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ABSTRACT

Not forgetting old class knowledge is a key challenge for class-incremental learn-
ing (CIL) when the model continuously adapts to new coming classes. A common
technique to address this is knowledge distillation (KD) which penalizes predic-
tion inconsistencies between old and new models. Such prediction is made with
almost new class data, as old class data is extremely scarce due to the strict mem-
ory limitation in CIL. In this paper, we take a deep dive into KD losses and find that
“using new class data for KD” not only hinders the model adaption (for learning
new classes) but also results in low efficiency for preserving old class knowledge.
We address this by “using the placebos of old classes for KD”, where the placebos
are chosen from a free image stream, such as Google Images, in an automatical
and economical fashion. To this end, we train an online placebo selection pol-
icy to quickly evaluate the quality of streaming images (good or bad placebos)
and use only good ones for one-time feed-forward computation of KD. We for-
mulate the policy training process as an online Markov Decision Process (MDP),
and introduce an online learning algorithm to solve this MDP problem without
causing much computation costs. In experiments, we show that our method 1) is
surprisingly effective even when there is no class overlap between placebos and
original old class data, 2) does not require any additional supervision or memory
budget, and 3) significantly outperforms a number of top-performing CIL meth-
ods, in particular when using lower memory budgets for old class exemplars, e.g.,
five exemplars per class. The code is available in the supplementary.

1 INTRODUCTION

AI learning systems are expected to learn new concepts while maintaining the ability to recognize
old ones. In many practical scenarios, they cannot access the past data due to the limitations such
as storage or data privacy but are expected to be able to recognize all seen classes. A pioneer
work (Rebuffi et al., 2017) formulated this problem in the class-incremental learning (CIL) pipeline:
training samples of different classes are loaded into the memory phase-by-phase, and the model
keeps on re-training with new class data (while discarding old class data) and is evaluated on the
testing data of both new and old classes. The key challenge is that re-training the model on the new
class data tends to override the knowledge acquired from the old classes (McCloskey & Cohen, 1989;
McRae & Hetherington, 1993; Ratcliff, 1990), and the problem is called “catastrophic forgetting”.
To alleviate this problem, most of CIL methods (Rebuffi et al., 2017; Hou et al., 2019; Douillard
et al., 2020; Liu et al., 2020a; 2021a; Zhu et al., 2021) are equipped with knowledge distillation (KD)
losses that penalize any feature and/or prediction inconsistencies between the models in adjacent
phases.

The ideal KD losses should be computed on old class data since the teacher model (i.e., the model
in the last phase) was trained on them. This is, however, impossible in the CIL setting, where almost
all old class data are inaccessible in the new phase. Existing methods have to use new class data
as a substitute to compute KD losses. We argue that this 1) hampers the learning of new classes
as it distracts the model from fitting the ground truth labels of new classes, and 2) can not achieve
the ideal result of KD, as the model can not generate the same soft labels (or features) on new class
data as on old class data. We justify this from an empirical perspective as shown in Figure 1 (a):

We made the corresponding changes in the revised paper and colorized these changes in blue.
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Figure 1: (a) Average accuracy when computing KD loss on different data using iCaRL (Rebuffi
et al., 2017) on CIFAR-100. The KD loss (softmax KL divergence loss) is computed on new class
data (dark blue), placebos (of old class data) selected by our method (light blue), and old class data
green), i.e., the ideal case. (b) Conceptual illustrations of the loss problem if using new class
data for KD. The dark blue and orange numbers denote the predictions of old and new classes,
respectively. It is clear in (i) that the objectives are different when using a new class sample for KD
(the oracle case is to have both “ascent”), e.g., the ground truth label for the second old class is 0,
while the “KD label” at this position is 0.8. This is not an issue when using the old class sample,
e.g., in (ii), its ground truth label and “KD label” have consistent magnitudes at the same position
(1 and 0.7, respectively). (c) Our selected placebos for two old classes (“road” and “table”) and
their activation maps using GradCAM (Selvaraju et al., 2017) on CIFAR-100. The free image
stream is ImageNet-1k that does not have class overlap with CIFAR-100. They are selected because
their partial image regions contain similar visual cues with old classes.

the upper bound of KD is achieved when using “Old class data”, and if compared to it, using “New
class data” sees a clear performance drop for recognizing both old and new classes. In Figure 1
(b), we show the reason by diving into loss computation details: when using new class samples (as
substitutes) to compute CE and KD losses simultaneously, these two losses are actually weakening
each other, which does not happen in the ideal case of using old class samples.

Using unlabeled external data (called placebos in this paper) has been shown to be practical and
effective in solving the above issue. Compared to existing works (Lee et al., 2019; Zhang et al.,
2020), this paper aims to solve two open questions. Q1: How to adapt the placebo selection process
in the non-stationary CIL pipeline. The ideal selection method needs to handle the dynamics of
increasing classes in CIL, e.g., in a later incremental phase, it is expected to handle a more complex
evaluation on the placebos of more old classes. Q2: How to control the computational and memory-
related costs during the selection and utilization of placebos. It is not intuitive how to process
external data without encroaching the memory allocated for new class data or breaking the strict
assumption of memory budget in CIL.

We solve these questions by proposing a new method called PlacoboCIL that adjusts the policy of
selecting placebos for each new incremental phase, in an online and automatic fashion and without
needing extra memory. Specifically, to tackle Q1, we formulate the PlaceboCIL as an online Markov
Decision Process (MDP) and introduce a novel online learning algorithm to learn a dynamic policy.
In each new phase, this policy produces a phase-specific function to evaluate the quality of incoming
placebos. The policy itself gets updated before the next phase. For Q2, we propose a mini-batch-
based memory reusing strategy for PlaceboCIL. Given a free data stream, we sample a batch of
unlabeled data, evaluate their quality by using our phase-specific evaluation function (generated by
the learned policy), and keep only the high-quality placebos to compute KD losses. After this, we
remove this batch totally from the memory before loading a new batch. In our implementation, this
batch can be very small, e.g., 200 images. We randomly remove the same size of new class data for
intaking this batch to keep the strict assumption of memory budget.

We evaluate PlaceboCIL by incorporating it into multiple strong baselines such as PODNet (Douil-
lard et al., 2020), LUCIR (Hou et al., 2019), AANets (Liu et al., 2021a), and FOSTER (Wang
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et al., 2022), and conducting a series of ablative studies. Our results on three popular CIL bench-
marks show the clear and consistent superiority of PlaceboCIL, especially when using a low memory
budget for old class exemplars. For example, our method boosts the last-phase accuracy by 6.9 per-
centage points on average when keeping only 5 exemplars per old class in the memory. In addition,
it is worth mentioning that PlaceboCIL is surprisingly efficient even when there is no class overlap
between placebos and original old class data. The reason is that PlaceboCIL can make use of the
local visual cues in placebos, e.g., similar visual cues of “table” are found on the local regions of an
“piano” (and “dishwasher”) image as shown in Figure 1 (c).

Our contributions are three-fold. 1) A generic PlacoboCIL method that selects placebo images
from a free image stream to solve the KD issue in existing methods. 2) A novel online learning
algorithm for training a placebo selection policy and a mini-batch-based memory reusing strategy to
avoid extra memory usage. 3) Extensive comparisons and visualizations on three CIL benchmarks,
taking top-performing CIL models as baselines and with the same strict assumption on memory.

2 RELATED WORK

Class-incremental learning (CIL) methods can be divided into three categories. Distillation-based
methods introduce different knowledge distillation (KD) losses to consolidate previous knowledge.
The key idea is to enforce prediction logits (Li & Hoiem, 2016; Rebuffi et al., 2017), feature
maps (Douillard et al., 2020), or other essential information (Tao et al., 2020; Wang et al., 2022;
Simon et al., 2021; Joseph et al., 2022) to be close to those of the pre-phase model. Memory-based
methods use a small number of preserved old class data (called exemplars) (Rebuffi et al., 2017;
Shin et al., 2017; Liu et al., 2020a; Prabhu et al., 2020) or augmented data (Zhu et al., 2021) to
recall the old class knowledge. Network-architecture-based methods (Rusu et al., 2016; Xu & Zhu,
2018; Abati et al., 2020; Yan et al., 2021) design incremental network architectures by expanding
the network capacity for new class data or freezing partial network parameters to keep the old class
knowledge. Our method can be used to improve different Distillation-based CIL methods.

Some prior works used unlabeled external data for class-incremental learning. Lee et al. (2019) pro-
posed a confidence-based sampling method to select unlabeled external data to compute a specially-
designed global distillation loss. Zhang et al. (2020) randomly selected unlabeled samples and used
them to compute KD loss for model consolidation. Liu et al. (2020b) used unlabeled data to max-
imize the classifier discrepancy when integrating an ensemble of auxiliary classifiers. Our method
differs from them in two aspects. 1) Our method use the unlabeled data in a more generic way and
can be applied to improve different distillation-based methods (Hou et al., 2019; Rebuffi et al., 2017;
Wang et al., 2022), while the existing methods use unlabeled data to assist their specially-designed
loss terms or components. 2) We train an online policy to select better unlabeled data to adapt to
the non-stationary CIL pipeline while existing methods select unlabeled data by applying fixed (i.e.,
non-adaptive) rules in all incremental phases.

Online learning observes a stream of samples and makes a prediction for each element in the stream.
There are mainly two settings in online learning: full feedback and bandit feedback. Full feedback
means that the full reward function is given at each stage. It can be solved by Best-Expert algo-
rithms (Even-Dar et al., 2005). Bandit feedback means that only the reward of the implemented
decision is revealed. If the rewards are independently drawn from a fixed and unknown distribution,
we may use e.g., Thompson sampling (Agrawal & Goyal, 2012) and UCB (Auer & Ortner, 2010) to
solve it. If the rewards are generated in a non-stochastic version, we can solve it by e.g., Exp3 (Auer
et al., 2002). Online MDP is an extension of online learning. Many studies (Even-Dar et al., 2009;
Li et al., 2019) aim to solve it by converting it to online learning. In our case, we formulate the CIL
as an online MDP and convert it into a classic online learning problem. The rewards in our MDP are
non-stochastic because the training and validation data change in each phase. Therefore, we design
our algorithm based on Exp3 (Auer et al., 2002).

3 ONLINE PLACEBOS FOR CLASS-INCREMENTAL LEARNING (PLACEBOCIL)

CIL has multiple “training-testing” phases during which the number of classes gradually increases
to the maximum. In the 0-th phase, data D1:c0={D1, ...,Dc0}, including the training samples of c0
classes, are used to learn the model Θ0. After this phase, only a small subset ofD1:c0 (i.e., exemplars
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denoted as E1:c0={E1, ..., Ec0}) can be stored in the memory and used as replay samples in later
phases. In the i-th phase, we use ci to denote the number of classes we have observed so far. We
get new class data Dci−1+1:ci={Dci−1+1, ...,Dci} of (ci − ci−1) classes and load exemplars E1:ci−1

from the memory. Then, we initialize Θi with Θi−1, and train it using T1:ci=E1:ci−1
∪Dci−1+1:ci .

The model Θi will be evaluated with a testing set Q1:ci={Q1, ...,Qci} for all classes seen so far.
Please note that in any phase of PlaceboCIL, we assume we can access a free image stream, where
we can load unlabeled images and select placebos.

PlaceboCIL formulates the CIL task as an online MDP. In each phase, we update a policy, for which
we sample a class-balanced subset from training data as the testing set, and use the updated policy to
produce a phase-specific evaluation function. During model training, we sample unlabeled images,
use the evaluation function to quickly judge the image quality (good or bad placebos), and select
the good ones to compute KD loss. In this section, we introduce the formulation of online MDP in
Section 3.1, show how to apply the policy to select placebos and compute KD loss in Section 3.2,
and provide an online learning algorithm to update the policy in Section 3.3. The pseudocode is
given in Appendix A (Algorithms 1 and 2).

3.1 ONLINE MDP FORMULATION FOR CIL

The placebo selection process in CIL should be online inherently: training data (and classes) get
updated in each phase, so the placebo selection policy should update accordingly. Thus, it is intuitive
to formulate the CIL as an online MDP. In the following, we provide detailed formulations.

Stages. Each phase in the CIL task can be viewed as a stage in the online MDP.

States. The state should define the current situation of the intelligent agent. In CIL, we use the
model Θi as the state of the i-th phase (i.e., stage). We use S to denote the state space.

Actions. We define the action as ai=(βi, γi), consisting of the hyperparameters (βi and γi) used to
create an evaluation function. As βi and γi vary in a continuous range, we discretize them to define
a finite action space.1 We will elaborate on how to take an action and deploy the hyperparameters in
Section 3.2.

Policy π={p(a|Θi)}a∈A is a probability distribution over the action space A, given the current state
Θi. We will elaborate how to update the policy using our proposed online learning algorithm in
Section 3.3.

Environments. We take the training an testing data in each phase as the environment. In the i-th
phase, the environment isHi=(T1:ci ,Q1:ci), where T1:ci is the training data andQ1:ci is the testing
data. The environment is time-varying because we observe different training data (and classes) in
each new phase.

Rewards. CIL aims to train a model that is efficient in recognizing all classes seen so far. Therefore,
it is intuitive to use the testing accuracy as the reward in each phase. We cannot observe any reward
(i.e., testing accuracy) directly because the testing data is not accessible during training. We solve
this by building a local testing set using a subset of training data (see details in Section 3.3). Our
objective is to maximize a cumulative reward, i.e., R =

∑N
i=1 rHi

(Θi,ai), where rHi
(Θi,ai)

denotes the i-th phase reward, The reward function rHi
changes withHi, so it is time-varying.

3.2 PLACEBO SELECTION WITH MINI-BATCH-BASED MEMORY REUSING STRATEGY

In the following, we introduce how to build phase-specific evaluation functions using the policy,
select high-quality placebos without breaking memory constraints, and compute KD loss with the
selected placebos. The computation flow (in each phase) is illustrated in Figure 2.

Computing prototypes. Our placebo selection is based on the distance from placebo to the class
prototype, i.e., the mean feature of each class (Snell et al., 2017). First, we compute the prototypes
of all seen classes. We use exemplars to compute the prototypes of old classes, and use new class

1Though discretization suffers the curse of dimensionality, our experiments show that with a coarse grid,
we already have significant improvements over pre-fixed hyperparameters.
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Figure 2: The computation flow of our PlaceboCIL in the i-th phase. At the beginning of this phase,
we build phase-specific evaluation functions {Sm(u)}ci−1

m=1. During training, we select placebos as
follows. 1) We load an unlabeled data batch U from the free image stream. 2) We compute scores
using {Sm(u)}ci−1

m=1 for all samples in U . 3) For each old class m, we select K placebos with the
highest scores and add them to P . 4) We delete used placebos from P after computing the loss.
5) When we use up the selected placebos in P , we repeat the selection steps.

training data for new class prototypes, as follows,

Pro(En) =
1

|En|
∑
z∈En

FΘi
(z), Pro(Dl) =

1

|Dl|
∑
z∈Dl

FΘi
(z), (1)

where FΘi
(·) denotes the encoder (i.e., the feature extractor) of Θi. Pro(En) and Pro(Dl) denote

the prototypes of the n-th old class and the l-th new class, respectively.

Building evaluation functions. We argue that high-quality placebos for the m-th old class should
meet two requirements: (1) being close to the prototype of the m-th class in the feature space because
they will be used to activate the related neurons of the m-th old class in the model; and (2) being far
from the prototypes of all the other classes in the feature space so that they will not cause the KD
issue (as shown in Figure 1). To achieve these, we design the following evaluation function Sm(x)
for the m-th old class in the i-th phase:

Sm(x) =− Sim (FΘi
(x),Pro(Em)) + βi

ci−1∑
n=1
n ̸=m

Sim (FΘi
(x),Pro(En))

ci−1 − 1

+ γi

ci∑
l=ci−1+1

Sim (FΘi(x),Pro(Dl))

ci − ci−1
,

(2)

where x denotes an unlabeled input image, and Sim(·, ·) denotes cosine similarity. βi and γi are two
hyperparameters from the action ai=(βi, γi), sampled by the policy π.

Allocating mini-batch-based memory for placebos. We need to allocate a small amount of mem-
ory to store unlabeled images (before evaluating them). At the beginning of the i-th phase, we
allocate memory buffers U and P respectively for the unlabeled image candidates and the selected
placebos. In order to not exceed the memory budget, we randomly remove the same number, i.e.,
|U +P|, of samples from the training data of new classes. Our empirical results show this “remove”
does not degrade the model performance on new classes. Please kindly refer to Appendix G for
detailed results and comparisons.

Selecting placebos. Whenever the placebo buffer P is empty, we load a batch of unlabeled samples
U from the free image stream, and choose K placebos for each old class to add into P , as follows,

P := {xk}ci−1×K
k=1 = argmax

xk∈U

ci−1∑
m=1

K∑
k=1

Sm(xk). (3)
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Calculating loss with placebos. After selecting placebos, we sample a batch of new class data
d ⊂ Dci−1+1:ci , a batch of old class exemplars e ⊂ E1:c0 , and a batch of placebos p ⊂ P . We
calculate the overall loss as follows,

L = LCE(Θi;d ∪ e) + λLKD(Θi−1,Θi;p ∪ e), (4)

where LCE and LKD denote the CE loss and KD loss, respectively. λ is a hyperparameter to balance
the two losses (Rebuffi et al., 2017). To control the memory usage, we delete p from P immediately
after calculating the loss. When P is empty, we repeat the placebo selection operation.

3.3 ONLINE POLICY LEARNING ALGORITHM

A common approach to solving an online MDP is to approximate it as an online learning problem
and solve it using online learning algorithms (Even-Dar et al., 2005; Agrawal & Goyal, 2012; Auer
et al., 2002). We also follow this idea in PlaceboCIL, and our approximation follows the work by
Even-Dar et al. (2009) that is theoretically proved to have the optimal regret. Specifically, Even-
Dar et al. (2009) relax the Markovian assumption of the MDP by decoupling the cumulative reward
function and letting it be time-dependent so that they can solve online MDP by standard online
learning algorithms.

However, we cannot directly apply the algorithms proposed in (Even-Dar et al., 2009) to our prob-
lem. It is because they assume full feedback meaning that the model can observe the rewards of all
actions in every learning phase (which is also why its online learning problem can be solved by Best
Expert algorithms (Even-Dar et al., 2005)). While in CIL, we cannot observe any reward (i.e., the
testing accuracies) because the testing data Q1:ci are not accessible in any phase i. To address this
problem, we split the training data we have in each phase into two subsets: one for training and an-
other for validation. Once we have a validation set, we can solve our online learning problem based
on Exp3 (Auer et al., 2002)—a simple and effective bandit algorithm. In the following, we elaborate
how we do this data splitting in each local dataset (i.e., the entire data we have in each training phase
of CIL), compute the decoupled cumulative reward, and learn the policy π with Exp3.

Rebuilding local datasets. To compute reward, we sample a class-balanced subset B1:ci from the
training data T1:c1 . B1:ci contains the same number of samples for both the old and new classes. In
this way, we rebuild the local training and validate sets, and update the environment from the oracle
Hi=(T1:ci ,Q1:ci) (which is unavailable in CIL) to the local environment hi=(T1:ci \ B1:ci ,B1:ci).

Decoupled cumulative reward. We create the decoupled cumulative reward function R based on
the original cumulative reward function

∑N
j=1 rHj

(Θj ,aj). In the i-th phase, we compute R as
follows,

R(ai, hi) =

i+n∑
j=i

rhi
(Θj ,ai) + costant, (5)

where the “constant” denotes the historical rewards from the 1-st phase to the (i-1)-th phase. It
doesn’t influence policy optimization. R(ai, hi) is the long-term reward of a time-invariant local
MDP based on the local environment hi. We use R(ai, hi) as an estimation of the final cumulative
reward, following (Even-Dar et al., 2009). Because we don’t know the total number of phases N
during training, we assume there will be n phases in the future. Furthermore, we fix the action ai to
simplify the training process. R(ai, hi) is a function of ai and hi.

Training policy with Exp3. Exp3 (Auer et al., 2002) introduces an auxiliary variable w =
{w(a)}a∈A. It is updated as follows. In the 1-st phase, we initialize w as {1, . . . , 1}. In each
phase i (i≥1), we update w for T iterations. In the t-th iteration, we sample an action at∼π, apply
the action at to the CIL system, and compute R(at, hi) using Eq. 5. After that, we update w(at) in
w as,

w(at)← w(at) exp(ξR(at, hi)/p(at|Θi)), (6)

where ξ can be regarded as the learning rate. After updating w, we get the policy π=w/||w||. The
pseudocode is available in Appendix A (Algorithms 1 and 2).
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Method
20 exemplars/class 10 exemplars/class 5 exemplars/class

Average Last Average Last Average Last

LwF (2016) 53.19 +1.35 43.18 +3.64 45.96 +3.64 34.10 +3.64 35.41 +13.64 24.91 +13.64

w/ ours 59.08 +5.89 49.15 +5.97 53.61 +7.65 38.36 +4.26 41.55 +6.141 28.68 +3.771

iCaRL (2017) 57.12 +1.35 47.49 +3.64 53.43 +3.64 41.49 +3.64 43.73 +13.64 34.33 +13.64

w/ ours 61.24 +4.12 51.47 +3.98 59.11 +5.68 46.42 +4.93 51.55 +7.821 39.35 +5.021

LUCIR (2019) 63.17 +1.35 53.71 +3.64 60.50 +3.64 49.08 +3.64 51.36 +13.64 39.37 +13.64

w/ ours 65.28 +2.11 56.23 +2.52 64.79 +4.29 55.44 +6.36 62.74 +11.35 53.25 +13.88

LUCIR-AANets (2021a) 66.12 +1.35 55.27 +3.64 61.12 +3.64 48.83 +3.64 53.81 +13.64 42.93 +13.64

w/ ours 67.65 +1.53 59.18 +3.91 64.30 +3.18 52.92 +4.09 60.27 +6.461 48.45 +5.521

FOSTER (2022) 70.62 +1.35 62.97 +3.64 62.03 +3.64 52.23 +3.64 56.80 +13.64 43.11 +13.64

w/ ours 71.97 +1.35 64.43 +1.46 65.12 +3.09 54.81 +2.48 62.78 +5.981 50.72 +7.611

Table 1: Evaluation results (%) on CIFAR-100 (N=5) using different baselines w/ and w/o our
PlaceboCIL. “Average” denotes the average accuracy over all phases. “Last” denotes the last phase
(5-th phase) accuracy.

4 EXPERIMENTS

We evaluate our method on three CIL benchmarks and achieve consistent improvements over multi-
ple baseline methods. Below we introduce datasets and implementation details, followed by results
and analyses, including the comparison to the state-of-the-art, an ablation study, and the visualiza-
tion of our placebos.

Datasets and free image streams. We use three datasets: CIFAR-100 (Krizhevsky et al., 2009),
ImageNet-100 (Rebuffi et al., 2017), and ImageNet-1k (Russakovsky et al., 2015). ImageNet-100,
which contains 100 classes, is sampled from ImageNet-1k. We use exactly the same classes or orders
as the related works (Rebuffi et al., 2017; Hou et al., 2019). For CIFAR-100, we use ImageNet-1k as
the free image stream. For ImageNet-100, we use a 900-class subset of ImageNet-1k, which is the
complement of ImageNet-100 in ImageNet-1k. For ImageNet-1k, we use a 1, 000-class subset of
ImageNet-21k (Deng et al., 2009) without any overlapping class (different super-classes from those
in ImageNet-1k).
Implementation details. Following (Hou et al., 2019; Douillard et al., 2020; Liu et al., 2021a;b),
we use a modified 32-layer ResNet for CIFAR-100 and an 18-layer ResNet for ImageNet datasets.
The number of exemplars for each class is 20 in the default setting. The training batch size is 128.
On CIFAR-100 (ImageNet-Subset/1k), we train it for 160 (90) epochs in each phase, and divide the
learning rate by 10 after 80 (30) and then after 120 (60) epochs. If the baseline is POD-AANets (Liu
et al., 2021a), we fine-tune the model for 20 epochs using only exemplars. We apply different forms
of distillation losses on different baselines: (1) if the baselines are LwF and iCaRL, we use the soft-
max KL divergence loss; (2) if the baselines are LUCIR and AANets, we use the cosine embedding
loss (Hou et al., 2019); and (3) if the baseline is POD-AANets, we use pooled outputs distillation
loss (Douillard et al., 2020). For our PlaceboCIL, |U| and |P| are set as 1, 000 and 200, respectively.
All experiments of our PlaceboCIL in the main paper use the “strict budget” setting, i.e., deleting
|U +P| samples from training data in order to not exceed the memory budget. An ablation study on
the memory budget setting is provided in Appendix G. More implementation details are provided in
Appendices C (benchmark protocol), D (network architecture), and E (training configurations).

Results on five baselines. Table 1 shows the average and last-phase accuracy for five baselines (i.e.,
LwF (Li & Hoiem, 2016), iCaRL (Rebuffi et al., 2017), LUCIR (Hou et al., 2019), AANets (Liu
et al., 2021a), and FOSTER (Wang et al., 2022)). From the table, we make the following observa-
tions. 1) Using our PlaceboCIL boosts the performance of the baselines clearly and consistently in
all settings, indicating that our method is generic and efficient. 2) When the number of exemplars
decreases, the improvement brought by our method becomes more significant. For example, the
last-phase accuracy improvement of LUCIR increases from 2.52 to 13.88 percentage points when
the number of exemplars per class decreases from 20 to 5. This reveals that the superiority of our
method is more obvious when the forgetting problem is more serious (with fewer exemplars) due to
a tighter memory budget in CIL. 3) Our PlaceboCIL can boost the performance of all KD terms, i.e.,
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Method
CIFAR-100 ImageNet-100 ImageNet-1k

N=5 10 25 5 10 25 5 10

LwF (2016) 53.19 46.98 45.51 53.62 47.64 44.32 44.35 38.90
iCaRL (2017) 57.12 52.66 48.22 65.44 59.88 52.97 51.50 46.89
TPCIL (2020) 65.34 63.58 – 76.27 74.81 – 64.89 62.88
DDE (2021) 65.34 63.58 – 76.27 74.81 – 64.89 62.88
GeoDL (2021) 65.14 65.03 63.12 76.63 75.40 71.43 65.23 64.46
DER (2021) 68.65 67.48 66.18 78.40 78.20 75.40 68.13 65.97
ELI (2022) 68.78 66.62 64.72 73.54 71.82 70.32 – –

GD+ext (2019) 63.17±0.47 58.71±0.39 51.79±0.42 75.67±0.51 72.08±0.61 65.13±0.56 – –
MUC-LwF (2020b) 59.03±0.35 53.27±0.47 49.06±0.49 72.31±0.53 68.92±0.60 62.93±0.62 – –

POD-AANets (2021a) 66.12±0.41 64.11±0.32 62.12±0.51 76.63±0.47 75.40±0.36 71.43±0.32 67.60±0.39 64.79±0.42

w/ PlaceboCIL (ours) 67.65±0.45 65.78±0.40 64.95±0.46 78.24±0.52 77.14±0.47 75.85±0.42 68.55±0.34 65.49±0.38

FOSTER (2022) 70.62±0.58 68.43±0.45 63.83±0.62 80.21±0.67 77.63±0.73 69.27±0.50 69.32±0.47 66.07±0.61

w/ PlaceboCIL (ours) 71.97±0.49 70.31±0.59 67.02±0.65 82.03±0.49 79.52±0.60 72.79±0.45 71.02 ±0.39 68.82±0.54

Table 2: Average accuracy (%) across all phases. The first block shows top-performing CIL methods.
The second block shows CIL methods that use unlabeled data. The third block shows our method.

not only for logits-based KD (Rebuffi et al., 2017) but also for feature-based KD (Hou et al., 2019;
Douillard et al., 2020).

Comparisons to the state-of-the-art. Table 2 (Blocks 1&3) shows the results of our best model
(taking PlaceboCIL as a plug-in module in the top method (Wang et al., 2022)) and some recent
top-performing methods. We can see that using our PlaceboCIL outperforms all previous methods.
Intriguingly, we find that we can surpass others more when the number of phases is larger—where
there are more serious forgetting problems. For example, when N=25, we improve POD-AANets
by 4.4% on the ImageNet-100, while this number is only 1.6% when N=5 (which is an easier setting
with more saturated results). This reflects the encouraging efficiency of our method for reducing the
forgetting of old class knowledge in CIL models.

No. Setting
iCaRL LUCIR-AANets

Average Last Average Last

1 Baseline 57.12 47.49 66.72 57.77
2 PlaceboCIL 61.01 51.45 67.16 59.14

3 Overlapping 62.15 52.62 67.48 59.06
4 Non-overlapping 61.52 51.70 67.01 58.53
5 New data 57.70 47.51 66.69 57.33
6 Old data (oracle) 66.64 58.03 68.82 61.52

7 w/o Online learning 60.27 50.57 66.91 58.88
8 Offline RL 61.09 50.81 67.31 59.26

9 Higher confidence 60.43 49.36 66.97 58.12
10 Random placebos 56.27 46.64 66.23 57.22

Table 3: Ablation results (%) on CIFAR-100, N=5.
(1) First block: baselines. Row 1 shows the base-
lines. Row 2 shows our method. All the follow-
ing ablation settings (Rows 3-10) are based on Row
2. (2) Second block: different free data streams.
Rows 3-6 show the ablation results for the following
free data streams. (3) Third block: different policy
learning methods. Row 7 is for using fixed evaluation
functions (βi=γi=1). Row 8 uses the offline RL (the
REINFORCE algorithm) to train the selection policy.
(4) Fourth block: different placebo selection strate-
gies. Row 9 uses unlabeled data with higher confi-
dence. Row 10 uses them randomly.

Comparisons to the CIL methods us-
ing unlabeled data. Table 2 (Blocks
2&3) shows the results of our best model
and CIL methods using unlabeled data
(GD+ext (Lee et al., 2019) and MUC-
LwF (Liu et al., 2020b)). We can see
that our method consistently performs bet-
ter than others. For another related work,
DMC (Zhang et al., 2020), we didn’t find
the public code. So, we compare ours with
DMC using their paper’s setting: iCaRL
w/ ours achieves 62.3%, while the result of
DMC is 59.1% (CIFAR-100, 10 phases, 10
classes/phase). Please kindly refer to Ap-
pendix B for more analyses.

Ablation study. Tables 3 (and A1) show
the ablation results for free data streams,
policy learning methods, and placebo se-
lection strategies.

1) First block. Row 1 shows the baselines.
Row 2 shows our method.

2) Second block: different free data
streams. Rows 3-6 show the ablation re-
sults for the following free data streams.
(1) “Overlapping” means including sam-
ples from the overlapping classes between
CIFAR-100 and ImageNet. (2) “Non-
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Figure 3: (a) Selected placebos for two CIFAR-100 classes and their GradCAM activation maps.
The free image stream is non-matching ImageNet-1k. (b) The t-SNE results on CIFAR-100 (N=5).
For clear visualization, we randomly pick five new classes and five old classes. The purple, light
blue, and dark blue points denote the new data, old data, and selected placebos, respectively.

overlapping” means using only the samples of non-overlapping classes between CIFAR-100 and
ImageNet (more realistic than “Overlapping”). (3) “New data” means using only the current-phase
new class data (i.e., without using any free data stream) as candidates to select placebos. (4) “Old
data” means the original old class data are all accessible when computing KD loss (i.e., upper bound
of KD effect). Please note that in (1) and (2), two classes are considered “overlapping” if their
classes or super-classes overlap. For example, “n02640242 - sturgeon” in ImageNet-1k is regarded
as an overlapping class of the “fish” in CIFAR-100, because they overlap at the level of super-class
(i.e., “fish”). When comparing Row 4 with Row 2, we can find that our method is robust to the
change of data streams: even if all overlapping classes are removed, our method can still achieve the
same-level performance. Comparing Row 5 with Row 2, we can get a clear sense that using addi-
tional unlabeled data is definitely helpful. Comparing Row 6 with Row 2, we see that our method
achieves comparable results to the upper bound.

3) Third block: different policy learning methods. Row 7 is for using fixed evaluation functions
(βi=γi=1). Row 8 uses the offline RL (the REINFORCE algorithm (Liu et al., 2021b)) to train the
selection policy. Comparing Row 7 with Row 2 shows that using online learning successfully boosts
the model performance. Comparing Row 8 with Row 2, we are happy to see that our online learning
method achieves the same-level performance as the offline RL while the training time is much less.
The training time of the baseline (without learning a policy) is 2.7 hours. It becomes around 650
hours if we solve the MDP by offline RL. In contrast, using our online method takes only 4.5 hours.

4) Fourth block: different placebo selection strategies. Row 9 uses unlabeled data with higher
confidence following (Lee et al., 2019). Row 10 uses them randomly following (Zhang et al., 2020).
Comparing these results with Row 2 shows our superiority. The “mini-batch-based memory reusing
strategy” is applied in Rows 9 and 10.

Visualization results. Figure 3 (a) demonstrates the activation maps visualized by Grad-CAM for
the placebos of two old classes on CIFAR-100 (“road” and “table”). ImageNet-1k is the free data
stream. We can see that the selected placebos contain the parts of “road” and “table” even though
their original labels (on ImageNet-1k) are totally different classes. While this is not always the case,
our method seems to find sufficiently related images to old classes that activate the related neurons
for old classes (“road” and “table”). To illustrate that, Figure 3 (b) shows t-SNE results for placebos,
old class data (not visible during training), and new class data. We can see that the placebos are
located near the old class data and far away from the new class data. This is why placebos can recall
the old knowledge without harming the new class learning.

5 CONCLUSIONS

We proposed a novel method, PlaceboCIL, which selects high-quality placebo data from free data
streams and uses them to improve the effect of KD in CIL. We designed an online learning method
to make the selection of placebos more adaptive in different phases and a mini-batch-based memory
reusing strategy to control memory usage. Extensive experiments show that our method is general
and efficient.

9
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ETHICS STATEMENT

Computational costs. Deep learning methods require intensive usage of computing resources,
which is not climate-friendly. It calls for future research into proposing more effective training
strategies that can speed up the training.

Privacy issues. Keeping old class exemplars has the issue of data privacy. This calls for future
research that explicitly forgets or mitigates the identifiable feature of the data.

Licenses. We use the open-source code for the following papers: AANets (Liu et al., 2021a),
iCaRL (Rebuffi et al., 2017), Mnemonics (Liu et al., 2020a), PODNet (Douillard et al., 2020), FOS-
TER (Wang et al., 2022). They are licensed under the MIT License.

Datasets. We use three datasets in our paper: CIFAR-100 (Krizhevsky et al., 2009), ImageNet-
100 (Rebuffi et al., 2017) and ImageNet-1k (Russakovsky et al., 2015). The data for both datasets
are downloaded from their official websites and allowed to use for non-commercial research and
educational purposes.

REPRODUCIBILITY STATEMENT

We include the details of reproducing our experiments in Section 4 (main paper), Appendix C,
Appendix D, and Appendix E. We also provide the code in the supplementary.
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APPENDICES

A ALGORITHMS

Supplementary to Section 3. Algorithm 1 summarizes the overall training steps of the proposed
method in the i-th phase (i ≥ 1). Algorithm 2 presents the training with placebos for a specific
action a.

Algorithm 1: Our online learning algorithm in the i-th phase (i≥1)
Input : Old model Θi−1, training data T1:ci , testing data Q1:ci , learnable parameters w,

numbers of epochs M1 and M2.
Output: New model Θi, new exemplars E0:i, learnable parameters w.
// Policy learning

1 if i=1 then
2 Initialize w = {1, . . . , 1};
3 for t in i, ..., T do
4 Randomly sample a class-balanced subset B1:ci from T1:ci ,;
5 Create the local environment hi = ((T1:ci) \ B1:ci ,B1:ci);
6 Set the policy π = w/||w||;
7 Sample an action at ∼ π;
8 for j in i, ..., i+ n do
9 Train Θj for M1 epochs by Algorithm 2 with inputs Θj−1, at, hi;

10 Collect the reward rhi
(Θj ,at);

11 Compute the cumulative reward R̂(at, hi) by Eq. 5;
12 Update w by Eq. 6;
// CIL training

13 Sample an action ai ∼ π;
14 Train Θi for M2 epochs by Algorithm 2 with inputs Θi−1, ai,Hi = (T1:ci ,Q1:ci);
15 Select new exemplars E1:ci from T1:ci .

Algorithm 2: Training with placebos for action a

Input : Old model Θold, action a = {β, γ}, environment h = {T ,Q}.
Output: New model Θ, reward rh(Θ,a) (i.e., the testing accuracy).

1 Initialize Θ with Θold;
2 Create {Sm(x)}ci−1

m=1 based on a = {β, γ} using Eq. 2;
3 for epochs do
4 Set P = ∅;
5 while P == ∅ do
6 Sample U from the free image stream;
7 Select placebos P ⊂ U using Eq. 3;
8 for iterations do
9 Sample mini-batches p, d, and e;

10 Compute the loss L by Eq. 4 and update Θ;
11 Update placbo buffer P := P \ p;

12 Compute the reward rh(Θ,a) on Q.

B COMPARISONS TO THE CIL METHODS USING UNLABELED DATA.

This is supplementary to Section 4 “Comparisons to the CIL methods using unlabeled data.”

Part I: Comparing with GD+ext (Lee et al., 2019) and DMC (Zhang et al., 2020). Lee et al. (2019)
use the unlabeled data to compute the distillation loss in CIL. Our work also uses unlabeled data but
differs from (Lee et al., 2019) in three aspects:
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• Our method is focused on the learnable strategies of sampling helpful unlabeled data for
CIL. It is generic and can be plugged into different distillation-based frameworks, including
both logit distillation (LwF and iCaRL) and feature distillation (LUCIR and PODNet). In
Table 2, we also show the empirical results (comparison) to demonstrate our superiority.

• We propose an online learning algorithm. Its learned policy can adaptively produce phase-
specific functions to evaluate the quality of the unlabeled samples. So our selection func-
tions change accordingly when the number of phases increases. Lee et al. (2019)’s selection
strategy remains unchanged when the number of phases increases. Zhang et al. (2020) use
the unlabeled data without selection. In Table 3, we show our learnable selection functions
generally perform better than (Lee et al., 2019) and (Zhang et al., 2020). Please kindly
refer to Section 4 “Ablation study” for the results.

• Our employment of unlabeled data is dynamic and takes little memory out of the to-
tal memory budget. We maintain the memory budget strictly the same as the baselines
(LUCIR (Hou et al., 2019), PODNet (Christopoulos et al., 2000), and Mnemonics (Liu
et al., 2020a)), by loading fewer samples of new classes. In contrast, (Lee et al., 2019)
requires double-size memory compared to the baselines (LUCIR (Hou et al., 2019), POD-
Net (Christopoulos et al., 2000)), and Mnemonics (Liu et al., 2020a)).

Part II: Comparing with MUC (Liu et al., 2020b). Our method and (Liu et al., 2020b) use unla-
beled data for different purposes and in different ways. We use the unlabeled placebo data from a
free image stream to improve the positive effect of KD in training CIL models. Liu et al. (2020b)
integrate the ensemble of multiple FC classifiers to set regularization-based constraints. They use
the unlabeled data to compute the classifier discrepancy loss by using the predictions of multiple
classifiers.

C BENCHMARK PROTOCOLS

This is supplementary to Section 4 “Implementation details.” We follow the benchmark protocol
used in (Douillard et al., 2020; Hou et al., 2019; Liu et al., 2021a; 2020a). Given a dataset, the initial
model (in the 0-th phase) is trained on the data of half of the classes. Then, it learns the remaining
classes evenly in the subsequent N phases. For N , there are three options (5, 10, and 25), and the
corresponding settings are called “N -Phase”. The learned model in each phase is evaluated on the
test set containing all seen classes. In the tables, we report average accuracy over all phases and the
last-phase accuracy.

D NETWORK ARCHITECTURE DETAILS

This is supplementary to Section 4 “Implementation details.” Following (Hou et al., 2019; Liu
et al., 2021a; Rebuffi et al., 2017; Wu et al., 2019), we use a modified 32-layer ResNet (Rebuffi et al.,
2017) for CIFAR-100 and an 18-layer ResNet (He et al., 2016) for ImageNet-100 and ImageNet-1k.
Please note that it is standard to use a shallower ResNet for ImageNet-100 and ImageNet-1k in CIL.
The 32-layer ResNet consists of 1 initial convolution layer and 3 residual blocks (in a single branch).
Each block has 10 convolution layers with 3 × 3 kernels. The number of filters starts from 16 and
is doubled every next block. After these 3 blocks, there is an average-pooling layer to compress the
output feature maps to a feature embedding. The 18-layer ResNet follows the standard settings in
(He et al., 2016). We deploy AANets using the same parameters as its original paper (Liu et al.,
2021a).

E MORE TRAINING CONFIGURATIONS

This is supplementary to Section 4 “Implementation details.” The training of the classification
model Θ exactly follows the uniform setting in (Douillard et al., 2020; Hou et al., 2019; Liu et al.,
2021a; 2020a).
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F ABLATION STUDY ON MORE BASELINES

This is supplementary to Section 4 “Ablation study.” In Table A1, we provide the ablation results
on another two baselines, LwF Li & Hoiem (2016) and LUCIR Hou et al. (2019).

No. Setting
LwF LUCIR

Average Last Average Last

1 Baseline 53.19 43.18 63.17 53.71
2 PlaceboCIL 59.06 48.56 65.42 56.18

3 Overlapping 58.95 48.71 65.73 57.26
4 Non-overlapping 58.59 49.28 65.48 56.99
5 New data 54.06 43.94 64.21 53.98
6 Old data (oracle) 61.41 51.16 67.02 58.98

7 w/o Online learning 57.06 46.12 63.83 55.33
8 Offline RL 59.01 48.18 65.14 56.95

9 Higher confidence 56.98 46.20 63.60 55.50
10 Random placebos 50.99 40.22 64.16 55.40

Table A1: Ablation results (%) on CIFAR-100, N=5.

G ABLATION STUDY FOR THE MEMORY BUDGET SETTINGS

This is supplementary to Section 4. In Table A2, Row 1 shows baselines. Rows 2 and 3 show the
baselines with our PlaceboCIL as a plug-in module. Row 2 “budget” means the combined size of
episodic memory and the placebo buffer is (strictly) equal to the episodic memory size in baseline
methods. To this end, we randomly delete |U + P| samples from the new class data Dci−1+1:ci to
obtain the buffer memory storing the unlabeled data batch U and P . Row 3 “non-budget” means we
are allowed to use a little additional memory to save the unlabelled data U and P without deleting
other samples. Comparing Row 3 to Row 2, we can see that the performance of our PlaceboCIL
only reduces 0.04 percentage points on average under the strict “budget” setting. The reason is the
amount of new data is greatly larger than that of old samples, and removing a small batch of new
data does not harm the performance much, as observed in (Liu et al., 2021b).

No. Setting
LwF iCaRL LUCIR AANets

Average Last Average Last Average Last Average Last
1 Baseline 53.19 43.18 57.12 47.49 63.17 53.71 66.72 57.77
2 PlaceboCIL (budget) 59.06 48.56 61.01 51.45 65.42 56.18 67.16 59.14
3 PlaceboCIL (non-budget) 59.08 49.15 61.24 51.47 65.28 56.23 67.27 59.15

Table A2: Ablation results (%) on CIFAR-100, N=5.“Average” and “Last” denote the average ac-
curacy over all phases and the last-phase accuracy, respectively.

H EQUAL-SIZE SPLIT RESULTS

This is supplementary to Section 4 “Ablation study.” In Table A3, we supplement the results using
the equal-size split on CIFAR 100, 10-phase (10 classes/phase, 20 exemplars/class). We can observe
that using placebos selected by heuristic evaluation functions (βi=γi=1) consistently improves the
results on three baselines. Using the online learning algorithm can further boost performance. The
observations are similar to using the original setting in the main paper.

I ABLATION RESULTS FOR DIFFERENT UNLABELED DATA SOURCES

This is supplementary to Section 4 “Ablation study.” We believe that the key to success is the
design of our method instead of the choice of unlabeled data sources. To verify this, we provide
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No. Setting
LwF iCaRL LUCIR

Average Last Average Last Average Last
1 Baseline 53.85 41.00 59.70 45.29 56.71 42.78
2 PlaceboCIL (ours) 57.68 42.44 62.32 46.52 57.89 44.08
3 PlaceboCIL (ours, w/o online learning) 56.31 41.76 61.05 46.02 57.01 43.13

Table A3: Supplementary to Table 3. Ablation results (%) using equal-size split on CIFAR-100,
10-phase (10 classes/phase).

the results for a new ablative setting: “using random unlabeled data” (to compute the distillation
loss) in Table A4. We can observe that no matter what unlabeled data sources we use, our method
consistently performs better than using random unlabeled data.

No. Setting
LwF iCaRL LUCIR AANets

Average Last Average Last Average Last Average Last
1 Baseline 53.19 43.18 57.12 47.49 63.17 53.71 66.72 57.77
2 PlaceboCIL (ours, all) 59.29 49.64 61.17 50.96 65.48 56.77 67.33 59.32
3 PlaceboCIL (ours, overlapping) 58.95 48.71 62.15 52.62 65.73 57.26 67.48 59.06
4 Random unlabeled data (all) 50.99 40.22 56.27 46.64 64.16 55.45 66.23 57.22
4 Random unlabeled data (overlapping) 50.80 40.94 55.70 46.47 64.23 54.68 66.58 57.08

Table A4: Supplementary to Table 3. Ablation results (%) on CIFAR-100, N=5.“Average” and
“Last” denote the average accuracy over all phases and the last-phase accuracy, respectively. “All”
denotes using all data from ImageNet, and “overlapping” means including samples from the over-
lapping classes between CIFAR-100 and ImageNet.

J REHEARSAL-FREE EXPERIMENTS

This is supplementary to Section 4 “Ablation study.”

In Table A5, we provide the “rehearsal-free” results for two variants of our method: 1) PlacboCIL
(original) w/o exemplars: we don’t use any exemplars to compute the loss, only storing one exem-
plar each class to compute the evaluation function (Eq. 4); 2) PlacboCIL (higher confident) w/o
exemplars: we don’t use any exemplars, and select the unlabeled data with higher confidence as the
placebos.

We can observe that using placebos is effective in the “rehearsal-free” setting. The original Place-
boCIL improves the average accuracy of the baseline by 6.30 percentage points. The “higher confi-
dent” version performs a little worse than the original, but it still improves the average accuracy of
the baseline by 3.40 percentage points.

No. Setting Average Last

1 Baseline 66.72 57.77
2 PlaceboCIL (original) 67.16 59.14
3 PlaceboCIL (higher confidence) 66.97 58.12

4 Baseline w/o exemplars 50.01 39.12
5 PlaceboCIL (original) w/o exemplars 56.31 44.02
6 PlaceboCIL (higher confidence) w/o exemplars 53.41 41.93

Table A5: Ablation results (%) on CIFAR-100, N=5. Baseline: LUCIR+AANets Liu et al. (2021a).
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