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Abstract
This work proposes an algorithm improving the
dimensionality dependence for gradient-free op-
timisation over cross-polytopes, which has many
applications such as adversarial attacks, explain-
able AI and sparse regression. For bandit convex
optimisation with two-point feedback over cross-
polytopes, the state-of-the-art algorithms have
a dimensionality dependence of O(

√
d log d),

while the known lower bound is of the form
Ω(

√
d(log d)−1). We propose a mirror descent

algorithm equipped with a symmetric version of
the negative 1

2 -Tsallis entropy. Combined with an
ℓ1-ellipsoidal smoothing-based gradient estimator,
the proposed algorithm guarantees a dimension-
ality dependence on O(

√
d), which improves the

state-of-the-art algorithms by a factor of
√
log d.

The idea can be further applied to optimising non-
smooth and non-convex functions. We propose
an algorithm with a convergence depending on
O(d), which is the best-known dimensionality
dependence.

1. Introduction
Gradient-free optimisation with two-point feedback (Agar-
wal et al., 2010) has attracted significant attention from
the machine learning community. We are interested in the
problem with decision set contained in the cross-polytopes,
which is usually considered as a relaxation of the sparse con-
straint and has many applications, such as adversarial attack
(Chen et al., 2018), explainable machine learning (Nate-
san Ramamurthy et al., 2020) and sparse cox regression (Liu
et al., 2018). Decision sets contained in a cross-polytope
define low-dimensional structures, making the problem less

1Unit 2.6 Workplaces, Safety of Machinery, Opera-
tional Safety, Federal Institute for Occupational Safety and
Health, Dresden, Germany. Correspondence to: Weijia Shao
<Shao.Weijia@baua.bund.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

dimensionality-dependent. For the d-dimensional problem
with convex and Lipschitz continuous objective functions,
Duchi et al. have proved a lower bound of the iteration
complexity depending on

√
d(log d)−1 and provided an

algorithm with a convergence upper bound depending on√
d log d if the objectives are smooth. For bandit convex

optimisation with non-smooth loss functions, Shamir has
proposed an algorithm with a regret upper bounded by
O(

√
Td log d), which has been improved to O(

√
Td log d)

by Akhavan et al..

The algorithms described above are based on the idea of
exploiting the geometry of the maximum normed space
(Rd, ∥·∥∞). By combining gradient estimators with error
bounded by O(d) and mirror descent (MD) with perfor-
mance depending on O(log d) (Duchi et al., 2015; Shamir,
2017; Akhavan et al., 2022), these algorithms can efficiently
search the decision variables in the negative gradient di-
rection in (Rd, ∥·∥∞). This idea has also been applied to
optimising nonconvex but smooth objective functions in
(Shao & Albayrak, 2023; Shao et al., 2022). It is impossi-
ble to further improve the gradient estimator (Kornowski
& Shamir, 2023) or the searching strategy in (Rd, ∥·∥∞)
(Orabona & Pál, 2015). Therefore, it is doubtful that the
gap between the upper and lower bounds of the optimisation
problem can be closed by following this idea.

This work is inspired by the Implicitly Normalised Fore-
caster (INF) (Audibert & Bubeck, 2010), which improves
the dimensionality-dependence of the adversarial multi-
armed bandit (MAB) problem from

√
d log d to

√
d. For

each arm a in the action set and the probability pa of choos-
ing the arm, the importance-weighted estimator employed
in INF is an unbiased estimator of the loss vector with a
per-arm variance proportional to 1

pa
, which has a strong

dependence on the size of the action set. The exploitation
strategy of INF, which is MD with negative 1

2 -Tsallis en-
tropy (Audibert & Bubeck, 2010) and used to update pa
at each iteration, can normalise the variance to reduce the
dimensionality dependence. Our idea is based on the simi-
larity between the importance-weighted estimator and the
ℓ1-smoothing based two-point gradient estimator (Akhavan
et al., 2022). By extending the randomisation over the ℓ1-
ball to the randomisation over the ℓ1-ellipsoid, we construct
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a gradient estimator with a pro-coordinate variance propor-
tional to the inverse of the decision variable. To normalise
the variance, the negative 1

2 -Tsallis entropy can not be di-
rectly applied since it works only for decision variables and
gradients taken from the positive orthant. We propose a sym-
metric and strictly convex function retaining the curvature
of the negative 1

2 -Tsallis entropy. MD equipped with the
symmetric convex function can normalise the gradient esti-
mator’s variance, reducing the dimensionality dependence.
Given a sequence of L1-Lipschitz functions in (Rd, ∥·∥1),
our algorithm has a regret upper bounded by O(L1

√
Td),

which improves the regret upper bound of state-of-the-art
algorithms by a factor of

√
log d.

Our idea can be further applied to optimising nonconvex and
non-smooth objectives, which is computationally difficult
(Zhang et al., 2020a) but bears considerable significance in
the context of deep learning (Choromanski et al., 2018; Chen
et al., 2017; Suh et al., 2022). Recent works focus on finding
a (δ, ϵ)-stationary point defined in (Rd, ∥·∥2) (Zhang et al.,
2020a; Lin et al., 2022; Chen et al., 2023b;a; Kornowski &
Shamir, 2023). Given fixed δ and ϵ, a vector x is considered
to be stationary if there is a vector g in the convex hull of
the generalised gradients (Clarke, 1990) at the points in a
Euclidean ball centred at x, whose norm ∥g∥2 is less than
ϵ. For a function that is L2-Lipschitz continuous w.r.t ∥·∥2,
Lin et al. have introduced an algorithm finding a (δ, ϵ)-
stationary point with O(d

3
2L3

2δ
−1ϵ−4) function evaluations,

which is improved to O(d
3
2L2

2δ
−1ϵ−3) by the algorithm

proposed by Chen et al., matching the optimal result w.r.t. δ
and ϵ.

Since our motivation is related to deep learning, we are
interested in the dimensionality dependence. Recently, Ko-
rnowski & Shamir have shown that the super-linear depen-
dence on d can be improved and proposed an algorithm
finding a stationary point within O(dL2

2δ
−1ϵ−3) function

evaluations. Note that the Lipschitz constant L2 also con-
tributes to the dimensionality dependence, which motivates
us to consider a different geometry.

We focus on the objective functions that are L1-Lipschitz
w.r.t. ∥·∥1. To define a meaningful stationary condition, we
consider the neighbourhood defined by an ℓ1-ball, but loosen
the stationarity by requiring the maximum norm of the vec-
tor in the convex hull of the generalised gradient to be small.
Combining our idea for bandit convex optimisation and the
online-to-nonconvex conversion technique (Cutkosky et al.,
2023), we construct an algorithm finding a (δ, ϵ)-stationary
point (Lin et al., 2022) with O(dL2

1δ
−1ϵ−3) noisy function

evaluations, which is significantly better than the algorithms
with dependence on O(d

3
2L2

2). Compared to the algorithm
with complexity O(dL2

2δ
−1ϵ−3) introduced by Kornowski

& Shamir, our algorithm has a similar dimensionality depen-
dence if we consider the impact of equivalence of the norm

on the stationarity ∥g∥2 ≤
√
d∥g∥∞, the neighbourhood

B2(0, d
− 1

2 δ) ⊆ B1(0, δ) ⊆ B2(0, δ) and the relation of the
Lipschitz constant L1 ≤ L2 ≤

√
dL1. Our contributions

and the discussion above are summarised in Table 1 and
Table 2.

The rest of the paper is organised as follows. Section 2 in-
troduces the notation and preliminary concepts. We present
and analyse our algorithm for bandit convex optimisation
in Section 3. In Section 4, we apply the idea introduced
in Section 3 to stochastic optimisation of nonconvex and
non-smooth objectives. Finally, we conclude our work in
Section 5.

2. Preliminary
Throughout this paper, we consider optimisation problems
in Rd. We denote by ∥·∥p the p-norm for p ≥ 1 and ⟨·, ·⟩
the standard scalar product. We use Bp(x, r) and ∂Bp(x, r)
for the closed ball and sphere in (Rd, ∥·∥p) centred at x
with radius r, respectively. Given a convex function ϕ, the
Bregman divergence associated with ϕ is given by Bϕ(·, ·).

For a convex function f , ∂f(x) is the sub-differential of
f at x and ▽f(x) refers to any vector in ∂f(x). If f is
differentiable at x, we also use ▽f(x) for the differential
of f at x. For a nonconvex Lipschitz continuous but not
everywhere differentiable function f , ∂f(x) refers to the
Clarke subgradient (Clarke, 1990) at x ∈ Rd given by

∂f(x) = conv{ lim
n→∞

▽f(xn)|xn → x}.

For δ > 0 and p ≥ 1, we extend the definition of the Gold-
stein δ-subdifferential (Goldstein, 1977) of f by considering
the neighbourhood defined by Bp(0, δ).

Definition 1. Given δ > 0, p ≥ 1, the δ-subdifferential of a
Lipschitz continuous function at x is defined by

∂δ,pf(x) := conv(∪y∈Bp(x,δ)∂f(y)).

The (δ, ϵ)-stationary point is defined accordingly.

Definition 2. A point x is a (δ, ϵ)-stationary point of a
Lipschitz continuous function f if

∥▽f(x)∥δ,p,q := min{∥g∥q|g ∈ ∂δ,pf(x)} ≤ ϵ.

3. Bandit Convex Optimisation
We first consider the bandit convex optimisation over cross
polytopes with two-point feedback, which can be considered
as an iterative game between a player and an adversary. In
each round t of the game, the player picks an action xt from
the decision set K. Then, the adversarial selects a convex
loss function ft, incurring the loss ft(xt). In the bandit
setting, ft is not revealed to the player, but the player is
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Table 1. Bandit Convex Optimisation with Two-Point Feedback over Cross-polytopes

Regret Exploration Exploitation

(Shamir, 2017) T
1
2 d

1
2 log d ℓ2-ball sampling MD with Entropy

(Akhavan et al., 2022) T
1
2 (d log d)

1
2 ℓ1-ball sampling MD with Entropy

Theorem 1 T
1
2 d

1
2 ℓ1-ellipsoid sampling MD with symmetric Tsallis-Entropy

Lower Bound (Duchi et al., 2015) T
1
2 d

1
2 (log d)−

1
2

Table 2. Gradient-Free Nonconvex and Non-smooth Optimisation

neighbourhood Stationarity Smoothness Complexity

(Lin et al., 2022) ℓ2-ball ∥g∥2 ≤ ϵ L2-Lipschitz w.r.t. ∥·∥2 O(d
3
2L3

2δ
−1ϵ−4)

(Chen et al., 2023a) ℓ2-ball ∥g∥2 ≤ ϵ L2-Lipschitz w.r.t. ∥·∥2 O(d
3
2L2

2δ
−1ϵ−3)

(Kornowski & Shamir, 2023) ℓ2-ball ∥g∥2 ≤ ϵ L2-Lipschitz w.r.t. ∥·∥2 O(dL2
2δ

−1ϵ−3)
Theorem 2 ℓ1-ball ∥g∥∞ ≤ ϵ L1-Lipschitz w.r.t. ∥·∥1 O(dL2

1δ
−1ϵ−3)

allowed to query two points ft(x′t) and ft(x′′t ) as feedback.
The goal of the game is to control the cumulative regret of
not choosing some action x ∈ K

T∑
t=1

(ft(xt)− ft(x)).

In this section, we assume K is contained in a cross-polytope.
The focus of our endeavour is to implement the mechanism
of INF (Audibert & Bubeck, 2010) to operate seamlessly in
this setting.

Exploration. We begin with constructing a gradient es-
timator using the ℓ1-ellipsoidal smoothing, which is an ex-
tension of the ℓ1-ball smoothing (Akhavan et al., 2022) and
behaves similarly to the importance-weighted estimator in
INF. Given Lipschitz continuous f : Rd → R and x ∈ Rd,
we define

gγ,Λ(x) =
d

2γ
(f(x+ γΛu)− f(x− γΛu))Λ−1 sgn(u),

where γ > 0, u is sampled from the uniform distribution
over ∂B1(0, 1) and Λ = diag(λ) is a diagonal matrix with
λi > 0 for i = 1, . . . , d. Lemma 1 shows that gγ,Λ is an
unbiased gradient estimator of smoothed f with variance
related to ∥λ∥2.

Lemma 1. Let f : Rd → R be L1-Lipschitz w.r.t. ∥·∥1 and
Λ = diag(λ) some positive definite diagonal matrix. Define

fγ,Λ : Rd → R, x 7→ Eν [f(x+ γΛν)],

where ν is uniformly and randomly sampled from B1(0, 1).
Then, we have

a) |fγ,Λ(x)− f(x)| ≤ γ∥λ∥2L1

b) fγ,Λ is differentiable with ▽fγ,Λ(x) = E[gγ,Λ(x)]

c) For u sampled from the uniform distribution over
∂B1(0, 1), there is some constant c, such that

Varu(f(x+ γΛu)) ≤ cγ2∥λ∥22L2
1

d2

holds for all d ≥ 3.

Exploitation. The exploitation strategy of INF can be
considered as an instance of MD equipped with a negative
1
2 -Tsallis entropy, which only takes values from the standard
simplex. To obtain an algorithm for problems over the cross
polytope with similar dimensionality dependence, we first
extend the 1

2 -Tsallis entropy to the negative orthant. To
achieve this, we define the following function.

ψ :R → R,

x 7→

{
2x√
β
− 4

√
β + x+ 4

√
β, if x ≥ 0

− 2x√
β
− 4

√
β − x+ 4

√
β. otherwise.

(1)

For β > 0, the function is symmetric, twice continuously
differentiable, strictly convex and locally self-concordant,
which is proved in the next lemma.

Lemma 2. ψ is twice continuously differentiable and
strictly convex with the following properties.

a) ψ′(x) =

{
2√
β
− 2√

β+x
, if x ≥ 0

− 2√
β
+ 2√

β−x . otherwise

b) ψ′′(x) = (|x|+ β)−
3
2 .

c) (ψ′)−1(θ) =

{
4β

(2−
√
βθ)2

− β, if 2√
β
> θ ≥ 0

− 4β
(2+

√
βθ)2

+ β. if − 2√
β
< θ ≤ 0

3



Improved Zeroth-Order Optimisation over Cross-Polytopes

d) For any x, y ∈ R satisfying

|ψ′(x)− ψ′(y)|
√

|x|+ β ≤ 1,

we have Bψ(y, x) ≥ 1
16 (|x|+ β)−

3
2 (x− y)2.

We can construct a MD algorithm with an update-generating-
function given by

ϕ : Rd → R, x 7→
d∑
i=1

ψ(xi). (2)

It follows from the last property in Lemma 2 that the update-
generating function is self-concordant for large enough step-
size. MD with the update-generating function defined in (2)
has a "normalised" regret upper bound given controlled step
size. We prove this in the next lemma.

Lemma 3. Let K ⊂ Rd be a closed convex set contained
in a cross-polytope with radius D. Furthermore, let {αt}
be the sequence of non-decreasing stepsize and {gt} be any

sequence of vectors in Rd. Assume
|gt,i|

√
|xt,i|+β
αt

≤ 1 for
all t and i. Then, the update rule

xt+1 = argmin
x∈K

⟨gt, x⟩+ αtBϕ(x, xt)

guarantees

T∑
t=1

⟨gt, xt − x⟩

≤8αTDβ
− 1

2 +

T∑
t=1

4

αt

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2.

If x is taken from a cross-polytope with radius D and we
pick λt,i =

√
|xt,i|+ β for the gradient estimator, the vari-

ance term in the regret upper bound is normalised to

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2 ≤ c(D + dβ)

3
2 d

1
2L2

1,

which allows us to construct an algorithm with
√
d dimen-

sionality dependence. Algorithm 1 describes the obtained
algorithm. In Theorem 1, we analyse the regret upper bound
of the algorithm using constant and adaptive step sizes.

Theorem 1. Let K ⊆ B1(0, D) be a closed convex set
and {ft} be a sequence of convex functions defined on K.
Assume d ≥ 3 and L1-Lipschitz continuity of {ft} w.r.t.
∥·∥1. We run Algorithm 1 with update generating function
(2). Then setting β = D

d , αt = (2D)
1
2 max{dL1,

√
TL1}

and γ ≤ (Dd)
1
2T− 1

2 guarantees

E[
T∑
t=1

(ft(xt)− ft(x))] ≤c1d
1
2Dmax{L1

√
T , dL1},

Algorithm 1 Mirror Descent Framework
Input: Update Generating Function ϕ
for t = 1, . . . , T do
λt,i =

√
|xt,i|+ β for i = 1, . . . , d

gt = GE(ft(·), xt, λt, γ)
Set stepsize αt
xt+1 = argminx∈K⟨gt, x⟩+ αtBϕ(x, xt)

end for

Algorithm 2 Gradient Estimator: GE(f, x, λ, γ)

Sample u uniformly from ∂B1(0, 1)
Set Λ = diag(λ)
Set g = d

2γ (f(x+ γΛu)− f(x− γΛu))Λ−1 sgn(u)
Return g

for some constant c1 independent of D, L1, d and T . Fur-
thermore, setting

αt = (
d2

4γ2

t∑
s=1

|fs(xs + γΛsus)− fs(xs − γΛsus)|2)
1
2

ensures

E[
T∑
t=1

(ft(xt)− ft(x))] ≤c2L1D
√
dT ,

for some constant c2 independent of D L1, d and T .

Proof. Denote by f̃t(·) = Evt∼B1(0,1)ft(·+ γΛtvt) the
smoothed ft. f̃t is clear convex. Setting λt,i =

√
|xt,i|+ β

and β = D
d , we obtain

T∑
t=1

(ft(xt)− ft(x))

=

T∑
t=1

(f̃t(xt)− f̃t(x))

+

T∑
t=1

(ft(xt)− f̃t(xt))−
T∑
t=1

(ft(x)− f̃t(x))

≤
T∑
t=1

(f̃t(xt)− f̃t(x)) + 2
√
2DL1γT

≤
T∑
t=1

⟨▽f̃t(xt), xt − x⟩+ 2
√
2DL1γT,

where the first inequality uses the first property proved in
Lemma 1 and ∥λt∥2 =

√
2D, the second inequality uses

the convexity of f̃t. Using the total law of expectation, we
have

T∑
t=1

E[E[⟨gt − ▽f̃t(xt), xt − x⟩|xt]] = 0.
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Combining the relations above, we have

E[
T∑
t=1

(ft(xt)− ft(x))]

≤E[
T∑
t=1

⟨▽f̃t(xt), xt − x⟩] + 2
√
2DL1γT

=E[
T∑
t=1

⟨gt, xt − x⟩] + 2
√
2DL1γT

+ E[
T∑
t=1

⟨gt − ▽f̃t(xt), xt − x⟩]

=E[
T∑
t=1

⟨gt, xt − x⟩] + 2
√
2DL1γT.

(3)

Next,

|gt,i| ≤dL1∥Λtut∥1(|xt,i|+ β)−
1
2

≤dL1∥λt∥2∥ut∥2(|xt,i|+ β)−
1
2

≤(2D)
1
2 dL1(|xt,i|+ β)−

1
2

follows from the Lipschitz continuity and the fact
∥λt∥2 ≤ (2D)

1
2 . Setting α1 =, . . . ,= αt =

(2D)
1
2 max{dL1, L1

√
T} ensures

|gt,i|
√

|xt,i|+β
αt

≤ 1,
which allows us to apply Lemma 3 to obtain

E[
T∑
t=1

⟨gt, xt − x⟩]

≤8
√
2Dd

1
2 max{dL1, L1

√
T}

+
4

(2D)
1
2L1

√
T
E[

T∑
t=1

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2].

(4)

Define lt = ft(xt + γΛtut) and rt = ft(xt − γΛtut)
Applying Lemma 1, we have

E[
d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2|xt]

=
d2

4γ2
E[|lt − rt|2|xt]

d∑
i=1

(|xt,i|+ β)
1
2

≤d
2

γ2
E[|lt − Eut

[lt]|2|xt]
d∑
i=1

(|xt,i|+ β)
1
2

≤d
2

γ2
Var(ft(xt + γΛtut)|xt)

√
d

√√√√ d∑
i=1

(|xt,i|+ β)

≤2
√
2D

3
2 cd

1
2L2

1

(5)

where the first inequality uses the symmetric distribution of
ut, the second inequality follows from the Cauchy-Schwarz

inequality, and the last inequality uses the last property in
Lemma 1 and the choice of λt. Combining with (4) and (5),
we have

E[
T∑
t=1

(ft(xt)− ft(x))]

≤8
√
2Dd

1
2 max{L1

√
T , dL1}

+ 8cDd
1
2L1

√
T + 2

√
2DL1γT.

(6)

We obtain the desired results by setting γ ≤ d
1
2D

1
2T− 1

2 .
For the adaptive version, we have

|gt,i|
√
|xt,i|+ β =

d

2γ
|lt − rt|

≤(

t∑
s=1

d2

4γ2
|ls − rs|2)

1
2

=αt.

Thus, we can apply Lemma 3 and obtain

T∑
t=1

⟨gt, xt − x⟩

≤8DαTβ
− 1

2 +

T∑
t=1

4

αt

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2

=8DαTβ
− 1

2 +

T∑
t=1

4

αt

d2

4γ2
|lt − rt|2

d∑
i=1

(|xt,i|+ β)
1
2

≤(8 + 8
√
2)(Dd)

1
2

√√√√ T∑
t=1

d2

4γ2
|lt − rt|2,

where the last inequality follows from Lemma 4 in (Orabona
& Pál, 2018). Taking expectations of both sides and using
Jensen’s inequality, we obtain

E[
T∑
t=1

⟨gt, xt − x⟩]

≤E[(8 + 8
√
2)(Dd)

1
2

√√√√ T∑
t=1

d2

4γ2
|lt − rt|2]

≤(8 + 8
√
2)(Dd)

1
2

√√√√E[
T∑
t=1

d2

4γ2
|lt − rt|2]

≤(8 + 8
√
2)(Dd)

1
2

√√√√ T∑
t=1

E[E[
d2

4γ2
|lt − rt|2|xt]]

≤(8 + 8
√
2)(Dd)

1
2

√√√√ T∑
t=1

E[E[
d2

γ2
|lt − E[lt]|2|xt]]

≤(8
√
2 + 16)DL1(cdT )

1
2 .
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Setting γ ≤ (Dd)
1
2T− 1

2 , we obtain the desired result.

To get the variance normalised, we have to set the constant
stepsize large enough so that Lemma 3 can be applied. With
adaptive stepsizes, the condition ensuring self-concordance
is always satisfied. Theorem 1 can be further generalised
to the decision set contained in Bp(0, 1) and Lp-Lipschitz
functions defined on (Rd, ∥·∥p), for p ∈ (1, log d

log d−1 ]. Akha-
van et al. have discussed about the idea of applying the
p-norm algorithm (Gentile, 2003) and ℓ1-smoothing leading
to a regret upper bound depending on O(

√
d log d). Our

algorithm can be directly applied to the problem with a re-
gret upper bound of the form O(Lp

√
dT ) because Bp(0, 1)

is contained in B1(0, d
1− 1

p ) ⊆ B1(0, e) and Lp-Lipschitz
w.r.t. to ∥·∥p implies Lp-Lipschitz w.r.t. to ∥·∥1.

It remains to show that the MD update in the last line of
Algorithm 1 can be efficiently solved for K = B1(0, 1).
Both constant and adaptive stepsize considered in Theorem 1
ensure |gt,i|

αt
≤ 1√

|xt,i|+β
, i.e. αt▽ϕ(xt) − gt within the

range of αt▽ϕ. Thus, we can apply the two-step procedure

x̃t =▽ϕ−1(▽ϕ(xt)−
gt
αt

)

xt+1 =arg min
x∈B1(0,1)

ϕ(x)− ⟨▽ϕ(x̃t), x⟩.

From the convexity of ϕ, xt+1 ∈ ∂B1(0, 1) must hold if
x̃t /∈ B1(0, 1). Thus, the problem is reduced to

xt+1 =arg min
x∈∂B1(0,1)

ϕ(x)− ⟨▽ϕ(x̃t), x⟩

for x̃t /∈ B1(0, 1). W.l.o.g. we can assume x̃t,i ≥ 0. Using
the Lagrange multipliers and setting the gradient of the
auxiliary function to 0, we obtain that

ψ′(xt+1,i) = ψ′(x̃t,i)− λ+ vi

for some λ ∈ R and vi ≥ 0. xt,i ≥ 0 implies xt+1,i ≥ 0
and λ > 0. Let I be the index with xt+1,i ̸= 0. Using the
complementary slackness, we have xt+1,i ̸= 0 for vi = 0.
Then, we must have∑

i∈I
(ψ′)−1(ψ′(x̃t,i)− λ) = 1,

which reduces the projection to the problem of sorting x̃t,i
with a per iteration complexity O(d log d).

4. Nonconvex Optimisation
The idea introduced in the previous section can be further ap-
plied to nonconvex and non-smooth stochastic optimisation
to obtain an optimal dimensionality dependence. Formally,
we wish to design a gradient-free algorithm for the stochas-
tic optimisation problem of the form

min
x∈K

{F (x) := Eξ[f(x; ξ)]}, (7)

where F is a nonconvex and non-smooth function and ξ is a
random variable. Following the setting of the previous work
(Kornowski & Shamir, 2023), we assume the stochastic
component f(·, ξ) is Lipschitz continuous with the Lipschitz
constant depending on ξ.
Assumption 1. For any ξ, f(·, ξ) is L1(ξ)-Lipschitz w.r.t.
∥·∥1. There is a L1 > 0 such that E[L1(ξ)

2] ≤ L2
1.

Without making additional assumptions on F , requir-
ing the convergence of an optimisation algorithm to-
wards a ϵ-Clarke stationary point is computationally in-
tractable (Zhang et al., 2020b), and finding a point that
is close enough to an ϵ-Clarke stationary point is simi-
larly impossible (Kornowski & Shamir, 2022). Previous
works (Cutkosky et al., 2023; Lin et al., 2022; Kornowski
& Shamir, 2023) focus on finding a (δ, ϵ)-stationary point
defined in the Euclidean space, i.e. a vector x satisfying
∥▽f(x)∥δ,2,2 ≤ ϵ. In case that f is L2-Lipschitz w.r.t. ∥·∥2,
the δ-neighbourhood ensures |f(x) − f(y)| ≤ δL2 for all
y ∈ B2(x, δ) around x. Despite the possibility that none
of the points in the ball are stationary, the objective values
at these points are close. However, if we relax the conti-
nuity by assuming Lipschitzness w.r.t. ∥·∥1, the difference
between the objective values can be multiplied by a factor
of

√
d in the worst case. Therefore, we make the neighbour-

hood smaller but relax the stationarity by considering the
condition ∥▽f(x)∥δ,1,∞ ≤ ϵ. For the rest of the paper, we
define

∂δf(x) = conv(∪y∈B1(x,δ)∂f(y)),

and
∥▽f(x)∥δ := min{∥g∥∞|g ∈ ∂δf(x)}.

Similar to the algorithm proposed in (Kornowski & Shamir,
2023), our idea is based on the relationship between the ℓ1-
ellipsoidal smoothing and the δ-subdifferential established
by the next proposition.
Proposition 1. Let f be L1-Lipschitz w.r.t. ∥·∥1 and Λ =
diag(λ) for λ ∈ Rd+. Define

fγ,Λ(x) := Euf(x+ γΛu)

for u randomly sampled from the uniform distribution over
the unit ℓ1-ball. Then we have ▽fγ,Λ(x) ∈ ∂γ∥λ∥2

f(x) and
∂δfγ,Λ(x) ⊆ ∂δ+γ∥λ∥2

f(x) for all x ∈ Rd.

Proposition 1 allows us to reduce the problem of finding a
(δ, ϵ)-stationary point of F to the problem of finding a (δ, ϵ)-
stationary point of Fγ,Λ, which is Lipschitz continuous and
everywhere differentiable. Next, we apply the online-to-
nonconvex technique (Cutkosky et al., 2023) to a sequence
of smooth functions, which is described in Algorithm 3. The
convergence of Algorithm 3 is analysed in Theorem 2.
Theorem 2. Let F : Rd → R be a function satisfying
Assumption 1 and

sup
x∈Rd

F (x1)− F (x) ≤ R.

6
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Algorithm 3 Stochastic Nonsmooth Optimisation
Input: ∆ > 0, K and T
Initialise: x11, y11
for k = 1, . . . ,K do

for t = 1, . . . , T do
Sample ξkt
Sample ηkt uniformly from [0, 1]
zkt := ykt + ηkt∆x

k
t

λkt,i :=
√

|xkt,i|+ 1
d for i = 1, . . . , d

gkt := GE(f(·, ξkt ), zkt , λkt , γ)
lkt := f(zkt + γΛkt u

k
t , ξ

k
t )

rkt := f(zkt − γΛkt u
k
t , ξ

k
t )

αkt := ( d
2

4γ2

∑t
s=1 |lks − rks |2)

1
2

xkt+1 = argminx∈B1(0,1)⟨gkt , x⟩+ Bϕ(x, xkt )
ykt+1 := ykt +∆xkt

end for
z̄k := 1

T

∑T
t=1 z

k
t

yk+1
1 := ykT+1

end for
Output: z̄ uniformly sampled from {z̄1, . . . , z̄K}

Given d ≥ 3, δ > 0 and ϵ > 0, there is a N ∈ O(
RdL2

1

ϵ3δ ),
such that Algorithm 3 with ∆ = δ

2T , N = TK,

T = min{N
2
, (Nδd

1
2L1R

−1)
2
3 },

γ = min{δ
4
, T−1N− 1

3 δ
2
3 (RdL2

1)
1
3 },

ϕ defined in (2) and GE described in Algorithm 2 outputs a
point z̄ satisfying E[∥▽F (z̄)∥δ] ≤ ϵ.

Sketch of the proof. Define

▽kt := E[▽Fγ,Λk
t
(ykt + ηkt∆x

k
t )|xkt ].

It follows from Proposition 2 in (Cutkosky et al., 2023) that

Fγ,Λk
t
(y)−Fγ,Λk

t
(x) = ⟨Eη[▽Fγ,Λk

t
(x+η(y−x))], y−x⟩,

holds for η randomly sampled from the uniform distribution
over [0, 1] and all x, y ∈ Rd. With this property, Algo-
rithm 3 ensures the inequality described in Lemma 4

Lemma 4. Let F : Rd → R be a function satisfying As-
sumption 1 and

sup
x∈Rd

F (x1)− F (x) ≤ R.

Then, running Algorithm 3 guarantees

−
K∑
k=1

T∑
t=1

⟨gkt , vk⟩ ≤
K∑
k=1

T∑
t=1

⟨gkt , xkt − vk⟩

+

K∑
k=1

T∑
t=1

⟨▽kt − gkt , x
k
t ⟩

+
R

∆
+

2
√
2NγL1

∆
,

for any v1, . . . , vk.

Setting vk = −∂∥·∥∞( 1
T

∑T
t=1 ▽

k
t ), we decompose the

convergence into

E[
K∑
k=1

∥
T∑
t=1

▽kt ∥∞] ≤E[
K∑
k=1

T∑
t=1

⟨▽kt − gkt , x
k
t ⟩]︸ ︷︷ ︸

A:Bias

+ E[
K∑
k=1

d∑
i=1

|
T∑
t=1

(▽kt,i − gkt,i)||vki |]︸ ︷︷ ︸
B:Variance

+ E[
K∑
k=1

T∑
t=1

⟨gkt , xkt − vk⟩]︸ ︷︷ ︸
C:Dynamic Regret

+
R

∆
+

2
√
2NγL1

∆

It can be proved that gkt is an unbiased estimator of ▽kt
leading to A = 0.

Term B is related to the variance of the estimated gradient.
It follows from the properties of the subgradient of the
maximum norm that the variance can be rewritten into

E[
K∑
k=1

d∑
i=1

|
T∑
t=1

(▽kt,i − gkt,i)||vki |]

=

K∑
k=1

d∑
i=1

E[|
T∑
t=1

(▽kt,i − gkt,i)||vki = 1]Pr(vki = 1).

Using the property of the ℓ1-ellipsoidal smoothing described
in Lemma 1, we can prove B ∈ O(L1K(dT )

1
2 ).

Finally, it follows from the property of the subdifferential
of the norm that ∥∂∥·∥∞(g)∥1 ≤ 1 holds for all g ∈ Rd,
which reduces the unconstrained stochastic optimisation to
an online optimisation over B1(0, 1). Because of the ℓ1-
ellipsoidal smoothing, the per-coordinate variance of the
gradient estimator is proportional to 1

|xk
t,i|+

1
d

, for which we
apply the mirror descent method introduced in Section 3.
The analysis of dynamic regret is similar to the analysis of
Algorithm 1, which leads to C ∈ O(L1K(dT )

1
2 ). The

7
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claimed result of Theorem 2 is obtained by choosing a
large enough size of the inner loop T and a small enough
smoothing parameter γ.

5. Conclusion
This paper proposes a new algorithm for bandit convex opti-
misation with two-point feedback over cross-polytopes. In-
spired by Audibert & Bubeck, we propose an ℓ1-ellipsoidal
smoothing technique for gradient estimation and a symmet-
ric version of the negative Tsallis-entropy for updating the
decision variable, which integrates the underlying mecha-
nism of INF seamlessly into the framework of bandit convex
optimisation. The proposed algorithm guarantees a regret
upper bounded by O(

√
dT ), which improves the dimension-

ality dependence of the best-known result (Akhavan et al.,
2022) by a factor of

√
log d.

Combined with the online-to-nonconvex technique proposed
by Cutkosky et al., our idea can be further applied to stochas-
tic optimisation of nonconvex and non-smooth objectives.
For objective functions that are L1-Lipschitz w.r.t 1-norm,
we propose a stochastic zeroth-order algorithm, which finds
a (δ, ϵ)-stationary point within O(dL2

1δ
−1ϵ−3) function

evaluations, matching the best-known result achieved re-
cently (Kornowski & Shamir, 2023).

Despite the theoretically advantageous characteristics of the
proposed algorithms, it is imperative to acknowledge the
practical limitations of the idea. For gradient-free optimi-
sation of smooth objectives with decision sets contained
in cross-polytopes, the application of standard MD with
mini-batches and the proposed update-generating function
is straightforward. However, due to the decision variable-
dependent smoothing, it is difficult to apply advanced vari-
ance reduction techniques, such as recursive gradient (Levy
et al., 2021), while keeping a small dependence on dimen-
sionality. In any case, a systematic examination of the
proposed algorithm’s performance through rigorous experi-
mentation is required.
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A. Missing Proofs
A.1. Proof of Lemma 1

Proof of Lemma 1. The first property is obtained from the L1-Lipschitz of f as follows

|fγ,Λ(x)− f(x)| =|E[f(x+ γΛu)− f(x)]|
≤E[|f(x+ γΛu)− f(x)|]
≤E[L1∥γΛu∥1]
≤γL1E[∥λ∥2∥u∥2]
≤γ∥λ∥2L1.

The second property is obtained by applying Lemma 1 in (Akhavan et al., 2022) to function f(Λ·) at Λ−1x. Since the
function f(x+ γΛ·) is γ∥λ∥2L1-Lipschitz-continuous w.r.t. ∥·∥2, we can apply Lemma 3 and Remark 1 in (Akhavan et al.,
2022) and obtain the third property as follows

E[|f(x+ γΛu)− E[f(x+ γΛu)]|2] ≤12γ2∥λ∥22L2
1

d2
(1 +

√
2)2

for d ≥ 3.

A.2. Proof of Lemma 2

Proof of Lemma 2. The statements of differentiability at x ̸= 0 are straightforward. For any h > 0, we have

lim
h↘0

ψ(0 + h)− ψ(0)

h
= lim
h↘0

1

h
(
2h√
β
− 4

√
β + h+ 4

√
β)

= lim
h↘0

1

h
(
2h√
β
− 4h√

β +
√
β + h

)

=0

Analogously, we also have limh↗0
ψ(0+h)−ψ(0)

h = 0, which implies ψ′(0) = 0. Using the same argument, it can be shown
that ψ is twice differentiable at 0 with ψ′′(0) = β− 3

2 . Since ψ′′(x) > 0 for all x ∈ R, we obtain the strict convexity.

Let θ ∈ (− 2√
β
, 2√

β
) be in the range of ψ′ with θ = ψ′(x). Since sgn(ψ′(x)) = sgn(x) holds for all x, the sign of θ is same

as the sign of x. Thus, we take the inverse of ψ′ according to the sign of θ.

To prove the last property, we first note that there is a c ∈ (0, 1) such that

Bψ(y, x) =
1

2
(|cx+ (1− c)y|+ β)−

3
2 (x− y)2

≥1

2
(max{|x|, |y|}+ β)−

3
2 (x− y)2.

W.l.o.g. we assume |ψ′(x)| ≤ |ψ′(y)|. Define g = ψ′(x)− ψ′(y). By the assumption on g, ψ′(x) + sgn(ψ′(x))|g| is in the
range of ψ′. Therefore, there is a z satisfying ψ′(z) = ψ′(x) + sgn(ψ′(x))|g|. Since ψ′ is increasing,

|ψ′(z)| = |ψ′(x) + sgn(ψ′(x))|g|| = |ψ′(x)|+ |g| ≥ |ψ′(x)− g| = |ψ′(y)|

implies |z| ≥ |y| and

Bψ(y, x) ≥1

2
(max{|x|, |y|}+ β)−

3
2 (x− y)2

≥1

2
(|z|+ β)−

3
2 (x− y)2.

Since z and x have the same sign, we have for β ≤ 1

|z|+ β =
4

( 2√
β+|x|

− |g|)2
=

4(|x|+ β)

(2− |g|
√

|x|+ β)2
.

10
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For 0 ≤ |g|
√

|x|+ β ≤ 1, we have 2− |g|
√
|x|+ β ≥ 1 and

|z|+ β ≤ 4(|x|+ β).

Thus, we obtain the last property

Bψ(y, x) ≥
1

2
(|z|+ β)−

3
2 (x− y)2

≥ 1

16
(|x|+ β)−

3
2 (x− y)2.

A.3. Proof of Lemma 3

Proof of Lemma 3. First, we obtain the following inequality from the optimality condition of the update rule.

⟨gt, xt+1 − x⟩ ≤αt⟨▽ϕ(xt+1)− ▽ϕ(xt), x− xt+1⟩
=αtBϕ(x, xt)− αtBϕ(x, xt+1)− αtBϕ(xt+1, xt).

(8)

Following the standard procedure of analysing MD, we have

⟨gt, xt − x⟩ =⟨gt, xt − xt+1⟩+ ⟨gt, xt+1 − x⟩
≤⟨gt, xt − xt+1⟩+ αtBϕ(x, xt)− αtBϕ(x, xt+1)− αtBϕ(xt+1, xt)

≤αtBϕ(x, xt)− αtBϕ(x, xt+1) +
4

αt

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2

(9)

where the first inequality uses (8) and the second inequality follows from the assumption |gt,i|
√

|xt,i|+ β ≤ αt and
Lemma 2. W.l.o.g. we assume α0 = 0. Adding up from 1 to T , we obtain

T∑
t=1

⟨gt, xt − x⟩ ≤
T∑
t=1

αt(Bϕ(x, xt)− Bϕ(x, xt+1)) +

T∑
t=1

4

αt

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2

≤α0Bϕ(x, x1) +
T∑
t=1

(αt − αt−1)Bϕ(x, xt) +
T∑
t=1

4

αt

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2

=αT max
x,y∈K

Bϕ(x, y) +
T∑
t=1

4

αt

d∑
i=1

(|xt,i|+ β)
3
2 |gt,i|2.

(10)

The Bregman divergence can be upper bounded by

Bϕ(x, y) ≤⟨▽ϕ(x)− ▽ϕ(y), x− y⟩
≤∥▽ϕ(x)− ▽ϕ(y)∥∞∥x− y∥1,

≤8Dβ− 1
2 ,

(11)

where the first inequality follows from the convexity of ϕ, the second line uses the Hölder’s inequality and the last line uses
the boundness of the decision set. Combining (10) and (11), we obtain the desired result.

A.4. Proof of Proposition 1

Proof of Proposition 1. The proof follows the idea in (Lin et al., 2022). Define f̃(x) : Rd → R, x 7→ f(Λx). Since
f is Lipschitz continuous, f̃ is also Lipschitz continuous. It follows from Lemma 1 in (Akhavan et al., 2022) that
f̃γ := Eu[f̃(·+ γu)] is differentiable everywhere. Thus, for all x ∈ Rd, we have

lim
∥Λ−1v∥2→0

fγ,Λ(x+ v)− fγ,Λ(x)− ⟨Λ−1▽f̃γ(Λ−1x), v⟩
∥Λ−1v∥2

= lim
∥Λ−1v∥2→0

f̃γ(Λ
−1x+ Λ−1v)− f̃γ(Λ

−1x)− ⟨▽f̃γ(Λ−1x),Λ−1v⟩
∥Λ−1v∥2

=0,

(12)
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which implies that fγ,Λ is differentiable with ▽fγ,Λ(x) = Λ−1▽f̃γ(Λ−1x). It follows from the Lipschitz continuity of f that
f is almost everywhere differentiable. Let U ⊆ B1(0, γ) with vol(B1(0, γ)) = vol(U) and f is everywhere differentiable
in U . For a differentiable vector x+ Λu and any h, the L1-Lipschitz of f ensures

|f(x+ h+ Λu)− f(x+ Λu)− ⟨▽f(x+ Λu), h⟩
∥h∥1

| ≤ 2L1.

It follows from the dominated convergence theorem that

lim
∥h∥1→0

fγ,Λ(x+ h)− fγ,Λ(x)− ⟨ 1
vol(U)

∫
u∈U ▽f(x+ Λu)du, h⟩

∥h∥1

= lim
∥h∥1→0

fγ,Λ(x+ h)− fγ,Λ(x)− 1
vol(B1(0,γ))

∫
u∈U ⟨▽f(x+ Λu), h⟩du

∥h∥1

=
1

vol(B1(0, γ))

∫
u∈U

( lim
∥h∥1→0

f(x+ h+ Λu)− f(x+ Λu)− ⟨▽f(x+ Λu), h⟩
∥h∥1

)du

=0,

holds for all x, i.e. ▽fγ,Λ(x) = 1
vol(B1(0,γ))

∫
u∈U (▽f(x+ Λu))du.

Next, we define the set UΛ(x) = {x+ Λu|u ∈ U}. Then, the subgradient can be rewritten into

▽fγ,Λ(x) =
1

vol(B1(0, γ))

∫
y∈UΛ(x)

(▽f(y))dy

For Λ = diag(λ) and any y ∈ UΛ(x), there is an u in U such that

∥y − x∥1 ≤ ∥Λu∥1 ≤ ∥λ∥2∥u∥2 ≤ ∥λ∥2∥u∥1 ≤ γ∥λ∥2,

i.e. UΛ(x) ⊆ B1(x, γ∥λ∥2). Assume the existence of x0 with ▽fγ,Λ(x0) /∈ ∂γ∥λ∥2
f(x0). Then there is some w ∈ Rd and

c ∈ R such that
⟨w, g⟩ < c ≤ ⟨w,▽fγ,Λ(x0)⟩,

for all g ∈ ∂γ∥λ∥2
f(x0) (Rockafellar & Wets, 2009), which leads to a contradiction to UΛ(x) ⊆ B1(x, γ∥λ∥2). Thus, we

conclude ▽fγ,Λ(x) ∈ ∂γ∥λ∥2
f(x) for all x ∈ Rd.

Finally, let g ∈ ∂δfγ,Λ(x) be in the δ-subdifferential of fγ,Λ at some point x. Then, by definition, there are y1, . . . , yn ∈
B1(x, δ) and a ∈ [0, 1]n such that g =

∑n
i=1 ai▽fγ,Λ(yi). Since

▽fγ,Λ(yi) ∈ ∂γ∥λ∥2
f(yi) = conv{∪z∈B1(yi,γ∥λ∥2)∂f(z)} ⊆ conv{∪z∈B1(x,δ+γ∥λ∥2)∂f(z)} = ∂δ+γ∥λ∥2

f(x)

holds for all i = 1 . . . , n, we obtain g ∈ ∂δ+γ∥λ∥2
f(x).

A.5. Proof of Theorem 2

Proof of Lemma 4. For simplicity, we set N = KT and we use vkt = v(k−1)T+t for any sequence v1, . . . , vKT . First of all,
we have

F (yn+1)− F (yn)

=Fγ,Λn
(yn+1)− Fγ,Λn

(yn) + F (yn+1)− Fγ,Λn
(yn+1)− F (yn) + Fγ,Λn

(yn)

≤Fγ,Λn
(yn+1)− Fγ,Λn

(yn) + 2γ∥λn∥2L1

=

∫ 1

0

⟨▽Fγ,Λn(yn + η∆xn),∆xn⟩dη + 2γ∥λn∥2L1

=⟨E[▽Fγ,Λn(yt + η∆xn)],∆xn⟩+ 2γ∥λn∥2L1

=⟨▽n,∆xn⟩+ 2γ∥λn∥2L1

=∆⟨▽n − gn, xn⟩+∆⟨gn, xn − wn⟩+∆⟨gn, wn⟩+ 2γ∥λn∥2L1,

12



Improved Zeroth-Order Optimisation over Cross-Polytopes

where the first inequality follows from Lemma 2, the third line uses the differentability of fγ,Λ, we define ▽n =
E[▽fγ,Λn(zn + ηxn)] and {wn} is any sequence. Adding up from 1 to N , taking expectation and rearranging, we
obtain

−R ≤F (yN+1)− F (y1)

=

N∑
n=1

(F (yt+1)− F (yt))

≤∆

N∑
n=1

⟨▽n − gn, xn⟩+∆

N∑
n=1

⟨gn, xn − wn⟩+∆

N∑
n=1

⟨gn, wn⟩+ 2γL1

N∑
n=1

∥λn∥2

(13)

Combining (13) and (14) and rearranging, we have

−
N∑
n=1

⟨gn, wn⟩ ≤
N∑
n=1

⟨▽n − gn, xn⟩+
R

∆
+

N∑
n=1

⟨gn, xn − wn⟩+
2γL1

∑N
n=1∥λn∥2
∆

.

Setting wk1 =, . . . ,= wkT = vk and using the fact ∥λn∥2 ≤
√
2, we obtain the claimed result.

Proof of Theorem 2. For simplicity, we set N = KT and we use vkt = v(k−1)T+t for any sequence v1, . . . , vKT . Lemma 4
can be directly applied with −wk1 =, . . . ,= −wkT = −vk ∈ ∂∥·∥∞(

∑T
t=1 ▽

k
t ) and yields

−
K∑
k=1

T∑
t=1

⟨gkt , vk⟩ ≤
K∑
k=1

T∑
t=1

⟨▽kt − gkt , x
k
t ⟩+

R

∆
+

K∑
k=1

T∑
t=1

⟨gkt , xkt − vk⟩+ 2
√
2γL1N

∆
.

With the choice of vk and the property of the subgradient of norms, we obtain

−
K∑
k=1

T∑
t=1

⟨gkt , vk⟩ =
K∑
k=1

⟨
T∑
t=1

(▽kt − gkt ), vk⟩ −
K∑
k=1

⟨
T∑
t=1

▽kt , vk⟩

=

K∑
k=1

⟨
T∑
t=1

(▽kt − gkt ), vk⟩+
K∑
k=1

∥
T∑
t=1

▽kt ∥∞

≥−
K∑
k=1

d∑
i=1

|
T∑
t=1

(▽kt,i − gkt,i)||vki |+
K∑
k=1

∥
T∑
t=1

▽kt ∥∞.

Combining the inequality above, rearranging and taking expectation, we obtain

E[
K∑
k=1

∥
T∑
t=1

▽kt ∥∞] ≤R
∆

+
2
√
2NγL1

∆
+ E[

K∑
k=1

T∑
t=1

⟨▽kt − gkt , x
k
t ⟩]︸ ︷︷ ︸

A:Bias

+ E[
K∑
k=1

d∑
i=1

|
T∑
t=1

(▽kt,i − gkt,i)||vki |]︸ ︷︷ ︸
B:Variance

+E[
K∑
k=1

T∑
t=1

⟨gkt , xkt − vk⟩]︸ ︷︷ ︸
C:Dynamic Regret

Bounding A We first show that gn is an unbiased estimator of ▽n. Using the total law of expectation and the definition of
gn, we have

E[⟨▽n − gn, xn⟩]
=E[Eηn,un,ξn [Eun,ξn [Eξn [⟨▽n − gn, xn⟩|un]|ηn]|xn, yn]]

=E[Eηn,un,ξn [Eun,ξn [⟨▽n − d

2γ
(F (yn + ηnxn + γΛnun)− F (yn + ηnxn − γΛnun))Λ

−1
n sgn(un), xn⟩|ηn]|xn, yn]]

=E[Eηn,un,ξn [⟨▽n − ▽Fγ,Λn
(yn + ηnxn), xn⟩|xn, yn]]

=0.

(14)

13
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Bounding B To upper bound the variance, we consider a special choice of vk. Define I = argmaxi∈[d] |
∑T
t=1 ▽

k
t,i|. We

choose

vki =

{
sgn(

∑T
t=1 ▽k

t,k)

|I| i ∈ I

0 i /∈ I,

vk is clearly a subdifferential of the maximum norm. Furthermore, if
∑T
t=1 ▽

k
t is a random vector, vk is also a random

vector. Thus, we obtain

E[
K∑
k=1

d∑
i=1

|
T∑
t=1

(▽kt,i − gkt,i)||vki |] =
K∑
k=1

d∑
i=1

E[|
T∑
t=1

(▽kt,i − gkt,i)||vki = 1]Pr(vki = 1).

Since gkt is an unbiased estimator of ▽kt , the conditional variance can be bounded as follows.

E[|
T∑
t=1

(▽kt,i − gkt,i)|2|vki = 1] =

T∑
t=1

E[(▽kt,i − gkt,i)
2|vki = 1]

≤
T∑
t=1

E[(gkt,i)2|vki = 1]

=

T∑
t=1

E[E[E[(gkt,i)2|zt]|ξkt ]|vki = 1]

≤ d3

4γ2

T∑
t=1

E[E[E[|f(zkt + γΛkt u
k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2|zt]|ξkt ]|vki = 1]

≤2cd

T∑
t=1

E[L1(ξ
k
t )

2|vki = 1]

≤2cdTL2
1,

where the first inequality follows from the property of variance, the second inequality uses the definition of gn and choice of
β, the third inequality follows from Lemma 1 and the last inequality uses Assumption 1. Applying Jensen’s inequality and
total law of expectation, we obtain

E[
K∑
k=1

⟨
T∑
t=1

(▽kt − gkt ), vk⟩] ≤
K∑
k=1

d∑
i=1

E[|
T∑
t=1

(▽kt,i − gkt,i)||vki = 1]Pr(vki = 1)

=

K∑
k=1

d∑
i=1

E[(|
T∑
t=1

(▽kt,i − gkt,i)|2)
1
2 |vki = 1]Pr(vki = 1)

≤
K∑
k=1

d∑
i=1

(E[|
T∑
t=1

(▽kt,i − gkt,i)|2|vki = 1])
1
2 Pr(vki = 1)

≤
K∑
k=1

(2cdT )
1
2L1

d∑
i=1

Pr(vki = 1)

=(2cdT )
1
2KL1.

Bounding C Finally, the dynamic regret can be upper bounded by applying Lemma 3 to each k ∈ [K]. Setting

αkt = (
d2

4γ2

t∑
s=1

|f(zks + γΛksu
k
s)− f(zks − γΛksu

k
s)|2)

1
2

14
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ensures |gkt,i|
√
|xkt,i|+ β ≤ αkt . From Lemma 3 it follows that

T∑
t=1

⟨gkt , xkt − vk⟩ ≤8αkT d
1
2 +

T∑
t=1

4

αkt

d∑
i=1

(|xkt,i|+ β)
3
2 |gkt,i|2

=8αkT d
1
2 +

T∑
t=1

4

αkt

d2

4γ2
|f(zkt + γΛkt u

k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2

d∑
i=1

(|xkt,i|+ β)
1
2

≤8αkT d
1
2 + d

1
2

T∑
t=1

4

αkt

d2

4γ2
|f(zkt + γΛkt u

k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2

√√√√ d∑
i=1

(|xkt,i|+ β)

≤8αkT d
1
2 + 4

√
2d

1
2

T∑
t=1

1

αkt

d2

4γ2
|f(zkt + γΛkt u

k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2

≤(8d
1
2 + 8

√
2d

1
2 )(

T∑
t=1

d2

4γ2
|f(zkt + γΛkt u

k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2)

1
2 .

Taking expectations, we have

E[
T∑
t=1

⟨gkt , xkt − vk⟩] ≤(8d
1
2 + 8

√
2d

1
2 )E[(

T∑
t=1

d2

4γ2
|f(zkt + γΛkt u

k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2)

1
2 ]

≤(8d
1
2 + 8

√
2d

1
2 )(

T∑
t=1

E[
d2

4γ2
|f(zkt + γΛkt u

k
t , ξ

k
t )− f(zkt − γΛkt u

k
t , ξ

k
t )|2])

1
2

Applying Lemma 1, we obtain

E[(
d2

4γ2
|f(xkt + γΛkt u

k
t , ξ

k
t )− f(xkt − γΛkt u

k
t , ξ

k
t )|2]

=E[E[E[
d2

4γ2
|f(xkt + γΛkt u

k
t , ξ

k
t )− f(xkt − γΛkt u

k
t , ξ

k
t )|2|ξkt ]|xkt ]]

≤d
2

γ2
E[E[Var(f(xkt + γΛkt u

k
t , ξ

k
t )|ξkt )|xkt ]]

≤2cE[E[L1(ξ
k
t )

2|xkt ]]
≤2cL2

1,

where the second inequality follows from Lemma 1 and the last inequality uses Assumption 1. Thus, the dynamic regret is
upper bounded by

E[
T∑
t=1

⟨gkt , xkt − vk⟩] ≤(8
√
2 + 16)c

1
2 d

1
2L1T

1
2

Combining the upper bounds of A, B and C, we have

E[
K∑
k=1

∥
T∑
t=1

▽kt ∥∞] ≤R
∆

+
2
√
2NγL1

∆
+ (2cdT )

1
2KL1 + (8

√
2 + 16)c

1
2 d

1
2L1KT

1
2 .

Finally, ▽kt ∈ ∂T∆Fγ,Λk
t
(z̄k) ⊆ ∂T∆+2γF (z̄

k) follows definition of δ-subdifferential and Proposition 1. Thus, we have
1
T

∑T
t=1 ▽

k
t ∈ ∂T∆+2γF (z̄

k) and

E[∥▽F (z̄)∥T∆+2γ ] ≤E[
1

K

K∑
k=1

∥ 1
T

T∑
t=1

▽kt ∥∞]

≤ R

N∆
+

2
√
2γL1

∆
+

(2cd)
1
2L1

T
1
2

+
(8
√
2 + 16)c

1
2 d

1
2L1

T
1
2

.
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Setting T = min{N2 , (Nδd
1
2L1R

−1)
2
3 }, ∆ = δ

2T ,γ = min{ δ4 , T
−1N− 1

3 δ
2
3 (RdL2

1)
1
3 }, we obtain

E[∥▽F (z̄)∥δ] ≤max{N− 1
2 c̄3d

1
2L1, c̃3(Nδ)

− 1
3 (RdL2

1)
1
3 },

where c̄3 and c̃3 care constants independent of d, L1 and R. Thus, given a fixed ϵ and δ, the algorithm requires O(
RdL2

1

ϵ3δ )
steps to ensure E[∥▽F (z̄)∥δ] ≤ ϵ.
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