cost-sensitive robustness without compromising
model accuracy. Extensive experiments on bench-
mark datasets, including challenging ones unsolv-
able by existing methods, demonstrate the effec-
tiveness of our certification algorithm and training
method across various cost-sensitive scenarios.

1. Introduction
Recent studies have revealed that deep neural networks
(DNNs) are highly vulnerable to classifying adversarial ex-
amples (Biggio et al., 2013; Szegedy et al., 2013; Goodfel-
low et al., 2014), highlighting a critical weakness in these
models that poses significant risks for safety-critical ap-
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plications such as autonomous driving, financial systems,
and healthcare diagnostics. In response, numerous defenses
have been proposed to improve model robustness, which
primarily fall into two categories: empirical defenses (Good-
fellow et al., 2014; Gu & Rigazio, 2014; Lyu et al., 2015;
Papernot et al., 2016; Kurakin et al., 2016; Madry et al.,
2017; Zhang et al., 2019; Carmon et al., 2019) and certifi-
able methods (Raghunathan et al., 2018; Wong & Kolter,
2018; Gowal et al., 2018; Cohen et al., 2019; Lecuyer et al.,
2019; Jia et al., 2019; Li et al., 2019).

Empirical defenses, such as adversarial training (Goodfel-
low et al., 2014; Madry et al., 2017; Carmon et al., 2019),
defensive distillation (Papernot et al., 2016), and gradient
masking (Gu & Rigazio, 2014; Lyu et al., 2015), typically
propose to enhance robustness by explicitly incorporating
adversarial examples into the model’s training process or
by modifying the training algorithm to make the model less
sensitive to input perturbations. These methods are eval-
uated based on their performance against known attacks
and can be efficiently deployed in practice. However, they
are engaged in an everlasting arms race, as new adaptive
attacks are continually developed that can easily break these
empirical defenses (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018; Croce et al., 2022). In contrast,
certifiable methods provide robustness guarantees against
any perturbation within the constraint set, thereby avoiding
the risks of being compromised by new attacks. Specifi-
cally, certifiable methods (Raghunathan et al., 2018; Wong
& Kolter, 2018; Gowal et al., 2018; Cohen et al., 2019;
Lecuyer et al., 2019; Jia et al., 2019; Li et al., 2019) produce
a robustness certificate that assures the model’s prediction
will remain unchanged within a specified norm-bounded
perturbation ball around any test input. These methods then
train models to be provably robust with respect to the de-
rived certificate, offering a stronger and more reliable form
of robustness compared to empirical defenses.

Most existing defenses are designed to improve overall
model robustness, assuming the same penalty on all kinds of
adversarial misclassifications. For real-world applications,
however, it is likely that certain types of misclassifications
are more consequential than others (Domingos, 1999; Elkan,
2001). For instance, misclassifying a malignant tumor as
benign in the application of medical diagnosis is much more
detrimental to a patient than the reverse. Therefore, instead
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of solely focusing on overall robustness, the development of
defenses should account for the difference in costs induced
by different adversarial examples. In line with prior liter-
ature on cost-sensitive robust learning (Domingos, 1999;
Asif et al., 2015; Zhang & Evans, 2019; Chen et al., 2021),
we aim to develop models that are robust to cost-sensitive
adversarial misclassifications, while maintaining the stan-
dard overall classification accuracy. Nevertheless, previous
methods for promoting cost-sensitive robustness (Domingos,
1999; Asif et al., 2015; Chen et al., 2021; Zhang & Evans,
2019) are either hindered by their foundational reliance on
heuristics, which often fall short of providing a robustness
guarantee or suffer from inherent scalability issues when
certifying robustness for large models and perturbations.

To achieve the best of both worlds, we propose to learn
provably cost-sensitive robust classifiers by leveraging ran-
domized smoothing (Liu et al., 2018; Cohen et al., 2019;
Salman et al., 2019), an emerging robustness certification
framework known for its broad applicability and scalability.
However, adapting the standard randomized smoothing al-
gorithm to certify cost-sensitive robustness presents unique
challenges. In addition, optimizing smoothed classifiers for
cost-sensitive robustness proves more complex than stan-
dard cost-sensitive learning due to the added complexity
introduced by the smoothing operator and the random Gaus-
sian sampling process. The varying structures of cost matri-
ces further call for a flexible, targeted optimization scheme
that moves beyond optimizing solely for overall robustness.

Contributions. To the best of our knowledge, we are the
first to provide a scalable, robust certification and training
algorithm for cost-sensitive robustness that is applicable to
challenging high-dimensional data distributions (e.g., medi-
cal images) and large models (e.g., deep ResNet). Our key
contributions are summarized as follows:

• We introduce the notion of cost-sensitive certified radius
(Definition 4.1) and prove that our definition guarantees
a larger certified radius for any cost-sensitive scenario
compared to the standard certified radius (Theorem 4.2).

• We develop an easy-to-implement certification algorithm
based on Monte Carlo sampling (Algorithm 1), ensuring
a tight certificate for cost-sensitive robustness (Theorem
4.4). Additionally, we propose adaptive training meth-
ods for cost-sensitive robustness, ranging from standard
reweighting techniques to advanced strategies that opti-
mize the certified radius for smoothed classifiers across
data subgroups (Section 5), effectively expanding the
robust radius compared to non-optimized approaches.

• Comprehensive experiments across various benchmark
and real-world medical datasets demonstrate that our
margin-based approach significantly outperforms base-
lines in certified cost-sensitive robustness across diverse

training configurations and schemes, while largely main-
taining overall standard accuracy (Section 6).

2. Related Work

Certifiable Defenses. Certifiable defenses aim to formally
guarantee the robustness of a classifier, ensuring that its out-
put remains consistent within a neighboring region around
any input, usually defined by some ℓp-norm distance metric.
These methods can be divided into two main categories:
complete and conservative (i.e., “sound but incomplete”).
Complete methods (Pulina & Tacchella, 2010; Huang et al.,
2017; Katz et al., 2017; Tjeng et al., 2019; Wong & Kolter,
2018; Wong et al., 2018; Raghunathan et al., 2018; Dvi-
jotham et al., 2018) strive to exactly determine whether
any norm-bounded perturbation can cause the classifier to
alter its prediction for any given input. A representative
conservative certification framework is Randomized smooth-
ing (Cohen et al., 2019), which offers a scalable alternative
by transforming any classifier into a smoothed version with
probabilistic robustness guarantees, ensuring stable predic-
tions within an ℓ2-norm ball around any input. This flexible
approach is well-suited for deep networks and large datasets,
addressing the scalability limitations of complete methods.
Building on the randomized smoothing framework, sev-
eral training techniques have been developed to enhance
certifiable robustness, including applying adversarial train-
ing (Salman et al., 2019) or denoising diffusion models to
improve the base classifier (Carlini et al., 2022; Xiao et al.,
2022; Zhang et al., 2023), and direct optimization of the
certified radius (Zhai et al., 2020). However, none of the
aforementioned works target optimization for cost-sensitive
adversarial defense.

Cost-Sensitive Learning. Cost-sensitive learning (Domin-
gos, 1999; Elkan, 2001; Liu & Zhou, 2006) addresses un-
equal misclassification costs and class imbalance, which
are critical in applications like medical diagnosis, where
misclassifying malignant cases as benign can have severe
consequences. These algorithms balance class importance
by reweighting samples, adjusting decision thresholds, and
modifying loss functions (Kukar et al., 1998; Zadrozny et al.,
2003; Zhou & Liu, 2010; Khan et al., 2017). In the context
of adversarial settings, cost-sensitive learning algorithms
have been proposed to mostly empirically improve robust-
ness of classification models such as naive Bayes, linear
discriminant, and neural networks (Dalvi et al., 2004; Asif
et al., 2015; Dreossi et al., 2018). The only existing method
that addresses a cost-sensitive robustness certification prob-
lem similar to ours is Zhang & Evans (2019). However, their
approach suffers from inherent flexibility issues, making it
inapplicable for certifying deep networks under large pertur-
bations, and demonstrates empirically weaker performance
compared to ours as demonstrated in Section 6.1.
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3. Preliminaries
We use lowercase boldfaced letters to denote vectors and
uppercase boldfaced letters for matrices. Let [m] be the
index set {1, 2, ...,m}, |S| be the cardinality of a set S and
1(·) be the indicator function. For any x ∈ Rd and i ∈ [d],
the i-th element of x is denoted as xi. Denote byN (µ, σ2I)
the multivariate spherical Gaussian distribution with mean
µ and covariance matrix σ2I with σ > 0. Let Φ(·) be
the cumulative distribution function (CDF) of N (0, 1) and
Φ−1(·) be its inverse. Let fθ :X → [m] be a classifier
modeled by a DNN with parameter θ.

3.1. Adversarial Robustness

Deep neural networks have been shown to be vulnerable
to adversarial examples, where an adversary aims to subtly
perturb an input x to cause the classifier to make incorrect
predictions. Specifically, given a classifier fθ, a test input
x with ground-truth label y, and a norm bound ϵ > 0, the
adversary seeks to find a perturbation δ such that:

fθ(x+ δ) ̸= y, where ∥δ∥p ≤ ϵ. (1)

In this context, δ represents an adversarial perturbation that
is often visually imperceptible to humans but sufficient to
deceive the classifier. The magnitude of the perturbation
∥δ∥p is typically measured in ℓ2 or ℓ∞ norm.

To defend against such attacks, a model fθ is said to be
provably robust for an input x if it can be certified that no
adversarial perturbation within the allowed norm can change
the model’s prediction:

fθ(x+ δ) = fθ(x), ∀ δ satisfying ∥δ∥p ≤ ϵ. (2)

This means that the model’s prediction remains unchanged
for all possible perturbations δ within the ϵ-norm ball.

3.2. Randomized Smoothing

Randomized smoothing is a probabilistic certification frame-
work proposed in Cohen et al. (2019). In particular, it builds
upon the following definition of smoothed classifiers:
Definition 3.1. Let X ⊆ Rd be the input space and [m] be
the label space. For any classifier fθ : X → [m] and σ > 0,
the smoothed classifier with fθ and σ is defined as:

gθ(x) = argmax
k∈[m]

Pδ∼N (0,σ2I)

[
fθ(x+ δ) = k

]
, ∀x ∈ X .

Let hθ : X → [0, 1]m be the corresponding function that
maps any x ∈ X to the prediction probabilities of gθ(x):

[hθ(x)]k = Pδ∼N (0,σ2I)

[
fθ(x+ δ) = k

]
, ∀k ∈ [m].

The following lemma, proven in Cohen et al. (2019), char-
acterizes the ℓ2 perturbation ball with the largest radius for
any input x such that the prediction of gθ remains the same.

Lemma 3.2. Given (x, y), suppose gθ classifies x correctly,
i.e., y = argmaxk∈[m] Pδ∼N (0,σ2I)[fθ(x + δ) = k], then
gθ is provably robust at x in ℓ2-norm with the standard
certified radius r(x;hθ) defined by:

r(x;hθ) =
σ

2

[
Φ−1

(
[hθ(x)]y

)
− Φ−1

(
max
k ̸=y

[hθ(x)]k
)]
,

where hθ is defined in Definition 3.1. If the prediction is
incorrect, then r(x;hθ) is defined to be 0. When hθ is clear
from the context, we simply write r(x) = r(x;hθ).

4. Certifying Cost-Sensitive Robustness
4.1. Cost-Sensitive Robustness

We consider image classification tasks under cost-sensitive
scenarios, where the goal is to learn a classifier with high
cost-sensitive robustness, while maintaining a similar per-
formance level of overall accuracy. Specifically, we define a
cost matrix C∈Rm×m

≥0 that encodes the potential harm asso-
ciated with different class-wise adversarial transformations.
For any pair of classes j, k∈ [m], if Cjk > 0, it indicates
that a misclassification from class j (seed class) to class k
(target class) incurs a non-negligible cost Cjk. Conversely,
Cjk =0 suggests that there is no significant incentive for an
attacker to induce this specific misclassification.

The goal of cost-sensitive robust learning is to minimize ad-
versarial misclassifications that incur a cost as defined by C.
For any seed class y ∈ [m], we let Ωj = {k∈ [m] :Cjk > 0}
be the set of cost-sensitive target classes. If Ωj is an empty
set, then all the examples from class j are non-sensitive.
Otherwise, any class j with |Ωj | ≥ 1 is a sensitive seed
class. Given a dataset S = {(xi, yi)}i∈[n], we define the set
of cost-sensitive examples as Ss = {(x, y) ∈ S : |Ωy| ≥ 1},
while the remaining examples are regarded as non-sensitive.

4.2. Cost-Sensitive Certified Radius

Similar to the standard certified radius, we introduce the
definition of the cost-sensitive certified radius. Figure 1 visu-
ally illustrates the smoothed classifier and the cost-sensitive
certified radius on a cancer classification task.

Definition 4.1 (Cost-Sensitive Certified Radius). Let C be
an m×m cost matrix. For any example (x, y), suppose gθ
classifies x correctly.

1. The groupwise cost-sensitive certified radius, denoted as
rcs-group(x; Ωy, hθ), at (x, y) with the smoothed classi-
fier gθ and the cost matrix C is defined as

σ

2

[
Φ−1

(
max
k∈[m]

[
hθ(x)

]
k

)
− Φ−1

(
max
k∈Ωy

[
hθ(x)

]
k

)]
,

where Ωy = {k∈ [m] :Cyk > 0} represents the set of
sensitive target classes.
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Benign

Malignant  

Figure 1. A visual demonstration of the evaluation of the smoothed
classifier gθ and the cost-sensitive certified radius rcs-pair for the
benign/malignant cancer classification task. The right panel illus-
trates the desired predicted probabilities hθ for the benign (x−)
and malignant (x+) samples.

2. The pairwise cost-sensitive certified radius, denoted as
rcs-pair(x; j, hθ), at (x, y) with the smoothed classifier
gθ and the cost matrix C is defined as

σ

2

[
Φ−1

(
max
k∈[m]

[
hθ(x)

]
k

)
− Φ−1

( [
hθ(x)

]
j

)]
,

where j ∈Ωy stands for the misclassification target class.

For incorrect predictions, all certified radii are defined as 0.
For brevity, we write rcs-group(x; Ωy) or rcs-pair(x; j) if hθ is
clear from the context.

Using similar proof techniques as in Lemma 3.2, we can
prove that no adversarial samples for x exist within the ℓ2
radius rcs-group(x; Ωy) that introduce misclassification costs.
Likewise, there are no targeted adversarial samples that mis-
classify x to class j within the ℓ2 radius rcs-pair(x; j). Note
that the standard certified radius r(x) defined in Cohen et al.
(2019) also serves as a valid (though conservative) certifi-
cate under cost-sensitive settings. The following theorem
characterizes the relationship between the cost-sensitive and
standard certified radii.

Theorem 4.2. Under the same setting as in Definition
4.1, suppose that argmaxk∈[m][hθ(x)]k /∈ Ωy. Then, we
have rcs-pair(x; j)≥ rcs-group(x; Ωy)≥ r(x), where the first
equality holds when Ωy = {j} and the second holds when
Ωy = {k∈ [m] : k ̸= y}.

The key distinction between rcs-group(x; Ωy) and the stan-
dard certified radius r(x) arises when |Ωy| < m − 1 (see
Appendix B.1 for detailed proofs of Theorem 4.2). No-
tably, the benefit of using the cost-sensitive certified radius
is more significant for (x, y) with smaller |Ωy|, as Φ−1 is
monotonically increasing, and the gap between [hθ(x)]y

Algorithm 1 Certification for Cost-Sensitive Robustness

1: function CERTIFY GROUP(fθ, σ,x, n0, n, α,Ωy) :

2: //Determine the top-1 class
3: counts0← SAMPLEUNDERNOISE(fθ,x, n0, σ)

4: ĉA ← top index in counts0
5: //Obtain the counts
6: counts← SAMPLEUNDERNOISE(fθ,x, n, σ)

7: //Compute the standard radius
8: r̂std = Φ−1(LCB(counts[ĉA], n, 1− α)) · σ
9: //Compute the group-wise radius

10: pA = LCB(counts[ĉA], n, 1− α
2 )

11: pB = max{UCB(counts[k], n, 1− α
2|Ωy| ) : k∈Ωy}

12: r̂cs-group = (Φ−1(pA)− Φ−1(pB)) · σ/2
13: //Return the final result
14: if max(r̂std, r̂cs-group) > 0 then
15: return ĉA, max(r̂std, r̂cs-group)

16: else return ABSTAIN

and maxk∈Ωy [hθ(x)]k tends to be larger with a smaller Ωy

(see Figures 3(b) and 3(c) for empirical evidence). Although
the pairwise certified radius rcs-pair(x; j) provides weaker
guarantees (addressing only specific targeted misclassifi-
cations), it enables defining an overall robust cost (Defini-
tion 4.3), offering fine-grained control to mitigate critical
misclassifications defined by the cost matrix (Section 5).

Definition 4.3 (Cost-Sensitive Robust Cost). Given the cost-
sensitive certified radii in Definition 4.1, the overall objec-
tive of cost-sensitive robust learning can be formulated as
minimizing the total certified robust cost:

Robcost(gθ) =
1

|Ss|
∑

(x,y)∈Ss

∑
j∈Ωy

Cyj ·1
{
rcs-pair(x; j) ≤ ϵ

}
,

where ϵ is the norm bound for the perturbations. This metric
captures the total cost of potential misclassifications for sen-
sitive test samples, with each misclassification cost defined
by the cost matrix C.

4.3. Proposed Certification Algorithm

Since exact computation of the cost-sensitive certified radius
requires infinitely many Gaussian samples, we adopt Monte
Carlo methods (Cohen et al., 2019) to obtain its empirical
estimates. The main challenge for our adaptation lies in how
to ensure statistically rigorous and tighter bounds on the
newly proposed cost-sensitive certified radius, as detailed in
Algorithm 1 (see Algorithm 2 for CERTIFY PAIR).

Following standard practice, we first compute the (1−α)
lower confidence bound for the cost-sensitive certified radius
by calculating r̂cs such that P[r̂cs ≤ rcs] ≥ 1−α. This
ensures r̂cs is a valid lower bound on the true radius rcs
with high probability, providing rigorous certification even
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if conservative. We now introduce our approach to improve
the tightness of this estimation. Recall that the certified
radius has the following general form:

σ

2

[
Φ−1(pA)− Φ−1(pB)

]
.

To lower-bound the radius, we estimate Φ−1(pA) and
Φ−1(pB) by computing pA (a lower bound for pA) and
pB (an upper bound for pB):

• Lower-bounding pA: Compute pA as the (1−α) lower
confidence bound of pA, and set pB = 1−pA. This
yields the lower bound radius σΦ−1(pA), as pB ≤
1−pA. This method, used in Cohen et al. (2019), gives
the empirical radius r̂std, which, as shown in Theo-
rem 4.2, is always a valid (1−α) lower bound for the
cost-sensitive radius.

• Computing both bounds for pA and pB : The radius can
also be computed using a (1−α/2) lower confidence
bound of pA and a (1−α/2) upper confidence bound of
pB . For r̂cs-group, the (1−α/2) upper confidence bound
of pB is further approximated by taking the maximum
of the (1−α/(2|Ωy|)) upper confidence bounds for each
class k ∈ Ωy . For r̂cs-pair, pB is directly computed as the
(1−α/2) upper confidence bound of the target class j.

The following theorem, proven in Appendix B.2 by union
bound, shows the validity of the estimate r̂cs as a (1 − α)
confidence bound on the certified cost-sensitive radius.

Theorem 4.4. For any example (x, y), smoothed classifier
gθ and cost matrix C, r̂cs-group and r̂cs-pair are certified cost-
sensitive robust radii with at least (1−α) confidence over
the randomness of Gaussian sampling.

Remark 4.5. Unlike standard certified radius derivations,
our algorithm introduces a novel method for computing
the upper confidence bound pB over cost-sensitive target
classes Ωy. Standard approaches (Cohen et al., 2019) set
pB =1−pA, assuming concentration of non-ground-truth
class probabilities in a single runner-up class. However, this
is sub-optimal for certifying cost-sensitive robustness, as
the relevant top class in Ωy (for groupwise radius) or target
class j (for pairwise radius) often differs from the runner-up,
yielding a looser robustness certificate. Our method refines
pB using union bounds and tailored confidence levels, yield-
ing tighter certificates (e.g., Line 11, Algorithm 1).

Remark 4.6. Our certification algorithm returns the maxi-
mum between the two possible radii r̂std and r̂cs, ensuring
the tighter bound is returned. While the theoretical results
suggest that rcs-pair≥ rcs-group≥ r, empirical cases may show

r̂std > r̂cs, especially when Ωy includes the runner-up class.
Overall, the gap between r̂std and r̂cs depends on input-
specific factors, such as the probabilities of the top and
runner-up classes, as well as hyperparameters like n and α
(see visualizations and discussions in Appendix B.3).

5. Training for Cost-Sensitive Robustness
While the notion of cost-sensitive certified robustness (Sec-
tion 4.2) and our certification algorithms (Section 4.3) can
already be applied independently to any classifier in a black-
box manner, this section focuses on training methods de-
signed to enhance robustness guarantees in these contexts.

Margin-CS: Cost-sensitive Margin Loss. We consider the
natural idea of minimizing the total cost-sensitive robust
cost (Definition 4.3) directly. However, this is challenging
because the certified radius is not differentiable (nor sub-
differentiable) due to the presence of argmax operations
and counting procedures, making it unsuitable for direct
incorporation into the objective function. To address this,
we employ a soft-smoothed classifier approximation for
the certified radius, following approaches in Salman et al.
(2019); Zhai et al. (2020); Jeong et al. (2021). This replaces
the counting probability hθ with the soft-smoothed predic-
tion Gθ(x) = Eδ∼N (0,σ2I)[Fθ(x + δ)] when computing
the radius, where Fθ :Rd→∆m−1 is the soft-base classifier
that returns the predicted probability scores (see Appendix
A for notation summary). We denote this approximation
as rcs-pair(x; j,Gθ) and rcs-group(x; j,Gθ), emphasizing the
use of the soft-smoothed classifier Gθ. In addition, maxi-
mizing the certified radius can be interpreted as increasing
the margin between the smoothed classifier’s confidence in
the ground-truth class and the most confusing target class.

To achieve numerical stability in this process, we apply
hinge loss, which mitigates the instability caused by the
large derivative of the inverse cumulative density function
Φ−1(x) near the domain boundary, as also highlighted
in Zhai et al. (2020). More formally, given thresholds l ≤ u,
the general margin loss for any v ∈ R is defined as:

LM

(
v; l, u

)
= max{u− v, 0} · 1

[
l ≤ v ≤ u

]
, (3)

where the indicator function selects data points whose cer-
tified radius falls within the range of [l, u]. The overall
training objective of our method is defined as:

min
θ∈Θ

{
E(x,y)∼DEδ∼N (0,σ2I) LCE(fθ(x+ δ), y)

+ λ1

(
E(x,y)∼Dn

LM

(
rcs-group(x; Ωy, Gθ); 0, γ1

)
(4)

+ λ2E(x,y)∼Ds

∑
j∈Ωy

CyjLM

(
rcs-pair(x; j,Gθ); 0, γ2

))}
.
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Here, λ1, λ2, γ1, γ2 > 0 are hyperparameters,D denotes the
overall data distribution, Ds is the distribution of sensitive
examples that incur costs when misclassified, and Dn is the
distribution of normal examples. Specifically, the first term
focuses on model performance, while the last two terms
focus on robustness, with the final term incorporating the
approximated total robust cost. The interval defined by
γ1 and γ2 in the margin loss LM determines which data
subpopulation is prioritized during optimization. Larger
values of γ1 and γ2 result in broader data coverage (see
Appendix D.3 for detailed ablation studies).

Note that by applying different threshold restrictions to the
certified radius for sensitive and non-sensitive samples, the
model can focus on optimizing specific data subpopulations
rather than treating all data points equally. This targeted
approach is particularly beneficial for cost-sensitive learn-
ing, with our experiments showing that this fine-grained
optimization strategy improves certified cost-sensitive ro-
bustness without compromising overall standard accuracy.

6. Experiments

Datasets & Configurations. We evaluate our method on the
standard benchmark datasets: CIFAR-10 (Krizhevsky et al.,
2009), Imagenette1, and the full ImageNet dataset (Deng
et al., 2009). In addition, we assess its performance on
the real-world medical dataset HAM10k (Tschandl et al.,
2018) to demonstrate its effectiveness in practical scenar-
ios, where cost-sensitive misclassifications can have severe
consequences. For CIFAR-10 and HAM10k, we use the
ResNet architecture following Cohen et al. (2019) as the
target classification model. Specifically, we use ResNet-56,
since it attains a comparable performance to ResNet-110
but with reduced computation costs. For ImageNet, we use
ResNet-18, following Pethick et al. (2023). Consistent with
common evaluation practices (Cohen et al., 2019), we focus
on the setting of ϵ = 0.5 and σ = 0.5 in our experiments,
while we observe similar trends under other settings (see
Appendix D for all the additional experimental results).

Methods. We compare our Margin-CS with existing base-
line randomized smoothing-based training methods, includ-
ing the Gaussian augmentation-based method (Cohen et al.,
2019) (denoted as Gaussian), SmoothAdv (Salman et al.,
2019), SmoothMix (Jeong et al., 2021), and MACER (Zhai
et al., 2020), which are originally proposed to optimize for
overall robustness. For reference, we also adapt these meth-
ods for cost-sensitive scenarios (when applicable), intro-
ducing Gaussian-CS, SmoothAdv-CS, and SmoothMix-CS
as adaptive baselines (see Appendix D.1 for detailed de-
scriptions). These adaptations use reweighting, a common
technique in cost-sensitive learning, and are optimized for

1https://github.com/fastai/Imagenette.

cost-sensitive performance by tuning the weight parameters
associated with sensitive examples.

Evaluation Metrics. We evaluate the performance of differ-
ent methods using the following metrics: (i) Certified robust
cost (Definition 4.3), (ii) Certified cost-sensitive robustness:
Robcs(gθ)=

1
|Ss|

∑
(x,y)∈Ss 1{rcs-group(x; Ωy)>ϵ}, which

measures the fraction of (cost-)sensitive test examples
with a certified radius larger than ϵ, indicating robust-
ness under ℓ2 perturbations, where Ss is the set of sen-
sitive test examples, and (iii) Certified overall accuracy:
Acc(gθ)=

1
|S|

∑
(x,y)∈S 1{r(x)> 0}, which computes the

ratio of correctly classified samples by gθ over the entire
testing dataset. Using the above metrics, we can systemat-
ically compare the cost-sensitive robustness and standard
performance of various robust training methods.

6.1. Main Results

Equal Costs for Selected Misclassifications. We start by
evaluating a straightforward scenario on standard bench-
marks where equal costs are assigned to specific misclassi-
fication cases. This demonstrates that our approach can ef-
fectively emphasize these critical misclassifications. Specif-
ically, we examine the following cases: “S-Seed”: A single
randomly selected sensitive seed class, where misclassifica-
tion to any other class is assigned an equal cost. “M-Seed”:
Multiple sensitive seed classes, where misclassification to
any other class is assigned an equal cost. “S-Pair”: A
single misclassification from a sensitive seed class to one
specific target class. “M-Pair”: A single sensitive seed class
with misclassifications to multiple target classes, each with
an equal cost. In our experiments, we report performance
on classes that typically show higher prediction error by a
vanilla classifier (i.e., those more vulnerable to attacks).

Tables 1 and 2 show that Margin-CS significantly surpasses
all standard baselines, improving by approximately 20%
over the best standard robust training method while main-
taining overall certified accuracy compared to non-cost-
sensitive baselines. Beyond the quantitative results, a visual
demonstration of the distributions of the certified radii in Fig-
ure 3(a) (CIFAR-10 “S-Seed” case) shows that our Margin-
CS generally increases the certified radii for most samples.
These results indicate that our fine-grained thresholding
techniques for optimizing the certified radius offer a better
trade-off between accuracy and cost-sensitive robustness
than both non-adaptive baselines and standard adaptations.

Comparisons with Existing Methods. We compare our
method with Zhang & Evans (2019)’s, which, to the best
of our knowledge, is the only existing work that provides
a certification and training approach for cost-sensitive ro-
bustness. While Zhang & Evans (2019) does not provide a
certified radius—potentially favoring our method due to its
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Table 1. Certification results on CIFAR-10 for selected misclassifications (S-Seed, M-Seed, S-Pair, and M-Pair) with equal costs. Acc is
certified overall accuracy (%), Robcs refers to certified cost-sensitive robustness (%), and Robcost denotes certified robustness cost.

Method S-Seed M-Seed S-Pair M-Pair
Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓

Gaussian 65.4 22.3 4.99 65.9 29.3 4.67 65.4 50.4 0.18 65.4 33.6 0.92
SmoothMix 65.7 17.2 6.29 65.7 26.4 4.61 65.7 58.0 0.39 65.7 45.2 1.46
SmoothAdv 66.9 27.1 4.94 66.9 30.2 4.42 66.9 57.1 0.38 66.9 38.7 1.23
MACER 65.9 27.3 5.27 65.9 29.1 4.90 65.8 54.3 0.23 65.8 38.5 0.99
Gaussian-CS 64.2 50.6 3.35 66.2 34.8 4.16 64.2 72.3 0.08 64.2 64.3 0.48
SmoothMix-CS 63.2 26.3 5.25 65.0 29.5 4.19 63.2 67.5 0.20 63.2 46.2 1.17
SmoothAdv-CS 66.1 53.5 3.12 67.2 43.3 3.14 66.1 80.4 0.31 66.1 75.3 0.73
Margin-CS 67.5 54.8 3.04 67.3 46.8 3.07 67.3 92.4 0.05 67.5 80.4 0.35

Table 2. Certification results on Imagenette for selected misclassifications (S-Seed, M-Seed, S-Pair, and M-Pair) with equal costs. Acc is
certified overall accuracy (%), Robcs refers to certified cost-sensitive robustness (%), and Robcost denotes certified robustness cost.

Method S-Seed M-Seed S-Pair M-Pair
Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓

Gaussian 80.3 64.6 3.67 80.4 58.9 3.86 80.3 88.5 0.236 80.3 75.6 1.09
SmoothMix 80.2 64.3 3.91 80.2 55.5 4.86 80.2 89.4 0.198 80.2 79.2 1.76
SmoothAdv 80.6 59.5 2.93 80.6 59.2 3.98 80.6 90.2 0.196 80.6 74.9 1.72
MACER 78.2 63.8 2.46 78.2 57.8 2.72 78.2 89.9 0.169 78.2 78.0 0.34
Gaussian-CS 74.6 73.3 1.67 74.0 61.7 2.52 75.4 91.1 0.167 75.4 83.0 0.26
SmoothMix-CS 77.6 66.6 3.82 76.1 68.9 4.30 77.6 90.2 0.189 77.3 82.6 1.71
SmoothAdv-CS 76.1 68.9 2.24 75.7 62.6 2.81 78.6 90.7 0.177 77.6 80.4 1.70
Margin-CS 79.6 81.1 1.35 82.1 72.0 2.46 82.7 94.7 0.167 79.6 86.3 0.21

Table 3. Comparisons of our method with Zhang & Evans (2019)
for ℓ2-norm on CIFAR-10 across different settings.

Method S-Pair M-Pair (1,1,10) M-Pair (1,1,2)
Acc↑ Robcs↑ Acc↑ Robcost↓ Acc↑ Robcost↓

Gaussian 79.3 67.4 79.3 5.04 79.3 2.02
SmoothMix 73.0 67.0 73.0 3.98 73.0 2.32
SmoothAdv 77.9 74.2 77.9 4.45 77.9 2.12
MACER 78.4 77.4 78.4 4.52 78.4 1.35
Gaussian-CS 77.8 81.1 77.8 4.21 77.8 1.27
SmoothMix-CS 72.2 75.7 72.2 2.65 72.2 1.97
SmoothAdv-CS 78.7 83.8 78.7 3.21 78.7 1.43
Zhang & Evans (2019) 61.2 92.4 78.0 2.78 73.9 1.70
Margin-CS 80.9 93.5 79.5 2.39 79.5 0.93

flexibility—all our evaluation metrics remain valid. Since
their default setting aligns close to ϵ = 0.25, we perform
all comparisons with both training and testing noise set to
σ = 0.25. The comparison results in Table 3 focus on seed
class “3” under both equal cost (the “S-Pair” setting) and
varying unequal cost conditions (the “M-Pair (1,1,10)” and

“M-Pair (1,1,2)” settings). In the unequal cost scenarios, the
misclassification costs for class “3” to classes “2”, “4”, “5”
are set to 1, 1, and 10, and to classes “2”, “4”, “6” are set to
1, 1, and 2, respectively.

As shown in Table 3, our Margin-CS achieves significantly
higher certified robustness while maintaining comparable
overall standard accuracy when compared with Zhang &
Evans (2019), highlighting the superior practicality of our
approach. It is important to note that, as a convex relaxation-
based method, Zhang & Evans (2019) is not feasible for
relatively large real-world datasets (e.g., Imagenette and
HAM10k in our work), limiting its applicability.

Table 4. Performance metrics (Accuracy, Precision, Recall in %)
and certification results (Robcs in % and Robcost) on HAM10k.

Method HAM10k
Acc ↑ Robcs ↑ Robcost ↓ Precision ↑ Recall ↑

Gaussian 82.9 11.8 1.56 51.0 15.0
SmoothAdv 82.6 11.4 1.68 36.4 17.8
SmoothMix 83.1 0.79 1.66 40.0 0.80
MACER 82.7 21.1 1.41 50.0 25.0
Gaussian-CS 80.5 19.7 1.47 38.0 20.0
SmoothAdv-CS 81.8 21.7 1.64 39.6 23.5
SmoothMix-CS 81.9 2.1 1.70 25.0 2.1
Margin-CS 83.2 34.4 1.17 52.0 41.3

6.2. Applicability to Real-World Medical Data

We consider a practically significant scenario of cost-
sensitive robust learning using real-world medical data.
Specifically, we evaluate the performance of various ro-
bust training methods on the HAM10k (Tschandl et al.,
2018) dataset, focusing on the task of classifying images
of pigmented lesions as either benign or malignant. This
scenario closely mirrors real-world applications, where mis-
classifying a malignant tumor as benign can lead to severe
consequences and higher associated costs. To account for
this, we set the misclassification costs at a ratio of 10:1
for malignant-to-benign versus benign-to-malignant errors,
emphasizing the significantly higher penalty for failing to
diagnose a malignant condition.

The results, shown in Table 4, include both performance
metrics (Accuracy, Precision, Recall) for the smooth clas-
sifier, as well as certification metrics (Robcost and Robcs).
Notably, our Margin-CS method, which directly optimizes
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Figure 2. Certified accuracy curves for varying ϵ on different datasets under different settings.
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Figure 3. Figure 3(a) shows Margin-CS improves the distribution of cost-sensitive certified radius compared with the overall strongest
baselines, SmoothAdv and SmoothAdv-CS. Figures 3(b) and 3(c) compare the cost-sensitive robustness computed using r̂std and r̂cs-group.

the certified radius, shows significant improvements in certi-
fied robustness and robust cost. We also notice that while
all methods demonstrate comparable prediction accuracy,
they exhibit substantial differences in precision and recall.
The intrinsic imbalance in the data distribution (i.e., a higher
prevalence of benign samples) leads many training meth-
ods to bias predictions toward benign outcomes. Notably,
our Margin-CS achieves superior recall (which is of great
practical importance as it captures potentially malignant
cases that require urgent treatment) and precision compared
to other cost-sensitive robust training methods as well as
non-cost-sensitive baselines. For reference, a standard base
classifier yields 3.4% precision and 39.3% recall, while
our Margin-CS method substantially improves upon these
metrics to 52% precision and 41.3% recall.

6.3. Ablation Studies with Varying ϵ

To provide a more comprehensive understanding of each
method’s behavior across varying levels of ϵ (which corre-
spond to different practical robustness requirements), we
compare the cost-sensitive robustness Robcs under varying
scale of ℓ2 perturbations for all methods in Figure 2. The
performance at ϵ = 0 measures the certified accuracy for
cost-sensitive examples, and the results at ϵ = 0.5 corre-

spond to the default setting we adopted for comparisons.
It is evident that our Margin-CS generally outperform all
the baseline methods and their adaptations in certified cost-
sensitive robustness across different ϵ. The most significant
improvements provided by our cost-sensitive adaptation oc-
cur for ϵ ≤ 1, with notable gains up to ϵ ≈ 1.5. Beyond
this, larger ϵ values likely exceed the limits of certification
methods, causing failures across all approaches.

7. Conclusion
In this work, we developed a comprehensive framework
based on randomized smoothing to certify and train for
cost-sensitive robustness. We investigate various representa-
tive training methods, ranging from systematic adaptations
of existing approaches to our novel targeted cost-sensitive
certified radius maximization technique. Notably, our fine-
grained thresholding techniques, which optimize the certi-
fied radius across carefully calibrated data subgroups, sig-
nificantly improve the model utility-robustness trade-off.
Extensive experiments on benchmark and medical datasets
demonstrate the generality and effectiveness of our frame-
work compared to existing methods.
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Availability
To ensure reproducibility and accessibility, our method
and the implementations of our experiments are avail-
able as open source code at: https://github.com/
AppleXY/Cost-Sensitive-RS.

Impact Statement
Our work aims to enhance the robustness of machine learn-
ing systems under cost-sensitive scenarios, which is crucial
for safety-critical applications such as healthcare and au-
tonomous driving. We are not aware of any ethical issues
that might be induced by our work, since our main focus
is to build better defenses. As for potential societal conse-
quences, we believe our work will be particularly helpful
for practitioners to incorporate domain knowledge to build
better robust machine learning systems that are prioritized
to defend against the most consequential attacks.
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Appendix

A. Notations
We present below in Table 5 a summary of the notations
used throughout this paper. D represents the underlying data
distribution, Ds is the distribution of all sensitive examples
that incur costs if misclassified, and Dn is the distribution
of the remaining normal examples. The base classifier is
denoted by fθ : Rd → [m], while Fθ : Rd → ∆m−1 refers
to the soft-base classifier that outputs predicted probabil-
ity scores, where ∆m−1 is the probability simplex in Rm.
Specifically, fθ(x) = argmaxc∈[m][Fθ(x)]c.

In addition, gθ : Rd → [m] denotes the smoothed classifier,
and Gθ : Rd → ∆m−1 represents the soft-smoothed classi-
fier with Gθ(x) = Eδ∼N (0,σ2I) [Fθ(x+ δ)], which serves
as an approximation of hθ introduced in Definition 3.1. In
essence, hθ captures the frequency of hard label predictions
given by the base classifier f on noisy inputs x+ δ, while
Gθ represents the expected soft label predictions produced
by the soft-base classifier F on noisy inputs.

Table 5. Summary of Notations.

Notation Description
D Overall data distribution
Ds Distribution of all sensitive examples
Dn Distribution of the remaining normal examples
fθ : Rd → [m] The base classifier
Fθ : Rd → ∆m−1 The soft-base classifier
gθ : Rd → [m] The smoothed classifier
Gθ : Rd → ∆m−1 The soft-smoothed classifier
hθ : Rd → ∆m−1 The prediction probabilities of gθ
x ∈ Rd The query sample
x̃ ∈ Rd The ℓ2-bounded adversarial sample of x on gθ
x̃′ ∈ Rd The unrestricted adversarial sample of x on gθ

B. Certification Algorithm
Algorithm 2 provides the pseudocode for computing the
pair-wise certified radius, as referenced in Section 4 of the
main paper.

B.1. Proof of Theorem 4.2

Proof of Theorem 4.2. Note that x is assumed to be cor-
rectly classified by gθ in the definition of certified radius
(otherwise the radius is defined to be 0), suggesting that the
ground-truth y is also the top-1 class. Recall that standard
certified radius is defined as:

r(x) =
σ

2

[
Φ−1

(
[hθ(x)]y

)
− Φ−1

(
max
k ̸=y

[hθ(x)]k
)]
. (5)

Recall that our cost-sensitive certified radius is defined as:

rcs-group(x; Ωy) =
σ

2

[
Φ−1

([
hθ(x)

]
y

)
− Φ−1

(
max
k∈Ωy

[
hθ(x)

]
k

)]
,

Algorithm 2 Certification for Cost-Sensitive Robustness

1: function CERTIFY PAIR(fθ, σ,x, n0, n, α, j) :

2: //Determine the top-1 class
3: counts0← SAMPLEUNDERNOISE(fθ,x, n0, σ)

4: ĉA ← top index in counts0
5: //Obtain the counts
6: counts← SAMPLEUNDERNOISE(fθ,x, n, σ)

7: //Compute the standard radius
8: r̂std = Φ−1(LCB(counts[ĉA], n, 1− α)) · σ
9: //Compute the pair-wise radius

10: pA = LCB(counts[ĉA], n, 1− α
2 )

11: pB = UCB(counts[j], n, 1− α
2 )

12: r̂cs-pair = (Φ−1(pA)− Φ−1(pB)) · σ/2
13: //Return the final result
14: if max(r̂std, r̂cs-pair) > 0 then
15: return ĉA, max(r̂std, r̂cs-pair)

16: else return ABSTAIN

rcs-pair(x; j) =
σ

2

[
Φ−1

([
hθ(x)

]
y

)
− Φ−1

([
hθ(x)

]
j

)]
.

Note that the first term is identical across all definitions;
the differences arise in the second term. Depending on the
setting of Ωy , we can make the following observations:

• By definition we require that j ∈ Ωy ⊆ [m] \ {y}, thus
maxk ̸=y [hθ(x)]k ≥ maxk∈Ωy

[
hθ(x)

]
k
≥

[
hθ(x)

]
j
.

Due to the monotonicity of Φ−1, we therefore have
r(x) ≤ rcs-group(x; Ωy) ≤ rcs-pair(x; j).

• When |Ωy| = m− 1, Ωy = {j|j ̸= y, j ∈ [m]} encom-
passes all incorrect classes, the two probability terms are
fully matched for rcs-group(x; Ωy) and r(x), leading to
rcs-group(x; Ωy) = r(x).

• When |Ωy| = 1, specifically Ωy = {j}, it is straight-
forward to observe that maxk∈Ωy

[hθ(x)]k = [hθ(x)]j ,
resulting in rcs-group(x; Ωy) = rcs-pair(x; j).

Therefore, we complete the proof of Theorem 4.2.

B.2. Proof of Theorem 4.4

Proof of Theorem 4.4. Our goal is to show that r̂cs (i.e.,
both r̂cs-group and r̂cs-pair) specified in Algorithms 1 and 2
is a cost-sensitive certified radius with at least (1− α) con-
fidence over the randomness of the Gaussian sampling. Let
m be the total number of label classes, and let (p1, . . . , pm)
be the ground-truth probability distribution of the smoothed
classifier gθ for a given example (x, y). Denote by pA, pB
the maximum probabilities in [m] and in Ωy, respectively.
According to the design of Algorithms 1 and 2, we can
compute the empirical estimate of pk for any k ∈ [m]
based on n Gaussian samples and the base classifier fθ.
Let (p̂1, . . . , p̂m) be the corresponding empirical estimates,
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then we immediately know

p̂k ∼ Binomial(n, pk), for any k ∈ [m].

For r̂std, we follow the procedure in Cohen et al. (2019) to
compute the (1− α) lower confidence bound by first calcu-
lating the (1− α) lower confidence bound on pA (denoted
as pA). Then, given the fact that pB ≤ 1 − pA, this leads
to an upper confidence bound on pB = 1− pA. However,
for the computation of r̂cs, we need to compute both a lower
confidence bound on pA and an upper confidence bound
on pB , which requires additional care to make the compu-
tation rigorous. In particular, we adapt the definition of
standard certified radius (Theorem 1 in Cohen et al. (2019))
to cost-sensitive scenarios for deriving r̂cs. Based on the
construction pA = LCB(count[ĉA], n, 1− α/2], we have

Pr
[
pA ≤ pA

]
≥ 1− α

2
. (6)

Therefore, the remaining task is to prove

Pr
[
pB ≥ pB

]
≥ 1− α

2
. (7)

If the above inequalities hold true, we immediately know
that by the union bound,

Pr
[
r̂cs ≤ rcs(x; Ωy)

]
= Pr

[
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
≤ σ

2

(
Φ−1(pA)− Φ−1(pB)

)]
≥ 1−

(
Pr

[
pA ≥ pA

]
+ Pr

[
pB ≤ pB

])
≥ 1− α.

For the pairwise cost-sensitive certified radius, based on
Equation 7, we directly have by setting:

pB = UCB(count[j], n, 1− α

2
). (8)

For the groupwise cost-sensitive certified radius,

pB = max{UCB(count[k], n, 1− α

2|Ωy|
) : k ∈ Ωy},

as defined in Algorithm 1. Ωy denotes the set of cost-
sensitive target classes, and pB = maxk∈Ωy

{pk} is used to
define rcs-group(x,Ωy). The challenge for proving Equation
7 lies in the fact that we do not know the top class within Ωy

which is different from the case of pA. Therefore, we resort
to upper bounding the maximum over all the ground-truth
class probabilities within Ωy. Based on the distribution of
p̂k, we know for any k ∈ Ωy ,

Pr
[
pk ≥ pk

]
≥ 1− α/(2|Ωy|), (9)

where pk is defined as the (1−α/(2|Ωy|)) upper confidence
bound computed using p̂k. We remark that the choice of
(1 − α/(2|Ωy|)) can in fact be varied for each k ∈ Ωy

and even optimized for obtaining tighter bounds, as long as
the summation of the probabilities of bad event happening
is at most α/2. Here, we choose the same value of 1 −
α/(2|Ωy|) across different k for simplicity, which already
achieves reasonably good performance in our preliminary
experiments. According to the union bound, we have

Pr

[
max
k∈Ωy

pk ≥ pB

]
= Pr

[
max
k∈Ωy

pk ≥ max
k∈Ωy

pk

]
≥ 1−

∑
k∈Ωy

Pr
[
pk ≤ pk

]
≥ 1− |Ωy| · α/(2|Ωy|) = 1− α

2
,

where the first inequality holds because of the union bound,
which completes the proof.

B.3. Demonstrations for Remarks 4.6

In Figure 4, we illustrate various scenarios involving the
probability prediction scores of gθ on a given sample (x, y)
that can lead to different orderings of the estimated certi-
fied radius. The plot considers an example with five label
classes, where py denotes the true underlying prediction
probability of the smoothed classifier gθ on the ground-
truth class y, and pk1 through pk4 represent the remain-
ing non-ground-truth classes. The corresponding colored
curves depict the observable distributions of these underly-
ing values, obtained through Monte Carlo sampling, which
follow binomial distributions. We focus on the most favor-
able cases for r̂std (as otherwise, our cost-sensitive radius
is always larger) by setting Ωy = {k1, k2, k3, k4}, which
includes all non-ground-truth classes, for the groupwise ra-
dius rcs-group(x; Ωy), and designating j as the index of the
runner-up class (here j = k1, as shown in the figure) for
the pairwise radius rcs-pair(x; j). The figure sequentially
displays all typical cases from top to bottom. We note the
following points associated with the demonstration:

• The estimation of pA generated by r̂std is closer to the true
underlying pA (as it allows a larger lower region, i.e., α
vs. α/2), while the differences between various estimates
of pA diminish with more random noisy samples and as
pA approaches 1.

• When the prediction probability mass is not concen-
trated on the top two classes (e.g., subplot (a)), our cost-
sensitive radii tend to be larger due to their more precise
estimation of pB . However, when the prediction proba-
bility mass is concentrated on the top two classes (e.g.,
subplots (b) and (c)), r̂std will be more advantageous.
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(a) r̂std < r̂cs-group < r̂cs-pair

(b) r̂cs-group < r̂std < r̂cs-pair

(c) r̂cs-group < r̂cs-pair < r̂std

Figure 4. Visualizations of scenarios that result in different order-
ings of the estimated certified radius. The vertical dashed lines,
shown in different colors, indicate the lower and upper bounds for
pA and pB as determined by different estimation methods.

• Comparing the two types of our cost-sensitive radius,
rcs-pair will always be larger than rcs-group, as they share
the same estimation of pA, but the estimation of pB from
rcs-pair is closer to the true pB because it allows a larger
upper confidence region (i.e., α/2 vs. α/2|Ωy|).

Comparing r̂cs with r̂std. As noted in Remark 4.6, our cer-
tification algorithm tightens cost-sensitive robustness guar-

Table 6. Percentage for r̂std > r̂cs-group under different cost matri-
ces settings on CIFAR-10. We fix one seed class “cat” and vary
the number of sensitive target classes Ωy .

|Ωy| 1 3 5 7 9
Gaussian 0.9% 1.7% 13.7% 16.2% 22.1%
Margin-CS 1.7% 6.8% 7.7% 10.8% 18.1%

antees by returning the maximum of the standard estimate
r̂std and our cost-sensitive estimate r̂cs. To evaluate its ef-
fectiveness, we compare certified cost-sensitive robustness
using r̂std and r̂cs-group under various settings. Figures 3(b)
and 3(c) illustrate results for a fixed seed class “cat” (class
“3”) and cost-sensitive target sets of varying sizes. We as-
sess models trained with Gaussian smoothing (Cohen et al.,
2019) and our Margin-CS approach. Our results show that
r̂cs-group generally provides tighter cost-sensitive robustness
guarantees than r̂std, with the gap increasing as |Ωy| de-
creases. This occurs because a smaller Ωy is less likely to
include the runner-up class, causing the true pB (top class
probability in Ωy) to be lower than the estimated pB used
for r̂std. These findings highlight the advantage of r̂cs and
the importance of our algorithm. However, as noted in Re-
mark 4.6, when Ωy includes the runner-up class, r̂cs-group can
occasionally be smaller than r̂std. Table 6 shows that this
occurs in less than 20% of cases across various cost matrix
settings. This supports our observation that r̂std only outper-
forms r̂cs-group when pB = 1− pA holds tightly, confirming
the need for the maximum operation in our algorithm.

C. Discussions & Insights
Existing robust training methods based on randomized
smoothing can be roughly categorized into two main classes:
(1) noise-augmented training, which enhance robustness by
incorporating noise into the training process (Cohen et al.,
2019; Salman et al., 2019; Jeong et al., 2021), and (2) certi-
fied radius optimization, which focus on directly maximiz-
ing the certified radius (Zhai et al., 2020). Both classes are
considered in our work for completeness, as discussed in
Section D.1 (in the appendix) and Section 5 (in the main
paper), respectively. Below, we discuss the key strengths
and limitations of each class in the context of cost-sensitive
learning and compare them with alternative frameworks.

Control vs. Flexibility. Noise-augmented training meth-
ods are generally easy to implement and broadly applicable
across various models and data modalities. However, this
flexibility often comes at the cost of reduced granular con-
trol, making them less suitable for cost-sensitive scenarios.
In such cases, adaptations typically rely on reweighting, a
straightforward but restricted technique for cost-sensitive
learning. Achieving more specific adaptations would re-
quire adjusting the noise distribution or perturbation strategy
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for different cost matrices, which complicates implemen-
tation and yielded suboptimal results in our preliminary
tests. While these methods generally offer reasonable per-
formance, they often fall short of achieving optimal robust-
ness. In contrast, certified radius optimization methods
offer greater control by focusing directly on maximizing the
robustness measure. This approach is well-suited for inte-
grating the certified radius into cost-sensitive frameworks,
allowing for more precise management of different misclas-
sification types as defined by the cost matrix.

Scalability vs. Tightness. While this work focuses on the
randomized smoothing framework, it is worth noting that
the convex relaxation framework has also been adopted for
cost-sensitive certification (Zhang & Evans, 2019). In com-
parison, this alternative framework may be slightly more
advantageous in providing tighter robustness guarantees,
as it allows for more precise control over the perturbation
sets and leverages well-established optimization techniques
such as semidefinite programming and duality theory. How-
ever, these advantages come at the expense of significant
scalability challenges, rendering the approach infeasible for
real-world, high-dimensional data. In contrast, randomized
smoothing is highly scalable, making it well-suited for large
datasets. However, our certification method, while smoothly
scaling with input dimensions, faces a worst-case quadratic
scaling with the number of label classes. This could be a
concern when aiming for precise control over all types of
misclassifications. Despite this, its practical impact is often
mitigated in real-world scenarios, where strong priors exist
for only a few critical misclassification types. In fact, many
cost-sensitive learning tasks in practice are either binary or
involve a small subset of classes where misclassification
is particularly costly. This results in a sparse cost matrix,
which simplifies the optimization process and ensures that
our approach remains efficient in typical practical scenarios.

D. Additional Details & Experiments Results
D.1. Adaptive Baselines

The randomized-smoothing framework is built on the prin-
ciple of introducing noise into input samples during infer-
ence. To further enhance both performance and robust-
ness, existing works typically proposed accounting for this
noise when updating the base or smoothed classifier (Co-
hen et al., 2019; Salman et al., 2019; Jeong et al., 2021)
(i.e., noise-augmented training). In this context, adapting to
cost-sensitive samples can be effectively addressed through
reweighting, a standard and widely accepted approach in
cost-sensitive learning. By assigning higher importance to
these sensitive samples during the training process, reweight-
ing ensures the model is better equipped to handle misclassi-
fications that incur higher costs. In this section, we present

these (cost-sensitive) adaptive baselines.

Gaussian-CS. We first consider the base classifier training
method introduced in Cohen et al. (2019), which proposes
injecting Gaussian noise into all inputs during the training
of fθ to mitigate the negative effects of the noise introduced
during inference. In cost-sensitive settings, the reweight-
ing scheme involves increasing the weights assigned to
the loss function of sensitive examples, a method we re-
fer to as Gaussian-CS. Specifically, the training objective of
Gaussian-CS is defined as follows:

min
θ∈Θ

[
E(x,y)∼Dn

Eδ∼N (0,σ2I) LCE

(
fθ(x+ δ), y

)
+ λ · E(x,y)∼Ds

Eδ∼N (0,σ2I) LCE

(
fθ(x+ δ), y

)]
,

where λ ≥ 1 is a trade-off parameter that controls the perfor-
mance between sensitive and non-sensitive examples. When
λ = 1, the above objective function is equivalent to the
training loss used in standard randomized smoothing.

SmoothAdv-CS. SmoothAdv (Salman et al., 2019) applies
adversarial training to the smoothed classifiers gθ to improve
its certified robustness, which involves incorporating adver-
sarial samples into the updating process of the smoothed
classifier. Similarly to Gaussian-CS, we adapt SmoothAdv
by reweighting the cost-sensitive samples:

min
θ∈Θ

[
E(x,y)∼Dn

Eδ∼N (0,σ2I) LCE

(
fθ(x̃+ δ), y

)
+ λ · E(x,y)∼Ds

Eδ∼N (0,σ2I) LCE

(
fθ(x̃+ δ), y

)]
,

where x̂ represents adversarial example of x against
smoothed classifiers gθ, which is found by:

x̃ = argmax
x′,∥x′−x∥2≤ϵ

LCE(gθ(x
′), y)

≈ argmax
x′,∥x′−x∥2≤ϵ

LCE(Gθ(x
′), y) (10)

= argmax
x′,∥x′−x∥2≤ϵ

(
− logEδ∼N (0,σ2I) [Fθ(x

′ + δ)]y

)
,

(11)

where ϵ denotes the maximum allowable ℓ2-norm distance
between the adversarial example x′ and the original input
x, Fθ and Gθ represent the soft-base and soft-smoothed
classifiers, respectively. The approximation in Equations 10
and 11 introduces a differentiable objective, which is further
approximated using Monte Carlo sampling with a small
number of Gaussian noise samples for δ.

SmoothMix-CS. Smoothed classifiers exhibit a crucial re-
lationship between prediction confidence and adversarial
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robustness: higher confidence typically leads to better cer-
tified robustness. In this regard, SmoothMix (Jeong et al.,
2021) suggests that the “over-confident but semantically
off-class” samples can undermine the classifier’s robustness.
They further observe that such over-confident examples can
be efficiently found along the direction of adversarial per-
turbations for a given input and propose to regularize the
over-confident predictions along the adversarial direction
toward the uniform prediction through a mixup loss. The
training objective is as follows:

min
θ∈Θ

[
E(x,y)∼DEδ∼N (0,σ2I) LCE

(
fθ(x+ δ), y

)
(12)

+ η · E(x,y)∼DEδ∼N (0,σ2I) LCE

(
fθ(x

mix + δ), ymix)],
where xmix = (1− t) · x+ t · x̃′,

ymix = (1− t) · Ĝθ(x) + t · 1

m
,

t ∼ U([0, 1/2]),

Here, t is uniformly sampled from [0, 1/2], forming a con-
vex combination between the original input and an adver-
sarial sample, 1

m is the uniform probability vector over the
m labels, and Ĝθ(x) denotes the estimated soft-smoothed
prediction of x, calculated as the average softmax predic-
tions of the base classifier on the noisy sample x+ δ. The
x̃′ corresponds to the unrestricted adversarial sample of the
smoothed classifier gθ for x, which is obtained by solving:

x̃′ = argmax
x′

(
LCE(gθ(x

′), y)− β∥x′ − x∥22
)
. (13)

Here, β > 0 ensures that the adversarial sample x̃′ remains
within a reasonable distance from x, preventing it from
being arbitrarily far. Note that while both xmix and ymix

depends on the model parameter θ, they are used only as
targets during the forward pass, and the gradient with respect
to θ from this path is not propagated in the backward pass.
For our reweighting adaptation, we modify the first term
of the objective in Equation 12 to rebalance the robustness
of cost-sensitive examples and normal examples. The final
objective is defined as:

min
θ∈Θ

[
E(x,y)∼Dn

Eδ∼N (0,σ2I) LCE

(
fθ(x+ δ), y

)
+ λ · E(x,y)∼Ds

Eδ∼N (0,σ2I) LCE

(
fθ(x+ δ), y

)
(14)

+ η · E(x,y)∼DEδ∼N (0,σ2I) LCE

(
fθ(x

mix + δ), ymix)].
D.2. Datasets

CIFAR-10. The CIFAR-10 dataset2 consists of 60,000
2https://www.cs.toronto.edu/ kriz/cifar.html

32× 32 colour images in 10 classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck), with 6,000
images per class, with 50,000 training images and 10,000
test images. The training set contains exactly 5000 images
per class, while the test set contains exactly 1,000 randomly
selected images per class, making it a balanced dataset.

Imagenette. The Imagenette dataset3 is a curated sub-
set of 10 easily recognizable classes from the larger Im-
ageNet dataset. It includes images from the following cat-
egories: tench, English springer, cassette player, chainsaw,
church, French horn, garbage truck, gas pump, golf ball,
and parachute. The images are resized to 160× 160 pixels,
making it a compact and focused dataset ideal for efficient
experimentation and model benchmarking.

ImageNet. ImageNet (Russakovsky et al., 2015) is a large-
scale visual database widely used in visual object recog-
nition research. It contains over 14 million color images
spanning more than 20,000 categories. A popular subset of
ImageNet, commonly used in research, comprises 1.2 mil-
lion high-resolution images categorized into 1,000 classes,
including animals, vehicles, and everyday objects. The
dataset is divided into a training set with 1.2 million images
and a validation set with 50,000 images. The validation set
includes 50 images per class, ensuring balanced representa-
tion across all categories. During preprocessing, the images
are typically cropped to a size of 224× 224 pixels.

HAM10k. The HAM10k dataset (Tschandl et al., 2018)
comprises 10,015 images resulting from a comprehensive
study conducted by multiple entities. Each image is in RGB
format and has dimensions of 600 × 450 pixels (length
× width). During preprocessing, the images are typically
cropped to a size of 299 × 299 pixels. The dataset is de-
signed to facilitate the study and classification of seven
distinct types of skin lesions, including “Melanocytic nevi”
(6705 samples), “Dermatofibroma” (1113 samples), “Be-
nign keratosis-like lesions” (1099 samples), “Basal cell car-
cinoma” (514 samples), “Actinic keratoses” (327 samples),
“Vascular lesions” (142 samples), and “Dermatofibroma”
(115 samples). Among these types, “Dermatofibroma” and
“Basal cell carcinoma” are malignant, while the others are
benign, forming a highly imbalanced distribution between
malignant and benign samples, closely mirroring real-world
conditions. This collection serves as a valuable resource for
advancing research in dermatological image analysis and
skin lesion classification.

D.3. Hyperparameters

For Gaussian-CS, SmoothAdv-CS and SmoothMix-CS, the
parameter λ is carefully tuned to ensure the best trade-off be-

3https://github.com/fastai/imagenette
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Table 7. Performance metrics under different (λ1, λ2) settings.

λ1 λ2 Acc ↑ Robcs ↑ Robcost ↓
1 1 0.69 0.22 5.15
2 2 0.68 0.45 3.62
3 3 0.67 0.51 3.41
4 4 0.63 0.73 1.60
5 5 0.60 0.76 1.37
6 6 0.58 0.81 1.05

tween overall accuracy and cost-sensitive robustness, where
we enumerate all values from {1.0, 1.1, . . . , 2.0} and ob-
serve nearly in all cases of cost matrices, setting λ = 1.1
achieves the best result. For MACER, the parameter λ
(which corresponds to the ratio between cross-entropy loss
and robustness loss in Zhai et al. (2020) is fixed at 4 by
default. Similarly, in our Margin-CS method, we set λ1 = 3
and λ2 = 3 according to observation from Table 7.

We present the results of varying hyperparameters γ1 and
γ2 in our Margin-CS method, evaluated across the main
metrics: Acc , Robcs and Robcost. Our goal is to im-
prove cost-sensitive robustness without sacrificing overall
accuracy, where γ1 controls the margin for normal classes
and γ2 for sensitive classes. We report results on CIFAR-10
under the “S-Seed” setting, where “cat” is selected as the
sensitive seed class and misclassifications to other classes
incur equal cost. This choice serves illustrative purposes,
as similar trends are observed across other cost matrices,
consistent with the results in Tables 1 and 2. A grid search
(Table 8) reveals that the combination (γ1, γ2) = (4, 16)
yields satisfactory results.

D.4. Detailed Experimental Setup

In our experiments, we use r̂std, r̂cs-group, r̂cs-pair returned by
Algorithms 1 and 2 as the empirical approximation of the
true certified radius defined in Lemma 3.2 and Definition 4.1.
For all cost-sensitive learning methods, we choose the hy-
perparameters based on the following selection criteria: it
should yield a high Robcs (or low Robcost) while Acc should
be comparable to that of the baseline randomized smoothing
methods designed for maximizing overall robustness.

For CIFAR-10, Imagenette, and HAM10k, each experiment
is run on a single NVIDIA A100 GPU with 40 GB of mem-
ory within one day. For the ImageNet dataset, each exper-
iment is conducted on four NVIDIA A100 GPUs with 40
GB of memory for 1-2 days.

For the experiments with Equal Costs for Selected Misclas-
sifications (Tables 1 and 2 in the main paper), we use third
class “cat” (label 3) for CIFAR-10 and “gas pump” (label 7)
for Imagenette in the “S-Seed” case. For the “M-Seed” case,
“bird” (label 2) and “deer” (label 4) are considered as the sen-

sitive seed classes for CIFAR-10, while we choose “chain
saw” (label 3) and “gas pump” (label 7) for Imagenette. For
the “S-Pair” setting in CIFAR-10, we examine the misclas-
sification of “cat” (label 3) to “dog” (label 5), a common and
challenging confusion given their visual similarity. The cor-
responding “M-Pair” setting addresses misclassifications
of “cat” (label 3) to “bird” (label 2), “deer” (label 4), and
“dog” (label 5), covering a broader range of potential errors
across both similar and dissimilar classes. In Imagenette,
the “S-Pair” setting focuses on the misclassification of “gas
pump” (label 7) to “church” (label 2), highlighting a sce-
nario where structural similarities can lead to errors. The

“M-Pair” setting for Imagenette considers misclassifications
of “gas pump” (label 7) to “church” (label 2), “chain saw”
(label 4), and “garbage truck” (label 6), addressing a di-
verse set of challenging misclassifications that involve both
contextual and structural similarities.

D.5. Certification Results with Varying Noises.

Results with Varying σ. We test the performance of our
method under fixed ℓ2 perturbations with ϵ = 0.25 when the
standard deviation parameter of the injected Gaussian noises
is σ = 0.25. We demonstrate the results in Tables 9 and 10.
The results show that our method consistently outperforms
several baseline randomized smoothing methods and their
reweighting counterparts.

Results with Varying ϵ. We test the performance of our
method under various ℓ2 perturbations with different ϵ val-
ues and fix the standard deviation parameter of the injected
Gaussian noise to σ = 0.5, same as in Section 6. The re-
sults, shown in Figure 5 for both seedwise and pairwise cost
matrices, demonstrate the superiority of our method com-
pared to several baseline randomized smoothing methods
and their reweighting counterparts.

D.6. Scalability for Large Datasets

We additionally validate the scalability of our certification
framework and training methods by applying them to the
full ImageNet dataset, where most traditional certification
techniques fall short. The results, presented in Table 11,
cover three typical scenarios involving selected seed classes
with equal costs assigned to misclassification into all other
classes. The “S-Seed” scenario focuses on class labels
“919” and “920”, representing “street sign” and “traffic light
and signals”, respectively. Additionally, the “M-Seeds”
scenario includes class labels “44” and “48”, corresponding
to different types of giant lizards. Misclassifications in these
ImageNet classes can have serious consequences, such as
safety risks in autonomous driving or real-world dangers.

Table 11 shows that our methods effectively enhance cost-
sensitive robustness by approximately 15%-20% in Robcs
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Table 8. Performance of Margin-CS across different combinations of γ1 and γ2 on CIFAR-10 (“S-Seed”).
γ2 = 8 γ2 = 10 γ2 = 12 γ2 = 16

Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓
γ1 = 2 65.4 63.3 2.62 63.4 68.7 2.49 63.7 69.1 2.48 63.0 70.5 2.51
γ1 = 4 67.0 50.7 3.56 65.3 59.7 3.48 65.9 57.6 3.44 66.1 58.3 3.04
γ1 = 6 67.3 39.6 3.88 66.0 49.3 3.55 65.5 54.4 3.36 64.9 55.2 3.23
γ1 = 8 66.0 33.8 4.39 65.0 43.2 4.14 64.1 47.4 3.92 64.5 46.3 3.77

Table 9. Certification results on CIFAR-10 for selected misclassifications with equal costs (σ = ϵ = 0.25).

Method S-Seed M-Seed S-Pair M-Pair
Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓

Gaussian 79.3 40.7 3.79 79.3 58.8 2.96 79.3 67.4 0.56 79.3 51.5 1.27
SmoothMix 73.0 32.6 3.99 73.0 46.4 3.63 73.0 72.0 0.31 73.0 56.3 1.16
SmoothAdv 77.9 42.8 3.66 77.9 52.5 2.89 77.9 73.8 0.32 77.9 56.0 1.07
MACER 80.8 47.5 3.30 80.8 65.3 2.72 80.8 70.9 0.34 80.8 58.2 1.06
Gaussian-CS 77.8 58.3 2.39 78.4 63.5 2.61 77.8 81.1 0.39 77.8 68.5 1.18
SmoothMix-CS 72.2 60.2 2.99 72.1 47.3 2.85 72.2 75.7 0.26 72.2 73.8 0.70
SmoothAdv-CS 78.7 62.5 2.47 78.4 56.6 2.65 78.7 77.4 0.28 78.1 66.3 1.03
Margin-CS 80.4 68.8 0.78 80.7 71.7 2.39 80.9 93.5 0.19 80.9 91.4 0.24

Table 10. Certification results on Imagenette for selected misclassifications with equal costs (σ = ϵ = 0.25).

Method S-Seed M-Seed S-Pair M-Pair
Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓ Acc ↑ Robcs ↑ Robcost ↓

Gaussian 80.3 65.6 3.41 80.3 61.2 3.21 80.3 88.0 0.22 80.3 73.0 1.20
SmoothMix 81.4 61.9 3.06 81.4 59.2 2.82 81.4 83.3 0.25 81.4 78.5 1.71
SmoothAdv 77.8 66.6 3.30 77.8 59.3 3.08 77.8 90.9 0.20 77.8 80.4 1.67
MACER 79.6 70.1 2.78 79.6 66.2 3.13 79.6 83.7 0.21 79.6 78.0 1.54
Gaussian-CS 73.8 74.2 2.64 76.4 65.6 2.83 76.4 92.1 0.17 76.4 83.1 1.07
SmoothMix-CS 78.1 71.4 2.81 79.2 70.7 2.76 78.1 84.8 0.11 78.1 81.8 1.69
SmoothAdv-CS 77.7 70.6 2.91 77.7 60.5 2.74 77.7 91.8 0.08 77.6 82.0 1.06
Margin-CS 83.6 75.6 2.34 81.9 73.2 2.52 83.6 94.2 0.04 82.6 88.0 0.84
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(a) CIFAR10, M-Seed (2,4)
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(b) CIFAR10, S-Pair (3→ 5)
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(c) Imagenette, M-Seed (3,7)
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(d) Imagenette, S-Pair (7→ 2)
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(e) ImageNet, M-Seed (44,48)
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(f) ImageNet, S-Seed (920)

Figure 5. Certified accuracy curves for varying ϵ for different datasets and various cost matrix settings.
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Table 11. Results (in %) across various cost matrices on ImageNet.

Method M-Seed (44, 48) S-Seed (919) S-Seed (920)
Acc ↑ Robcs ↑ Acc ↑ Robcs ↑ Acc ↑ Robcs ↑

Gaussian 58.4 45.0 58.4 58.0 58.4 52.0
SmoothMix 54.4 41.4 54.4 52.0 54.4 54.0
SmoothAdv 57.1 38.0 57.1 70.0 57.1 67.0
MACER 58.5 40.0 58.5 66.0 58.5 62.0
Gaussian-CS 48.6 53.0 52.4 78.0 51.0 62.0
SmoothMix-CS 48.6 47.0 51.6 70.0 51.2 58.0
SmoothAdv-CS 50.4 41.0 50.6 76.0 52.4 78.0
Margin-CS 54.2 61.0 53.4 84.0 53.6 76.0

compared to their standard counterparts across various cost-
matrix settings, while largely preserving utility. Margin-
CS consistently achieves the best cost-sensitive robustness,
which aligns with our observations on other standard bench-
mark datasets presented in the aforementioned sections.

D.7. Heatmap Analysis

To further analyze the trade-offs between our Margin-
CS method and its non-cost-sensitive counterpart MACER,
we present heatmaps illustrating clean and robust test errors
in Figure 6. Compared to MACER, our Margin-CS method
tends to focus more on the sensitive seed class “cat”, sig-
nificantly reducing misclassifications to other classes. This
results in a lower overall clean test error for our method
compared to MACER. Specifically, for the sensitive seed
class “cat”, the clean test error decreases from 40.1% to
11.1%, demonstrating the effectiveness of our cost-sensitive
training approach.

Among the normal classes, the most notable impact of our
method is on the “dog” class, where misclassification rates
to ”cat” increase from 13.6% to 44.3%, while misclassifi-
cation rates to other classes decrease from 17.4% to 9.2%.
In our S-Seed cost-matrix settings, this increase in misclas-
sification for the “dog” class is acceptable, as long as the
overall misclassification rates are controlled. A similar trend
is observed in the robust test error map, where the robust test
error for the “cat” class decreases, while that for the “dog”
class increases. Along this line, an interesting direction for
future work would be to develop more balanced and robust
training methods.

D.8. Visualization of Radius Distributions

We plot the distributions of certified radius provided by
different robust training methods on the sensitive testing ex-
amples (Ds) in Figure 7, the overall dataset (D) in Figure 8,
and the normal subset (Dn) in Figure 9, respectively. As
shown by comparing the two rows of subplots, all our cost-
sensitive adaptive robust training methods shift the radius
distributions towards larger values, indicating higher cost-
sensitive robustness compared to their non-cost-sensitive
counterparts. Additionally, the distribution produced by our

Margin-CS method is generally concentrated at larger val-
ues, which aligns with the quantitative results in Tables 1
and 2, demonstrating that Margin-CS generally achieves
best certifiable robustness among all methods. Moreover,
the improvement in certified radius is less pronounced for
normal (i.e., non-sensitive) samples compared to sensitive
samples, aligning with our primary goal of cost-sensitive
learning, which prioritizes the accurate classification of “sen-
sitive” samples with high practical value.
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(a) MACER: Clean Error
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(b) Margin-CS: Clean Error
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(c) MACER: Robust Error
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(d) Margin-CS: Robust Error

Figure 6. Figures (a) and (b): Heatmaps of clean test error on CIFAR-10 between MACER and Margin-CS. Figures (c) and (d): Heatmaps
of robust test error on CIFAR-10 between MACER and Margin-CS. The cost matrix is set to be the “S-Seed” case.
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Figure 7. Distribution of r̂cs-group on testing samples from Ds under “S-Seed” setting on CIFAR-10. The x-axes are uniformly scaled
across all plots, and the y-axes are truncated at a frequency of 0.04 for clarity in visualization.
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Figure 8. Distribution of r̂cs-group on testing samples from D under “S-Seed” setting on CIFAR10. The x-axes are uniformly scaled across
all plots, and the y-axes are truncated at a frequency of 0.04 for clarity in visualization.

21



Provably Cost-Sensitive Adversarial Defense via Randomized Smoothing

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(a) Gaussian

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(b) SmoothMix

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(c) SmoothAdv

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(d) MACER

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(e) Gaussian-CS

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(f) SmoothMix-CS

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(g) SmoothAdv-CS

0.5 1.0 1.5 2.0
Radius

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

(h) Margin-CS

Figure 9. Distribution of r̂cs-group on testing samples from Dn under “S-Seed” setting on CIFAR10. The x-axes are uniformly scaled across
all plots, and the y-axes are truncated at a frequency of 0.04 for clarity in visualization.
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