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Abstract

We propose a principled method for autoencoding with random forests. Our strat-
egy builds on foundational results from nonparametric statistics and spectral graph
theory to learn a low-dimensional embedding of the model that optimally represents
relationships in the data. We provide exact and approximate solutions to the decod-
ing problem via constrained optimization, split relabeling, and nearest neighbors
regression. These methods effectively invert the compression pipeline, establishing
a map from the embedding space back to the input space using splits learned by
the ensemble’s constituent trees. The resulting decoders are universally consistent
under common regularity assumptions. The procedure works with supervised or
unsupervised models, providing a window into conditional or joint distributions.
We demonstrate various applications of this autoencoder, including powerful new
tools for visualization, compression, clustering, and denoising. Experiments il-
lustrate the ease and utility of our method in a wide range of settings, including
tabular, image, and genomic data.

1 Introduction

Engineering compact, informative representations is central to many learning tasks [58, 96, 11, 44, 81].
In supervised applications, it can simplify regression or classification objectives, helping users better
understand the internal operations of large, complicated models [42, 104]. In reinforcement learning,
embeddings help agents navigate complex environments, imposing useful structure on a potentially
high-dimensional state space [2, 63]. In unsupervised settings, latent projections can be used for data
compression [69], visualization [93], clustering [97], and generative modeling [92].

The current state of the art in representation learning is dominated by deep neural networks (DNNs).
Indeed, the tendency of these algorithms to learn rich embeddings is widely cited as a key component
of their success [44], with some even arguing that large language models are essentially compression
engines [29]. It is less obvious how to infer latent factors from tree-based ensembles such as random
forests (RFs) [17], a popular and flexible function class widely used in areas like bioinformatics [23]
and econometrics [3]. DNNs are known to struggle in tabular settings with mixed continuous and
categorical covariates, where tree-based ensembles typically match or surpass their performance
[86, 48]. Though several authors have proposed methods for computing nonlinear embeddings with
RFs (see Sect. 2), these approaches tend to be heuristic in nature. Moreover, the task of decoding
latent vectors to recover input data in these pipelines remains unresolved.

We propose a novel, principled method for autoencoding with RFs. Our primary contributions are: (1)
We prove several important properties of the adaptive RF kernel, including that it is asymptotically
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universal. (2) These results motivate the use of diffusion maps to perform nonlinear dimensionality
reduction and manifold learning with RFs. Resulting embeddings can be used for various downstream
tasks. (3) We introduce and study multiple methods for decoding spectral embeddings back into
the original input space, including exact and approximate solutions based on constrained optimiza-
tion, split relabeling, and nearest neighbors regression. (4) We apply these methods in a series of
experiments and benchmark against a wide array of neural and tree-based alternatives. Our results
demonstrate that the RF autoencoder is competitive with the state of the art across a range of tasks
including data visualization, compression, clustering, and denoising.

The remainder of this paper is structured as follows. After a review of background material and
related work (Sect. 2), we propose and study methods for encoding (Sect. 3) and decoding (Sect.
4) data with RFs. Performance is illustrated in a series of experiments (Sect. 5). Following a brief
discussion (Sect. 6), we conclude with directions for future work (Sect. 7).

2 Background

Our starting point is the well established connection between RFs and kernel methods [16, 28, 83].
The basic insight is that classification and regression trees (CART) [18], which serve as basis functions
for many popular ensemble methods, are a kind of adaptive nearest neighbors algorithm [66]. At the
root of the tree, all samples are connected. Each split severs the link between one subset of the data
and another (i.e., samples routed to left vs. right child nodes), resulting in a gradually sparser graph as
depth increases. At completion, a sample’s “neighbors” are just those datapoints that are routed to the
same leaf. Given some feature space X ⊂ RdX , the implicit kernel of tree b, k(b) : X × X 7→ {0, 1},
is an indicator function that evaluates to 1 for all and only neighboring sample pairs.2 This base
kernel can be used to define different ensemble kernels. For instance, taking an average over B > 1
trees, we get a kernel with a simple interpretation as the proportion of trees in which two samples
colocate: kS(x,x′) = B−1

∑B
b=1 k

(b)(x,x′). We call this the Scornet kernel after one of its noted
proponents [83], who showed that kS is provably close in expectation to the RF similarity function:

kRF
n (x,x′) =

1

B

B∑
b=1

(
k(b)(x,x′)∑n
i=1 k

(b)(x,xi)

)
, (1)

where i ∈ [n] := {1, . . . , n} indexes the training samples. This represents the average of normalized
tree kernels, and fully encodes the information learned by the RF fn via the identity:

fn(x) =

n∑
i=1

kRF
n (x,xi) yi, (2)

which holds uniformly for all x ∈ X . Though kS is sometimes referred to as “the random forest
kernel” [28, 76], this nomenclature is misleading—only kRF

n satisfies Eq. 2.

Several nonlinear dimensionality reduction techniques are based on kernels, most notably kernel
principal component analysis (KPCA) [80]. We focus in particular on diffusion maps [25, 26], which
can be interpreted as a form of KPCA [52]. Bengio et al. [10] establish deep links between these
algorithms and several related projection methods, demonstrating how to embed test data in all
settings via the Nyström formula, a strategy we adopt below. Inverting any KPCA algorithm to map
latent vectors to the input space is a nontrivial task that must be tailored to each specific kernel. For
an example with Gaussian kernels, see [72].

Previous authors have explored feature engineering with RFs. Shi and Horvath [85] perform multi-
dimensional scaling on a dissimilarity matrix extracted from supervised and unsupervised forests.
However, they do not explore the connections between this approach and kernel methods, nor do they
propose any strategy for decoding latent representations. More heuristic approaches involve running
PCA on a weighted matrix of all forest nodes (not just leaves), a method that works well in some
experiments but comes with no formal guarantees [77].

2This ignores certain subtleties that arise when trees are grown on bootstrap samples, in which case k(b)

may occasionally evaluate to larger integers. For present purposes, we presume that trees are grown on data
subsamples; see Appx. A.
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Figure 1: Visual summary of the encoding pipeline. (a) Input data can be a mix of continuous, ordinal,
and/or categorical variables. (b) A RF (supervised or unsupervised) is trained on the data. (c) A kernel
matrix K ∈ [0, 1]n×n is extracted from the ensemble. (d) K is decomposed into its eigenvectors and
eigenvalues, as originally proposed by David Hilbert (pictured). (e) Data is projected onto the top
dZ < n principal components of the diffusion map, resulting in a new embedding Z ∈ Rn×dZ .

Several generative algorithms based on RFs have been proposed, building on the probabilistic circuit
literature [27, 99]. These do not involve any explicit encoding step, although the models they train
could be passed through our pipeline to extract latent embeddings (see Sect. 5). Existing methods for
sum-product network encoding could in principle be applied to an RF following compilation into a
corresponding circuit [95]. However, these can often increase rather than decrease dimensionality,
and do not come with any associated decoding procedure.

Recent work has explored autoencoding for tree- and forest-based models. Carreira-Perpiñán and
Gazizov [20] introduce a sparse oblique tree where each node performs a local linear reconstruction
via PCA, yielding a tree-structured autoencoder without use of kernels or ensembles. Aumon et al.
[4] propose an RF-informed neural autoencoder, which extracts forest-induced sample similarities to
inject supervised signals into network embeddings for data visualization. By contrast, we learn latent
representations directly from the RF and implement explicit decoding rules for both supervised and
unsupervised settings without an auxiliary model.

Perhaps the most similar method to ours, in motivation if not in execution, is Feng and Zhou’s encoder
forest (eForest) [34]. This algorithm maps each point to a hyperrectangle defined by the intersection
of all leaves to which the sample is routed. Decoding is then achieved by taking some representative
value for each feature in the subregion (e.g., the median). Notably, this approach does not include
any dimensionality reduction. On the contrary, the embedding space requires minima and maxima
for all input variables, resulting in a representation with double the number of features as the inputs.
Working from the conjecture that optimal prediction is equivalent to optimal compression [78, 58, 49],
we aim to represent the information learned by the RF in relatively few dimensions.

3 Encoding

As a preliminary motivation, we prove that the RF similarity function is a proper kernel with several
notable properties. The following definitions are standard in the literature. Let X be a compact metric
space, and let C(X ) be the set of all real-valued continuous functions on X .
Definition 3.1 (Positive semidefinite). A symmetric function k : X ×X 7→ R is positive semidefinite
(PSD) if, for all x1, . . . ,xn ∈ X , n ∈ N, and ci, cj ∈ R, we have:

∑n
i,j ci cj k(xi,xj) ≥ 0.

The Moore-Aronszajn theorem [1] states that PSD kernels admit a unique reproducing kernel Hilbert
space (RKHS) [12], providing a rich mathematical language for analyzing their behavior.
Definition 3.2 (Universal). We say that the RKHS H is universal if the associated kernel k is dense
in C(X ) with respect to the uniform norm. That is, for any f∗ ∈ C(X ) and ϵ > 0, there exists some
f ∈ H such that ∥f∗ − f∥∞ < ϵ.

Several variants of universality exist with slightly different conditions on X [87]. Examples of
universal kernels include the Gaussian and Laplace kernels [88].
Definition 3.3 (Characteristic). The bounded measurable kernel k is characteristic if the function
µ 7→

∫
X k(·,x) dµ(x) is injective, where µ is a Borel probability measure on X .
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Characteristic kernels are especially useful for statistical testing, and have inspired flexible nonpara-
metric methods for evaluating marginal and conditional independence [46, 39]. For instance, Gretton
et al. [47] show that, when using a characteristic kernel k, the maximum mean discrepancy (MMD)
between two measures µ, ν on X is zero iff µ = ν. The MMD is defined as:

MMD2(µ, ν; k) := Ex,x′∼µ[k(x,x
′)]− 2Ex∼µ,y∼ν [k(x,y)] + Ey,y′∼ν [k(y,y

′)].

With these definitions in place, we state our first result (all proofs in Appx. A).

Theorem 3.4 (RF kernel properties). Assume standard RF regularity conditions (see Appx. A). Then:
(a) For all n ∈ N, the function kRF

n is PSD and the kernel matrix K ∈ [0, 1]n×n is doubly stochastic.
(b) Let {fn} be a sequence of RFs. Then the associated RKHS sequence {Hn} is asymptotically
universal. That is, for any f∗ ∈ C(X ) and ϵ > 0, we have:

lim
n→∞

P
(
∥f∗ − fn∥∞ ≥ ϵ

)
= 0.

(c) The RKHS sequence {Hn} is asymptotically characteristic. That is, for any ϵ > 0, the Borel
measures µ, ν are equal if and only if:

lim
n→∞

P
(
MMD(µ, ν; kRF

n ) ≥ ϵ
)
= 0.

The literature on kernel methods is largely focused on fixed kernels such as the radial basis function
(RBF). Among adaptive partitioning alternatives, the Scornet kernel been studied in some detail
[28, 83, 76], as has the Mondrian kernel [64, 73, 21]. However, to the best of our knowledge, we
are the first to establish these properties for the RF kernel. Thm. 3.4 confirms that kRF

n is flexible,
informative, and generally “well-behaved” in ways that will prove helpful for autoencoding.

Spectral Graph Theory A key insight from spectral graph theory is that for any PSD kernel k,
there exists an encoding g : X 7→ Z for any embedding dimension dZ < n that optimally represents
the data, in a sense to be made precise below. This motivates our use of diffusion maps [26, 25],
which are closely related to Laplacian eigenmaps [8, 9], an essential preprocessing step in popular
spectral clustering algorithms [75, 97, 59]. These methods are typically used with fixed kernels such
as the RBF; by contrast, we use the adaptive RF kernel, which is better suited to mixed tabular data.

The procedure begins with a dataset of paired feature vectors x ∈ X ⊂ RdX and outcomes y ∈ Y ⊂ R
sampled from the joint distribution PXY .3 A RF of B trees fn is trained on {xi, yi}ni=1. Using Eq.
1, we construct the kernel matrix K ∈ [0, 1]n×n with entries kij = kRF

n (xi,xj). This defines a
weighted, undirected graph Gn over the training data. As K is doubly stochastic, it can be interpreted
as encoding the transitions of a Markov process. Spectral analysis produces the decomposition
KV = VΛ, where V ∈ Rn×n denotes the eigenvector matrix with corresponding eigenvalues
λ ∈ [0, 1]n, and Λ = diag(λ). Indexing from zero, it can be shown that V0 is constant, with
1 = λ0 ≥ λ1 ≥ · · · ≥ λn. Following standard convention, we drop this uninformative dimension
and take the leading eigenvectors from V1.

The elements of this decomposition have several notable properties.4 For instance, the resulting
eigenvectors uniquely solve the constrained optimization problem:

min
V∈Rn×dZ

∑
i,j

kij ∥vi − vj∥2 s.t. V⊤V = I,

for all dZ ∈ [n], thereby minimizing Dirichlet energy and producing the smoothest possible represen-
tation of the data that preserves local relationships in the graph. These eigenvectors also simplify
a number of otherwise intractable graph partition problems, providing smooth approximations that
motivate spectral clustering approaches [84, 97]. If we think of Gn as a random sample from a
Riemannian manifold M, then scaling each Vj by

√
nλtj produces an approximation of the jth eigen-

function of the Laplace-Beltrami operator at time t, which describes how heat (or other quantities)

3Even in the unsupervised case, we typically train the ensemble with a regression or classification objective.
The trick is to construct some Y that encourages the model to make splits that are informative w.r.t. PX (e.g.,
[85, 99]). For fully random partitions, Y can be any variable that is independent of the features (e.g., [41, 40]).

4Observe that the eigenvectors of K are identical to those of the graph Laplacian L = I−K, which has jth
eigenvalue γj = 1− λj . For more on the links between diffusion and Laplacian eigenmaps, see [62, 52].
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diffuse across M [8, 10]. Euclidean distance in the resulting space matches diffusion distances across
Gn, providing a probabilistically meaningful embedding geometry [26].

The diffusion map Z =
√
nVΛt represents the long-run connectivity structure of the graph after t

time steps of a Markov process. Test data can be projected into spectral space via the Nyström formula
[51], i.e. Z0 = K0ZΛ

−1 for some K0 ∈ [0, 1]m×n, where rows index test points and columns index
training points. For more details on diffusion and spectral graph theory, see [24, 74, 97].

4 Decoding

Our next task is to solve the inverse problem of decoding vectors from the spectral embedding space
back into the original feature space—i.e., learning the function h : Z 7→ X such that x ≈ h

(
g(x)

)
.

We propose several solutions, including methods based on constrained optimization, split relabeling,
and k-nearest neighbors. To study the properties of these different methods, we introduce the notion
of a universally consistent decoder.
Definition 4.1 (Universally consistent decoder). Let g∗ : X 7→ Z be a lossless encoder. Then we say
that the sequence of decoders {hn : Z 7→ X} is universally consistent if, for all distributions PX ,
any x ∼ PX , and all ϵ > 0, we have:

lim
n→∞

P
(
∥x− hn

(
g∗(x)

)
∥∞ ≥ ϵ

)
= 0.

The first two methods—constrained optimization and split relabeling—are designed to infer likely leaf
assignments for latent vectors z. If these are correctly determined, then the intersection of assigned
leaves defines a bounding box that contains the corresponding input vector x. Our estimate x̂ is then
sampled uniformly from this subspace, which is generally small for sufficiently large and/or deep
forests. As a motivation for this approach, we show that a leaf assignment oracle would constitute a
universally consistent decoder.

Let d(b)Φ be the number of leaves in tree b, and dΦ =
∑B

b=1 d
(b)
Φ the number of leaves in the forest

f . The function πf : X 7→ {0, 1}dΦ maps each sample x to its corresponding leaves in f . It is
composed by concatenating the outputs of B unique functions π(b)

f : X 7→ {0, 1}d(b)
Φ , each satisfying

∥π(b)
f (x)∥1 = 1 for all x ∈ X . Let ψf : Z 7→ {0, 1}dΦ be a similar leaf assignment function, but

for latent vectors. Then for a fixed forest f and encoder g, the leaf assignment oracle ψ∗
f,g satisfies

πf (x) = ψ∗
f,g

(
g(x)

)
, for all x ∈ X .

Theorem 4.2 (Oracle consistency). Let fn be a RF trained on {xi, yi}ni=1
i.i.d.∼ PXY . Let h∗n : Z 7→ X

be a decoder that (i) maps latent vectors to leaves in fn via the oracle ψ∗
fn,g

; then (ii) reconstructs
data by sampling uniformly from the intersection of assigned leaves for each sample. Then, under the
assumptions of Thm. 3.4, the sequence {h∗n} is universally consistent.

4.1 Constrained Optimization

Our basic strategy for this family of decoders is to estimate a kernel matrix from a set of embeddings,
then use this matrix to infer leaf assignments. Let s ∈ {1/[n−1]}dΦ be a vector of inverse leaf sample
sizes, composed of tree-wise vectors s(b) with entries s(b)i = 1/

∑n
j=1 π

(b)
i (xj). Then the canonical

feature map for the RF kernel can be written ϕ(x) =
[
ϕ(1)(x), . . . , ϕ(B)(x)

]
, with tree-wise feature

maps ϕ(b)(x) = π(b)(x)⊙
√
s(b), where ⊙ denotes the Hadamard (element-wise) product. Now RF

kernel evaluations can be calculated via the scaled inner product kRF
n (x,x′) = B−1⟨ϕ(x), ϕ(x′)⟩,

which is equivalent to Eq. 1.

Say we have n training samples used to fit the forest fn, and m latent vectors to decode from an
embedding space of dimension dZ < n. We will refer to these samples as a test set, since they may
not correspond to any training samples. We are provided a matrix of embeddings Z0 ∈ Rm×dZ ,
from which we estimate the corresponding kernel matrix K̂0 = Z0ΛZ†, where Z† denotes the
Moore-Penrose pseudo-inverse of Z.

Now we must identify the most likely leaf assignments for each of our m (unseen) test samples
X0 ∈ Rm×dX , given their latent representation Z0. Call this target matrix Ψ ∈ {0, 1}m×dΦ . To
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estimate it, we start with the binary matrix of leaf assignments for training samples Π ∈ {0, 1}n×dΦ .
Exploiting the inner product definition of a kernel, observe that our original (training) adjacency
matrix K satisfies BK = ΦΦ⊤ = ΠSΠ⊤, where Φ ∈ [0, 1]n×dΦ is the RKHS representation of
X, and S = diag(s). We partition [dΦ] into B subsets L(b) that index the leaves belonging to tree b.
Recall that each tree b partitions the feature space X into L(b) hyperrectangular subregions X (b)

ℓ ⊂ X ,
one for each leaf ℓ ∈ [L(b)]. Let R(b)

i ∈ {X (b)
1 , . . . ,X (b)

L(b)} denote the region to which sample i is
routed in tree b. Then leaf assignments for test samples can be calculated by solving the following
integer linear program (ILP):

min
Ψ∈{0,1}m×dΦ

∥BK̂⊤
0 −ΠSΨ⊤∥1 s.t. ∀i, b :

∑
ℓ∈L(b)

ψiℓ = 1, ∀i :
⋂

b∈[B]

R
(b)
i ̸= ∅. (3)

The objective is an entry-wise L1 norm that effectively treats the resulting matrix as a stacked vector.
The first constraint guarantees that test samples are one-hot encoded on a per-tree basis. The second
constraint states that the intersection of all assigned hyperrectangles is nonempty. We call these the
one-hot and overlap constraints, respectively. Together they ensure consistent leaf assignments both
within and between trees. The ILP approach comes with the following guarantee.
Theorem 4.3 (Uniqueness). Assume we have a lossless encoder g∗ : X 7→ Z such that the estimated
K̂0 coincides with the ground truth K∗

0. Then, under the assumptions of Thm. 3.4, as n→ ∞, with
high probability, the ILP of Eq. 3 is uniquely solved by the true leaf assignments Ψ∗.

Together with Thm. 4.2, Thm. 4.3 implies that the ILP approach will converge on an exact recon-
struction of the data under ideal conditions. While this may be encouraging, there are two major
obstacles in practice. First, this solution scales poorly with m and dΦ. Despite the prevalence of
highly optimized solvers, ILPs are NP-complete and therefore infeasible for large problems. Second,
even with an oracle for solving this program, results may be misleading when using noisy estimates
of K̂0. Since this will almost always be the case for dZ ≪ n—an inequality that is almost certain to
hold in most real-world settings—the guarantees of Thm. 4.3 will rarely apply. We describe a convex
relaxation in Appx. C via the exclusive lasso [108, 19], an approach that is more tractable than the
ILP but still turns each decoding instance into a nontrivial optimization problem.

4.2 Split Relabeling

Another strategy for computing leaf assignments front-loads the computational burden so that down-
stream execution requires just a single pass through a pretrained model, as with neural autoencoders.
We do this by exploiting the tree structure itself, relabeling the splits in the forest so that they apply
directly in embedding space.

The procedure works as follows. Recall that each split is a literal of the form Xj ▷◁ x for some
j ∈ [dX ], x ∈ Xj , where ▷◁ ∈ {<,=} (the former for continuous, the latter for categorical data). At
each node, we create a synthetic dataset X̃ by drawing uniformly from the corresponding region. We
embed these points with a diffusion map to create the corresponding matrix Z̃. Samples are labeled
with a binary outcome variable Y indicating whether they are sent to left or right child nodes. Next,
we search for the axis-aligned split in the embedding space that best predicts Y . The ideal solution
satisfies Zk < z ⇔ Xj ▷◁ x, for some k ∈ [dZ ], z ∈ Zk. Perfect splits may not be possible, but
optimal solutions can be estimated with CART. Once all splits have been relabeled, the result is a tree
with the exact same structure as the original but a new semantics, effectively mapping a recursive
partition of the input space onto a recursive partition of the embedding space.

This strategy may fare poorly if no axis-aligned split in Z approximates the target split in X . In
principle, we could use any binary decision procedure to route samples at internal nodes. For example,
using logistic regression, we could create a more complex partition of Z into convex polytopes. Of
course, this increase in expressive flexibility comes at a cost in space and time complexity. The use
of synthetic data allows us to choose the effective sample size for learning splits, which is especially
advantageous in deep trees, where few training points are available as depth increases.

4.3 Nearest Neighbors

Our final decoding strategy elides the leaf assignment step altogether in favor of directly estimating
feature values via k-nearest neighbors (k-NN). First, we find the most proximal points in the latent

6



tree depth = 1 tree depth = 2 tree depth = 4 tree depth = 8 tree depth = 16

−1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1

0

1

2

KPC1

K
P

C
2

Label
3
4
8
9

Figure 2: Diffusion maps visualize RF training. Using a subsample of the MNIST dataset, we find
that digits become more distinct in the embedding space as tree depth increases.

space. Once nearest neighbors have been identified, we reconstruct their associated inputs using
the leaf assignment matrix Π and the splits stored in our forest fn. From these ingredients, we
infer the intersection of all leaf regions for each training sample—what Feng and Zhou [34] call the
“maximum compatible rule”—and generate a synthetic training set X̃ by sampling uniformly in these
subregions. Observe that this procedure guarantees g(X̃) = Z by construction.

Neighbors are weighted in inverse proportion to their diffusion distance from the target z0, producing
the weight function w : Z 7→ ∆k−1. Let K ⊂ [n] denote the indices of the selected points and
{x̃i}i∈K the corresponding synthetic inputs. Then the jth entry of the decoded vector x̂0 is given by
x̂0j =

∑
i∈K wi(z0) x̃ij . For categorical features, we take the most likely label across all neighbors,

weighted by w, with ties broken randomly. The k-NN decoder comes with similar asymptotic
guarantees to the previous methods, without assuming access to a leaf assignment oracle.

Theorem 4.4 (k-NN consistency). Let k → ∞ and k/n→ 0. Then under the assumptions of Thm.
3.4, the k-NN decoder is universally consistent.

This approach is arguably truer to the spirit of RFs, using local averaging to decode inputs instead of
just predict outputs. Like the split relabeling approach, this is a modular decoding solution that does
not rely on any particular encoding scheme. However, it is uniquely well suited to spectral embedding
techniques, which optimally preserve kernel structure with respect to L2 norms in the latent space.

5 Experiments

In this section, we present a range of experimental results on visualization, reconstruction and
denoising. Further details on all experiments can be found in Appx. B, along with additional results.
Code for reproducing all results is available online.5

Visualization As a preliminary proof of concept, we visualize the embeddings of a RF classifier
with 200 trees as it trains on a subset of the MNIST dataset [30] including samples with labels 3, 4,
8, and 9 (see Fig. 2). Plotting a sequence of diffusion maps with dZ = 2 at increasing tree depth,
we find the model learning to distinguish between the four digits, which gradually drift into their
own regions of the latent space. Early in training, the data are clumped around the origin. As depth
increases, the manifold blooms and samples concentrate by class label. KPC1 appears to separate 3
and 8 from 4 and 9, which makes sense given that these respective pairs are often hard to distinguish
in some handwritten examples. Meanwhile, KPC2 further subdivides 3 from 8. The relative proximity
of 4’s and 9’s demonstrates that the RF is somewhat uncertain about these samples, although with
extra dimensions we find clearer separation (not shown). In other words, the embeddings suggest a
highly interpretable recursive partition, as we might expect from a single decision tree.

Reconstruction We limit our decoding experiments in this section to the k-NN method, which
proved the fastest and most accurate in our experiments (for a comparison, see Appx. B.2). Hence-
forth, this is what we refer to as the RF autoencoder (RFAE).

As an initial inspection of RFAE’s reconstruction behavior, we autoencode the first occurrence of
each digit in the MNIST test set for varying latent dimensionalities dZ ∈ {2, 4, 8, 16, 32} in Fig. 3.
For this experiment, we fit an (unsupervised) completely random forest [15] with B = 1000 trees,
train the encoder on full training data, project the test samples into Z via Nyström, and decode
them back using k = 50 nearest neighbors. Although RFAEs are not optimized for image data,
the reconstructions produce mostly recognizable digits even with very few latent dimensions, with

5https://github.com/bips-hb/RFAE.
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Table 1: Mean distortion (with standard errors) for each method and dataset, across all dZ values
used and all runs. Best result per row is bolded.

Dataset RFAE TVAE TTVAE AE VAE

abalone 0.167 (0.002) 0.309 (0.005) 0.260 (0.003) 0.230 (0.025) 0.211 (0.006)
adult 0.326 (0.007) 0.158 (0.005) 0.195 (0.007) 0.401 (0.003) 0.391 (0.004)
banknote 0.100 (0.012) 0.312 (0.013) 0.276 (0.023) 0.724 (0.023) 0.771 (0.013)
bc 0.333 (0.003) 0.564 (0.003) 0.359 (0.005) 0.287 (0.008) 0.578 (0.003)
car 0.320 (0.011) 0.195 (0.014) 0.107 (0.015) 0.349 (0.012) 0.313 (0.011)
churn 0.352 (0.012) 0.603 (0.011) 0.422 (0.014) 0.861 (0.005) 0.731 (0.006)
credit 0.315 (0.004) 0.450 (0.005) 0.375 (0.011) 0.450 (0.005) 0.456 (0.004)
diabetes 0.479 (0.016) 0.726 (0.007) 0.643 (0.014) 0.799 (0.011) 0.895 (0.004)
dry_bean 0.137 (0.002) 0.273 (0.002) 0.303 (0.008) 0.083 (0.014) 0.206 (0.001)
forestfires 0.575 (0.008) 0.804 (0.003) 0.705 (0.008) 0.782 (0.007) 0.790 (0.003)
hd 0.432 (0.008) 0.582 (0.003) 0.605 (0.006) 0.892 (0.003) 0.916 (0.002)
king 0.308 (0.008) 0.352 (0.006) 0.348 (0.008) 0.377 (0.011) 0.518 (0.004)
marketing 0.292 (0.009) 0.304 (0.005) 0.259 (0.011) 0.357 (0.007) 0.372 (0.004)
mushroom 0.083 (0.001) 0.093 (0.003) 0.011 (0.003) 0.055 (0.004) 0.035 (0.004)
obesity 0.227 (0.008) 0.354 (0.004) 0.299 (0.008) 0.306 (0.009) 0.358 (0.003)
plpn 0.176 (0.006) 0.282 (0.006) 0.224 (0.011) 0.384 (0.013) 0.410 (0.009)
spambase 0.558 (0.005) 0.825 (0.002) 0.807 (0.003) 0.446 (0.010) 0.784 (0.001)
student 0.371 (0.002) 0.424 (0.001) 0.426 (0.004) 0.536 (0.003) 0.551 (0.002)
telco 0.177 (0.003) 0.155 (0.003) 0.091 (0.007) 0.128 (0.005) 0.130 (0.005)
wq 0.240 (0.005) 0.691 (0.008) 0.759 (0.006) 0.467 (0.019) 0.708 (0.004)

Average Rank 1.80 3.38 2.45 3.27 4.10

outputs that partially correspond to the wrong class. Best results can be observed at dZ = 32, where
the reconstructions appear quite similar to the originals. Additional results examining the influence
of other parameters are presented in Appx. B.2.

dZ = 2

dZ = 4

dZ = 8

dZ = 16

dZ = 32

Original

Figure 3: MNIST digit reconstructions with vary-
ing latent dimension sizes; original images are dis-
played in the bottom row.

Next, we compare RFAE’s compression-
distortion trade-off against two state-of-the-art
neural architectures for autoencoding tabular
data (TVAE and TTVAE), along with standard
and variational autoencoders (AE and VAE,
respectively) that are not optimized for this
task. Although there are some other notable
deep learning algorithms designed for tabular
data (e.g., CTGAN [103], TabSyn [106], and
TabPFN [56]), these do not come with inbuilt
methods for decoding back to the input space
at variable compression ratios. We also do
not include eForest [34], another RF based au-
toencoder, because it only works with a fixed
dZ = 2dX and is not capable of compression. For RFAE, we use the unsupervised ARF algorithm
[99] with 500 trees and set k = 20 for decoding.

In standard AEs, reconstruction error is generally estimated via L2 loss. This is not sensible with a
mix of continuous and categorical data, so we create a combined measure that evaluates distortion
on continuous variables via 1 − R2 (i.e., the proportion of variance unexplained) and categorical
variables via classification error. Since both measures are on the unit interval, so too is their average
across all dX features.

We measure this distortion across a range of compression factors (i.e., inverse compression ratios
dZ/dX in 20 benchmark tabular datasets. For more details on these datasets, see Appx. B.1, Table
2. We evaluate performance over ten bootstrap samples at each compression factor, testing on the
randomly excluded out-of-bag data. We find that RFAE is competitive in all settings, and has best
average performance in 12 out of 20 datasets (see Table 1), for an average rank of 1.80. For a more
granular view of performance on each dataset, see Appx. B.2, Fig. 5.
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Figure 4: Denoising with RFAE alleviates batch
effects in scRNA-seq data.

Denoising As a final experiment, we con-
sider a denoising example with single-cell RNA-
sequencing (scRNA-seq) data. Pooling results
from different labs is notoriously challenging in
scRNA-seq due to technical artifacts collectively
known as “batch effects” [65]. We propose
to harmonize data across batches by training
a RFAE on a large baseline study and passing
new samples through the autoencoding pipeline.

As an illustration, we compare two studies of
the mouse brain transcriptome. Using the top
dX = 5000 genes, we learn a dZ = 64-
dimensional embedding of the Zeisel et al. [105]
dataset (n = 2874). Our RF is a completely ran-
dom forest with B = 1000 trees. We project
the Tasic et al. [91] data (m = 1590) into the
latent space and decode using the top k = 100
nearest neighbors. Results are presented in Fig.
4. To avoid potential biases from reusing our
own embeddings, we compare original and de-
noised samples using PCA [60] and tSNE [93],
two dimensionality reduction techniques that are widely used in scRNA-seq. In both cases, we find
that denoising with RFAE helps align the manifolds, thereby minimizing batch effects.

6 Discussion

The building blocks of our encoding scheme are well established. Breiman himself took a kernel
perspective on RFs [16], a direction that has been picked up by numerous authors since [28, 83, 7].
The theory of diffusion maps and KPCA goes back some twenty years [25, 26, 80]. However, just as
much RF theory has focused on idealized variants of the algorithm [14], no prior works appear to
have studied the properties of the true RF kernel, opting instead to analyze simpler approximations.
And while there have been some previous attempts to generate RF embeddings [85, 77], these have
been largely heuristic in nature. By contrast, we provide a principled approach to dimensionality
reduction in RFs, along with various novel decoding strategies.

One notable difference between our method and autoencoding neural networks is that RFAE is not
trained end-to-end. That is, while a deep autoencoder simultaneously learns to encode and decode,
RFAE is effectively a post-processing procedure for a pre-trained RF, with independent modules for
encoding and decoding. We highlight that end-to-end training represents a fundamentally different
objective. Whereas traditional autoencoders are necessarily unsupervised, our method can be readily
applied to regression or classification forests, linking RFAE to supervised dimensionality reduction
techniques [38, 6]. More generally, our goal is not just to learn an efficient representation for its own
sake, but rather to reveal the inner workings of a target model. One upshot of this decoupling is that
our split relabeling and k-NN decoders can work in tandem with any valid encoding scheme. For
instance, we could relabel an RF’s splits to approximate the behavior of sample points in principal
component space, or indeed any Z for which we have a map g : X 7→ Z .

We highlight two notable limitations of our approach. First, the computational demands of our
decoding strategies are nontrivial. (For a detailed analysis, see Appx. D.) Second, when using the
k-NN approach, results will vary with the choice of k. (Experimental results on hyperparameter
sensitivity are presented in Appx. B.2.) However, we observe that autoencoding is a difficult task
in general. Top deep learning models generally pose far greater computational burdens than RFAE,
and require many more hyperparameters to govern model architecture and regularization penalties.
Compared to the leading alternatives, RFAEs are relatively lightweight and user-friendly.

Autoencoders are often motivated by appeals to the minimum description length principle [78, 55, 49].
Information theory provides a precise formalism for modeling the communication game that arises
when one agent (say, Alice) wants to send a message to another (say, Bob) using a code that is
maximally efficient with minimal information loss. This is another way to conceive of RFAE—as a
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sort of cryptographic protocol, in which Alice and Bob use a shared key (the RF itself) to encrypt and
decrypt messages in the form of latent vectors z, which is presumably more compact (and not much
less informative) than the original message x.

Several authors have persuasively argued that learning expressive, efficient representations is central
to the success of deep neural networks [11, 44]. Our work highlights that RFs do something very
similar under the hood, albeit through entirely different mechanisms. This insight has implications
for how we use tree-based ensembles and opens up new lines of research for this function class.

7 Conclusion

We have introduced novel methods for encoding and decoding data with RFs. The procedure is
theoretically sound and practically useful, with a wide range of applications including compression,
clustering, data visualization, and denoising. Future work will investigate extensions to generative
modeling, as well as other tree-based algorithms, such as gradient boosting machines [35, 22].
Another promising direction is to use the insights from this study to perform model distillation
[54, 37], compressing the RF into a more compact form with similar or even identical behavior. This
is not possible with current methods, which still require the original RF to compute adjacencies and
look up leaf bounds.
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A Proofs

Since several of our results rely on RF regularity conditions, we review these here for completeness.

We say that a sequence of functions {fn} is universally consistent if it converges in probability on
any target function. That is, for any f∗ ∈ C(X ) and all ϵ > 0, we have:

lim
n→∞

P (∥f∗ − fn∥∞ > ϵ) = 0.

Under certain assumptions, it can be shown that RFs are universally consistent in this sense [70, 31,
14, 82, 98]. Specifically, we assume:

(A1) Training data for each tree is split into two subsets: one to learn split parameters, the other
to assign leaf labels.

(A2) Trees are grown on subsamples rather than bootstraps, with subsample size n(b) satisfying
n(b) → ∞, n(b)/n→ 0 as n→ ∞.

(A3) At each internal node, the probability that a tree splits on any given Xj is bounded from
below by some ρ > 0.

(A4) Every split puts at least a fraction γ ∈ (0, 0.5] of the available observations into each child
node.

(A5) For each tree b ∈ [B], the total number of leaves d(b)Φ satisfies d(b)Φ → ∞, d
(b)
Φ /n → 0 as

n→ ∞.

Under (A1)-(A5), decision trees satisfy the criteria of Stone’s theorem [89] and are therefore univer-
sally consistent (see Devroye et al. [32, Thm. 6.1] and Györfi et al. [50, Thm. 4.2]). The consistency
of the ensemble follows from the consistency of the basis functions [15]. There is some debate in the
literature as to whether these assumptions are necessary for universal consistency—(A1) and (A2) in
particular may be overly strong—but they are provably sufficient. See Biau [13, Rmk. 8], Wager and
Athey [98, Appx. B], and Tang et al. [90] for a discussion.

A.1 Proof of Thm. 3.4 (RF kernel properties)

This theorem makes three separate claims: that RF kernels are (a) PSD and stochastic; (b) asymptoti-
cally universal; and (c) asymptotically characteristic.

(a) PSD Take PSD first. It is well known that any convex combination of PSD kernels is PSD [79],
so to secure part (a) it is sufficient to prove that the standard decision tree kernel is PSD. This is
simply a normalized indicator kernel:

kDT (x,x′) =
k(b)(x,x′)∑n
i=1 k

(b)(x,xi)
,

which either evaluates to zero (if the samples do not colocate) or the reciprocal of the leaf sample
size (if they do).

To show that kDT is PSD, we take a constructive approach in which we explicitly define the canonical
feature map ϕ : X 7→ H, which maps input vectors to an inner product space H. This suffices to
establish the PSD property, since for any finite dataset the resulting kernel matrix KDT ∈ [0, 1]n×n

is a Gram matrix with entries kDT
ij = ⟨ϕ(xi), ϕ(xj)⟩. As described in Sect. 4, the DT feature map

for tree b is given by:

ϕ(b)(x) = π(b)(x)⊙
√

s(b),

where π(b) : X 7→ {0, 1}d(b)
Φ is a standard basis vector indicating which leaf x routes to in tree b, and

s ∈ {1/[n− 1]}d(b)
Φ is a vector of corresponding inverse leaf sample sizes. Concatenating these maps

over B trees and taking the inner product for sample pairs, we get an explicit formula for the RF
feature map, thereby establishing that kRF is PSD.

It may not be immediately obvious that Eq. 1 is equivalent to the scaled inner product
B−1

〈
ϕ(x), ϕ(x′)

〉
. For completeness, we derive the identity. Expanding the inner product, we
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have: 〈
ϕ(x), ϕ(x′)

〉
=

B∑
b=1

〈
ϕ(b)(x), ϕ(b)(x′)

〉
=

B∑
b=1

〈
π(b)(x)⊙

√
s(b), π(b)(x′)⊙

√
s(b)
〉

=

B∑
b=1

Lb∑
ℓ=1

π
(b)
ℓ (x) π

(b)
ℓ (x′) s

(b)
ℓ .

If both x and x′ fall in leaf ℓ of tree b, then π(b)
ℓ (x) π

(b)
ℓ (x′) = 1; otherwise, the product evaluates to 0.

Let s(b)leaf denote the inverse sample size of the leaf containing x in tree b. Then
〈
ϕ(b)(x), ϕ(b)(x′)

〉
=

s
(b)
leaf if x,x′ fall in the same leaf of tree b, or 0 otherwise. Note that we have:

s
(b)
leaf =

1∑n
i=1 k

(b)(x,xi)
,

since the number of training points in the same leaf as x is given by
∑n

i=1 k
(b)(x,xi). Substituting

and dividing by B gives:

1

B

〈
ϕ(x), ϕ(x′)

〉
=

1

B

B∑
b=1

k(b)(x,x′)∑n
i=1 k

(b)(x,xi)
,

which completes the derivation.

Part (a) makes an additional claim, however—that kRF
n is stochastic. This means that, for any x ∈ X ,

the kernel kRF
n (x,xi) defines a probability mass function over the training data as i ranges from 1

to n. It is easy to see that the kernel is nonnegative, as all entries are either zero (if samples do not
colocate) or some positive fraction representing average inverse leaf sample size across the forest (if
they do). All that remains then is to show that the values sum to unity. Consider the sum over all n
training points:

n∑
i=1

kRF
n (x,xi) =

n∑
i=1

1

B

B∑
b=1

(
k(b)(x,xi)∑n
j=1 k

(b)(x,xj)

)

=
1

B

B∑
b=1

n∑
i=1

(
k(b)(x,xi)∑n
j=1 k

(b)(x,xj)

)

=
1

B

B∑
b=1

∑n
i=1 k

(b)(x,xi)∑n
j=1 k

(b)(x,xj)

=
1

B

B∑
b=1

1

= 1.

Since the kernel is symmetric, the training matrix K ∈ [0, 1]n×n of kernel entries is doubly stochastic
(i.e., all rows and columns sum to one).

(b) Universal Recall that the Moore-Aronszajn theorem tells us that every PSD kernel defines a
unique RKHS [1]. Given that kRF

n is PSD, universality follows if we can show that the associated
RKHS H is dense in C(X ). Of course, this is provably false at any fixed n, as dΦ = o(n) by (A5),
and a finite-dimensional H necessarily contains “gaps”—i.e., some functions f∗ ∈ C(X ) such that
⟨f∗, h⟩ = 0 for all h ∈ H.

However, as n and dΦ grow, these gaps begin to vanish. Since these two parameters increase at
different rates, and it is the latter that more directly controls function complexity, we interpret the
subscript ℓ on Hℓ as indexing the leaf count. (As noted above, we focus on the single tree case, as
ensemble consistency follows immediately from this.)

The following lemma sets up our asymptotic universality result.
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Lemma A.1 (RF subalgebra). Let Hℓ denote the set of continuous functions on the compact metric
space X representable by a tree with ℓ leaves, trained under regularity conditions (A1)-(A5). Define:

A :=

∞⋃
ℓ=1

Hℓ.

Then A is a subalgebra of C(X ) that contains the constant function and separates points.

Proof. The lemma makes three claims, each of which we verify in turn.

(1) A is a subalgebra of C(X ).

Each Hℓ consists of continuous, piecewise constant functions on X , induced by recursive
binary partitions of X into ℓ leaf regions. These spaces are closed under addition, scalar
multiplication, and multiplication, as the sum or product of two piecewise constant functions
is piecewise constant over the common refinement of their partitions. Since A is the union
of these Hℓ, it is closed under addition, multiplication, and scalar multiplication.

(2) A contains the constant functions.

This follows immediately, as any tree (and hence any Hℓ) can represent constant functions—
for instance, a trivial tree with no splits assigns the same value to all points.

(3) A separates points.

By regularity conditions (A3) and (A4), every coordinate has a nonzero probability ρ > 0
of being selected for splitting at any node, and every split allocates at least a fraction
γ ∈ (0, 0.5] of the points to each child node. Meinshausen [70, Lemma 2] has shown that,
under these conditions, the diameter of each leaf goes to zero in probability. This amount
to an asymptotic injectivity guarantee. Since X is compact, for any pair of distinct points
x,x′ ∈ X , there exists an index ℓ such that some fℓ ∈ Hℓ assigns different values to x and
x′. In other words, some tree in A is guaranteed to route x and x′ to different leaves.

We now invoke the Stone-Weierstrass theorem to conclude the density of A.
Theorem A.2 (Stone–Weierstrass). Let X be a compact Hausdorff space. If a subalgebra A of C(X )
contains the constant functions and separates points, then A is dense in C(X ) with respect to the
uniform norm.

Combining Lemma A.1 with this classical result, we conclude that the sequence {Hℓ} converges on
a universal RKHS.

(c) Characteristic Item (c) follows from (b) under our definition of universality. This was first
shown by Gretton et al. [45, Thm. 3] in the non-asymptotic regime (although Sriperumbudur et al.
[87] prove that the properties can come apart under slightly different notions of universality). We
adapt the result simply by substituting a sufficiently close approximation in H, where proximity is
defined w.r.t. the supremum norm. Since the existence of such a close approximation is guaranteed
by (b), the sequence {Hℓ} is asymptotically characteristic.

A.2 Proof of Thm. 4.2 (Oracle consistency)

This result follows trivially from the universal consistency of the RF algorithm itself. Any partition
of X that satisfies regularity conditions (A1)-(A5) converges on the true joint distribution PX as
n, dΦ → ∞ (see [68, Thm. 1] and [27, Thm. 2]). Resulting leaves have shrinking volume, effectively
converging on individual points x with coverage proportional to the density p(x). Because there
are no gaps in these leaves (i.e., no subregions of zero density), a weighted mixture of uniform
draws—with weights given by the leaf coverage—is asymptotically equivalent to sampling from PX

itself. A leaf assignment oracle would therefore be guaranteed to map each latent vector z ∈ Z to the
corresponding input point x ∈ X , since leaf assignments effectively determine feature values in the
large sample limit.
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A.3 Proof of Thm. 4.3 (Uniqueness)

It is immediately obvious that when K̂0 = K∗
0, the true leaf assignment matrix Ψ∗ drives the ILP

objective to zero and automatically satisfies the one-hot and overlap constraints. Our task, therefore,
is to demonstrate that no other binary matrix Ψ̂ ̸= Ψ∗ can do the same.

For simplicity, consider just a single test point (m = 1). Let F ⊂ {0, 1}dΦ denote the feasible region
of leaf assignment vectors, i.e. all and only those that satisfy the one-hot and overlap constraints. A
sufficient condition for our desired uniqueness result is that no two feasible leaf assignments produce
the same kernel values. More formally, if there exist no ψ,ψ′ ∈ F such that ΠSψ⊤ = ΠSψ

′⊤,
then the map ψ 7→ ΠSψ⊤ is injective over F , in which case only a single solution can minimize the
ILP objective.

Note that this injectivity property cannot be shown to hold in full generality. As a minimal coun-
terexample, consider a case where the feature space is a pair of binary variables X = {0, 1}2 and our
forest contains just two trees, the first placing a single split on X1 and the second placing a single
split on X2. Now, say our training data comprises just two points, x = [0, 0] and x′ = [1, 1]. We
observe the kernel entries k(x0,x) = k(x0,x

′) = 1/2. In this case, we know that x0 colocates with
each training sample exactly once, and therefore that it shares exactly one coordinate with each of
our two training points. However, we do not have enough information to determine where these
colocations occur, since both [0, 1] and [1, 0] are plausible feature vectors for x0.

Such counterexamples become increasingly rare as the forest grows more complex. As previously
noted, under (A3) and (A4), leaf diameter vanishes in probability [70, Lemma 2]. This is why random
forests are asymptotically injective, a property we exploited in the proof for part (b) of Thm. 3.4. A
corollary of Meinshausen’s lemma is that for all distinct points x,x′ ∈ X :

lim
n→∞

P
(
fn(x) = fn(x

′)
)
= 0.

By modus tollens, it follows that if function outputs converge on the same value, then corresponding
inputs must be identical. This is important, since with fixed training labels Y , model predictions
are fully determined by kernel evaluations via Eq. 2. If two distinct vectors ψ,ψ′ produce identical
values when left-multiplied by ΠS, then the corresponding inputs x,x′ cannot be separated by fn.
Therefore, with probability tending toward 1 as sample size grows, we conclude that the ILP of Eq. 3
is uniquely solved by the true leaf assignments.

A.4 Proof of Thm. 4.4 (k-NN consistency)

To secure the result, we must show that

(a) x̃
p→ x: sampling uniformly from the intersection of each sample’s assigned leaf regions

asymptotically recovers the original inputs; and

(b) x̂
p→ x̃: k-NN regression in the spectral embedding space is universally consistent.

Item (a), which amounts to a universal consistency guarantee for the eForest method of Feng and
Zhou [34], follows immediately from our oracle consistency result (Thm. 4.2), plugging in the
identity function for g. Since we know the true leaf assignments for each training sample, under
universal consistency conditions for RFs, we can reconstruct the data by taking uniform draws from
all leaf intersections.

Item (b) follows from the properties of the k-NN algorithm, which is known to be universally
consistent as k → ∞, k/n→ 0 [89].

B Experiments

RFs are trained either using the ranger package [101], or the arf package [99], which also returns
a trained forest of class ranger. Truncated eigendecompositions are computed using RSpectra.
Memory-efficient methods for sparse matrices are made possible with the Matrix package. We use
the RANN package for fast k-NN regression with kd-trees. For standard lasso, we use the glmnet
package [36], and ExclusiveLasso for the exclusive variant [19]. In both cases, we do not tune the
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Table 2: Summary of datasets used. % Categorical indicates the proportion of categorical features. #
Classes indicates the total cardinality of all the categorical features.

Dataset Code #Samples #Numerical #Categorical # Total %Categorical #Classes

Abalone abalone 4177 8 1 9 0.11 3
Adult adult 45222 5 9 14 0.64 100
Banknote Auth. banknote 1372 4 1 5 0.20 2
Breast Cancer bc 570 30 1 32 0.03 2
Car car 1728 0 7 7 1.00 25
Bank Cust. Churn churn 10000 6 5 11 0.56 11
German Credit credit 1000 7 14 21 0.67 56
Diabetes diabetes 768 8 1 9 0.11 2
Dry Bean dry_bean 13611 16 1 17 0.06 7
Forest Fires forestfires 517 11 2 13 0.15 19
Heart Disease hd 298 7 7 14 0.50 23
King County Housing king 21613 19 0 19 0.00 0
Bank Marketing marketing 45211 7 10 17 0.59 44
Mushroom mushroom 8124 0 22 22 1.00 119
Obesity Levels obesity 2111 8 8 16 0.50 30
Palmer Penguins plpn 333 5 3 8 0.38 8
Spambase spambase 4601 58 1 59 0.02 2
Student Performance student 649 16 17 33 0.52 43
Telco Churn telco 7032 3 17 20 0.85 43
Wine Quality wq 4898 12 0 12 0.00 0

penalty parameter λ, but simply leave it fixed at a small value (0.0001 in our experiments). This is
appropriate because we are not attempting to solve a prediction problem, but rather a ranking problem
over coefficients.

B.1 Reconstruction benchmark

We describe the setup for the experiments presented in the main text, Sect. 5.

For the compression reconstruction benchmark, we use 20 datasets sourced from the UCI Machine
Learning Repository [33], OpenML [94], Kaggle, and the R palmerpenguins [57] package. In
each dataset, we remove all rows with missing values. We also remove features that are not rele-
vant to this task (e.g., customer names), features that duplicate in meaning (e.g., education and
education_num in adult ) and date-time features. We report the subsequent in Table 2, describing
for each used dataset the number of rows, features, and the proportion of categorical features in the
total feature set, as a measure of the ’mixed’-ness of the tabular data.

Then, our pipeline proceeds as follows:

• For each dataset, we take ten different bootstrap samples, to form ten training sets, and use
the remaining out-of-bag data as the testing set. We do this to ensure data is not unnecessarily
unused, which could skew results in datasets with a small n.

• For each dataset, we define 10 compression ratios, or latent rates, going uniformly from 0.1
(10% of the number of features) to 1 (100% the number of features). For each value, we
find dZ = dX × latent_rate

• For each dataset and bootstrap, we run each method with the specified dZ for the dimension-
ality of their latent embeddings. This involves training the method on the bootstrap training
data, then passing the testing data through its encoding and decoding stages to produce a
reconstruction.

• We then compute the distortion of these reconstructions compared to the original test
samples, using metrics described in the main text. For each bootstrap and dZ on a dataset,
we aggregate the results into a mean, and report the standard error as error bars. This
standard error represents a combination of any stochastic component of the methods used,
as well as the finite sample uncertainty of the used data.

Within this specification, we run each method 20× 10× 10 = 2000 times, and for 5 methods this
balloons to 10,000 runs. To meet these computational demands, we run these experiments from
a high-performance computing partition, with 12 AMD EPYC 7282 CPUs, 64GB RAM, and an
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NVIDIA A30 graphics card. These high-performance computing units were used as part of King’s
College London’s CREATE HPC [67]

Next, we describe in detail each of the methods used in the reconstruction benchmark:

• TVAE & TTVAE: For both the TVAE and TTVAE models, we do not make any changes to
the underlying model architecture. However, we make minor modifications to not perform
any sampling/interpolation at the latent stage, and simply decode the same embeddings that
we acquired from the encoder.

• Autoencoder: We use an MLP-based autoencoder for this benchmark. This is in contrast
to a CNN-based autoencoder, which is more suited to image data, but is not relevant in
tabular data tasks, where there is no inherent structure that could be extracted by convolution
kernels. We structure our network to have five hidden layers, where the size of these layers
are adaptive to dX and dZ . In particular, we want to structure the network such that the size
of each hidden layer reduces uniformly from dX to dZ at encoding and increases uniformly
from dZ to dX at decoding. Our structure then is:
Input(dX ) → Dense(dX − (dX − dZ) × 1/3) → Dense(dX − (dZ − dZ) × 2/3) →
Latent(dZdZ ) → Dense(dX − (dX − dZ) × 2/3) → Dense(dX − (dX − dZ) × 1/3)
→ Output(dX ).
If dX = 8, dZ = 2 then with this rule the network will be 8 → 6 → 4 → 2 → 4 → 6 → 8.
For hyperparameters, we use common defaults: epochs = 50, optimizer = ADAM. We
use ReLU activations at hidden layers, a sigmoid for the output, and a random 10% validation
set from the training data.

• Variational Autoencoder: Similar to the autoencoder, we use an MLP-based variational
autoencoder. For comparison, we mimic the autoencoder’s architecture, activation function,
and defaults, only changing epochs = 100 and adding batch_size = 32. We also
impose a β coefficient inspired from [53], at a value of 0.1.

The RF training approach we use here is the adversarial random forests (ARFs) [99]. Using this
algorithm allows us to train the forest unsupervised, and preserve all features. Other approaches
involving unsupervised random forests can also be used, such as the ones proposed in Shi and Horvath
[85] or Feng and Zhou [34]. However, we choose ARF on the basis that our decoders’ complexity
scale on dΦ, which is smaller for the ARF than others, because it learns its structure over several
iterations of training.

We present the results in Fig. 5 corresponding to the plots in Table 1.

B.2 Additional results

We present the results of additional experiments comparing different decoding methods, hyper-
parameter analysis on MNIST, supervised vs. unsupervised RF embeddings as well as runtime
experiments.

Decoder Comparison We compare the performance of three decoders that we describe in section
4: the kNN, the split relabelling and the LASSO decoder, on a smaller compression / reconstruction
benchmark. We follow the same experimental setup as the previous experiment, but only use two
datasets of small size (credit & student), and for each of these, we only use the first 5 bootstrap
splits. This is because we only aim to illustrate the performance of these decoders side by side, and
also because of the both the relabeling and LASSO’s decoder much higher complexity compared
to kNN. We maintain the RFAE setup as previously described in Appx. B.1. To make comparison
easier, for each iteration we run the encoding stage once, and apply the three decoders to the same
embeddings. We describe the relabeling and the LASSO decoder in more detail:

• Relabeling Decoder: For the relabeling decoder, we take the original RF object, and go
through each split to find a corresponding split with the data on the latent space with the
highest simple matching coefficient (SMC) to replace it. This process is global, so all data
points are used in each split.
An alternative approach to this is to re-find splits locally, i.e., only use the data located at
each split in the original forest. However, in practice, the lack of training points at high
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Figure 5: Compression-distortion trade-off on twenty benchmark tabular datasets. Shading represents
standard errors across ten bootstraps.

depths will cause the relabeled splits to be inaccurate, so we use the global approach. Once
the forest is ’relabeled’, we can pass the embeddings for test data through it, and sample by
using the leaf bounds of the original forest.

• LASSO Decoder: For the LASSO decoder, we follow the derivations in the main text and
compute the kernel matrix K̂0 = Z0ΛZ†, and recover the leaf assignments for test samples
via the LASSO & greedy leaf search algorithm in Appx. C. Once the leaf assignments are
recovered, we once again sample by using the forest’s leaf bounds.
To reduce complexity, we impose a sparsity on the number of training samples allowed in
the LASSO, sorted by the the values of the estimated kernel matrix. Because in most cases,
a test sample will only land in the same leaf with a small number of training samples, even
across an entire forest, this allows us to narrow the search space significantly with minimal
impact on the model performance. For our datasets with 649 and 1000 samples, we set
sparsity = 100.

We present the results in Fig. 6, where the kNN method is denoted as RFAE.
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Figure 6: Compression-distortion trade-off on student and credit. Shading represents standard
errors across five bootstraps.
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From this plot, we can see that the kNN decoder dominates performance. Several reasons can explain
the poor performance that the other decoders display. For the relabeling decoder, because our only
criteria is to find the best matching split, if all candidates are bad, the best matching split does not
have to be an objectively good choice. Given the forest’s hierarchical nature, inaccuracies can be
compounded traversing down the tree, and the final forest is completely dissimilar to the original.
The small dZ also means more variance is introduced into the process.

For the LASSO decoder, several things may have caused this performance. First, the estimation
of K̂ may not be accurate, which is passed on to the LASSO optimization. The LASSO is also an
approximate optimization, and variance here can lead to the greedy leaf algorithm to find the wrong
leaf assignments for the test samples. This, in combination with the high complexity, motivate us to
use the kNN decoder for RFAE.
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(a) Varying number of decision trees B in random
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ntrain enc = 1000

ntrain enc = 5000

ntrain enc = 10000

ntrain enc = 30000

ntrain enc = 60000

Original
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for encoder training.

t = 0

t = 1

t = 2

t = 3

t = 10

t = 50

Original

(c) Varying number of time steps t for diffusion
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Figure 7: MNIST digit reconstructions produced by RFAE with varying parameter values; original
images are displayed in the bottom row.

MNIST reconstruction: hyperparameter analysis Fig. 7 complements Fig. 3 in Section 5 by
showing the effects of different parameters on the reconstruction performance for MNIST test digits:
the number of trees B (Fig. 7a), the number of samples ntrain_enc used for encoder training (Fig. 7b),
the diffusion time step t (Fig. 7c), and the number k of nearest neighbors used for decoding (Fig. 7d).
In each subplot, the respective parameter varies in a pre-defined range, while all other ones are kept
fixed at B = 1000, ntrain_enc = 30 000, t = 1, and k = 50; the latent dimension is set to dZ = 32
throughout.

RFAE (supervised)

RFAE (completely random)

ConvAE

Original

Figure 8: MNIST digit reconstructions produced by RFAE using supervised and copmletely random
forests, and by a convolutional autoencoder; original images are displayed in the bottom row.
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Fig. 8 compares RFAE reconstructions using supervised and (unsupervised) completely random
forests with those produced by a convolutional autoencoder with three convolutional layers. All
models were trained on full training data and with dZ = 32.
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Figure 9: Embeddings can represent supervised or
unsupervised RFs. Data from the Golub et al. [43]
leukemia transcriptomics study.

Supervised vs. unsupervised embeddings
RF embeddings provide different perspectives
on the data depending on whether we use su-
pervised or unsupervised learning objectives.
We train a standard RF classifier to distinguish
acute lymphoblastic (ALL) from acute myeloid
(AML) leukemia samples in a well known tran-
scriptomic dataset [43]. After filtering, the
feature matrix includes expression values for
dX = 3572 genes recorded in n = 72 patients.
These kind of short, wide datasets are common
in bioinformatics, but can be challenging for
many learning algorithms. RFs excel in these
settings, attaining out-of-bag accuracy of 98% on this task. KPC1 clearly separates the two classes in
the left panel, while KPC2 appears to isolate a potential outlier within the AML cohort. Using an
unsupervised adversarial RF [99], we find far greater overlap among the two classes (as expected),
although ALL and AML samples are hardly uniform throughout the latent space. This example
demonstrates the flexibility of our method. Whereas standard spectral embedding algorithms with
fixed kernels are limited to unsupervised representations, RFAE can take any RF input.

Runtime Experiments Our runtime experiments consists of two tests; one where we compare the
runtime of methods within the reconstruction benchmark (see B.1 for method and dataset details),
and one where we exclusively examine the runtime of RFAE more closely. For the first experiment,
we conduct a controlled runtime comparison of all five methods (AE, VAE, TVAE, TTVAE and
RFAE) on three small-to-medium datasets (plpn, student, credit). These experiments are conducted
on a laptop with Intel Core i5-10300H CPU, NVIDIA GeForce GTX 1650 (4GB), and 24GB DDR4
RAM. Each method was run 100 times across varying compression ratios, according to the same
specifications as in the benchmark. We report the runtimes in Table 3, in seconds.

Table 3: Runtime comparison across five models and three datasets.
Dataset AE VAE RFAE TVAE TTVAE
plpn 161.6 185.9 523.8 744.2 2252.8
student 190.9 227.8 1058.6 3611.2 5148.7
credit 223.2 277.3 1379.5 2212.5 4046.0

Here, the results indicate RFAE’s superiority in runtime over the other two state-of-the-art methods in
TVAE and TTVAE, while being slower than the naive AE and VAEs - which did poorly in the actual
benchmark.

For the second experiment, we evaluate RFAE alone across 20 datasets, using a fixed compression
ratio of 0.2 (10 runs per dataset). These were run on a HPC unit with an AMD Threadripper 3960X
(24 cores, 48 threads) CPU and 256GB RAM, with no GPU unit used for the experiment. We report
the average runtime for training and inference (as well as the total time), and their corresponding
standard errors, ordered by average total runtime, in Table 4, in seconds. The results suggest RFAE
scales well with dataset size.

C Leaf assignments via lasso and greedy search

In this section, we briefly describe the lasso relaxation of the ILP in Eq. 3. First, we split the task into
m separate subproblems, one for each test vector. Let k̂0 denote a row of K̂0, say for test point x0.
Observe that this adjacency vector is generally sparse, since most training points are unlikely to be
neighbors of x0.6 Let a = ∥k̂0∥0 be the number of neighbors for x0, and write k̂↓

0 ∈ [0, 1]a for the
6That neighbors vanish as a proportion of training samples is a common consistency condition for nonpara-

metric models in general and local averaging estimators in particular [89].
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Table 4: RFAE runtime performance across datasets (sorted by total mean).
Dataset Training µ Training σ Inference µ Inference σ Total µ Total σ Samples # Features
plpn 1.89 0.00 1.35 0.01 3.24 0.03 333 8
credit 2.82 0.32 3.18 0.01 6.01 0.41 1,000 21
car 2.90 0.00 2.87 0.00 5.77 0.00 1,728 7
student 3.03 0.41 3.30 0.03 6.33 0.63 649 33
diabetes 3.16 0.01 3.97 0.01 7.13 0.01 768 9
hd 4.17 0.00 5.99 0.00 10.16 0.00 298 14
forestfires 4.63 0.30 6.12 0.02 10.76 0.36 517 13
bc 6.88 1.11 2.65 0.01 9.53 1.17 570 32
abalone 6.82 0.02 5.58 0.03 12.39 0.03 4,177 9
wq 7.90 0.73 6.38 0.01 14.28 0.81 4,898 12
obesity 8.74 0.02 12.11 0.08 20.85 0.05 2,111 16
churn 12.28 0.18 11.75 0.08 24.03 0.24 10,000 11
mushroom 13.80 0.23 11.53 0.10 25.33 0.48 8,124 22
telco 13.96 0.01 16.45 0.05 30.41 0.09 7,032 20
spambase 29.52 0.90 27.78 0.51 57.30 1.12 4,601 59
dry_bean 43.19 5.09 19.63 0.10 62.82 5.25 13,611 17
king 54.31 42.78 32.04 1.87 86.36 44.36 21,613 19
adult 150.27 304.30 89.47 24.85 239.75 469.52 45,222 14
marketing 148.96 4831.41 91.50 374.82 240.46 7889.97 45,211 17

reduction of k̂0 to just its nonzero entries. We also write L(b)↓ ⊆ L(b) for the set of leaves to which
x0’s neighbors are routed in tree b, with cardinality d(b)↓Φ ≤ d

(b)
Φ , and d↓Φ =

∑
b d

(b)↓
Φ . (Though the

reduction operation is defined only w.r.t. some x0, we suppress the dependency to avoid clutter.)
This implies corresponding reductions of Φ to the submatrix Φ↓ ∈ {0, 1}k×d↓

Φ , with one row per
neighbor of x0 and columns for each leaf to which at least one neighbor is routed in f ; and S to
S↓ ∈ [0, 1]d

↓
Φ×d↓

Φ , with diagonal entries for each leaf in
⋃

b L
(b)↓ .

Following these simplifications, we solve:

min
ψ∈[0,1]d

↓
Φ

∥Bk̂↓⊤
0 −Φ↓S↓ψ⊤∥22 + λ

∑
b∈[B]

( ∑
ℓ∈L(b)↓

ψℓ

)2
, (4)

where the penalty factor λ promotes a sparse solution with a similar effect to the one-hot constraint
above. Specifically, it encourages competition both within trees (via the L1 norm), and between trees
(via the L2 norm). Eq. 4 is an exclusive lasso problem, which can be efficiently solved via coordinate
descent [108, 19] or dual Newton methods [71]. The interval (rather than integer) constraints on
our decision variables effectively allow for “fuzzy” leaf membership, in which samples may receive
nonzero weight in multiple leaves of the same tree.

Exploiting these fuzzy leaf assignments, we propose a greedy method to determine leaf member-
ship. The method provisionally assigns a sample to the leaves with maximal entries in ψ̂. If any
inconsistencies arise, we replace the “bad” assignments—i.e., those less likely to overlap with other
assigned regions—with the next best leaves according to ψ̂. The procedure repeats until assignments
are consistent. Though convergence is guaranteed, greedy search may prove inaccurate if coefficients
are poorly estimated.

Alg. 1 provides an overview of the greedy leaf assignment procedure. This is run for a single sample
x ∈ X , which has associated fuzzy leaf assignment vector p̂ ∈ [0, 1]dΦ . We select the leaf coordinates
associated with tree b ∈ [B] by writing p̂(b) ∈ [0, 1]d

(b)
Φ . We overload notation somewhat by writing

R
(b)
i ⊂ X to denote the hyperrectangular region associated with leaf i ∈ [d

(b)
Φ ] of tree b ∈ [B] in step

5; and then R(b)
q (t) to denote the region associated with leaf q(b)(t), which maximizes p̂(b) among

all leaves that intersect with the feasible region S(t). If the argmax in step 5 is not unique, then we
select among the maximizing arguments at random. Similarly, if there are multiple non-overlapping
maximal cliques, then we select one at random in step 14. (This should be exceedingly rare in
sufficiently large forests.) The undirected graph G(t) encodes whether the regions associated with
assigned leaves overlap. Since consistent leaf assignments require intersecting regions for all trees,
the algorithm terminates only when G(t) is complete. The procedure is greedy in the sense that edges
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Algorithm 1 GREEDYLEAFASSIGNMENTS

Input: Fuzzy leaf assignments p̂ ∈ [0, 1]dΦ

Output: Hard leaf assignments q ∈ {1, . . . , d(b)Φ }
B

1: Initialize: t← 0, C(t)← ∅, S(t)← X , converged← FALSE
2: while not converged do
3: t← t+ 1
4: for all trees b ∈ [B] do
5: Find leaf with maximum fuzzy value in the feasible region:

q(b)(t)← argmax
i∈[d

(b)
Φ ]

p̂
(b)
i s.t. R

(b)
i ∩ S(t) ̸= ∅

6: Let R(b)
q (t) be the region corresponding to leaf q(b)(t)

7: end for
8: Let G(t) = ⟨[B], E(t)⟩ be a graph with edges:

E(t) := {i, j ∈ [B] : R(i)
q (t) ∩R(j)

q (t) ̸= ∅}

9: if G(t) is complete then
10: converged← TRUE
11: else
12: if the maximal clique of G(t) is unique then
13: Let C(t) ⊂ [B] be the unique maximal clique of G(t)
14: else if the maximal cliques of G(t) have nonempty intersection then
15: Let C(t) ⊂ [B] be the intersection of all maximal cliques of G(t)
16: else
17: Let C(t) ⊂ [B] be any maximal clique of G(t)
18: end if
19: Let S(t)←

⋂
b∈C(t) R

(b)
q (t) be the feasible region associated with C(t)

20: end if
21: end while
22: q← q(t)

can only be added and never removed, leading to larger maximal cliques C(t) and smaller feasible
regions S(t) with each passing round.

While the algorithm is guaranteed to converge on a consistent set of leaf assignments, this may only
be achievable by random sampling of leaves under a consistency constraint. Such uninformative
results are likely the product of noisy estimates for K̂0. Note that while the maximal clique problem
is famously NP-complete [61], we must solve this combinatorial task at most once (at t = 1). In
subsequent rounds t ≥ 2, we simply check whether any new nodes have been added to C(t − 1).
Maximal clique solvers are highly optimized and have worst-case complexity O(2B/3), but are often
far more efficient due to clever heuristics [102]. In practice, the method tends to find reasonable leaf
assignments in just a few rounds. When computing leaf assignments for multiple test points, we may
run Alg. 1 in parallel, as solutions are independent for each sample.

D Computational complexity

In this section, we study the complexity of different RFAE pipelines.

The encoding step requires O(n2) space to store the adjacency matrix. For large datasets, this can
be approximated by using a subset of the training data to compute K, at the cost of losing the
exact functional equivalence of Eq. 2. Similar tricks are common in the kernel methods literature
[100, 107, 5].

While the ILP solution is generally intractable, the lasso relaxation requires O(d3Φ) operations [19]
to score leaves (although dΦ can in fact be reduced to ai = ∥ki∥0 for each test point i ∈ [m]; see
Appx. C). The subsequent greedy leaf assignment algorithm searches for the maximal clique in a
graph with B nodes for each test sample, incurring worst-case complexity O

(
exp(B)

)
. Though the

maximal clique problem is famously NP-complete [61], modern solvers often execute very quickly
due to clever heuristics [102]. We can also parallelize over the test samples, as each greedy solution
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is independent. Note that both the cubic term in the exclusive lasso task and the exponential term in
the greedy leaf assignment algorithm are user-controlled parameters that can be reduced by training a
forest with fewer and/or shallower trees. Alternatively, we could use just a subset of the RF’s trees
to reduce the time complexity of decoding via constrained optimization, much like we could use a
subset of training samples to reduce the space complexity of encoding.

The split relabeling method is essentially an iterated CART algorithm, and therefore requires
O(dZ ñ log ñ) time to relabel each split, where ñ is the number of synthetic samples X̃. How-
ever, since the number of splits is generally exponential in tree depth, this can still be challenging for
deep forests.

The most efficient decoder is the k-NN method, which proceeds in two steps. First, we find the nearest
neighbors in embedding space, which for reasonably small dZ can be completed in O(m log n) time
using kd-trees. Next, we compute the intersection of all leaf regions for selected neighbors, incurring
a cost of O(kmdΦdX ).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As stated in our abstract, our contribution is a random forest autoencoder
that composes of an encoder and decoder which are supported by universal consistency
proofs. We benchmark our autoencoder and demonstrate each of the stated applications,
while remaining within the literature of autoencoders and random forests.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations within the Discussion section of our paper, as well as in
the appendix when relevant.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Each theorem stated in the main text is accompanied by a corresponding proof
in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the model, code, and data required to run our experiments within
our supplemental material, as well as the specifications that we used and any additional
instruction necessary to reproduce them.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our model and code is included along with our paper within the supplemental
material. We also include the datasets we used, and the scripts needed to reproduce the
results on our benchmark, and these are also available on GitHub publicly.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We summarize our experimental setup in the main text and describe it in detail
within the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in our benchmarks and experiments, whenever they are
relevant, and report how we calculate them either in the main text or the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the computer resources used for our experiments in our Appendix.
However, given the nature of our model, the development process includes many stages of
experiments, and we are unable to report the total compute used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and have conformed to it, in
every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: Our contributions are foundational in nature, and our model is an autoencoder,
which does not carry a direct path to any negative applications. On the other hand, we
describe some general applications within health data science for which our work could be
applied.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model makes use of publicly available datasets, models and packages, and
is designed for general purpose usage, not a specific application. Therefore, there are no
such risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the datasets and all the other models we used within our benchmark,
as well as those that are relevant to our work. We explicitly stated any modifications that we
performed on previous assets.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our asset contribution is a codebase containing our model, the scripts used for
our benchmarks, and the datasets used. We include these within the supplemental material,
and documentation can be found either here or within the appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not involve LLMs in any core method development within our research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Encoding
	Decoding
	Constrained Optimization
	Split Relabeling
	Nearest Neighbors

	Experiments
	Discussion
	Conclusion
	Proofs
	Proof of Thm. 3.4 (RF kernel properties)
	Proof of Thm. 4.2 (Oracle consistency)
	Proof of Thm. 4.3 (Uniqueness)
	Proof of Thm. 4.4 (k-NN consistency)

	Experiments
	Reconstruction benchmark
	Additional results

	Leaf assignments via lasso and greedy search
	Computational complexity

