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Abstract
Model merging, which combines multiple mod-
els into a single model, has gained popularity in
recent years. By efficiently integrating the capa-
bilities of various models, this significantly re-
duces the parameter count and memory usage.
However, current methods can only produce one
single merged model. This necessitates a per-
formance trade-off due to conflicts among the
various models, and the resultant one-size-fits-all
model may not align with the preferences of dif-
ferent users who may prioritize certain models
over others. To address this issue, we propose
preference-aware model merging, and formulate
this as a multi-objective optimization problem
in which the performance of the merged model
on each base model’s task is treated as an ob-
jective. In a single merging process, the pro-
posed parameter-efficient structure generates a
Pareto set of merged models, with each repre-
senting a Pareto-optimal solution for a preference.
Users can then select merged models tailored to
their preferences from this learned Pareto set. Ex-
perimental results demonstrate that the proposed
Pareto Merging produces diverse trade-off mod-
els and achieves higher test accuracy compared to
state-of-the-art merging baselines.

1. Introduction
Fine-tuning pre-trained models is a widely-adopted ap-
proach to create specialized models for various downstream
tasks (He et al., 2022; Wortsman et al., 2022; Li et al., 2024a;
Hu et al., 2021; Dettmers et al., 2024; Liu et al., 2024).
Nowadays, many fine-tuned models are publicly available
on online platforms such as HuggingFace. However, having
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Figure 1. Comparison of existing methods and the proposed Pareto
Merging for merging two models with varying user preferences.

multiple fine-tuned models results in a significant increase
in parameter count and memory usage. As many of them
originate from the same pre-trained model (e.g., ViT (Doso-
vitskiy et al., 2020)), it is thus desirable to combine them to
a single model while still maintaining the full capabilities of
these fine-tuned models, even without access to their orig-
inal training data. This process, known as model merging
(Matena & Raffel, 2022; Jin et al., 2023; Yang et al., 2024b),
offers an efficient way to leverage the abundance of publicly
accessible fine-tuned models.

A naive model merging approach is to average the weights
of the fine-tuned models. However, this merged model often
suffers from poor performance. To address this problem,
various more advanced methods have been developed. For
example, Matena & Raffel (2022) uses the Fisher matrix to
preserve key features in the various models. RegMean (Jin
et al., 2023) minimizes prediction discrepancies through
weight adjustments. Ilharco et al. (2023) proposes to first
obtain the differences (called task vectors) between the fine-
tuned models and the original pre-trained model. A merged
model is then created by combining the pre-trained model
together with the sum of these task vectors. Further methods
have been proposed to improve performance by reducing
redundancy and conflicts among task vectors (Yadav et al.,
2023), and addressing gradient mismatches (Daheim et al.,
2024). Recently, AdaMerging (Yang et al., 2024b) is pro-
posed that adaptively weights the task vectors based on the
entropies of their model predictions.
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An important limitation of existing model merging methods
is that they can only produce a single merged model. Fig-
ure 1 shows an example of merging two fine-tuned models:
model A on task A and model B on task B. Due to conflicts
between the two models, typically the merged model (de-
noted by the square in the figure) cannot achieve the same
accuracies on both tasks as models A and B. Hence, it needs
to find a model with performance trade-off. However, this
one-size-fits-all approach may not meet the diverse pref-
erences of different users (shown as dotted vectors). For
instance, user 1 may prefer to prioritize task B over task A,
while user n prioritizes task A over task B.

To overcome this limitation, we propose a preference-aware
model merging approach, referred to as Pareto Merging
(PM). This is formulated as a multi-objective optimization
(MOO) problem (Miettinen, 1999) in which the performance
on each model’s task is considered as an objective. When
there are n user preferences, a naive integration of exist-
ing merging methods with MOO still requires storing the
original fine-tuned models. Besides, it requires n merging
processes, which can be time expensive for merging meth-
ods that require optimization (e.g., AdaMerging). Thus, we
introduce a novel parameter-efficient structure consisting
of a preference-independent base model and a preference-
dependent personalized model. In one single optimization
process, PM learns the whole Pareto set of merged mod-
els, each representing the Pareto-optimal model for a user
preference. From the learned Pareto set, one can provide
merged models for different user preferences (denoted as
circles in Figure 1). Moreover, PM can be used with model
merging methods that do not require downstream data or
only unlabeled data in the downstream task.

The main contributions of the paper are as follows:

• We formulate preference-aware model merging as multi-
objective optimization, and provide diverse trade-off solu-
tions according to user preferences.

• We introduce a preference-dependent personalized model
using low-rank tensor, enabling diverse model generation
with minimal parameter overhead.

• Experiments demonstrate that the proposed model outper-
forms existing state-of-the-art and can produce diverse
models aligned with various user preferences.

2. Background
2.1. Model Merging

Model merging combines multiple deep networks to a sin-
gle model. Existing methods can be divided into two cat-
egories: (i) merging models trained with different initial-
izations (Ainsworth et al., 2023; Jordan et al., 2023; Stoica
et al., 2024), and (ii) merging models fine-tuned on different

datasets (Ilharco et al., 2023; Matena & Raffel, 2022; Jin
et al., 2023; Yadav et al., 2023; Daheim et al., 2024; Yang
et al., 2024b). In this paper, we focus on the latter.

Let the deep network be f(x;θ,hk), where x is the input
data, θ is the parameter of the shared bottom, and hk is the
task-specific head for the kth dataset. We denote the pre-
trained model’s parameter as θ0, and that after fine-tuning
on dataset k as θk. Since model merging focuses on the
shared bottom, we use the simplified notation fθ ≡ f(x;θ).

The goal of model merging is to effectively combine K fine-
tuned models fθ1

, . . . , fθK
. A simple approach is weight av-

eraging, but it often degrades performance. Fisher Merging
(Matena & Raffel, 2022) uses the Fisher information matrix
to ensure that crucial features from each task are preserved
effectively. RegMean (Jin et al., 2023) minimizes the predic-
tion differences between the merged model and individual
models by adjusting their weights. Task Arithmetic (Ilharco
et al., 2023) combines the task vectors {Vk ≡ θk − θ0}Kk=1

to form a merged model θ0 + λ
∑K

k=1 Vk, where λ ∈ R
controls the importance of task vectors. However, this might
lead to sub-optimal performance due to potential conflicts
among task vectors. To address this issue, TIES Merging
(Yadav et al., 2023) designs operations to reduce redun-
dancy and resolve sign conflicts among the task vectors.
DARE (Yu et al., 2024) proposes to randomly drop some
parameters and rescale the remaining parameters.

By observing that a lower Shannon entropy correlates well
with model performance (Grandvalet & Bengio, 2004; Roy
et al., 2022; Yang et al., 2024b), AdaMerging (Yang et al.,
2024b) adaptively weighs the task vectors by minimizing the
entropy averaged over all datasets. AdaMerging++ further
pre-processes the task vectors with TIES Merging.

Several works enhance merging performance with task-
specific modules but often add inference costs. Yang et al.
(2024a) address representation distribution discrepancies be-
tween merged and unmerged models through representation
surgery. Lu et al. (2024) propose dynamic merging using the
mixture of experts (Cai et al., 2024), but it incurs extra infer-
ence costs and requires labeled data. EMR-Merging (Huang
et al., 2024) uses task-specific masks with masking and
rescaling during inference, introducing overhead. These
methods are orthogonal to the proposed PM and can be com-
bined with it (e.g., learning the Pareto set for these models).
Notably, PM avoids extra inference costs compared to the
base method once the user preference is specified.

Most related to the proposed method are rewarded soups
(Rame et al., 2024) and MAP (Li et al., 2024b). The re-
warded soups address multi-objective reinforcement learn-
ing with human feedback (RLHF) by training separate mod-
els for each objective and merging them through a simple
weighted averaging of models based on preference vectors.
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MAP employs an evolutionary MOO algorithm to search
for the merging weights. A detailed comparison with these
two approaches will be discussed in Section 3.3.

2.2. Multi-Objective Optimization

Multi-objective optimization (MOO) (Miettinen, 1999) aims
to optimize K objectives:

min
µ

g(µ) = [g1(µ), . . . , gK(µ)]⊤, (1)

where µ is the variable and gk is the kth objective function.
A solution a dominates another solution b if and only if
∀k ∈ {1, . . . ,K}, gk(a) ≤ gk(b) and ∃i ∈ 1, . . . ,K such
that gi(a) < gi(b). A solution a strictly dominates another
solution b if and only if ∀k ∈ {1, . . . ,K}, gk(a) < gk(b).
A solution is Pareto optimal (resp. weakly Pareto optimal)
if no other feasible solution dominates (resp. strictly dom-
inates) it. The Pareto set is the set of all Pareto optimal
solutions, while the Pareto front is the set of objective val-
ues of these Pareto optimal solutions.

A variety of gradient-based MOO algorithms have been
developed and used in deep learning (Chen et al., 2025).
Notable among these are MGDA (Sener & Koltun, 2018;
Désidéri, 2012; Mukai, 1980; Fliege & Svaiter, 2000),
EPO (Mahapatra & Rajan, 2020), CAGrad (Liu et al., 2021),
Nash-MTL (Navon et al., 2022), and Auto-λ (Liu et al.,
2022). However, they can only output a single solution each
run.

To better capture the Pareto set, several methods (Lin et al.,
2019; Momma et al., 2022; Chen et al., 2024; Zhang et al.,
2025) decompose the problem using a set of preference vec-
tors, generating a single solution per run for each given pref-
erence. However, handling different preferences requires
multiple runs, resulting in multiple models. To address this
limitation and learn a continuous Pareto set, Pareto Hyper-
networks (Navon et al., 2021; Lin et al., 2020; 2022) uti-
lize a hypernetwork to generate network parameters based
on a given preference vector. Preference-conditioned net-
works build on this by integrating preferences directly into
the input layer (Ruchte & Grabocka, 2021) or through
the FiLM layers (Dosovitskiy & Djolonga, 2020; Chen
& Kwok, 2022). PaMaL (Dimitriadis et al., 2023) intro-
duces a strategy that leverages the weighted sum of a set of
base networks, while LORPMAN (Chen & Kwok, 2024)
enhances efficiency using low-rank matrices. These ap-
proaches mainly focus on smaller models, such as the LeNet
(LeCun et al., 1998) (30K parameters) or ResNet-18 (He
et al., 2016) (11M parameters), and focus on training from
scratch using large amounts of labeled data. In contrast, we
explore model merging for large models (e.g., ViT (Doso-
vitskiy et al., 2020)) with limited unlabeled data or no data.

A detailed discussion on related works (Chen & Kwok,

2024; Dimitriadis et al., 2024) and concurrent works (Zhong
et al., 2024; Tang et al., 2024) is in Appendix B.

3. Methodology
Despite the recent advances on model merging, a signifi-
cant limitation is that they can only output a single trade-off
model which cannot align with the diverse user preferences.
To alleviate this problem, Section 3.1 first formulates model
merging as a MOO problem. Section 3.2 introduces an effi-
cient preference-dependent tensor structure. Finally, Section
3.3 shows how to solve the resultant optimization problem.

3.1. Model Merging as Multi-Objective Optimization

To accommodate different user preferences and thus achieve
different trade-offs, we view model merging as a MOO
problem. There are two common model merging scenarios.

3.1.1. DATA-FREE MERGING

Recall that in Task Arithmetic (Ilharco et al., 2023),
the merged model is θ = θ0 + λ

∑K
k=1 Vk, where λ

is a given hyperparameter. This can be interpreted as
the closed-form solution of the optimization problem:
minθ

∑K
k=1 ∥(θ0 + λKVk)− θ∥2F , which minimizes the

total distance of θ to each scaled finetuned model θ0 +
λKVk. However, it does not incorporate user preferences
and is restricted to generating a single model.

We propose to reformulate model merging as the MOO
problem with objective Sk(θ) = ∥(θ0 + λKVk)− θ∥2F :

minθ [S1(θ), . . . , SK(θ)]⊤. (2)

Given a preference vector γ = [γ1, . . . , γK ]⊤ in the sim-
plex ∆K ≡ {γ|

∑K
k=1 γk = 1, γk ≥ 0}, a straightfor-

ward method to solve (2) is linear scalarization, which
converts (2) to the single-objective optimization problem:
minθ

∑K
k=1 γk ∥(θ0 + λKVk)− θ∥2F . Its closed-form so-

lution is:

θ(γ) = θ0 + λK

K∑
k=1

γkVk. (3)

By varying γ, different trade-offs can be achieved.
Specifically, (1) When preferences are equal (γ =
[1/K, . . . , 1/K]⊤), it recovers the solution of Task Arith-
metic. (2) When λ = 1/K, the solution θ0 +

∑K
k=1 γkVk

directly weights the task vectors with the preference vector,
as in Rewarded Soups (Rame et al., 2024).

Limitation. Note that the solution subspace obtained in
(3) is not parameter-efficient. It requires storing KQ pa-
rameters1, where Q is the number of parameters in the

1Since the number of user preferences n is usually larger than
K, it is more space-efficient to store the KQ task vectors and
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pre-trained model. In other words, the numbers of stored
parameters remains unchanged before and after merging.

3.1.2. MERGING BASED ON UNLABELED DATA

In AdaMerging (Yang et al., 2024b), instead of using
a fixed λ for all task vectors, a weighting vector λ =
[λ1, . . . , λK ]⊤ is learned for each task vector by optimizing
the entropy averaged over batches of unlabeled test data
B1, . . . ,BK sampled from K datasets:

min
λ

K∑
k=1

∑
x∈Bk

H(f(x;θ(λ))) s.t.θ(λ)=θ0+

K∑
k=1

λkVk, (4)

where H(·) is the Shannon entropy.2 This approach demon-
strates superior performance compared to data-free methods.
However, it similarly lacks preference-awareness.

We propose to reformulate (4) to MOO by viewing
the merged model’s entropy

∑
x∈Bk

H(f(x;θ)) on each
dataset k as an objective Sk(θ):

minλ=[λ1,...,λK ]⊤ [S1(θ(λ)), . . . , SK(θ(λ))]⊤

s.t. θ(λ) = θ0 +

K∑
k=1

λkVk. (5)

Similar to data-free merging, given a user preference vector
γ, the naive MOO approach is linear scalarization:

min
λ

K∑
k=1

γkSk(θ(λ)) s.t. θ(λ) = θ0 +

K∑
k=1

λkVk. (6)

Different trade-off models can be obtained by varying γ. In
particular, with equal preferences, it recovers AdaMerging.

Limitations. For n user preferences {γ(1), . . . ,γ(n)}, n
runs of the optimization (6) are required to compute the
corresponding λ(i)’s, which is computational inefficient.
Furthermore, similar to data-free merging, one still requires
storing KQ parameters (the same as before merging).

Can we learn a parameter-efficient space of merged
models in a single optimization process that can
provide models tailored to varying user preferences?

3.2. Parameter-Efficient Structure

To efficiently learn the Pareto set of preference-aware model
merging, we propose a parameter-efficient structure with a

compute merged models on-the-fly, rather than storing n merged
models (nQ parameters).

2For a M -class classification problem, the Shannon entropy of
prediction ŷ ∈ [0, 1]M is H(ŷ) = −

∑M
m=1 ŷm log ŷm.

preference-independent base component and a preference-
dependent personalized component. For the lth module in
the backbone network (such as the attention module in a
transformer), the base component includes the pretrained
parameter θl

0 ∈ Rcl×dl

and a weighted combination of
task vectors

∑K
k=1 λ

l
kV

l
k . The personalized component,

parameterized as W l(γ) ∈ Rcl×dl

, depends on the user
preference γ. For simplicity, the description below focuses
on a single module, omitting the superscript l.

Inspired by recent advancements in parameter-efficient fine-
tuning (Hu et al., 2021; Dettmers et al., 2024; Liu et al.,
2024), W (γ) has a low-rank structure. However, the popu-
lar approach of using a product of low-rank matrices as in
LoRA (Hu et al., 2021) fails to account for user preferences.
To provide a parameter-efficient way to integrate preference
γ, we model W (γ) as the following c× d× 1 tensor:3

W (γ) = G×1 A×2 B ×3 γ, (7)

where G ∈ Rr×r×K is a core tensor, A ∈ Rr×c, B ∈
Rr×d are matrices, and r is a given rank parameter. Note
that E ≡ G ×1 A ×2 B is a c × d × K tensor. This
can be partitioned into K slices M1, . . . ,MK , where
each Mk ∈ Rc×d is low-rank and [Mk]i,j = Ei,j,k =∑

q1,q2
Gq1,q2,kAq1,iBq2,j . These matrices share parame-

ters A and B, while maintaining distinct characteristics
through variations in G. W (γ) in (7) is then a weighted
sum of these low-rank matrices: W (γ) =

∑K
k=1 γkMk.

By adjusting γ, we modify the influence of each matrix to
better align with user preference.

The whole model is then:

θ(λ;γ) = θ0 +

K∑
k=1

λkVk +G×1 A×2 B ×3 γ. (8)

An illustration of the proposed structure is in Figure 2. Once
the parameters (G,A,B) are learned, an infinite number of
models can be generated by simply varying γ.

Parameter Efficiency. After merging, θ0 +
∑K

k=1 λkVk

forms a single model with cd parameters, matching the
original pre-trained model. Thus, (8) adds only r2K +
r(c + d) parameters after merging. In the experiments,
we apply the preference-dependent modification only to the
transformer’s attention modules. For example, with r =
16 in a ViT-B/32 model, the proposed approach increases
parameters by just 0.5% compared to the pre-trained model.

3×u indicates the u-mode tensor product, which is detailed as
follows: (G ×1 A)q1,i2,i3 =

∑r
i1=1 Gi1,i2,i3Ai1,q1 , for q1 =

1, . . . , c; (G ×2 B)i1,q2,i3 =
∑r

i2=1 Gi1,i2,i3Bi2,q2 , for q2 =

1, . . . , d; and (G×3γ)i1,i2,q3 =
∑m

i3=1 Gi1,i2,i3γi3 , for q3 = 1.
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Figure 2. Illustration of the proposed Pareto Merging. After merging, it introduces minimal parameter overhead while providing different
trade-off models to different user preferences.

3.3. Optimization

In this section, we consider the optimization problems for
both data-free merging and unlabeled data-based merging.
Since linear scalarization can only identify solutions on the
convex parts of the Pareto front (Boyd & Vandenberghe,
2004), we use instead smooth Tchebycheff scalarization
(Lin et al., 2024), which can identify the entire Pareto front.
For the MOO problem in (1), smooth Tchebycheff scalar-
ization considers the following optimization problem:

min
µ

ρ log

(
K∑

k=1

exp

(
γkgk(µ)− z∗k

ρ

))
, (9)

where ρ ∈ R is a smoothing parameter, and z∗k is the ideal
value of gk(µ). It can be shown that µ∗ is a weakly Pareto
optimal solution of the original MOO problem (1) if and
only if it is also an optimal solution of (9) for some γ.

In our context, we set z∗k = 0, as the minimum of each Sk(θ)
in either (2) (for data-free merging) or (5) (for unlabeled
data-based merging) is zero.

We apply smooth Tchebycheff scalarization to problems
(2) and (5) using the model in (8). The goal is to optimize
the expected Tchebycheff scalarized objective value over a
preference distribution P(γ):

minG,A,B Eγ∼P(γ)ρ log

(
K∑

k=1

exp

(
γkSk(θ(λ;γ)

ρ

))
+β ∥G×1 A×2 B ×3 1K∥F (10)

s.t. θ(λ;γ) = θ0 +

K∑
k=1

λkVk

+G×1 A×2 B ×3 γ. (11)

For data-free approaches, λ is a user-provided hyperparam-
eter. For merging with unlabeled data, we follow AdaMerg-
ing and optimize λ with the optimization objective (10). We

Algorithm 1 Pareto Merging (PM).

preprocess the task vectors V1, . . . ,VK (if required);
while not converged do

sample γ from the Dirichlet distribution;
obtain the corresponding model from (8);
if data-free then
Sk(θ(λ;γ)) = ∥θ0 + λKVk − θ(λ;γ)∥2F ;

else
/** using unlabeled data **/
sample a minibatch of unlabeled data b1, . . . , bK ;
Sk(θ(λ;γ)) =

∑
x∈bk

H(f(x;θ(λ;γ)));
end if
compute the objective in (11);
update G,A,B (and λ if using unlabeled data) via
gradient descent;

end while

adopt the symmetric Dirichlet distribution, Dir([p, . . . , p]⊤)
with parameter p, for P(γ). By minimizing the expectation
over the preference distribution, we aim to learn a model
that minimizes the loss for each possible user preference (as
the Dirichlet distribution spans the simplex of all possible
user preferences). We also incorporate a regularizer in (10)
to control the magnitude of model modification and prevent
overfitting.

The proposed approach can be used with most merging
techniques to enable preference-aware merging. As shown
in Algorithm 1, a preference vector is sampled from the
Dirichlet distribution in each iteration. For model merging
using unlabeled data, we also sample a minibatch of unla-
beled data b1, . . . , bK from B1, . . . ,BK . Next, we perform
stochastic gradient descent on (11) to update the learnable
tensor and matrices G, A, and B. For model merging using
unlabeled data, we also update the merging parameter λ.

Computation Complexity. During training, the per-
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Figure 3. Solutions (red stars) sampled from the PF obtained by
PM on the toy problem. The ground-truth PF is in gray.

iteration complexity of the proposed AdaMerging + PM is
O(Kcd+ (c+ d)r+Kr2), whereas the original AdaMerg-
ing method has a complexity of O(Kcd). Since r is signif-
icantly smaller than c and d, the additional computational
overhead remains minimal. During inference, once the pref-
erence is fixed, the low-rank tensor can be merged into the
base model, resulting in no additional inference overhead.

Remark. Rewarded Soups (Rame et al., 2024) applies
preference-weighted merging to RLHF. In contrast to the
proposed PM, it requires storing all task vectors. More-
over, the simple weighted averaging scheme it uses is often
outperformed by more advanced data-free or data-based
merging methods (Yadav et al., 2023; Yang et al., 2024b),
as will be empirically shown in Section 4.2.1.

Similarly, the concurrent work MAP (Li et al., 2024b) again
requires storing all task vectors to create trade-off models.
Additionally, it can only produce a discrete approximation
of the Pareto set. In contrast, the proposed PM stores only a
single merged model and a small low-rank tensor, provid-
ing a continuous approximation of the Pareto set and can
directly generate models for any preference.

4. Experiments
In this section, we perform experiments on both toy problem
(Section 4.1) and real-world datasets (Section 4.2). Ablation
study is provided in Section 4.3.

4.1. Toy Problem

We first demonstrate that the proposed algorithm can learn
the Pareto set by using a popular toy problem (Liu et al.,
2021; Navon et al., 2022) with two objectives S1(θ) and
S2(θ). Due to the limited space, the detailed definition can
be found in Appendix A.

We first obtain θ1 by optimizing S1, and θ2 by optimizing
S2. The average (θ1 + θ2)/2 serves as the preference-
independent base model, which is then fixed. Subsequently,
we optimize G, A, and B in the preference-dependent
model. Figure 3 shows models sampled from the learned
Pareto set using 31 uniformly distributed preferences. As
can be seen, the solutions overlap with the ground-truth PF
and uniformly cover the entire PF.

4.2. Real-World Datasets

Following (Ilharco et al., 2023; Yang et al., 2024b), we use
the vision encoders (ViT-B/32 and ViT-L/14) from CLIP
(Radford et al., 2021) as pre-trained backbones. Unless
otherwise specified, ViT-B/32 is used. This is fine-tuned
on the following eight image classification datasets as in
(Ilharco et al., 2023; Yang et al., 2024b): SUN397, Cars,
RESISC45, EuroSAT, SVHN, GTSRB, MNIST, and DTD.
Details can be found in Appendix C.

4.2.1. MERGING TWO MODELS

In this experiment, we merge the two models fine-tuned on
RESISC45 and GTSRB. Pareto Merging is applied to the
baselines of Task Arithmetic (data-free) and AdaMerging
(with unlabeled data). We also compare with two baselines
that can obtain the Pareto set: Rewarded Soups (Rame et al.,
2024) (data-free) and MAP (Li et al., 2024b) (with data).
We follow MAP’s official implementation that uses labeled
data and a population size of 100.

Figure 4 shows the test accuracies of merged models across
11 preference vectors (from [0.0, 1.0]⊤ to [1.0, 0.0]⊤). For
clarity, only a subset of the solutions is shown. The com-
plete plot is shown in Appendix D.1. As can be seen, PM,
combined with baseline methods, effectively generates di-
verse trade-off models across the two datasets, enabling
users to choose models that align with their preferences.
For example, with a preference vector of γ = [1.0, 0.0]⊤,
which prioritizes RESISC45 exclusively, the model gen-
erated by AdaMerging + PM (the rightmost green star in
Figure 4) achieves an accuracy of 94.8% on RESISC45,
while the original AdaMerging method (without preference
consideration) achieves only 93.6% accuracy on RESISC45.
Similarly, Task Arithmetic + PM (the rightmost blue star)
achieves 92.3% accuracy on RESISC45, while the original
Task Arithmetic achieves 91.2% accuracy. These clearly
demonstrate the advantages of preference-aware Pareto
Merging over one-size-fits-all models.

Compared to the rewarded soups, Task Arithmetic + PM
(which is also data-free) achieves a much better trade-off.
Similarly, AdaMerging + PM outperforms MAP. Notably,
while MAP relies on labeled data (which may not be fea-
sible in practice), PM only requires unlabeled data. Due
to rewarded soups’ significantly inferior performance, it is
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Table 1. Comparison of training time (on an NVIDIA A6000),
parameter count after merging and the number of models that one
can obtain after merging two models.

Method GPU hours # params # models

Rewarded Soups ≈ 0 226.7M infinite
Task Arithmetic ≈ 0 113.4M 1
Task Arithmetic + PM 0.04 114.0M infinite
MAP 0.35 226.7M ≈500
AdaMerging 0.15 113.4M 1
AdaMerging + PM 0.28 114.0M infinite

excluded from further comparisons.

Table 1 compares the training time, parameter count after
merging, and number of models generated. As can be seen,
while PM requires slightly more time than the baselines, it
adds minimal parameter overhead after merging and can
generate an infinite number of trade-off models. When
compared to Rewarded Soups and MAP, after merging, both
Rewarded Soups and MAP result in a parameter count that is
double that of the pre-trained model, as they require storing
all the original models. This overhead becomes even more
significant as K increases.
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Figure 4. Accuracies of models obtained by different methods
when merging two ViT-B/32 models.

We also compare PM with two straightforward methods dis-
cussed in Section 3.1: Task Arithmetic + Preference (Sec-
tion 3.1.1) and AdaMerging + Preference (Section 3.1.2).
The results are shown in Figure 5. For clarity, only a subset
of the solutions is shown. The complete plot is shown in
Appendix D.1.

As shown in Figures 5, Task Arithmetic + Preference has
a large parameter overhead of 113.4M and some of the
extreme models it obtained are typically undesirable for
users. In contrast, Task Arithmetic + PM with its default
configuration (applying preference-dependent modification
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Figure 5. Comparison with two straightforward methods discussed
in Section 3.1 when merging two ViT-B/32 models.

to attention layers), achieves a reasonable trade-off with
a significantly reduced parameter overhead of only 0.6M.
Furthermore, extending preference-dependent modifications
to both the attention and MLP layers results in a broader
spread of PF, while keeping the parameter overhead modest
at 2.1M.

A similar advantage is observed with the proposed AdaMerg-
ing + PM method. It achieves a superior trade-off with 0.6M
parameter overhead, compared to the 113.4M overhead in-
curred by AdaMerging + Preference. Beyond parameter
efficiency, AdaMerging + PM also offers significant compu-
tational savings. For instance, AdaMerging + PM requires
only a single execution run (0.28 GPU hours), whereas
AdaMerging + Preference requires 11 runs (1.65 GPU hours)
to handle 11 preference vectors.

4.2.2. MERGING EIGHT MODELS

In this experiment, we utilize all eight models. The proposed
method PM is applied to two representative data-free merg-
ing approaches: Task Arithmetic and TIES-Merging (Yadav
et al., 2023). Additionally, we apply PM to AdaMerging
and its enhanced version AdaMerging++ (to avoid confu-
sion, this is referred to as AdaMerging+TIES in the sequel).
We also compare with other baselines, including Weight
Averaging (Yadav et al., 2023; Yang et al., 2024b), Fisher
Merging (Matena & Raffel, 2022), RegMean (Jin et al.,
2023), DARE (Yu et al., 2024), and MAP. For MAP, We use
the nested merging variant in the official code.

Figure 6 shows the accuracies of 30 models sampled from
the learned Pareto set by AdaMerging + PM. Since the
Pareto front with more than three objectives cannot be di-
rectly visualized, each subplot in Figure 6 shows the accu-
racies on 2 of the 8 tasks. Results on the other baselines +
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Table 2. Test accuracies when merging eight ViT-B/32 models. Results on DARE and MAP are reproduced using official implementations.
Results on the remaining baselines are from (Yang et al., 2024b). The best result among each group is in bold.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Average

Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
DARE 54.8 54.6 66.6 78.3 80.2 69.8 97.3 49.8 68.9
MAP 60.0 58.8 85.8 69.5 83.5 73.4 87.8 53.2 71.5

Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Task Arithmetic+PM (equal) 55.2 55.0 66.7 78.9 80.2 69.7 97.3 50.4 69.2
Task Arithmetic+PM (priority) 55.5 55.9 67.6 81.8 84.5 73.3 97.9 51.5 71.0

TIES-Merging 59.5 60.0 71.7 78.2 86.3 72.9 98.2 52.8 72.4
TIES-Merging+PM (equal) 59.5 60.0 71.8 78.3 86.3 72.9 98.2 52.8 72.4
TIES-Merging+PM (priority) 60.0 60.6 72.9 81.7 89.2 75.8 98.4 53.8 74.1

AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
AdaMerging+PM (equal) 70.1 74.2 87.3 96.5 90.2 95.6 98.5 66.7 84.9
AdaMerging+PM (priority) 71.1 74.2 89.0 97.6 92.1 97.4 99.0 64.0 85.5

AdaMerging+TIES 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
AdaMerging+TIES+PM (equal) 70.6 73.9 87.5 96.7 90.8 96.7 98.6 67.2 85.2
AdaMerging+TIES+PM (priority) 72.1 73.7 88.8 97.5 92.2 97.5 99.0 66.1 85.9

PM are in Appendix D.2. As can be seen, PM again offers
good and diverse trade-off solutions.

Table 2 shows the test accuracies of Pareto Merging com-
bined with four baselines, along with various others. We
also compare with individual task learning and traditional
multi-task learning (MTL), which serve as performance
upper bounds and require labeled training data and are sig-
nificantly more computationally expensive. Moreover, as
showing results for all users preferences is infeasible, we
only show two representative types of preferences: (1) equal
preference: γ = [0.125, . . . , 0.125]⊤; and (2) priority pref-
erence, in which one task has a weight of 0.5, while each
remaining task has a weight of 0.5/(K − 1). This reflects
the common scenario where users prioritize a specific task
while still expecting reasonable performance on the others.

Since the nested merging variant of MAP is used when
merging more than two models, multiple runs are required
to incorporate different user preferences. Thus, we only
present the MAP results with equal preference.

As can be seen, for Task Arithmetic and TIES-Merging,
Pareto Merging with priority preference significantly im-
proves performance. For example, on SVHN, the accuracy
increases by 4.3% and 2.9% for Task Arithmetic and TIES-
Merging, respectively. Additionally, the average accuracy
increases by 1.9% and 1.7%, respectively. This clearly
demonstrates that PM can efficiently incorporate prefer-
ences to provide better performance for data-free method.

For AdaMerging and AdaMerging+TIES, Pareto Merging
shows even larger performance gains with the help of un-
labeled data. Even with equal preference, PM achieves an
average performance improvement of 4.8% and 4.1%, re-
spectively. With priority preference, the performance gain
is even more pronounced. For instance, on RESISC45,
AdaMerging+PM (priority) outperforms AdaMerging by
10%. These demonstrate that PM can efficiently incorporate
preferences to achieve better performance for unlabeled-
data based methods. We further experiment on the larger
ViT-L/14 backbone. Results can be found in Appendix E.

4.2.3. UNSEEN DATASETS

In this experiment, we assess the performance on unseen
datasets with no fine-tuned model. Following (Yang et al.,
2024b), we consider two settings: (i) Merge models fine-
tuned on SUN397, Cars, RESISC45, SVHN, GTSRB, and
DTD, and then evaluate on MNIST and EuroSAT. (ii) Merge
models fine-tuned on SUN397, Cars, EuroSAT, GTSRB,
MNIST, and DTD, and then evaluate on RESISC45 and
SVHN. For Pareto Merging, we randomly sample 30 models
from the learned Pareto set, and select the one with the
smallest Shannon entropy on the target dataset.

Test accuracies are shown in Tables 3 and 4. As can be seen,
combining with Pareto Merging results in higher accuracies
compared to using the base methods alone. This demon-
strates an important advantage of learning the Pareto set,
namely that we can select the most suitable model from the
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Figure 6. Models sampled from the learned Pareto set by AdaMerg-
ing + PM when merging 8 ViT-B/32 models. Each subplot shows
the accuracies on 2 of the 8 tasks. For comparison, the square
denotes the model obtained by AdaMerging.

Table 3. Test accuracies on unseen MNIST and EuroSAT when
merging six ViT-B/32 models. Results on baselines are from (Yang
et al., 2024b).

Method MNIST EuroSAT Average

Task Arithmetic 77.2 46.2 61.7
Task Arithmetic+PM 79.3 46.8 63.0

TIES Merging 75.9 43.3 59.6
TIES Merging+PM 80.7 43.4 62.1

AdaMerging 84.0 56.1 70.0
AdaMerging+PM 84.3 65.1 74.7

AdaMerging+TIES 83.9 53.5 68.7
AdaMerging+TIES+PM 85.9 65.4 75.7

set, while the base methods do not have this freedom.

4.3. Ablation Studies

In this section, we perform ablation studies on (i) the rank r
and (ii) using outer product instead of tensor-based model
in (7). Because of the lack of space, results on the outer
product model can be found in Appendix F.

The default hyperparameter settings are the same as in Sec-
tion 4.2. Experiments are performed by using AdaMerging
+ PM on the two models fine-tuned on RESISC45 and GT-
SRB. For each setting, we uniformly sample 11 models
from the learned Pareto set.

Figure 7 shows the test accuracies with different ranks (r).
As can be seen, increasing r improves model performance in
general, as a higher rank allows the model greater flexibility
to adapt to various preferences. However, a very large rank

Table 4. Test accuracies on unseen RESISC45 and SVHN when
merging six ViT-B/32 models. Results on baselines are from (Yang
et al., 2024b).

Method RESISC45 SVHN Average

Task Arithmetic 52.3 49.9 51.1
Task Arithmetic+PM 52.4 51.9 52.1

Ties Merging 58.7 49.2 53.9
TIES Merging+PM 59.0 51.9 55.5

AdaMerging 50.2 60.9 55.5
AdaMerging+PM 52.4 62.6 57.5

AdaMerging+TIES 52.0 64.9 58.5
AdaMerging+TIES+PM 52.9 64.7 58.8
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Figure 7. Effects of rank r.

may leads to overfitting. Additionally, a higher rank also
introduces more parameters,4 though it is still minimal.

5. Conclusion
In this paper, we address the challenge of model merging
through the lens of multi-objective optimization. We in-
troduce Pareto Merging, which enables the generation of
an infinite number of Pareto-optimal models based on user
preferences with a single merging process and minimal pa-
rameter overhead. Experimental results demonstrate that
PM can generate different trade-off solutions, better aligning
with user preferences compared to non-preference-aware
baselines. In the future, we will consider extending the
experiment to large language models.
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A. Details of the Toy Problem
We use a popular toy problem (Liu et al., 2021; Navon et al., 2022) with two objectives S1(θ) and S2(θ). The original
problem has a parameter θ ∈ R2. To create a problem with a matrix-form parameter, we slightly modify it to θ ∈ R6×6.
The problem is then reformulated as follows:

Minimize S1(θ) = c1(θ)h1(θ) + c2(θ)g1(θ) and S2(θ) = c1(θ)h2(θ) + c2(θ)g2(θ),

where θ(1) =

3∑
i=1

6∑
j=1

θi,j , and θ(2) =

6∑
i=4

6∑
j=1

θi,j ,

h1(θ) = log
(
max(|0.5(−θ(1) − 7)− tanh (−θ(2))|, 0.000005)

)
+ 6,

h2(θ) = log
(
max(|0.5(−θ(1) + 3)− tanh (−θ(2)) + 2|, 0.000005)

)
+ 6,

g1(θ) =
(
(−θ(1) + 7)2 + 0.1 ∗ (−θ(2) − 8)2

)
/10− 20,

g2(θ) =
(
(−θ(1) − 7)2 + 0.1 ∗ (−θ(2) − 8)2)

/
10− 20,

c1(θ) = max(tanh (0.5 ∗ θ(2)), 0) and c2(θ) = max(tanh (−0.5 ∗ θ(2)), 0).

We first obtain θ1 by optimizing S1, and θ2 by optimizing S2. The average (θ1+θ2)/2 serves as the preference-independent
base model, which is then fixed. Subsequently, we optimize G, A, and B in the preference-dependent model.

The rank r is set to 2. We use the Adam optimizer with a learning rate of 0.001. We use 31 uniformly distributed preference
vectors (i.e., [1, 0]⊤, [1/30, 29/30]⊤, ..., [0, 1]⊤). We can see that the solutions uniformly cover the entire PF in the objective
space.

B. Detailed Discussion of some Related Works
This section provides a detailed comparison of the proposed approach with several related works, highlighting the key
differences and advantages of our method.

Comparison with Pareto Set Learning using Low-Rank Structures. While works like (Chen & Kwok, 2024; Dimitriadis
et al., 2024) use low-rank structures for Pareto set learning, our primary aim is to improve model merging itself, not use
merging for Pareto set learning. We reformulate model merging as a MOO problem to integrate user preferences and propose
an efficient preference-aware tensor structure, different from the weighted LoRA sums in (Chen & Kwok, 2024; Dimitriadis
et al., 2024). To demonstrate the advantage of the proposed, we adapted (Chen & Kwok, 2024; Dimitriadis et al., 2024) for
model merging (eight ViT-B/32 models, setup from Section 4.2.2, Table 2). Results are in Table 5.

Table 5. Comparison with low-rank structures from Pareto set learning (Chen & Kwok, 2024; Dimitriadis et al., 2024) on merging eight
ViT-B/32 models.
Method Structure Test Accuracy (%) Parameter Overhead (M)

AdaMerging+PM (equal) Ours 84.9 0.61
AdaMerging+PM (equal) Structure from (Chen & Kwok, 2024; Dimitriadis et al., 2024) 84.5 4.71

AdaMerging+PM (priority) Ours 85.5 0.61
AdaMerging+PM (priority) Structure from (Chen & Kwok, 2024; Dimitriadis et al., 2024) 85.2 4.71

The results in Table 5 show that our proposed tensor structure achieves superior performance while substantially reducing
the number of additional parameters compared to adapting structures from (Chen & Kwok, 2024; Dimitriadis et al., 2024) to
the model merging task.

Comparison with concurrent LLM Alignment Work. The proposed method differs from the concurrent LLM alignment
work Panacea (Zhong et al., 2024) in three main aspects: (1) Problem Formulation: Panacea (Zhong et al., 2024) targets
mutli-objective LLM alignment, while we formulated model merging (data-free and data-based) as MOO, enabling
preference-driven model generation and improved performance. (2) Low-Rank Structure: Panacea (Zhong et al., 2024)
uses an SVD-LoRA approach. Our novel low-rank tensor structure is more flexible, adaptively learning inter-objective
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relationships. Table 6 compares our structure with Panacea (Zhong et al., 2024) (rank 16 for comparable parameters) on
merging eight ViT-B/32 models. Our structure outperforms Panacea, especially with priority preferences. (3) Optimization
& Data: Panacea (Zhong et al., 2024) uses labeled data for LLM alignment. We focus on model merging with limited
(unlabeled) data or no data, addressing potential overfitting via our efficient structure and tensor regularization.

Table 6. Comparison with SVD-LoRA structure from (Zhong et al., 2024) on merging eight ViT-B/32 models.

Method Model Structure Test Accuracy (%)

AdaMerging+PM (equal) Ours 84.9
AdaMerging+PM (equal) Structure from Panacea (Zhong et al., 2024) 84.1

AdaMerging+PM (priority) Ours 85.5
AdaMerging+PM (priority) Structure from Panacea (Zhong et al., 2024) 84.4

Comparison with Concurrent Pareto Set Learning via MoE. Another relevant concurrent work (Tang et al., 2024)
focuses on enhancing the efficiency of general Pareto set learning algorithms, a goal different from our primary objective
of advancing model merging through MOO. Tang et al. (2024) employs task arithmetic to merge selected modules from
pre-trained models while leaving other components (e.g., MLP layers, or both MLP and attention layers) separate. A
Mixture-of-Experts (MoE) router is then trained using labeled data to assign weights to these unmerged parts. On the other
hand, our method merges all modules into a single model with a small low-rank tensor (approximately 0.5% of pre-trained
model parameters) and does not require labeled data.

To further compare with MoE-based fusion in (Tang et al., 2024), below we compare its performance on merging eight
ViT-B/32 models. As reported in (Tang et al., 2024), with the use of labeled data, MoE-based fusion (with a final model
size of 567M) achieves an average accuracy of 77.2% when only the MLP is unmerged, and 83.5% when all modules are
unmerged (with final model size 1.02B). On the other hand, our method (with only 114M parameters and not requiring
labeled data) achieves a higher accuracy at 85.2%.

C. Experimental Details
C.1. Datasets

The datasets used are summarized in Table 7. All datasets are publicly available. The Cars dataset has a custom license
restricted to non-commercial use. The DTD dataset has a custom license restricted to research-only use. EuroSAT is under
the MIT license. The licenses for the remaining datasets are unknown.

Table 7. Summary of the datasets used.

Dataset Domain # Classes # Images

SUN397 (Xiao et al., 2016) Scene classification 397 108,754
Cars (Krause et al., 2013) Car classification 196 16,185

RESISC45 (Cheng et al., 2017) Remote sensing scene classification classification 45 31,500
EuroSAT (Helber et al., 2019) Satellite image classification classification 10 27,000

SVHN (Netzer et al., 2011) House numbers classification 10 600,000
GTSRB (Stallkamp et al., 2011) Traffic sign classification 43 51,839

MNIST (LeCun, 1998) Handwritten digits classification 10 70,000
DTD (Cimpoi et al., 2014) Texture classification 47 5,640

C.2. Training Details

We use the checkpoints of pre-trained and fine-tuned models on eight datasets in (Ilharco et al., 2023). Following (Yang
et al., 2024b), we initialize all {λk}Kk=1 in (8) to 0.3. We employ the Adam optimizer (Kingma & Ba, 2014), with learning
rate 1× 10−3 and momentum parameters β1, β2 set to 0.9 and 0.999, respectively. The batch size is 32. We set the number
of optimization steps to 2000 when merging 2 models and 4000 when merging 8 models. We initialize G in (8) to the zero
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tensor, and initialize A and B using the Kaiming uniform distribution (He et al., 2015). We set rank r to 16, and both the
regularization coefficient β and distribution parameter p to 0.1.

For the baseline methods, we use the hyperparameters provided in the original papers and adopt their publicly available
official implementations. Specifically, for Task Arithmetic, we set λ to 0.3 when merging eight models, as suggested in the
original paper. When merging two models, we experiment with λ values from {0.1, 0.3, 0.5, 0.7, 0.9} and select λ = 0.7,
which achieves the best performance on the validation dataset. For experiments on the ViT-B/32 (resp. ViT-L/14) model, we
use a single NVIDIA A6000 (resp. H800) GPU with 48GB (resp. 80GB) memory. We use Ubuntu 22.04.1 with PyTorch
1.12.

D. Additional Figures of Models Obtained by Pareto Merging
D.1. Complete Plot When Merging Two Models

Figure 8 shows the complete plot when merging two models. Rewarded soups can achieve very diverse solutions, as they
retain all original models. However, their performance in the middle region is notably poor. MAP partially improves
performance in this region through evolutionary optimization with labeled data, but it still falls significantly short compared
to AdaMerging + PM. Most solutions obtained by Rewarded soups and AdaMerging + PM are dominated by solutions
obtained by AdaMerging + PM, except some extreme solutions. Note that, in general, users are more likely to prefer a
model that performs well on priority tasks while maintaining satisfactory performance on other tasks. It is unlikely that
users would select an extreme solution with slightly improvement on a task (e.g, from 95.8% to 95.9%) while causing a
significant performance drop in another task (e.g., from 52.1% to 22.4%).
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Figure 8. Full plot of accuracies of models obtained by different methods when merging two ViT-B/32 models.

D.2. Figures When Merging Eight Models

Figure 10 shows 30 models sampled from the learned Pareto set by AdaMerging + TIES + Pareto Merging when merging
eight ViT-B/32 models. We can see that Pareto Merging obtains a diverse model set. Most models dominate models obtained
by the baselines, while none of the models is dominated by models obtained by baselines.

Figures 11 and 12 show 30 models sampled from the learned Pareto set by Task Arithmetic + Pareto Merging and TIES
Merging + Pareto merging when merging eight ViT-B/32 models, respectively. We can see that Pareto Merging can
achieve diverse trade-off around the base method. All of the models obtained by PM are non-dominated to each other in
the 8-dimensional objective space. They are also non-dominated to the model obtained by the base method. Note that
”dominance” observed in the 2D projections does not imply the real dominance in the 8-dimensional objective space. Unlike
the base method, which offers only a single trade-off, PM allows users to select models tailored to their specific preferences.
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Figure 9. Full plot of accuracies of models obtained by two straightforward methods discussed Section 3.1 in when merging two ViT-B/32
models.

E. Test accuracies when merging eight ViT-L/14 models
We further experiment on the larger ViT-L/14 backbone. The results are shown in Table 8. As can be seen, Pareto Merging
still outperforms the baselines on most datasets, and the observations on ViT-B/32 model still hold.

Table 8. Test accuracies when merging eight ViT-L/14 models. Results on baselines are from (Yang et al., 2024b). The best result is in
bold and the second best underlined.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Average

Individual 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6
Fisher Merging 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2
RegMean 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7
DARE 74.0 81.9 86.5 93.9 88.0 86.6 98.9 65.5 84.4
MAP 76.0 84.1 88.7 87.8 90.1 87.9 97.8 71.3 85.4

Task Arithmetic 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 84.5
Task Arithmetic + PM (equal) 74.0 82.1 86.7 94.1 87.9 86.8 98.9 65.7 84.5
Task Arithmetic + PM (priority) 74.3 82.5 87.3 95.0 91.0 88.1 99.1 66.1 85.4

TIES Merging 75.9 85.4 89.0 95.6 89.2 87.1 99.0 68.7 86.2
TIES Merging + PM (equal) 75.9 85.4 89.0 95.6 89.1 87.1 99.0 68.7 86.2
TIES Merging + PM (priority) 76.0 85.4 89.7 96.7 91.9 88.5 99.1 69.3 87.1

AdaMerging 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
AdaMerging + PM (equal) 79.8 90.7 91.4 96.5 93.5 98.3 99.1 80.6 91.2
AdaMerging + PM (priority) 80.5 91.7 91.9 98.1 96.4 98.8 99.1 80.8 92.1

AdaMerging + TIES 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 91.0
AdaMerging + TIES + PM (equal) 79.9 90.6 91.2 97.8 93.4 98.1 99.0 80.3 91.2
AdaMerging + TIES + PM (priority) 80.6 91.7 92.0 98.5 96.1 99.0 99.1 80.6 92.2

F. Using Outer Product in W (γ)

In this experiment, we study other possibilities to transform the preference vector γ to a c× d matrix using vector outer
product (denoted as ◦):
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Figure 10. Models sampled from the learned Pareto set by AdaMerging + TIES + Pareto Merging when merging eight ViT-B/32 models.
Each subplot shows the accuracies on 2 of the 8 tasks. For comparison, the square denotes the model obtained by AdaMerging + TIES.

• Variation 1: W (γ) = v ◦Aγ, where v ∈ Rc and A ∈ Rd×K .

• Variation 2: W (γ) = Aγ ◦ v, where v ∈ Rd and A ∈ Rc×K .

The experimental settings are the same as in Section 4.3. The obtained results of merging two models fine-tuned on
RESISC45 and GTSRB datasets are shown in Figure 13. We observe that both outer product-based method exhibit
performance inferior to the proposed tensor-based method.
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Figure 11. Models sampled from the learned Pareto set by Task Arithmetic + Pareto Merging when merging eight ViT-B/32 models. Each
subplot shows the accuracies on 2 of the 8 tasks. For comparison, the square denotes the model obtained by Task Arithmetic.
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Figure 12. Models sampled from the learned Pareto set by TIES Merging + Pareto Merging when merging eight ViT-B/32 models. Each
subplot shows the accuracies on 2 of the 8 tasks. The square denotes the model obtained by TIES Merging.
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Figure 13. Comparison between the proposed tensor-based method and simple outer product-based method for preference-dependent
personalization.
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