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ABSTRACT

Knowledge distillation has been shown to be a powerful model compression ap-
proach to facilitate the deployment of pre-trained language models in practice.
This paper focuses on task-agnostic distillation. It produces a compact pre-trained
model that can be easily fine-tuned on various tasks with small computational
costs and memory footprints. Despite the practical benefits, task-agnostic distil-
lation is challenging. Since the teacher model has a significantly larger capacity
and stronger representation power than the student model, it is very difficult for
the student to produce predictions that match the teacher’s over a massive amount
of open-domain training data. Such a large prediction discrepancy often dimin-
ishes the benefits of knowledge distillation. To address this challenge, we propose
Homotopic Distillation (HomoDistil), a novel task-agnostic distillation approach
equipped with iterative pruning. Specifically, we initialize the student model from
the teacher model, and iteratively prune the student’s neurons until the target width
is reached. Such an approach maintains a small discrepancy between the teacher’s
and student’s predictions throughout the distillation process, which ensures the
effectiveness of knowledge transfer. Extensive experiments demonstrate that Ho-
moDistil achieves significant improvements on existing baselines.

1 INTRODUCTION

Pre-trained language models have demonstrated powerful generalizability in various downstream
applications (Wang et al., 2018; Rajpurkar et al., 2016a). However, the number of parameters in
such models has grown over hundreds of millions (Devlin et al., 2018; Raffel et al., 2019; Brown
et al., 2020). This poses a significant challenge to deploying such models in applications with latency
and storage requirements.

Knowledge distillation (Hinton et al., 2015) has been shown to be a powerful technique to compress
a large model (i.e., teacher model) into a small one (i.e., student model) with acceptable performance
degradation. It transfers knowledge from the teacher model to the student model through regulariz-
ing the consistency between their output predictions. In language models, many efforts have been
devoted to task-specific knowledge distillation (Tang et al., 2019; Turc et al., 2019; Sun et al., 2019;
Aguilar et al., 2020). In this case, a large pre-trained model is first fine-tuned on a downstream
task, and then serves as the teacher to distill a student during fine-tuning. However, task-specific
distillation is computational costly because switching to a new task always requires the training of
a task-specific teacher. Therefore, recent research has started to pay more attention to task-agnostic
distillation (Sanh et al., 2019; Sun et al., 2020; Jiao et al., 2019; Wang et al., 2020b; Khanuja et al.,
2021; Chen et al., 2021), where a student is distilled from a teacher pre-trained on open-domain data
and can be efficiently fine-tuned on various downstream tasks.

Despite the practical benefits, task-agnostic distillation is challenging. The teacher model has a
significantly larger capacity and a much stronger representation power than the student model. As
a result, it is very difficult for the student model to produce predictions that match the teacher’s
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Figure 1: Left: In HomoDistil, the student is initialized from the teacher and is iteratively pruned
through the distillation process. The widths of rectangles represent the widths of layers. The depth
of color represents the sufficiency of training. Right: An illustrative comparison of the student’s
optimization trajectory in HomoDistil and standard distillation. We define the region where the
prediction discrepancy is sufficiently small such that the distillation is effective as the Effective Dis-
tillation Region. In HomoDistil, as the student is initialized with the teacher and is able to maintain
this small discrepancy, the trajectory consistently lies in the region. In standard distillation, as the
student is initialized with a much smaller capacity than the teacher’s, the distillation is ineffective at
the early stage of training.

over a massive amount of open-domain training data, especially when the student model is not well-
initialized. Such a large prediction discrepancy eventually diminishes the benefits of distillation (Jin
et al., 2019; Cho & Hariharan, 2019; Mirzadeh et al., 2020; Guo et al., 2020; Li et al., 2021). To
reduce this discrepancy, recent research has proposed to better initialize the student model from a
subset of the teacher’s layers (Sanh et al., 2019; Jiao et al., 2019; Wang et al., 2020b). However,
selecting such a subset requires extensive tuning.

To address this challenge, we propose Homotopic Distillation (HomoDistil), a novel task-agnostic
distillation approach equipped with iterative pruning. As illustrated in Figure 1, we initialize the
student model from the teacher model. This ensures a small prediction discrepancy in the early
stage of distillation. At each training iteration, we prune a set of least important neurons, which
leads to the least increment in loss due to its removal, from the remaining neurons. This ensures
the prediction discrepancy only increases by a small amount. Simultaneously, we distill the pruned
student, such that the small discrepancy can be further reduced. We then repeat such a procedure
in each iteration to maintain the small discrepancy through training, which encourages an effective
knowledge transfer.

We conduct extensive experiments to demonstrate the effectiveness of HomoDistil in task-agnostic
distillation on BERT models. In particular, HomoBERT distilled from a BERT-base teacher (109M)
achieves the state-of-the-art fine-tuning performance on the GLUE benchmark (Wang et al., 2018)
and SQuAD v1.1/2.0 (Rajpurkar et al., 2016a; 2018) at multiple parameter scales (e.g., 65M and
10 ∼ 20M). Extensive analysis corroborates that HomoDistil maintains a small prediction discrep-
ancy through training and produces a better-generalized student model.

2 PRELIMINARY

2.1 TRANSFORMER-BASED LANGUAGE MODELS

Transformer architecture has been widely adopted to train large neural language models (Vaswani
et al., 2017; Devlin et al., 2018; Radford et al., 2019; He et al., 2021). It contains multiple identically
constructed layers. Each layer has a multi-head self-attention mechanism and a two-layer feed-
forward neural network. We use f(·; θ) to denote a Transformer-based model f parameterized by θ,
where f is a mapping from the input sample space X to the output prediction space. We define the
loss function L(θ) = Ex∼X [ℓ(f(x; θ))], where ℓ is the task loss.1

2.2 TRANSFORMER DISTILLATION

Knowledge Distillation trains a small model (i.e., student model) to match the output predictions of
a large and well-trained model (i.e., teacher model) by penalizing their output discrepancy. Specif-

1For notational simplicity, we will omit x throughout the rest of the paper.
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ically, we denote the teacher model as ft(θt) and the student model as fs(θs), and consider the
following optimization problem:

min
θs
L(θs) +DKL(θs, θt), (1)

where DKL(θs, θt) is the KL-Divergence between the probability distributions over their output
predictions, i.e., KL(fs(θs)||ft(θt)).
Transformer Distillation. In large Transformer-based models, distilling knowledge from only the
output predictions neglects the rich semantic and syntactic knowledge in the intermediate layers.
To leverage such knowledge, researchers have further matched the hidden representations, attention
scores and attention value relations at all layers of the teacher and the student (Romero et al., 2014;
Sun et al., 2019; 2020; Jiao et al., 2019; Hou et al., 2020; Wang et al., 2020b;a).

2.3 TRANSFORMER PRUNING

Pruning is a powerful compression approach which removes redundant parameters without signifi-
cantly deteriorating the full model performance Han et al. (2015b;a); Paganini & Forde (2020); Zhu
& Gupta (2017); Renda et al. (2020); Zafrir et al. (2021); Liang et al. (2021).

Importance Score. To identify the redundant parameters, researchers estimate the importance of
each parameter based on some scoring metrics. A commonly used scoring metric is the sensitivity
of parameters (Molchanov et al., 2017; 2019; Theis et al., 2018; Lee et al., 2019; Ding et al., 2019;
Xiao et al., 2019). It essentially approximates the change in the loss magnitude when this parameter
is completely zeroed-out (LeCun et al., 1990; Mozer & Smolensky, 1989). Specifically, we denote
θ = [θ0, ..., θJ ] ∈ RJ , where θj ∈ R for j = 1, ..., J denotes each parameter. We further define
θj,−j = [0, ..., 0, θj , 0, ..., 0] ∈ RJ . Then we define the sensitivity score as S ∈ RJ , where Sj ∈ R
computes the score of θj as

Sj = |θ⊤j,−j∇θL(θ)|. (2)

This definition is derived from the first-order Taylor expansion of L(·) with respect to θj at θ.
Specifically, Sj approximates the absolute change of the loss given the removal of θj :

θ⊤j,−j∇θL(θ) ≈ L(θ)− L(θ − θj,−j). (3)

The parameters with high sensitivity are of high importance and should be kept (Lubana & Dick,
2020). Parameters with low sensitivity are considered redundant, and can be safely pruned with
only marginal influence on the model loss. Other importance scoring metrics include the magnitude
of parameters Han et al. (2015b) and the variants of sensitivity, e.g., movement score (Sanh et al.,
2020), sensitivity score with uncertainty (Zhang et al., 2022), and second-order expansion of Eq 3
(LeCun et al., 1990).

Iterative Pruning gradually zeroes out the least important parameters throughout the training pro-
cess. Specifically, given a gradient updated model θ(t) at the t-th training iteration, iterative prun-
ing methods first compute the importance score S(t) following Eq 2, then compute a binary mask
M (t) ∈ RJ as

M
(t)
j =

{
1 if S(t)

j is in the top r(t) of S(t),
0 otherwise.

∀j = 1, ..., J. (4)

where r(t) ∈ (0, 1) is the scheduled sparsity at the t-th iteration determined by a monotonically
decreasing function of t. Then the model is pruned as M (t) ⊙ θ(t), where ⊙ denotes the Hadamard
product. Such a procedure is repeated through training.

Structured Pruning. Pruning the model in the unit of a single parameter leads to a highly sparse
subnetwork. However, the storage and computation of sparse matrices are not often optimized on
commonly used computational hardware. Structured pruning resolves this issue by pruning the
model in the unit of a structure, e.g., a neuron, an attention head, or a feed-forward layer (Wang
et al., 2019; Michel et al., 2019; Liang et al., 2021; Hou et al., 2020; Lagunas et al., 2021). To
estimate the importance score of a structure, existing works compute the expected sensitivity with
respect to the structure’s output (Michel et al., 2019; Liang et al., 2021; Kim & Awadalla, 2020).
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3 METHOD

We introduce Homotopic Distillation, as illustrated in Figure 1. Specifically, we initialize the student
model from the teacher model. At each iteration, we prune the least important neurons from the
student and distill the pruned student. We repeat such a procedure throughout the training process.

Task-Agnostic Distillation. We consider the following losses to optimize the student model: 1)
The knowledge distillation loss as defined in Eq 1. In task-agnostic distillation, L is the loss for
continual pre-training of the student model on the open-domain data, e.g., the masked language
modeling loss for BERT,LMLM. 2) The Transformer distillation losses. Specifically, we penalize the
discrepancy between the teacher’s and the student’s hidden representations at both the intermediate
and embedding layers, and the attention scores at the intermediate layers. We denote the hidden
representations at the k-th intermediate layer of the teacher and the student as Hk

t ∈ R|x|×dt and
Hk

s ∈ R|x|×ds , where dt and ds denote the hidden dimension and |x| denotes the sequence length.
The distillation loss of the hidden representations at the intermediate layers is defined as:

Lhidn(θs, θt) =

K∑
k=1

MSE(Hk
t , H

k
sW

k
hidn).

Here MSE(·, ·) is the mean-squared error, and W k
hidn ∈ Rds×dt is a randomly initialized and learn-

able linear projection that projects Hk
s into the same space as Hk

t . Similarly, the distillation loss of
the hidden representations at the embedding layer is defined as

Lemb(θs, θt) = MSE(Et, EsWemb),

where Et ∈ R|x|×dt and Es ∈ R|x|×ds are the hidden representations at the embedding layer and
Wemb ∈ Rds×dt is for dimension matching. Finally, the attention distillation loss is defined as

Lattn(θs, θt) =

K∑
k=1

MSE(Ak
t , A

k
s),

where Ak
t ∈ R|x|×|x| and Ak

s ∈ R|x|×|x| are the attention score matrices averaged by the number
of heads at the k-th layer. These transformer distillation losses aim to capture the rich semantic and
syntactic knowledge from the teacher’s layers and improve the generalization performance of the
student. In summary, the student is optimized based on the weighted sum of all losses, i.e.,

Ltotal = LMLM + α1DKL + α2Lhidden + α3Lemb + α4Lattn, (5)

where α1, α2, α3, α4 ≥ 0 are hyper-parameters.

Iterative Neuron Pruning. We initialize the student model from a pre-trained teacher model as

θ(0)s = θt.

At the t-th training iteration, we update the student model based on Ltotal defined in Eq 5 using an
SGD-type algorithm, e.g.,

θ(t)s ← θ(t−1)
s − η∇

θ
(t−1)
s
Ltotal(θ

(t−1)
s , θt),

where η is the step size. Then we compute the importance score for all parameters following Eq 2:

S
(t)
j = |θ(t)s

⊤
j,−j∇θ

(t)
s
Ltotal(θ

(t)
s , θt)| ∀j = 1, ..., J. (6)

For any weight matrix W (t) ∈ Rdin
s ×ds in the student model, we denote its corresponding impor-

tance score as S
(t)
W ∈ Rdin

s ×ds . We then define the importance score for individual columns as
N

(t)
W ∈ Rds , where

N
(t)
W i = ∥S(t)

W [:,i]∥1 ∀i = 1, ..., ds. (7)

Notice that the score is computed based on Ltotal, which consists of both the distillation and training
losses. This is to ensure that we only prune the columns whose removal would lead to the least
increment in both the prediction discrepancy and the training loss.
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We then compute the binary mask M
(t)
W ∈ Rdin

s ×ds associated with the weight matrix following Eq 4
as

M
(t)
W [:,i] =

{
1 if N (t)

W i is in the top r(t) of N (t)
W ,

0 otherwise,
∀i = 1, ..., ds, (8)

where r(t) is the scheduled sparsity determined by a commonly used cubically decreasing function
(Zhu & Gupta, 2017; Sanh et al., 2020; Zafrir et al., 2021):

r(t) =


1 0 ≤ t < ti

rf + (1− rf )
(
1− t−ti

tf−ti

)3

ti ≤ t < tf

rf tf ≤ t < T.

Here rf is the final sparsity, T is the number of total training iterations and 0 ≤ ti < tf ≤ T are
hyper-parameters. Such a schedule ensures that the sparsity is slowly increasing and the columns
are gradually pruned. This prevents a sudden drop in the student’s prediction performance, which
effectively controls the expansion of prediction discrepancy.

Finally, we prune the weight matrix as W (t) ⊙ M
(t)
W . We also prune the corresponding rows of

the next weight matrix in the forward computation, including {W k
hidn}Kk=1 and Wemb. The same

pruning procedure is applied to all weight matrices in the model. The complete algorithm is shown
in Alg. 1.

Algorithm 1 HomoDistil: Homotopic Distillation
1: Input: θt: the teacher model. T, ti, tf , rf , α1, α2, α3, α4: Hyper-parameters.
2: Output: θ(T )

s .
3: θ

(0)
s = θt.

4: for t = 1, ..., T do
5: Compute loss Ltotal following Eq 5.
6: θ

(t)
s ← θ

(t−1)
s − η∇

θ
(t−1)
s
Ltotal.

7: Compute importance score S(t) following Eq 6.
8: for all W (t) ∈ θ

(t)
s do

9: Compute importance score for individual columns, N (t)
W , following Eq 7.

10: Compute binary mask M
(t)
W following Eq 8.

11: W (t) ←−W (t) ⊙M
(t)
W .

12: end for
13: end for

Why do we impose sparsity requirements on individual weight matrices? Traditional pruning
imposes requirements on the global sparsity of the model instead of the local sparsity of the indi-
vidual matrices. As a result, some matrices have much larger widths than the others. These wide
matrices can be the memory bottlenecks for commonly used computational hardware. Furthermore,
it requires re-configurations of the pre-defined model architectures in deep learning software pack-
ages to achieve the desired inference speedup. In contrast, controlling the local sparsity is more
friendly to both hardware and software.

4 EXPERIMENTS

We evaluate HomoDistil on BERT-base (Devlin et al., 2018) on natural language understanding
(NLU) and question answering tasks.

4.1 DATA

Continual Pre-training. We distill the student using the open-domain corpus for BERT pre-training
(Devlin et al., 2018), i.e., Wikipedia 2, an English Wikipedia corpus containing 2500M words, and

2https://dumps.wikimedia.org/enwiki/
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Toronto BookCorpus (Zhu et al., 2015), containing 800M words. We clean the corpus by removing
tables, lists and references following BERT. We then pre-process the cleaned corpus by concatenat-
ing all sentences in a paragraph and truncating the concatenated passage by length of 128 following
TinyBERT (Jiao et al., 2019). We tokenize the corpus with the vocabulary of BERT (30k).

Fine-tuning. We fine-tune the student model on both NLU and question answering tasks. For NLU
tasks, we adopt the commonly used General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018), which contains nine tasks, e.g., textual entailment, semantic similarity,
etc. For question answering tasks, we adopt the SQuAD v1.1 and v2.0 (Rajpurkar et al., 2016a;
2018). Details about the datasets are deferred to Appendix A.1.

4.2 MODEL

We evaluate HomoDistil on pre-trained BERT-base (Devlin et al., 2018), which contains 12 Trans-
former layers with hidden dimension 768. BERT-base is pre-trained with masked language modeling
and next sentence prediction tasks on Wikipedia and Toronto BookCorpus (16GB). We use BERT-
base as the teacher model and as the initialization of the student model. We produce multiple student
models at several sparsity ratios. Table 1 lists the architectures of the teacher and the student models.

Table 1: Architectures of the teacher and the student models.
Params (million)

Model Embedding Backbone Total dhidn dffn

BERT-base (Teacher) 23.4 85.5 109 768 3072
HomoBERT-base 17.6 47.8 65 576 2304
HomoBERT-small 7.8 9.4 17.3 256 1024
HomoBERT-xsmall 7.3 8.3 15.6 240 960
HomoBERT-tiny 7.2 6.8 14.5 224 896

4.3 BASELINES

We compare HomoDistil with the state-of-the-art task-agnostic distillation baselines.3 These meth-
ods initialize the student directly as the target size and fix its size during distillation. For example,
to obtain a shallow model, the student is often initialized from a subset of teacher’s layers.

DistilBERT (Sanh et al., 2019) considers the vanilla distillation by penalizing the final layer predic-
tion discrepancy using Eq 1.
TinyBERT-GD (General Distillation) (Jiao et al., 2019) extends DistilBERT by exploiting the
knowledge in the intermediate Transformer layers using Eq 5.
MiniLM (Wang et al., 2020b) penalizes the discrepancy between the queries-keys scaled dot prod-
uct and values-values scaled dot product in the final layer self-attention module.
MiniLMv2 (Wang et al., 2020a) extends MiniLM by encouraging the student to mimic the attention
head relations of the teacher.

4.4 IMPLEMENTATIONS DETAILS

Continual Pre-training. For all experiments, we use a max sequence length of 128 and a batch
size of 4k. We train the student model for T = 28k steps (3 epochs). We use Adam (Kingma
& Ba, 2014) as the optimizer with β = (0.9, 0.999), ϵ = 1 × 10−6. We use a learning rate of
3× 10−4 for HomoBERT-base and 6× 10−4 for HomoBERT-small/xsmall/tiny. We adopt a linear
decay learning rate schedule with a warmup ratio of 0.1. For distillation, we share all weights of
Whidn and {W k

emb}Kk=1. We set α1, α2, α3, α4 to be 1 for all experiments. For importance score
computation, we select neurons based on the exponential moving average of the importance score
for stability. For pruning schedule, we set the initial iteration ti as 0 and select the final iteration tf
from {0.5, 0.7, 0.9} × T . Full implementation details are deferred to Appendix A.2.

Fine-tuning. We drop the masked language modeling prediction head and Whidn and {W k
emb}Kk=1

from the continual pre-training stage, and randomly initialize a task-specific classification head for
3We mainly compare with baselines that use BERT-base as the teacher model for a fair comparison. We

also present a comprehensive comparison with task-specific distillation baselines in Appendix A.4.
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the student model. For NLU tasks, we select the training epochs from {3, 6}, batch size from
{16, 32} and learning rate from {2, 3, 4, 5, 6, 7} × 10−5. For RTE, MRPC and STS-B, we initialize
the student from a MNLI-fine-tuned student to further improve the performance for all baselines. For
question answering tasks, we fine-tune the student for 2 epochs with a batch size of 12, and adopt a
learning rate of 1× 10−4. For all tasks, we use Adam as the optimizer with with β = (0.9, 0.999),
ϵ = 1× 10−6. Full implementation details are deferred to Appendix A.3.

4.5 MAIN RESULTS

Table 2 show the fine-tuning results of HomoDistil on the GLUE development set. We report the
median over five random seeds for all experiments in this paper 4. HomoBERT-base consistently
outperforms existing state-of-the-art baselines over six out of eight tasks, and achieves significant
gains on MNLI, SST-2 and CoLA. The margins of gains become much more prominent for students
with 10 ∼ 20M parameters: HomoBERT-tiny (14.1M) significantly outperforms TinyBERT4×312

(14.5M) by 3.3 points in terms of task-average score, and outperforms BERT-small, which is twice
of the scale, by 1.0 point.

Table 3 show the fine-tuning results of HomoDistil on SQuAD v1.1/v2.0. All HomoBERT stu-
dents outperform the best baseline, MiniLM3 (17.3M), by over 3 points of margin on SQuAD v2.0.
Especially, HomoBERT-xsmall (15.6M) obtains 3.8 points of gain.

Table 2: The accuracy of fine-tuning distilled BERT models on GLUE development set. The results
of MiniLM3/6 are reported from (Wang et al., 2020b). The rest are fine-tuned from the officially
released checkpoints (Devlin et al., 2018; Sanh et al., 2019; Wang et al., 2020a; Jiao et al., 2019).

Params MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B Avg
Model (million) Acc Acc/F1 Acc Acc Acc Acc Acc/F1 P/S Score

BERT-base (Teacher) 109 84.5/84.6 91.1/88.1 91.2 92.9 58.7 79.8 89.5/92.4 89.3/89.2 84.6

DistilBERT6 66 82.4/82.5 90.4/87.1 89.2 90.9 53.5 75.5 86.5/90.5 87.9/87.8 82.1
TinyBERT6-GD 66 83.5/- 90.6/- 90.5 91.6 42.8 77.3 88.5/91.6 89.0/88.9 81.7
MiniLM6 66 84.0/- 91.0/- 91.0 92.0 49.2 - -/- -/- -
MiniLMv26 66 84.0/- 91.1/- 90.8 92.4 52.5 78.0 88.7/92.0 89.3/89.2 83.4

HomoBERT-base 65 84.2/84.3 91.2/87.9 90.7 92.7 55.9 77.6 89.0/91.9 89.5/89.2 83.8

BERT-small 28.6 78.8/78.9 89.9/86.5 87.0 88.2 36.1 70.8 85.8/90.1 87.7/87.7 78.0
TinyBERT3×384-GD 17.0 77.4/- -/- - 88.4 - - -/- - -
MiniLM3 17.0 78.8/- 88.8/85.0 84.7 89.3 15.8 66.4 81.9/88.2 85.4/85.5 73.9
TinyBERT4×312-GD 14.5 80.4/80.9 88.7/85.3 85.7 89.7 18.6 71.1 84.6/89.1 87.0/87.2 75.7

HomoBERT-tiny 14.1 81.2/81.3 89.9/86.6 87.8 90.1 37.0 70.8 87.3/90.7 87.6/87.5 79.0
HomoBERT-xsmall 15.6 81.5/81.8 90.0/86.7 88.0 90.3 40.8 71.5 87.7/91.0 88.3/88.0 79.7
HomoBERT-small 17.3 81.8/81.8 90.1/86.9 88.5 91.1 42.1 72.6 88.0/91.4 88.3/88.1 80.3

Table 3: The accuracy of fine-tuning distilled models on SQuAD v1.1/2.0 validation set. The results
of TinyBERT3-GD and MiniLM3 are reported from (Wang et al., 2020b). The rest are fine-tuned
from the officially released checkpoints (Devlin et al., 2018; Jiao et al., 2019).

Model Params SQuAD v1.1 SQuAD v2.0 Avg
(million) EM/F1 EM/F1 F1

BERT-base (Teacher) 109 81.7/88.9 73.4/76.7 82.8

BERT-small 28.6 72.5/81.5 61.3/64.8 73.2
TinyBERT3-GD 17.0 -/- -/63.6 -
MiniLM3 17.0 -/- -/66.2 -
TinyBERT4-GD 14.5 60.8/72.3 58.9/63.3 67.8

HomoBERT-tiny 14.1 75.5/84.1 66.1/69.5 76.8
HomoBERT-xsmall 15.6 76.2/84.5 66.5/70.0 77.2
HomoBERT-small 17.3 76.5/84.8 66.6/69.8 77.3

5 ANALYSIS

We verify that HomoDistil maintains a small prediction discrepancy throughout the distillation pro-
cess, leading to a better-generalized student model.

4The standard deviations are reported in Appendix A.7.
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5.1 HOMODISTIL MAINTAINS A SMALL PREDICTION DISCREPANCY

Figure 2 shows the prediction discrepancy, DKL, under different schedules of sparsity throughout
the distillation process. When the student is directly initialized with a single-shot pruned subnetwork
at the target sparsity (i.e., tf = 0), the initial prediction discrepancy is large. In contrast, when the
student is initialized with the full model and is iteratively pruned through longer iterations (i.e., tf =
0.5T, 0.7T and 0.9T ), the initial discrepancy is small. The discrepancy then gradually increases due
to pruning, but the increment remains small due to distillation.
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Figure 2: The prediction discrepancy during the distillation of HomoBERT models under different
schedules of sparsity.

Figure 3 shows the accuracy of task-specific fine-tuning of the student distilled with different sched-
ules of sparsity. The student that is initialized with the full model and is pruned iteratively achieves
a significantly better generalization performance on the downstream tasks than the one initialized to
be the target-size subnetwork.
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Figure 3: The accuracy of fine-tuning HomoBERT-small distilled with different schedules of sparsity
on the development set of GLUE benchmark.

5.2 DISTILLATION BENEFITS ITERATIVE PRUNING

Table 4 compares the student trained with and without distillation losses (i.e., Ltotal defined in Eq 5
and LMLM only). The task-specific fine-tuning performance of the student trained with distillation
losses consistently outperforms the one without distillation losses over multiple model scales. This
suggests that teacher’s knowledge is essential to recover the performance degradation due to pruning,
and minimizing distillation loss is an important criteria to select important neurons.

5.3 IMPORTANCE METRIC MATTERS

Table 5 investigates the student performance under different importance metrics: 1) Magnitude
Pruning (Han et al., 2015b), where Sj = |Θj,−j |; 2) Movement Pruning (Sanh et al., 2020), where
Sj = Θ⊤

j,−j∇ΘL(Θ); 3) PLATON(Zhang et al., 2022): Sj = Ij · Uj , where Ij is the sensitivity
score as defined in Eq 2 and Uj is the uncertainty estimation of Ij . For all methods, we use the
exponential moving average of score for stability. Using sensitivity and PLATON as the importance
score significantly outperforms the baseline. In contrast, the weight magnitude, which may not
correctly quantify the neuron’s contribution to the loss in the large and complex models, achieves
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Table 4: The accuracy of fine-tuning HomoBERT models trained with and without distillation losses
(“Ltotal” and “LMLM”) on the development set of GLUE benchmark.

Params MNLI SST-2 RTE Avg
Importance Score (million) Loss Objective Acc Acc Acc Score

BERT-base (Teacher) 109 - 84.5/84.6 92.9 79.8 85.7

HomoBERT-base 65 Ltotal 84.2/84.3 92.7 77.6 84.8
LMLM 82.8/83.0 91.6 75.1 83.2

HomoBERT-small 17.3 Ltotal 81.8/81.8 91.1 72.6 81.8
LMLM 79.3/80.1 88.5 71.8 79.9

HomoBERT-tiny 14.5 Ltotal 81.2/81.3 90.1 70.8 80.7
LMLM 78.7/79.5 87.7 69.7 78.7

only comparable performance to the baseline. Movement pruning, which is mainly designed for
task-specific fine-tuning, diverges.

Table 5: The accuracy of fine-tuning HomoBERT-small pruned under different importance metrics
on the development set of GLUE benchmark.

Params MNLI SST-2 RTE Avg
Importance Score (million) Acc Acc Acc Score

BERT-base (Teacher) 109 84.5/84.6 92.9 79.8 85.7

TinyBERT4×32-GD 17.0 80.4/80.9 89.7 71.1 80.4

Magnitude(Han et al., 2015b) 17.3 79.7/80.4 90.3 70.4 80.1
Movement(Sanh et al., 2020) 17.3 Does not converge
Sensitivity(LeCun et al., 1990) 17.3 81.8/81.8 91.1 72.6 81.8
PLATON(Zhang et al., 2022) 17.3 81.6/81.9 90.6 73.6 81.9

6 DISCUSSION

Combining pruning and distillation. While we are the first work to combine pruning with dis-
tillation in task-agnostic setting, there have been similar explorations in task-specific setting. One
stream of explorations first prune the model to the target size and then distill the subnetwork (Hou
et al., 2020; Lagunas et al., 2021). In this case, pruning solely serves as an architecture selection
strategy independent of distillation. Another stream simultaneously prunes and distills the model
(Xu et al., 2021; Xia et al., 2022), which is more comparable to ours. The main differences are that
they do not initialize the student with the teacher and often prune at a large granularity, e.g., a Trans-
former layer. In task-agnostic setting, however, an undesirable initialization and a large granularity
will induce a huge discrepancy, which is difficult to minimize on large amount of open-domain data.
Furthermore, after each layer pruning, the remaining layers need to match a different set of teacher
layers to ensure the learning of comprehensive knowledge. However, suddenly switching the layer
to learn from can be difficult on large amount of open-domain data. How to prune the student’s
height in task-agnostic setting remains an interesting open problem. A comprehensive comparison
of these methods is deferred to Appendix A.5.

Resolving prediction discrepancy. Recent research has shown that distillation from a large teacher
to a small student has only marginal benefits (Jin et al., 2019; Cho & Hariharan, 2019), mainly
due to the large prediction discrepancy (Guo et al., 2020). Traditional solutions have resorted to
introducing auxiliary teacher assistant models (Mirzadeh et al., 2020; Rezagholizadeh et al., 2021;
Li et al., 2021), but training and storing auxiliary models can be memory and computational costly.

7 CONCLUSION

We propose a novel task-agnostic distillation approach equipped with iterative pruning – HomoDis-
til. We demonstrate that HomoDistil can maintain a small prediction discrepancy and can achieve
promising benefits over existing task-agnostic distillation baselines.
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A APPENDIX

A.1 DATA

Continual Pre-training. We use the same pre-training data as BERT: Wikipedia (English Wikipedia
dump8 ; 12GB) and BookCorpus ((Zhu et al., 2015)) (6GB). We clean the corpus by removing ta-
bles, lists and references following BERT. We then pre-process the cleaned corpus by concatenating
all sentences in a paragraph and truncating the concatenated passage by length of 128 following
TinyBERT (Jiao et al., 2019)5. We tokenize the corpus with the vocabulary of BERT (30k).

Fine-tuning. GLUE is a commonly used natural language understanding benchmark containing
nine tasks. The benchmark includes question answering (Rajpurkar et al., 2016b), linguistic accept-
ability (CoLA, Warstadt et al. 2019), sentiment analysis (SST, Socher et al. 2013), text similarity
(STS-B, Cer et al. 2017), paraphrase detection (MRPC, Dolan & Brockett 2005), and natural lan-
guage inference (RTE & MNLI, Dagan et al. 2006; Bar-Haim et al. 2006; Giampiccolo et al. 2007;
Bentivogli et al. 2009; Williams et al. 2018) tasks. Details of the GLUE benchmark, including tasks,
statistics, and evaluation metrics, are summarized in Table 16. SQuAD v1.1/v2.0 are the Stan-
ford Question Answering Datasets (Rajpurkar et al., 2018; 2016a), two popular machine reading
comprehension benchmarks from approximately 500 Wikipedia articles with questions and answers
obtained by crowdsourcing. The SQuAD v2.0 dataset includes unanswerable questions about the
same paragraphs.

A.2 CONTINUAL PRE-TRAINING IMPLEMENTATIONS

Table 6 presents the hyper-parameter configurations for continual pre-training HomoBERT models
on the open-domain data. We set the distillation temperature as 2. We empirically observe setting
tf within the range of 0.5T ∼ 0.9T can achieve similarly good downstream performances. Fur-
thermore, we observe that different weight modules may prefer different tf s: 1) it is better to finish
the pruning of output projection matrices in the attention module, the feed-forward module and the
embedding module early, because pruning them late will induce a large increment in distillation loss
and the student performance is difficult to recover. 2) the student performance is less sensitive to
the pruning of key and query projection matrices in the attention module and the input projection
matrix in the feed-forward module, and can often easily recover. Based on this observation, we
set tf = 0.5 for the output projection matrices in the attention module, the feed-forward module
and the embedding module. For key and query projection matrices in the attention module and the
input projection matrix in the feed-forward module, we set tf = 0.9. For other matrices, we set
tf = 0.7. This configuration brings around a small and consistent gain of 0.05 ∼ 0.08 on GLUE.
The continual pre-training experiment runs for around 13 hours on 8 Nvidia A100 GPUs.

Table 6: Hyper-parameter configurations for task-agnostic distillation of HomoBERT models.
Hyper-parameters HomoBERT-base HomoBERT-s HomoBERT-xs HomoBERT-tiny

Learning Rates 3× 10−4 6× 10−4 6× 10−4 6× 10−4

Batch Size 4000
Training Epochs 3
Learning Rate Decay Linear
Learning Rate Warmup 0.1
Max Sequence Length 128
Weight Decay 0.01
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping None
α1, α2, α3, α4 1
ti 0

5https://github.com/yinmingjun/TinyBERT/blob/master/pregenerate training data.py
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A.3 FINE-TUNING IMPLEMENTATIONS

Table 7 presents the hyper-parameter configurations for fine-tuning HomoBERT models on the
GLUE benchmark. We fine-tune the MRPC, RTE and STS-B from a fine-tuned MNLI student.
All experiments are conducted on 1 Nvidia A100 GPU.

Table 7: Hyper-parameter configurations for fine-tuning HomoBERT models on the GLUE bench-
mark. “Epoch” refers to the total training epochs; we adopt early-stopping strategy in practice.

Hyper-parameters HomoBERT-base HomoBERT-s HomoBERT-xs HomoBERT-tiny

Learning Rates {2, 3, 4, 5} × 10−5 {4, 5, 6, 7} × 10−5 {6, 7} × 10−5 {6, 7} × 10−5

Batch Size 16 for RTE and MRPC; 32 for the others.
Training Epochs 3 for MNLI and QNLI; 6 for the others.
Learning Rate Decay Linear
Learning Rate Warmup 0.05
Max Sequence Length 128
Dropout of Task Layer 0.1
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping 1

Table 8 presents the hyper-parameter configurations for fine-tuning HomoBERT models on the
SQuAD v1.1/2.0. All experiments are conducted on 1 Nvidia A100 GPU.

Table 8: Hyper-parameter configurations for fine-tuning HomoBERT models on SQuAD v1.1/2.0.
Hyper-parameters HomoBERT-s/xs/tiny

Learning Rates 1× 10−4

Batch Size 12
Training Epochs 2
Learning Rate Decay Linear
Learning Rate Warmup 0.2
Max Sequence Length 384
Dropout of Task Layer 0
Weight Decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

Gradient Clipping 1

A.4 COMPARISON WITH TASK-SPECIFIC DISTILLATION METHODS

Table 9 compares HomoDistil with commonly used task-specific distillation baseline methods: PKD
(Sun et al., 2019), BERT-of-Theseus (Xu et al., 2020), MixKD (Liang et al., 2020), DynaBERT (Hou
et al., 2020), ProKT (Shi et al., 2021) and MetaDistil (Zhou et al., 2022). All baseline methods use a
BERT-base fine-tuned on the target task as the teacher model, and a 6-layer pre-trained BERT-base
as the initialization of the student model. The student model is then distilled with the target task
data. As shown in the Table 9, HomoDistil demonstrates a prominent margin over the commonly
used task-specific methods.

A.5 A COMPARISON WITH “PRUNING+DISTILLATION” METHODS

We elaborate our discussion in Section 6 by comparing HomoDistil and the existing methods that
combining pruning and distillation in more details. Table 10 and Table 11 present the detailed
comparison among HomoDistil, DynaBERT (Hou et al., 2020), SparseBERT (Xu et al., 2021) and
CoFi (Xia et al., 2022). We also list the major differences below:

HomoDistil focuses on the task-agnostic setting. In the task-specific setting, pruning incurs an
inevitable loss of task-relevant pre-training knowledge that may not be present in the fine-tuning
data. Therefore, existing works leave the word embeddings untouched (e.g., take up around 20
million parameters in BERT-base). In contrast, this problem does not exist in the task-agnostic
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Table 9: The evaluation performance of HomoDistil and the commonly used task-specific distillation
baseline methods on the GLUE development set. The results of PKD (Sun et al., 2019) and ProKT
(Shi et al., 2021) are from our implementation. The rest results are from the original papers.

Model Params
(million)

MNLI-m/mm QQP QNLI SST-2 CoLA RTE MRPC STS-B Avg
Acc Acc Acc Acc Acc Acc Acc Spearman Score

PKD6 (Sun et al., 2019) 66 81.3/- 88.4 88.4 91.3 45.5 66.5 85.7 86.2 79.2
BERT-of-Theseus6 (Xu et al., 2020) 66 82.3/- 89.6 89.5 91.5 51.1 68.2 89.0 88.7 81.2
MixKD6 (Liang et al., 2020) 66 82.5/- 90.8 88.8 92.1 - 67.9 84.1 - -
DynaBERT6 (Hou et al., 2020) 66 83.7/84.6 91.1 90.6 92.7 54.6 66.1 85.0 88.6 81.6
ProKT6 (Shi et al., 2021) 66 82.8/83.2 90.9 89.7 91.3 54.3 68.4 86.3 88.9 81.6
MetaDistil6 (Zhou et al., 2022) 66 83.5/83.8 91.0 90.4 92.3 58.6 69.4 86.8 89.1 82.6

HomoBERT-base 65 84.2/84.3 91.2 90.7 92.7 55.9 77.6 89.0 89.2 83.8

Table 10: Comparison of HomoDistil and the existing “Pruning+Distillation” methods from the
distillation perspective.

Method Distillation Setting Teacher Model Student Initialization

DynaBERT (Hou et al., 2020) Task-specific Fine-tuned weights Pruned, pre-trained weights
CoFi (Xia et al., 2022) Task-specific Fine-tuned weights Pre-trained weights
SparseBERT (Xu et al., 2021) Task-specific Fine-tuned weights Pre-trained weights

HomoDistil Task-agnostic Pre-trained weights Pre-trained weights

Table 11: A comparison of HomoDistil and the existing “Pruning+Distillation” methods from the
pruning perspective.

Method Pruning Setting Pruning Criterion Pruning Granularity Controllable Layer Width

DynaBERT First prune then distill Head and FFN sensitivity Head, FFN No
CoFi Prune while distill ℓ0 regularization Layer, head, FFN, weight No
SparseBERT Prune while distill Weight magnitude Weight No

HomoDistil Prune while distill Column sensitivity Row, column Yes

setting. This allows us to prune the word embeddings and produce a smaller model more suitable
for edge devices (e.g., around 15 million parameters). Furthermore, a task-specific model needs to
be specifically pruned for each individual task, while a task-agnostic model can be fine-tuned for
any task with a low cost.

HomoDistil initializes the student with the teacher. To maintain a small discrepancy in the early
stage, HomoDistil initializes the student with the teacher. In contrast, DynaBERT initializes the
student with a target-size subnetwork. SparseBERT and CoFi initialize the student with pre-trained
weights while the teacher with fine-tuned weights.

HomoDistil simultaneously prunes and distills and allows interactions between them. To main-
tain a small discrepancy throughout distillation, HomoDistil prunes based on the sensitivity to make
the pruning operation “distillation-aware”. Specifically, HomoDistil selects the columns and rows to
prune based on their contributions to the distillation loss. In contrast, DynaBERT treats pruning and
distillation as two independent operations by first pruning then distilling the subnetwork. Sparse-
BERT prunes based on the weight magnitude without considering the influence on the distillation
loss.

HomoDistil prunes rows and columns. The granularity of rows and columns is sufficiently small to
control the increment in discrepancy while maintaining the practical benefits of structured pruning.

HomoDistil can control the layer width. HomoDistil enforces a local sparsity constraint for each
matrix, producing a model with consistent width in each layer. In contrast, SparseBERT and CoFi
have no control over the layer width, which might result in wide matrices as the memory bottlenecks.

Table 12 shows the evaluation performance of HomoDistil, CoFi and SparseBERT on the GLUE
benchmark (DynaBERT results are presented in Table 9). We can see that HomoDistil achieves a
noticeable gain over CoFi and a comparable performance with SparseBERT with nearly half of their
sizes.
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Table 12: The performance comparison with the existing “Pruning+Distillation” methods. All re-
sults are reported by their papers.

Model Params
(million)

MNLI-m/mm QQP QNLI SST-2 CoLA RTE MRPC STS-B Avg
Acc Acc Acc Acc Acc Acc Acc Spearman Score

CoFi5% (Xia et al., 2022) 28.4 80.6/- 90.1 86.1 90.6 35.6 64.7 82.6 83.1 76.7
SparseBERT5% (Xu et al., 2021) 28.4 -/- - 90.6 - 52.1 69.1 88.5 - -

HomoBERT-xsmall 15.6 81.5/81.8 90.0 88.0 90.3 40.8 71.5 87.7 88.0 79.7

A.6 COMPUTATIONAL COSTS

Table 13 compares the computational costs of HomoDistil and the baseline methods during infer-
ence. We profile the inference time and the number of FLOPs (embedding excluded) during the
forward pass using the profiler package released by pytorch 6. We conduct the measurements on
the GLUE development set with a batch size of 128 and a maximum sequence length of 128 on
one Nvidia A100 GPU. We compute the averaged time and FLOPs over all batches. The speedup
is computed with respect to BERT-base. For a fair comparison, we only compare with compact
models.

As can be observed, HomoDistil achieves some inference speedup and FLOPs reduction, but not as
much as the other models under a similar parameter budget. This is because HomoDistil allocates a
higher budget to the backbone parameters and a lower budget to the embedding parameters. How-
ever, we remark that HomoDistil achieves a better accuracy and enjoys the same (or more) storage
benefits than the distilled (or structured pruned) models.

Table 13: The inference speedup and the number of FLOPs (embedding excluded) of HomoDistil
and the baseline methods. The speedup is computed with respect to BERT-base.

Model Params (million) Inference Speedup # FLOPs (non-embedding)

BERT-base 109 1.00× 1.00×
DistilBERT6 66 1.98× 0.50×
TinyBERT6-GD 66 1.98× 0.50×
MiniLMv16 66 1.98× 0.50×
MiniLMv26 66 1.98× 0.50×
HomoBERT-base 65 1.30× 0.56×
BERT-small 28.6 4.77× 0.15×
CoFi5% 28.4 5.16× 0.05×
TinyBERT3×384-GD 17.0 7.34× 0.06×
MiniLMv13 17.0 7.34× 0.06×
TinyBERT4×312-GD 14.5 6.28× 0.07×
HomoBERT-small 17.1 2.40× 0.11×
HomoBERT-xsmall 15.6 2.51× 0.10×
HomoBERT-tiny 14.1 2.55× 0.09×

A.7 STATISTICS OF EXPERIMENTAL RESULTS

All experimental results of HomoDistil presented in this paper are the median of five random seeds.
Table 14 and Table 15 show the standard deviations of the experimental results on the GLUE bench-
mark (Table 2) and on the SQuAD v1.1/2.0 datasets (Table 3), respectively.

Table 14: The standard deviation of the experimental results on GLUE development set in Table 2.
MNLI-m/mm QQP QNLI SST-2 CoLA RTE MRPC STS-B

Model Acc Acc/F1 Acc Acc Acc Acc Acc P/S

HomoBERT-base 0.13/0.20 0.09/0.12 0.34 0.24 1.72 0.93 1.17/0.83 0.15/0.18
HomoBERT-small 0.23/0.14 0.08/0.20 0.14 0.27 2.49 1.29 0.25/1.43 0.23/0.25
HomoBERT-xsmall 0.14/0.12 0.08/0.10 0.24 0.61 1.32 1.29 0.95/0.66 0.27/0.28
HomoBERT-tiny 0.16/0.29 0.11/0.13 0.29 0.16 1.26 1.26 1.05/0.62 0.19/0.22

6https://pytorch.org/tutorials/recipes/recipes/profiler recipe.html
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Table 15: The standard deviation of the experimental results on SQuAD v1.1/2.0 in Table 3.
Model SQuAD v1.1 EM SQuAD v1.1 F1 SQuAD v2.0 EM SQuAD v2.0 F1

HomoBERT-small 0.24 0.19 0.37 0.37
HomoBERT-xsmall 0.15 0.19 0.62 0.59
HomoBERT-tiny 0.29 0.31 0.78 0.72

Table 16: Summary of the GLUE benchmark.
Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr

SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)

MNLI NLI 393k 20k 20k 3 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy

QQP Paraphrase 364k 40k 391k 2 Accuracy/F1

MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)

STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr
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