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ABSTRACT

This paper studies Large Language Models (LLMs) augmented with structured1

data–particularly graphs–a crucial data modality that remains underexplored in the2

LLM literature. We aim to understand when and why the incorporation of struc-3

tural information inherent in graph data can improve the prediction performance4

of LLMs on classifying texts. To address the “when” question, we examine a va-5

riety of prompting methods for encoding structural information, in settings where6

textual node features are either rich or scarce. For the “why” questions, we probe7

into two potential contributing factors to the LLM performance: data leakage and8

homophily. Our exploration of these questions reveals that (i) LLMs can benefit9

from structural information, especially when textual node features are scarce; (ii)10

there is no substantial evidence indicating that the performance of LLMs is signif-11

icantly attributed to data leakage; and (iii) the performance of LLMs on a target12

node is strongly positively related to the local homophily ratio of the node.13

1 INTRODUCTION14

Large Language Models (LLMs) have gained great popularity for a broad range of applica-15

tions (Brown et al., 2020; OpenAI, 2023). One important reason for their widespread adoption16

is the ability of an LLM to act as a versatile model, capable of solving a variety of tasks in a zero-17

or few-shot fashion. Recently, there is an increasing interest in enhancing the versatility of LLMs18

through multi-modal capabilities (Yin et al., 2023; Yang et al., 2023). Several modalities, including19

images (Radford et al., 2021), videos (Li et al., 2023), and even robotics (Brohan et al., 2023), have20

been intensively explored; yet structured data, particularly in the form of graphs, remains largely21

underexplored. This leads us to an intriguing question: could the incorporation of structural infor-22

mation (such as graphs), when available, improve the predictive accuracy of LLMs?23

Directly answering this question turns to be tricky. Consider citation networks as an example, where24

each node represents a research paper, and each edge indicates a citation relationship between pa-25

pers. While LLMs can make predictions based on node-level information alone, such as a paper’s ti-26

tle and abstract, there has not been a systematic understanding on whether LLMs can benefit from the27

neighborhood surrounding the target node. A few studies have touched on incorporating structured28

data with LLMs (Wang et al., 2023; He et al., 2023; Chen et al., 2023). A recent work concurrent29

to this study, Chen et al. (2023), suggests that LLMs can, in some cases, benefit from neighbor-30

hood information, although the extent of this benefit can be dataset-dependent and the underlying31

mechanisms are not fully understood. Indeed, a notable concern arises as most node classification32

benchmarks have a data cut-off that predates the training data cut-off of LLMs like ChatGPT. This33

discrepancy raises concerns about data leakage–LLMs may have seen and memorized at least part34

of the test data of the common benchmark datasets–which could undermine the reliability of studies35

using earlier benchmark datasets.36

To this end, this paper focuses on two concrete questions relevant to the incorporation of structural37

information into LLMs. Firstly, we seek to understand the conditions under which incorporating38

structural information improves the prediction accuracy of LLMs. Secondly, we examine potential39

factors contributing to the performance of LLMs (either desirable or not), particularly data leakage40

and homophily (McPherson et al., 2001), the latter being the tendency of nodes with similar charac-41

teristics to connect. As an early attempt towards these questions, we focus on prompting methods for42
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encoding structural information throughout this study, and leave the investigation of more advanced43

methods to future work.44

Addressing the first question, we examine various methods to encode structural information into45

prompts, and using ChatGPT API (OpenAI, 2022), we test them on node classification datasets with46

textual features. Document classification is a very classic language task, and we found it can be47

naturally augmented with structural context by borrowing popular node classification datasets. In48

particular, we transform the textual content of a target node and its neighboring nodes into natural49

language and instruct LLM to make predictions. By varying the richness of node-level textual50

information and the information incorporated from neighboring nodes, we reveal the conditions51

under which LLMs would benefit more from structural information.52

For the second question, we first investigate the extent to which data leakage might artificially inflate53

the performance of LLMs. To rigorously measure the data leakage effect, we collect a new dataset,54

ensuring that the test nodes are sampled from time periods post the data cut-off of ChatGPT. Addi-55

tionally, we examine the impact of homophily on the classification performance of LLMs. Through56

controlled experiments and correlation analyses, we establish a relationship between the local ho-57

mophily ratio and the prediction accuracy of LLMs.58

Our key findings are summarized as follows. (i) LLMs benefit more from structural information59

when textual information of the target node is scarce. (ii) There is no strong evidence that data60

leakage is a major factor contributing to the performance of LLMs on node classification benchmark61

datasets. (iii) Homophily in the graph-structured data is a significant contributor to the improved62

accuracy observed in LLMs after incorporating structural information.63

Overall, this study marks an early attempt for the ambitious goal of enabling LLMs to be effec-64

tively augmented with structured data, an important data modality. By adapting node classification65

datasets with textual features, we establish a proper testbed for this goal. We have also examined66

various prompting methods for encoding the structural information with deeper understandings of67

their performance.68

2 RELATED LITERATURE69

LLMs for graph learning. We make a distinction between two lines of research: Using LLMs to70

solve graph learning tasks, and augmenting LLMs with structured data.71

The first line has been examined by a few studies recently. He et al. (2023) propose a method72

where LLMs perform zero-shot predictions along with generating explanations for their decisions,73

which are then used to enhance node features for training Message Passing Neural Networks74

(MPNNs) (Gilmer et al., 2017) to predict node categories. Chen et al. (2023) extend the work75

of He et al. (2023) by using LLMs both as feature enhancers and as predictors for node classifica-76

tion. They offer several observations such as Chain-of-thoughts is not contributing to performance77

gains. Wang et al. (2023) introduce NLGraph to benchmark LLMs on traditional graph tasks, while78

Guo et al. (2023) perform an empirical study on using LLMs to solve structure and semantic un-79

derstanding tasks. More recently, Ye et al. (2023) propose InstructGLM for the instruction tuning80

of LLMs, like LLaMA (Touvron et al., 2023), for node classification tasks. One commonality for81

many of these methods is that they use LLMs as a sub-component (e.g., as a feature extractor) of82

conventional graph learning framework. Our study differs with this line of research in terms of the83

motivation: while we are using node classification datasets as a testbed, our primary goal is to un-84

derstand LLMs’ capability of processing the graph modality, instead of leveraging LLMs to better85

solve node classification tasks.86

On the other side, the line of research for augmenting LLMs with structured data, which our work87

belongs to, has also been explored in literature. Works by Zhang (2023) and Jiang et al. (2023)88

start to explore this space by interfacing LLMs with external tools and enhancing reasoning over89

structured data like knowledge graphs (KGs) or tables. Pan et al. (2023) further investigate this90

by outlining a roadmap for integrating LLMs with KGs. However, structured data other than KGs91

and tables are still underexplored. Despite these initial efforts, a comprehensive understanding of92

the circumstances under which LLMs can efficiently leverage structural information in a zero-shot93

setting remains elusive. Our work contributes to this emerging field, seeking to provide more insights94

into the effective integration of LLMs with structured data.95
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Data leakage in LLMs. Data leakage in LLMs has become a focal point of discussion due to the96

models’ intrinsic ability to memorize training data. As demonstrated by Carlini et al. (2022), LLMs97

can emit memorized portions of their training data when appropriately prompted, a phenomenon98

that intensifies with increased model capacity and training data duplication. While memorization is99

inherent to their function, it raises serious security and privacy concerns. A study by Carlini et al.100

(2021) shows that extraction attacks can recover sensitive information such as personally identifiable101

information (PII) from GPT-2 (Radford et al., 2019). This capability to store and potentially leak102

personal data is further explored by Huang et al. (2022), confirming that although the risk is rela-103

tively low, there is a tangible potential for information leakage. Specifically, Carlini et al. (2022)104

show that the 6 billion parameter GPT-J model (Wang & Komatsuzaki, 2021) memorizes at least105

1% of its training dataset. Furthermore, the issue of data leakage complicates the evaluation of106

these models. As highlighted by Aiyappa et al. (2023), the closed nature and continuous updates107

of models like ChatGPT make it challenging to prevent data contamination, affecting the reliability108

of evaluation on LLMs in various applications. In node classification tasks, a concurrent work by109

Chen et al. (2023) observe that a specific prompt alteration significantly improved performance on110

OGBN-ARXIV, raising concerns about potential test data leakage. In this work, we take a rigorours111

approach by curating a new dataset for node classification tasks, which is explicitly designed to112

address the data leakage issues in existing benchmarks.113

Homophily in graph learning. The concept of homophily (McPherson et al., 2001), which de-114

scribes the tendency of nodes to form connections with similar nodes, plays an important role in115

the effectiveness of various graph learning methods (Zhu et al., 2020; Halcrow et al., 2020; Mau-116

rya et al., 2021; Lim et al., 2021). The principle of homophily enables MPNNs to smooth node117

representations by aggregating features from their likely similarly-labeled neighboring nodes. This118

aggregation process is particularly effective in various types of real-world graphs, such as political119

networks (Knoke, 1990), and citation networks (Ciotti et al., 2016). Despite its benefits, the re-120

liance on homophily presents a challenge: MPNNs tend to underperform in graphs characterized121

by heterophily, where connected nodes are likely to differ in properties or labels (Zhu et al., 2020).122

Notably, the impact of homophily on the integration of structured data into LLMs remains an open123

area for exploration.124

3 WHEN AND WHY CAN LLMS BENEFIT FROM STRUCTURAL125

INFORMATION?126

3.1 RESEARCH QUESTIONS127

In this section, we aim to gain a deeper understanding of two central questions. Firstly, under what128

circumstances can LLMs benefit from structural information inherent in the data (the “when” ques-129

tion)? Furthermore, what factors can be attributed to LLMs’s performance (the “why” question)?130

To ground our study, we experiment with the ChatGPT API on node classification datasets that have131

textual node features. We also decompose the questions into hypotheses of finer granularity, as132

described below.133

The when question. We hypothesize that the usefulness of structural information for LLMs on134

a text classification task depends on 1) the prompting methods used to encode the structural infor-135

mation; and 2) the richness of the textual information of each target node. To this end, we explore136

a variety of prompting methods under two distinct settings, one with rich textual context and an-137

other with scarce textual context. The detailed experimental design and results are discussed in138

Section 3.2.139

The why question. Motivated by existing literature in LLM evaluation and graph learning, we140

hypothesize that data leakage and homophily are two potential contributing factors to the LLM141

performance on text classification tasks. While the latter is acceptable and even desirable, the former142

is not. We investigate the potential impact of data leakage in Section 3.3. In Section 3.4, we examine143

the role of homophily in the performance of LLMs augmented with structural information.144
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3.2 INFLUENCE OF STRUCTURAL INFORMATION ON LLMS UNDER VARYING TEXTUAL145

CONTEXTS146

We study the impact of structural information on LLM predictions across four node classification147

benchmark datasets with textual node features: CORA (McCallum et al., 2000; Lu & Getoor, 2003;148

Sen et al., 2008; Yang et al., 2016), PUBMED (Namata et al., 2012; Yang et al., 2016), OGBN-149

ARXIV (Hu et al., 2020) and OGBN-PRODUCT (Hu et al., 2020).1 We create prompts that encode both150

the textual features and the local graph structure of a target node in natural language, and then request151

ChatGPT API to make predictions for the target node.2 The prompt for each node is formulated in152

one of several styles, as we introduce in details below. Additionally, a fixed dataset-level instruction153

is attached to the prompt when the prompt is sent to the ChatGPT API. The dataset-level instructions154

are listed in Table 6 in Appendix A.155

Prompt styles. Here we introduce the design of prompt styles in our experiments. The exact156

prompt templates can be found in Table 1.157

We first have a few prompt styles that do not encode structural information.158

• Zero-shot: LLMs make zero-shot predictions based on the target node’s textual features159

only.160

• Few-shot: LLMs make predictions on nodes’ textual features only but with few-shot exam-161

ples from the training set.162

• Zero-shot Chain-of-Thought (CoT): Adding “Let’s think step by step” to the end of the163

zero-shot prompt (Kojima et al., 2022). This simple change has been shown to boost LLMs’164

performance on various tasks comparable to CoT prompts (Wei et al., 2022).165

Then we have two strategies for prompt design conceptually inspired by MPNNs, where information166

from neighboring nodes is aggregated to enhance the representation of the target node:167

The first strategy incorporates randomly selected neighbors into the prompt. The idea behind this168

strategy is to aggregate information from neighboring nodes, following the paradigms of GCN (Kipf169

& Welling, 2016) and GraphSAGE (Hamilton et al., 2017). The inclusion of 1-hop neighborhood170

information in the prompt can be seen as an analogous operation to a single-layer aggregation in171

GCN, where messages from direct neighbors are aggregated. Specifically, we have two styles:172

• k-hop title: LLMs make predictions based on the target node’s textual features as well as173

titles of neighbors up to k-hop.174

• k-hop title+label: In addition to k-hop title, we include the labels for neighbors in training175

set or validation set .176

The second strategy is designed to weigh the influence of neighboring nodes during the prediction177

process. This strategy is inspired by Graph Attention Networks (GAT) (Veličković et al., 2017),178

which employ attention mechanisms to dynamically allocate weights to neighboring nodes based179

on their task-specific importance. The strategy consists of two steps. a) Attention extraction: the180

LLM ranks neighbors based on their relevance to the target node. b) Attention prediction: the LLM181

makes predictions based on the target node and top-ranked neighbors. We name the whole strategy182

as k-hop attention in our experiment results.183

Richness of textual node features. To examine how the richness of the textual node features184

affects text classification accuracy, we compare two different settings:185

• Rich textual context. In this setting, the nodes are associated with abundant textual features.186

Specifically, in citation networks (CORA, PUBMED and OGBN-ARXIV), both the paper title187

and abstract are associated with each node as textual features. In the co-purchasing network188

(OGBN-PRODUCT), both the product title and product content are associated with each node189

as textual features. This setting is adopted by several prior studies (Chen et al., 2023; Ye190

et al., 2023; Guo et al., 2023; Wang et al., 2023; He et al., 2023).191

1Please see Appendix B.1 for the details of the datasets.
2We have used gpt-3.5-turbo-0613 for throughout the experiments.
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Table 1: Prompt styles and their corresponding templates. For the style “k-hop title+label”, we only
include the labels for neighbor nodes in training set or validation set. The “attention extraction” and
“attention prediction” are respectively the two steps of prompts for the k-hop attention strategy.

Prompt Style Prompt Template

Zero-shot Abstract: <abstract>\nTitle: <title>\nDo not give any reasoning or logic
for your answer. \nAnswer: \n\n

Zero-shot CoT Abstract: <abstract>\nTitle: <title>\nAnswer: \n\nLet’s think step by
step. \n

Few-shot Abstract: <few-shot abstract>\n... \nAnswer: \n\n<few-shot label>\n...
(more few-shot examples)\nAbstract: <abstract>... \nAnswer: \n\n

k-hop title, k-hop
title+label

Abstract: <abstract>\nTitle: <title>\nIt has following neighbor papers
at hop 1:\nPaper 1 title: <paper 1 title>\nLabel: <paper 1 label>\n...
(more 1-hop neighbors)\nIt has following neighbor papers at hop 2:\n...
(more 2-hop neighbors)\nDo not give any reasoning or logic for your an-
swer. \nAnswer: \n\n

Attention extraction The paper of interest is <title>. Please return a Python list of at most <k>
indices of the most related papers among the following neighbors, ordered
from most related to least related. If there are fewer than <k> neighbors,
just rank the neighbors by relevance. The list should look like this: [1, 2, 3,
...]\n1: <neighbor title 1>\n... (more 1-hop neighbors) \n

Attention prediction Abstract: <abstract>\nTitle: <title>\nIt has following important neigh-
bors, from most related to least related:\n(more neighbors chosen by atten-
tion)\nDo not give any reasoning or logic for your answer. \nAnswer: \n\n

• Scarce textual context. In this setting, the nodes are associated with limited textual fea-192

tures. In citation networks (CORA, PUBMED and OGBN-ARXIV), only the paper title is193

used as textual features. In product networks (OGBN-PRODUCT), only the product name194

is associated with each node as textual features. While this setting is less explored in the195

literature, it is of great practical importance due to the prevalence of short texts in social196

networks (Alsmadi & Gan, 2019). Such limited textual features present challenges like197

feature sparseness and non-standardization, reducing the effectiveness of traditional meth-198

ods (Song et al., 2014). In such scenarios, we expect the structural information becomes199

more useful for the predictions.200

Experimental results. The experimental results of different prompting methods under the two201

settings with different richness of textual context are shown in Table 2. We have the following202

observations:203

• Incorporating structural information in prompts brings more gain when textual informa-204

tion about the target node is limited. In rich textual context, zero-shot predictions are205

very strong baselines because prompts with structural information yield marginal gains206

on OGBN-ARXIV, PUBMED, and OGBN-PRODUCT (1.6% average increase). This suggests207

that abundant textual features often suffice for LLMs to make predictions even without208

structural information. However, in scarce textual contexts, LLMs gain significantly more209

improvement in accuracy by incorporating structural information compared to rich textual210

contexts, suggesting that structural information is more important when textual information211

is limited.212

• Few-shot and zero-shot CoT prompts do not yield significant performance gains. Some-213

times, they even underperform zero-shot prompts.214

• In both rich and scarce textual contexts, the difference of performance between prompting215

styles that encode structural information (k-hop title, k-hop title+label and k-hop attention)216

is minimal. This underlines that the availability of textual information is a more critical217

factor of performance than the specific prompting style used.218
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Table 2: Classification accuracy for the OGBN-ARXIV, CORA, PUBMED, and OGBN-PRODUCT
datasets. ↑ denotes the improvements of best prompt style that leverages structural information
over zero-shot method. Best results are in bold.

Textual context Prompt style OGBN-ARXIV CORA PUBMED OGBN-PRODUCT

Rich

Zero-shot 74.0 66.1 88.6 83.7
Few-shot 72.9 65.1 85.0 83.8

Zero-shot CoT 71.8 56.6 81.9 80.5
1-hop title+label 75.1 72.5 89.1 85.2
2-hop title+label 74.5 74.7 89.7 86.2

1-hop attention 74.7 72.5 88.8 86.2

↑ 1.1 8.6 1.1 2.5

Scarce

Zero-shot 69.8 61.8 85.7 78.5
1-hop title 72.3 69.6 84.8 80.5

1-hop title+label 74.3 73.9 86.4 85.3
2-hop title 71.3 69.9 86.2 80.6

2-hop title+label 74.2 74.5 86.9 85.4
1-hop attention 71.3 74.7 85.1 83.9

↑ 4.5 12.9 1.2 6.9

In conclusion, structural information offers more benefits for text classification in scarce textual219

contexts than in rich textual contexts. Next, we further delve into potential factors contributing to220

the performance of LLMs on text classification tasks.221

3.3 DATA LEAKAGE AS A POTENTIAL CONTRIBUTOR OF PERFORMANCE222

While LLMs have achieved decent performance on the node classification datasets, there is a risk223

that the performance of LLMs is artificially inflated by data leakage. Note that most node classifi-224

cation benchmark datasets have a data cut-off at 2019 (see Table 7 in Appendix B.1), and ChatGPT225

was trained on data up to September 2021 (OpenAI, 2023). While the training dataest of ChatGPT226

is not publicly available, given the widespread of these datasets on the internet and the enormous227

training corpus of ChatGPT, it is reasonable to worry about the data leakage issue on these datasets.228

To this end, we curate a new node classification dataset, ARXIV-2023, which is designed to resemble229

OGBN-ARXIV as much as possible except that the test nodes are chosen as arXiv Computer Science230

(CS) papers published in 2023. With the new dataset, we can rigorously investigate the influence of231

data leakage by comparing the LLM performance between ARXIV-2023 and OGBN-ARXIV.232

Dataset collection. While, ideally, we should curate the new dataset by simply extending OGBN-233

ARXIV by including new papers, this is practically challenging for a couple of reasons. In particular,234

OGBN-ARXIV represents arXiv CS papers in the Microsoft Academic Graph (MAG) until 2019 (Hu235

et al., 2020), where MAG is a heterogeneous graph representing scholarly communications (Wang236

et al., 2020). Unfortunately, MAG and its APIs were retired in 2021 and no subsequent data is237

available.3 Furthermore, the pipeline to collect and construct MAG is not publicly released. Con-238

sequently, we develop our own data collection pipeline to create ARXIV-2023. Specifically, we239

first sample test nodes from arXiv CS papers published in 2023, and then gather papers within a240

2-hop of these test nodes to create a citation network. More details about collection can be found in241

Appendix B.2.242

Comparison between ARXIV-2023 and OGBN-ARXIV. As can be seen in Table 3, ARXIV-243

2023 and OGBN-ARXIV share great similarities in their network characteristics, with consistent244

in-degree/out-degree pointing to analogous citation behaviors. ARXIV-2023 shows a lower average245

in-degree in the test set, which is likely because the test papers in ARXIV-2023 are new and have not246

had much time to accumulate citations. Additionally, Figure 1 illustrates that the label distributions247

3https://www.microsoft.com/en-us/research/project/
microsoft-academic-graph/
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Table 3: Statistics of OGBN-ARXIV and ARXIV-2023 datasets. Both represent directed citation
networks where each node corresponds to a paper published on arXiv and each edge indicates one
paper citing another. The metrics In-Degree/Out-Degree, Average Degree, and Published Year are
presented for test nodes.

Full Dataset Test Set

Dataset #Nodes #Edges In-Degree/Out-Degree Average Degree Published Year

OGBN-ARXIV 169343 1166243 1.33/11.1 12.43 2019
ARXIV-2023 33868 305672 0.16/10.6 10.76 2023

Figure 1: Proportional distribution of labels in OGBN-ARXIV and ARXIV-2023 datasets. Each label
represents an arXiv Computer Science Category.

of the two datasets are comparable. A notable trend from ARXIV-2023, in alignment with arXiv248

statistics,4 indicates a rise in AI-related categories like ML, LG, CL, reflecting the current academic249

focus.250

Furthermore, we compare the performance of MPNNs on the two datasets. As can be seen from251

the two bottom rows in Table 4, we observe that the performance metrics for MPNNs (GCN and252

SAGE) across both datasets are closely matched, suggesting that both datasets present compara-253

ble challenges for classification. For a more comprehensive setting of MPNNs, one can refer to254

Appendix C.255

LLM performance on ARXIV-2023 and OGBN-ARXIV. If data leakage is a major contributor256

of performance on OGBN-ARXIV, we would expect the performance drop of LLMs between OGBN-257

ARXIV (may have leakage problem) and ARXIV-2023 (leakage-free) should be significantly greater258

than the drop on MPNNs on two datasets.This is because LLMs may benefit from their memory on259

OGBN-ARXIV, but this advantage is not likely on ARXIV-2023. However, as shown in Table 4, we260

observe exactly the contrary: the performance drop of LLMs between OGBN-ARXIV and ARXIV-261

2023 is less than the drop on MPNNs on two datasets (1.3% compared to 5.1% in rich context, 3.6%262

compared to 4.5% in scarce context). This means that LLMs actually generalize well to leakage-free263

data.264

To conclude, the observed results neither offer clear evidence in favor of data leakage nor does it265

advocate that data leakage predominantly improves LLM’s performance. Instead, LLM’s consis-266

tent performance across both datasets stresses its resilience and ability to generalize across varying267

distribution domains.268

3.4 IMPACT OF HOMOPHILY ON LLMS CLASSIFICATION ACCURACY269

Homophily, the tendency of nodes with similar characteristics to connect, is foundational for many270

MPNNs. In fact, the degree of homophily in a dataset often correlates with the efficacy of MPNNs271

4https://info.arxiv.org/help/stats/2021_by_area/index.html
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Table 4: Comparison between LLM’s performance on OGBN-ARXIV and ARXIV-2023. Best results
in prompting methods are in bold. 1-hop attention means attention extraction and prediction over
1-hop neighbors

Rich context Scarce context

Prompt style OGBN-ARXIV ARXIV-2023 Prompt style OGBN-ARXIV ARXIV-2023

Zero-shot 74.0 73.5 Zero-shot 69.8 66.6
Few-shot 72.9 73.6 1-hop title 72.3 70.7
Zero-shot CoT 71.8 73.7 1-hop title+label 74.3 70.4
1-hop title+label 75.1 73.8 2-hop title 71.3 68.9
2-hop title+label 74.5 73.2 2-hop title+label 74.2 68.5
1-hop attention 74.7 73.7 1-hop attention 71.3 69.6
GCN 75.4 70.3 GCN 74.8 70.3
SAGE 75.0 70.9 SAGE 74.4 69.1

Figure 2: Performance comparison of dropping neighbors using different strategies across ARXIV-
2023, CORA, and OGBN-PRODUCT datasets. Three dropping strategies are evaluated: “drop same”
removes neighbors with the same label as the target node; “drop different” removes neighbors
with different labels as the target node; and “drop random” randomly selects neighbors for re-
moval. When percentage is 1, “drop same” strategy drops all same-label neighbors but preserves
all different-label neighbors, and “drop different” strategy drops all different-label neighbors but
preserves all same-label neighbors. Details about the strategies are stated in Appendix E.

in classification tasks (Zhu et al., 2020; 2021; Lim et al., 2021; Maurya et al., 2021). Given this272

significance, it becomes imperative to explore if and how homophily impacts the efficacy of LLMs273

in similar classification contexts, drawing potential parallels or contrasts with MPNN behaviors.274

Since LLM performs node-wise prediction over the neighborhood surrounding the target node, we275

use local homophily ratio (Loveland et al., 2023) to measure the degree of homophily with respect276

to the target node. For a prompt to predict the category of a target node, the local homophily ratio277

is defined as the fraction of neighbors sharing the same groundtruth label as the target node over the278

total number of neighbors included in the prompt. Intuitively, a higher local homophily ratio signals279

scenarios where a node is surrounded by a greater proportion of neighbors from the same category.280

The neighbor dropping experiment. We design a controlled experiment to demonstrate the ef-281

fect of local homophily ratio on prediction accuracy. We gradually drop neighbors in three different282

ways: a) drop the neighbors with same label as the target node; b) drop the neighbors with different283

label as the target node; and c) drop neighbors randomly. We include details about the neighbor drop-284

ping strategies in Appendix E. The experimental results are shown in Figure 2, where we observe285

an evident trend: as we selectively remove neighbors sharing the same labels, there’s a decrease in286

prediction accuracy. Conversely, discarding neighbors with different labels leads to an increase in287

accuracy. This selective dropping inherently modifies the local homophily ratio within the prompts.288
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Table 5: Point biserial correlation between local homophily ratio and prediction correctness across
five datasets (p-values in brackets). Point biserial correlation ranges between [−1, 1], where a value
of 1 indicates a perfect positive relationship. A higher correlation value indicates that the local
homophily ratio and prediction correctness are more positively related.

Prompt Style OGBN-ARXIV CORA PUBMED ARXIV-2023 OGBN-PRODUCT
Zero-shot 0.440 (0.000) 0.070 (0.106) 0.278 (0.000) 0.367 (0.000) 0.387 (0.000)
1-hop title+label 0.518 (0.000) 0.222 (0.000) 0.443 (0.000) 0.481 (0.000) 0.560 (0.000)

The results show that accuracy of predictions made by LLMs is positively related to local homophily289

ratio.290

Correlation study. Building on the insights from the dropping neighbors experiment, we further291

investigate the relationship between local homophily ratio and the prediction correctness across292

different datasets. Each node possesses two key attributes: a) its local homophily ratio, which is293

a continuous random variable in [0, 1], and b) its prediction correctness, which is a binary random294

variable (0 indicating an incorrect prediction and 1 indicating a correct prediction). To quantify the295

correlation between these two attributes, we employ the point biserial correlation method (Kornbrot,296

2014). This correlation coefficient ranges between -1 and 1, where a value of 1 signifies a perfect297

positive relationship. The results of our analysis across five datasets are detailed in Table 5.298

For the CORA dataset, we observe no significant correlation when only the title is used in prompts.299

However, a positive correlation emerges when neighbors are included alongside the title. This sug-300

gests that the more homophily is incorporated into the prompt, the more accurate the prediction301

becomes.302

For the other datasets, a positive correlation is evident in both the zero-shot and 1-hop title+label303

settings. In Table 5, zero-shot prediction (the one that doesn’t use structural information at all)304

also showed high correlation with the homophily ratio of the node. This suggests a complicated305

mechanism for LLMs to perform better on homophilous nodes: those nodes are easier to be classified306

in the first place; the added structural information has some further contributions.307

In summary, our findings underline the critical role of homophily in influencing LLM’s text clas-308

sification performance. The experiments and analyses consistently point to a positive relationship309

between local homophily ratio and prediction correctness, emphasizing the importance of under-310

standing network structures and node relationships in enhancing classification outcomes.311

4 CONCLUSIONS AND FUTURE WORK312

This study marks an early step towards a broader research aim: enabling LLMs to process struc-313

tured data, a crucial data modality commonly seen in practice. In this study, we have adapted node314

classfication datasets with textual features from graph learning benchmarks to establish a testbed315

for LLMs augmented with structured data. Our preliminary examination on prompting methods316

for encoding the structural information shows that LLMs benefit more from structural information317

when the textual features of the target node is scarce. We also delve into the impact of data leakage318

and homophily, which provides deeper insights about the LLM performance when augmented with319

graph-structured data.320

This study also opens several avenues for future research. Firstly, the findings of this study, as well as321

the new dataset curated by this work, establish a proper benchmark setup for more advanced methods322

to encode structural information for LLMs, such as finetuning or adapter training. Secondly, while323

we find that data leakage is not a major concern for the prompting methods examined in this paper, it324

is still possible that more advanced methods can elicit the memory of the LLMs from training corpus.325

We may need further investigation on the data leakage issue when proceeding with evaluating other326

methods. Finally, the fact that homophily plays a crucial role in the performance gain of LLMs with327

structured data suggests that LLMs may be utilizing superficial correlational information to aid the328

prediction tasks. It would be interesting to further investigate whether we can make LLMs grasp the329

deeper relational structure of the graph data.330
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A DETAILS ABOUT PROMPTING FORMAT AND SETTINGS473

Our API call to ChatGPT utilize a two-part prompt structure, in line with the ChatGPT Chat Com-474

pletions API.5 Each API call involves a system prompt and a user prompt. The system prompt,475

detailed in Table 6, sets ChatGPT’s objective and return format. The user prompt, outlined in Ta-476

ble 1, provides information on the target node and its neighborhood for prediction. To standardize477

ChatGPT’s output format, we append “Do not give any reasoning or logic for your answer” to the478

end of all prompts, except zero-shot CoT prompts.479

Table 6: System prompts for each dataset.

Dataset System Prompt
OGBN-ARXIV,
ARXIV-2023

Please predict the most appropriate arXiv Computer Science (CS) sub-
category for the paper. The predicted sub-category should be in the format
’cs.XX’.

CORA Please predict the most appropriate category for the paper. Choose
from the following categories:\nRule Learning\nNeural Net-
works\nCase Based\nGenetic Algorithms\nTheory\nReinforcement
Learning\nProbabilistic Methods\n

PUBMED Please predict the most likely type of the paper. Your answer should be
chosen from:\nType 1 diabetes\nType 2 diabetes\nExperimentally induced
diabetes.\n

OGBN-PRODUCT Please predict the most likely category of this product from Amazon. Your
answer should be chosen from the list:\nHome & Kitchen\nHealth & Per-
sonal Care\n. . .

We outline the settings for each prompting method as follows:480

1. Few-shot: Two correct example predictions from ChatGPT are added before the target node481

information.482

2. Target node with neighbors: For datasets OGBN-ARXIV, CORA, PUBMED and ARXIV-483

2023, prompts include up to 20 one-hop and 5 two-hop neighbors. For OGBN-PRODUCT,484

up to 40 one-hop and 10 two-hop neighbors are included.485

3. Attention extraction: The maximum number of neighbors is the same as Target node with486

neighbors. We only consider one-hop attention in this study, setting the attention number487

k to 5.488

Common settings for all methods include a temperature of 0 and a maximum output token limit of489

500. If a neighbor belongs to the training or validation set, its label is included in the prompt.490

B DATASETS INFORMATION491

In this section we detail the information about benchmark datasets and the collection pipeline of492

ARXIV-2023.493

B.1 DATASETS STATISTICS AND SPLITS494

Table 7 presents basic statistics for each dataset. For detailed information on datasets and methods495

to obtain raw text attributes, please see Appendix A in Chen et al. (2023).496

The dataset splits are as follows:497

1. CORA: Training/Validation/Testing ratios are 0.1/0.2/0.2.498

5https://platform.openai.com/docs/guides/gpt/chat-completions-api
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Table 7: Statistics of datasets. Data cut-off indicates the latest data coverage of the dataset.

Dataset #Nodes #Edges #Task Metric #Test Nodes Data Cut-Off

CORA 2,708 5,429 7 Accuracy 542 2000
PUBMED 19,717 44,338 3 Accuracy 1,000 2000
OGBN-ARXIV 169,343 1,166,243 40 Accuracy 1,000 2019
OGBN-PRODUCT 2,449,029 61,859,140 1 Accuracy 1,000 2019
ARXIV-2023 33,868 305,672 40 Accuracy 668 2023

2. PUBMED: Training/Validation/Testing ratios are 0.6/0.2/0.2, following He et al. (2023).499

3. OGBN-ARXIV: Original OGB (Hu et al., 2020) splits are used, categorizing papers by their500

publication year: training (pre-2017), validation (2018), and testing (2019).501

4. OGBN-PRODUCT: Original OGB splits are used based on sales ranking: top 8% for training,502

next 2% for validation, and the remainder for testing.503

5. ARXIV-2023: Year-based splits similar to OGBN-ARXIVis adopted: training (pre-2019),504

validation (2020), and testing (2023).505

Due to API cost and rate limits, we test on a random sample of 1,000 nodes for PUBMED, OGBN-506

ARXIV, and OGBN-PRODUCT, using a fixed seed for reproducibility.507

B.2 COLLECTION OF ARXIV-2023508

The detailed pipeline is as follows:509

1. Sample 668 test nodes from around 46,000 arXiv CS papers published from January 1 to510

August 22, 2023.511

2. Extract references to identify one-hop and two-hop neighbors. References were obtained512

by two steps. First, we search for valid arXiv IDs within each paper, following a method513

similar to (Clement et al., 2019). Second, we use AnyStyle to extract the titles of the514

references,6 which we then search for via the arXiv API.7 Titles found on arXiv are con-515

sidered valid citations if they have a small levenshtein distance (Miller et al., 2009) from516

the searched title. To prevent duplicate searches, we skip any references that already have517

a matched arXiv ID. To comply with the arXiv API’s rate limit, each paper is restricted to a518

maximum of 30 searches. For papers published before 2019, we attempt to match them to519

nodes in the OGBN-ARXIV based on titles. Unmatched pre-2019 nodes are excluded from520

our dataset.521

3. Construct a citation network using nodes from step 2. Basically for each node we need522

a list of paper it cites. While references for test nodes and one-hop nodes are obtained523

through both arXiv ID matching and title searching, the references for two-hop nodes are524

solely determined by arXiv ID matching, due to rate limit constraints. Dataset statistics are525

in Table 3. We have similar test node degrees between OGBN-ARXIV and ARXIV-2023.526

C MPNNS AS BASELINES527

Embedding generation. We adapt the embedding generation pipeline from Hu et al. (2020) to528

train a skip-gram model (Mikolov et al., 2013) on corpus comprising titles and abstracts from both529

OGBN-ARXIV and ARXIV-2023. Each paper’s 128-dimensional feature vector is then obtained by530

averaging the word embeddings in its title.531

Hyperparameter tunning. Baseline models GCN and SAGE are implemented with PyG (Fey532

& Lenssen, 2019). For hyperparameter tunning, we perform a random search on the following533

hyperparameter tuning range for every model following Ma et al. (2022):534

6https://github.com/inukshuk/anystyle
7https://info.arxiv.org/help/api/basics.html
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Table 8: Classification accuracy for the OGBN-ARXIV, CORA, ARXIV-2023, PUBMED, and OGBN-
PRODUCT datasets on LLaMA-2-7B-chat. ↑ denotes the improvements of best prompt style that
leverages structural information over zero-shot method. Best results are in bold.

Textual Context Prompt Style OGBN-ARXIV CORA ARXIV-2023 PUBMED OGBN-PRODUCT

Scarce

Zero-shot 38.8 24.5 38.2 70.1 51.7
1-hop title 51.5 44.8 45.5 70.9 52.8

1-hop title+label 58.0 71.0 53.4 75.5 78.9
↑ 19.2 46.5 15.2 5.4 27.2

Rich

Zero-shot 45.1 18.1 45.1 71.6 51.3
1-hop title 51.6 51.5 50.0 68.8 52.1

1-hop title+label 66.9 66.7 60.2 73.0 77.2
↑ 21.8 48.6 15.1 1.4 25.9

• Hidden size: {32, 64}.535

• Learning rate: {.001, .005, .01, .1}.536

• Dropout rate: {.2, .4, .6, .8}.537

• Weight decay: {.0001, .001, .01, .1}.538

Each model is run on 100 random configurations and each random configuration is run for 3 times539

on OGBN-ARXIV and ARXIV-2023. The max training epoch number is 2000. When training is540

finished, we use the model with highest average validation accuracy on the dataset for testing.541

542

D ADDITIONAL ANALYSIS ON THE INFLUENCE OF STRUCTURAL543

INFORMATION ON LLMS.544

D.1 CLASSIFICATION ACCURACY ON LLAMA-2-7B-CHAT545

The results in the main paper are based on gpt-3.5-turbo-0613. Here we test the performance546

of LLaMA-2-7B-chat. The results are shown in Table 8. The model gains significant improve-547

ment after incorporating structural information in both rich and scarce textual context. The results548

align with our observation in the paper with ChatGPT that incorporating structural information ac-549

tually brings performance improvement in both rich and scarce contexts. But a different observation550

is that the improvement in scarce textual context is not necessarily higher than the improvement in551

rich textual context. This may be because LLaMA-2 is not able to sufficiently leverage the entire552

text for the prediction in zero-shot prediction. Combining the results of ChatGPT, the conclusion553

is that, with powerful enough LLM and rich text (e.g. ChatGPT with rich context), the structural554

information is marginal. But when the text information is scarce or if the LLM cannot fully utilize555

the text information, structural information can be significantly helpful.556

D.2 THE NUANCES OF WHEN STRUCTURAL INFORMATION SATURATES ON LLMS AND557

MPNNS.558

We compare the performance increase from incorporating structural information for LLMs and559

MPNNs respectively in Table 9. The average increase from structural data of ChatGPT on 4 datasets560

is 2.78% (rich context) and 5.44% (scarce context). But the increase from structural data of MPNNs561

is 6.98% (rich context) and 14.07% (scarce context), which is significantly higher than the gain562

of LLMs. It means that The benefit of structural information saturates earlier on ChatGPT than563

MPNNs.564

While it’s true that structural information is generally more helpful when text is scarce, quantita-565

tively ChatGPT behaves differently from GNNs: the benefit of structural information saturates566

much earlier than GNNs with moderate rich textual features; and this is non-trivial since LLaMA-2567

doesn’t saturate as early as ChatGPT. The average increase from structural data on 4 datasets for568

ChatGPT/MPNNs/LLaMA-2-7B-chat are 2.78%/6.98%/21.7% respectively.569
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Table 9: Classification accuracy for the OGBN-ARXIV, CORA, ARXIV-2023, PUBMED on ChatGPT
as well as GCN, SAGE and MLP. ↑ (LLMs) denotes the improvements of best prompt style that
leverages structural information over zero-shot method. ↑ (MPNNs) denotes the improvements of
the best MPNNs over MLP (without structural information).

Textual Context Prompt Style OGBN-ARXIV CORA ARXIV-2023 PUBMED
Rich Zero-shot 74.0 66.1 73.5 88.6

1-hop title+label 75.1 72.5 73.8 89.1
2-hop title+label 74.5 74.7 73.2 89.7
1-hop title+label, attention 74.7 72.5 73.7 88.8
↑ (LLMs) 1.1 8.6 0.3 1.1
MLP 69.9 65.4 69.7 86.2
GCN 75.4 83.0 70.3 88.4
SAGE 75.0 83.2 70.9 90.0
↑ (MPNNs) 5.5 17.8 1.3 3.8

Scarce Zero-shot 69.8 61.8 66.6 85.9
1-hop title 72.3 69.6 70.7 80.8
1-hop title+label 74.3 73.9 70.4 84.7
2-hop title 71.3 69.9 68.9 83.5
2-hop title+label 74.2 74.5 68.5 86.4
↑ (LLMs) 4.5 12.7 4.1 0.5
MLP 61.9 55.7 58.5 82.0
GCN 74.8 81.2 70.3 87.1
SAGE 74.4 78.8 69.1 87.9
↑ (MPNNs) 13.0 25.6 11.8 6.0

E ADDITIONAL ANALYSIS FOR DATA LEAKAGE570

Details about dropping experiments. We have three different strategies: a) drop the neighbors571

with same label (drop same), b) drop the neighbors with different label (drop different), c) drop572

neighbors randomly (drop random). Let’s define x as the number of neighbors with the same ground573

truth label as the target node, and y as the number of neighbors with a different label from the target574

node. Given a dropping percentage p, we elaborate on the three strategies:575

1. drop random: We randomly drop (x+ y)p neighbors.576

2. drop same: We retain max(x − (x + y)p, 0) neighbors with the same labels as the target577

node while preserving all y neighbors with different labels.578

3. drop different: We retain max(y− (x+y)p, 0) neighbors with the different labels from the579

target node while preserving all x neighbors with same labels.580

We further explain this by an example. Assume node A has 10 neighbors and 6 of the neighbors have581

same labels as A. When dropping percentage is 0.5, drop same strategy drops 5 nodes with same582

label, resulting in 1 neighbor with same label and 4 neighbors with different labels. drop different583

strategy drops all 4 nodes with different labels, resulting in 6 neighbors with same label.584

585

Ablation study on the effect of labels in the prompt We investigate the possibility that LLMs are586

relying on a simple majority vote in its prediction. We propose a new neighbor dropping experiment587

with three different prompting styles for neighbors: (i) 1-hop title+label, (ii) 1-hop title and (iii)588

1-hop label. 1-hop label means that we only include the label of the neighboring papers, which589

is used as an ablation study to gauge whether LLM is performing a majority vote based on label590

information.591

If LLMs do rely on a majority vote to determine its prediction. We would expect that the “drop592

different” curve with 1-hop label goes higher than 1-hop title+label because we are dropping more593

and more neighbors with different labels. However, we are not observing this in Figure 3 and 4, and594

the 1-hop label curve is lower than 1-hop title+label curve. This observation refutes the hypothesis595
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Figure 3: Performance comparison of dropping neighbors using different strategies on CORA dataset.
Three dropping strategies are evaluated: (i) 1-hop title+label, (ii) 1-hop title and (iii) 1-hop label

Figure 4: Performance comparison of dropping neighbors using different strategies on ARXIV-
2023 dataset. Three dropping strategies are evaluated: (i) 1-hop title+label, (ii) 1-hop title and
(iii) 1-hop label

that LLMs rely on simple majority vote for prediction. Instead, including more context information596

will help LLMs to make more accurate predictions as 1-hop title+label “drop different” curve is597

higher than 1-hop label “drop different” curve.598

Investigating data leakage through prompt variability. Chen et al. (2023) reveal considerable599

fluctuations in Language Model (LLM) performance on OGBN-ARXIVwhen using three distinct600

prompt words: ”arXiv cs subcategory,” ”arXiv identifier,” and natural language. These variations601

have been interpreted as potential indicators of data leakage.602

To delve deeper into this issue, we expand upon their experiments by testing additional prompt603

words. We also introduce two experimental settings: one with label options provided and another604

without. As displayed in Table 10, the relative efficacy of various prompts on OGBN-ARXIV mir-605

rors their performance on ARXIV-2023. Importantly, prompts with options underperform on both606

datasets, underscoring a consistent trend.607

Also, utilizing structural information in the prompts can somewhat mitigate the performance drop608

from less effective prompts. Indicate that LLMs can leverage structural information to improve609

predictions. This further supports that there is no conclusive evidence for data leakage.610
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Table 10: Performance across different prompt types between OGBN-ARXIV and ARXIV-2023.

System Prompt Zero-shot 1-hop title+label

OGBN-ARXIV ARXIV-2023 OGBN-ARXIV ARXIV-2023

Please predict the most appropriate
arXiv Computer Science (CS) sub-
category for the paper. The predicted
sub-category should be in the format
’cs.XX’.

74.0 73.7 74.3 70.4

Please predict the most appropriate
arXiv Computer Science (CS) sub-
category for the paper. Your answer
should be chosen from cs.AI, ..cs.SY.
The predicted sub-category should be
in the format ’cs.XX’.

66.0 68.1 70.7 67.9

Please predict the most appropriate
original arXiv identifier for the paper.
The predicted arxiv identifier should be
in the format ’arxiv cs.xx’.

71.3 70.8 73.7 67.5

Please predict the most appropriate
original arXiv identifier for the paper.
Your answer should be chosen from
cs.ai,.. cs.sy. The predicted arxiv iden-
tifier should be in the format ’arxiv
cs.xx’.

58.4 57.2 71.7 64.2

Please predict the most appropriate cat-
egory for the paper. Your answer
should be chosen from ”Artificial Intel-
ligence”,.. ”Systems and Control”.

54.6 53.4 74.1 67.8
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