
Efficient and Modular Implicit Differentiation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Automatic differentiation (autodiff) has revolutionized machine learning. It allows1

expressing complex computations by composing elementary ones in creative ways2

and removes the burden of computing their derivatives by hand. More recently,3

differentiation of optimization problem solutions has attracted widespread attention4

with applications such as optimization as a layer, and in bi-level problems such as5

hyper-parameter optimization and meta-learning. However, the formulas for these6

derivatives often involve case-by-case tedious mathematical derivations. In this7

paper, we propose a unified, efficient and modular approach for implicit differentia-8

tion of optimization problems. In our approach, the user defines (in Python in the9

case of our implementation) a function F capturing the optimality conditions of10

the problem to be differentiated. Once this is done, we leverage autodiff of F and11

implicit differentiation to automatically differentiate the optimization problem. Our12

approach thus combines the benefits of implicit differentiation and autodiff. We13

show that seemingly simple principles allow to recover many recently proposed im-14

plicit differentiation methods and create new ones easily. We demonstrate the ease15

of formulating and solving bi-level optimization problems using our framework.16

We also showcase an application to the sensitivity analysis of molecular dynamics.17

1 Introduction18

Automatic differentiation (autodiff) is now an inherent part of machine learning software. It allows19

expressing complex computations by composing elementary ones in creative ways and removes20

the tedious burden of computing their derivatives by hand. The differentiation of optimization21

problem solutions has found many applications. A classical example is bi-level optimization, which22

typically involves computing the derivatives of a nested optimization problem in order to solve23

an outer one. Examples of applications in machine learning include hyper-parameter optimization24

[19, 63, 57, 30, 10, 11], neural networks [46], and meta-learning [31, 59]. Another line of applications25

is “optimization as a layer” [42, 6, 51, 27, 36, 7], which usually includes regularization or constraints26

in the optimization problem in order to impose desirable structure on the layer output. In addition27

to providing well sought-for interpretability, recent research indicates that such structure could be28

beneficial in order to improve generalization of neural networks [20].29

Since optimization problem solutions typically do not enjoy an explicit formula in terms of their30

inputs, autodiff cannot be used directly to differentiate these functions. In recent years, two main31

approaches have been developed to circumvent this problem. The first one consists in unrolling the32

iterations of an optimization algorithm and to use the final iteration as a proxy for the optimization33

problem solution [68, 28, 25, 31]. An advantage of this approach is that autodiff through the algorithm34

iterates can then be used transparently. However, this requires a reimplementation of the algorithm35

using the autodiff system, and not all algorithms are necessarily autodiff friendly. Moreover, forward-36

mode autodiff has time complexity that scales linearly with the number of variables and reverse-mode37

autodiff has memory complexity that scales linearly with the number of algorithm iterations. A second38

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



approach is to see optimization problem solutions as implicitly-defined functions of certain optimality39

conditions. Examples include stationary conditions [9, 46], KKT conditions [19, 35, 6, 53, 52] and40

the proximal gradient fixed point [51, 10, 11]. An advantage of such implicit differentiation is that41

a reimplementation is not needed, allowing to build upon state-of-the-art software. However, so42

far, obtaining the implicit differentiation formulas required a case-by-case tedious mathematical43

derivation. Recent work [2] attempts to address this issue by adding implicit differentiation on top of44

cvxpy [26]. This works by reducing all convex optimization problems to a conic program and using45

conic programming’s optimality conditions to derive an implicit differentiation formula. While this46

approach is very generic, solving a convex optimization problem using a conic programming solver—47

an ADMM-based splitting conic solver [54] in the case of cvxpy—is rarely the state-of-the-art48

approach for each particular problem instance.49

In this work, we adopt a different strategy, which allows to easily add implicit differentiation on top50

of existing solvers. In our approach, the user defines (in Python in the case of our implementation)51

a mapping function F capturing the optimality conditions of the problem solved by the algorithm.52

Once this is done, we leverage autodiff of F combined with implicit differentiation techniques to53

automatically differentiate the optimization problem solution. In this way, our approach is very54

generic and still the efficiency of state-of-the-art solvers. It therefore combines the benefits of implicit55

differentiation and autodiff. To summarize, we make the following contributions.56

• We delineate extremely general principles for implicitly differentiating through an optimization57

problem solution. Our approach can be seen as “hybrid”, in the sense that it combines implicit58

differentiation with autodiff of the optimality conditions.59

• We show how to instantiate our framework in order to recover many recently-proposed implicit60

differentiation schemes, thereby providing a unifying perspective. We also obtain new implicit61

differentiation schemes, such as the one based on the mirror descent fixed point.62

• On the theoretical side, we provide new bounds on the Jacobian error when the optimization63

problem is only solved approximately.64

• We describe a JAX implementation and provide a blueprint for implementing our approach in65

other frameworks. We will open-source a full-fledged library for implicit differentiation in JAX.66

• We implement four illustrative applications, demonstrating our framework’s ease of use.67

In essence, our implementation significantly extends JAX’s default autodiff system in context of the68

numerical optimization domain. From an end user’s perspective, autodiff with JAX simply becomes69

more efficient if they use solvers with implicit differentiation set up by our framework.70

Notation. We denote the gradient and Hessian of f : Rd → R evaluated at x ∈ Rd by ∇f(x) ∈71

Rd and ∇2f(x) ∈ Rd×d. We denote the Jacobian of F : Rd → Rp evaluated at x ∈ Rd by72

∂F (x) ∈ Rp×d. When f or F have several arguments, we denote the gradient, Hessian and Jacobian73

in the ith argument by ∇i, ∇2
i and ∂i, respectively. The standard probability simplex is denoted74

by 4d := {x ∈ Rd : ‖x‖1 = 1, x ≥ 0}. For any set C ⊂ Rd, we denote by IC the function75

Rd → R ∪ {+∞} where IC(x) = 0 if x ∈ C, IC(x) = +∞ otherwise. For a vector or matrix A, we76

note ‖A‖ the Frobenius (or Euclidean) norm, and ‖A‖op the operator norm.77

2 Proposed framework: combining implicit differentiation and autodiff78

2.1 General principles79

Overview. Contrary to unrolling of algorithm iterations, implicit differentiation typically involves80

a manual, sometimes complicated, mathematical derivation. For instance, numerous works [19, 35,81

6, 53, 52] use Karush–Kuhn–Tucker (KKT) conditions in order to relate a constrained optimization82

problem’s solution to its inputs, and to manually derive a formula for its derivatives. The derivation83

and implementation is typically case-by-case.84

In this work, we propose a general way to easily add implicit differentiation on top of existing solvers.85

In our approach, the user defines (in Python in the case of our implementation) a mapping function86

F capturing the optimality conditions of the problem solved by the algorithm. We provide reusable87

building blocks to easily express such F . Once this is done, we leverage autodiff of F combined with88

2



X_tr, y_tr = load_data()

def f(x, theta):

residual = jnp.dot(X_tr, x) - y_tr

return (jnp.sum(residual ** 2) + theta * jnp.sum(x ** 2)) / 2

F = jax.grad(f)

@custom_root(F)

def ridge_solver(theta):

XX = jnp.dot(X_tr.T, X_tr)

Xy = jnp.dot(X_tr.T, y_tr)

I = jnp.eye(X_tr.shape[0])

return jnp.linalg.solve(XX + theta * I, Xy)

print(jax.jacobian(ridge_solver)(10.0))

Figure 1: Example: adding implicit differentiation on top of a ridge regression solver. The function
f(x, θ) defines the objective function and the mapping F , here simply equation (4), captures the
optimality conditions. The decorator @custom_root (provided by our library) automatically adds
implicit differentiation to the solver for the user. The last line evaluates the Jacobian at θ = 10.

implicit differentiation to automatically differentiate the optimization problem solution. A simple89

illustrative example is given in Figure 1.90

Differentiating a root. Let F : Rd × Rn → Rd be a user-provided mapping, capturing the opti-91

mality conditions of a problem. An optimal solution, denoted x?(θ), should be a root of F :92

F (x?(θ), θ) = 0 . (1)

We can see x?(θ) as an implicitly defined function of θ ∈ Rn, i.e., x? : Rn → Rd. Our goal93

is to differentiate x?(θ) w.r.t. θ. From the implicit function theorem [44], if F is continuously94

differentiable and the Jacobian ∂1F evaluated at x?(θ)× θ is a square invertible matrix, then ∂x?(θ)95

exists. Using the chain rule, we know that the Jacobian ∂x?(θ) satisfies96

∂1F (x?(θ), θ)∂x?(θ) + ∂2F (x?(θ), θ) = 0.

Computing ∂x?(θ) boils down to the resolution of the linear system of equations97

−∂1F (x?(θ), θ)︸ ︷︷ ︸
A∈Rd×d

∂x?(θ)︸ ︷︷ ︸
J∈Rd×n

= ∂2F (x?(θ), θ)︸ ︷︷ ︸
B∈Rd×n

(2)

When (1) is a one-dimensional root finding problem (d = 1), (2) becomes particularly simple since98

∇x?(θ) = B>/A, where A is a scalar value.99

We will show that existing and new implicit differentiation methods all reduce to this simple principle.100

We call our approach hybrid, since it combines implicit differentiation (it involves the resolution of a101

linear system) with the autodiff of the optimality conditions F . Our approach is efficient as it can be102

added on top of any state-of-the-art solver and modular as the optimality conditon specification is103

decoupled from the implicit differentiation mechanism.104

Differentiating a fixed point. We will encounter numerous applications where x?(θ) is implicitly105

defined through a fixed point iteration:106

x?(θ) = T (x?(θ), θ) ,

where T : Rd × Rn → Rd. This can be seen as a particular case of (1) with107

F (x?(θ), θ) = T (x?(θ), θ)− x?(θ) . (3)

In this case, using the chain rule, we have108

A = −∂1F (x?(θ), θ) = I − ∂1T (x?(θ), θ) and B = ∂2F (x?(θ), θ) = ∂2T (x?(θ), θ).

3



Computing JVPs and VJPs. In practice, all we need to know from F is how to left-multiply or109

right-multiply ∂1F and ∂2F with a vector of appropriate size. These are called vector-Jacobian110

product (VJP) and Jacobian-vector product (JVP), and are useful for integrating x?(θ) with reverse-111

mode and forward-mode autodiff, respectively. Often times, F will be explicitly defined. In this case,112

computing the VJP or JVP can be done via autodiff. Other times, F may itself be implicitly defined,113

for instance when F involves the solution of a variational problem. In this case, computing the VJP114

or JVP will itself involve implicit differentiation.115

The right-multiplication (JVP) between J = ∂x?(θ) and a vector v, Jv, can be computed efficiently116

by solving A(Jv) = Bv. The left-multiplication (VJP) of v> with J , v>J , can be computed by first117

solving A>u = v. Then, we can obtain v>J by v>J = u>AJ = u>B. Note that when B changes118

but A and v remain the same, we do not need to solve A>u = v once again. This allows to compute119

the VJP w.r.t. different variables while solving only one linear system.120

To solve these linear systems, we can use the conjugate gradient method [39] when A is positive121

semi-definite and GMRES [61] or BiCGSTAB [66] when A is not. All algorithms are matrix-free,122

i.e., they only require matrix-vector products (linear maps). Thus, all we need from F is its JVPs123

or VJPs. An alternative to GMRES/BiCGSTAB is to solve the normal equation AA>u = Av using124

conjugate gradient, which we find faster in some scenarios.125

Pre-processing and post-processing mappings. Often times, the goal is not to differentiate θ per126

se, but the parameters of a function producing θ. One example of such pre-processing is to convert127

the parameters to be differentiated from one form to another canonical form, such as a quadratic128

program [6] or a conic program [2]. Another example is when x?(θ) is used as the output of a neural129

network layer, in which case θ is produced by the previous layer. Likewise, x?(θ) will often not130

be the final output we want to differentiate. One example of such post-processing is when x?(θ) is131

the solution of a dual program and we apply the dual-primal mapping to recover the solution of the132

primal program. Another example is the application of a loss function, in order to reduce x?(θ) to a133

scalar value. In all these cases, we leave the differentiation of the pre/post-processing mappings to134

the autodiff system, allowing us to compose functions in complex ways.135

Usage and implementation details. Our implementation is based on JAX [17, 34]. JAX’s autodiff136

features enter the picture in at least two ways: (i) we lean heavily on JAX within our implementation,137

and (ii) we integrate the differentiation routines introduced by our framework into JAX’s existing138

autodiff system. In doing the latter, we override JAX’s default autodiff behavior (e.g. of differentiating139

transparently through an iterative solver’s unrolled iterations).140

We delineate here what features are needed from an autodiff system to implement our proposed141

framework. As mentioned, we only need access to F through the JVP or VJP of ∂1F and ∂2F .142

Since the definition of F will often include a gradient mapping ∇1f(x, θ) (see examples in §2.2),143

second-order derivatives need also be supported. Our library provides two decorators, custom_root144

and custom_fixed_point, for adding implicit differentiation on top of a solver, given optimality145

conditions F or fixed point iteration T . This functionality requires the ability to add custom JVP146

and/or VJP to a function. All these features are supported by recent autodiff systems, including JAX147

[17], TensorFlow [1] and PyTorch [56]. Our implementation, made in JAX, also uses JAX-specific148

features. We make extensive use of automatic batching with jax.vmap, JAX’s vectorizing map149

transformation. In order to solve the normal equation AA>u = Av, we also use JAX’s ability to150

automatically transpose a linear map using jax.linear_transpose [33].151

2.2 Examples152

We now give various examples of mapping F or fixed point iteration T , recovering existing implicit153

differentiation methods and creating new ones. Each choice of F or T implies different trade-offs in154

terms of computational oracles; see Table 1. Source code examples are given in Appendix A.155

Stationary point condition. The simplest example is to differentiate through the implicit function156

x?(θ) = argmin
x∈Rd

f(x, θ),

where f : Rd × Rn → R is twice differentiable. In this case, F is simply the gradient mapping157

F (x, θ) = ∇1f(x, θ). (4)

4



Table 1: Summary of optimality condition mappings. Oracles are accessed through their JVP or VJP.

Name Equation Solution needed Oracles needed

Stationary (4), (5) Primal ∇1f
KKT (6) Primal and dual ∇1f , H , G, ∂1H , ∂1G

Proximal gradient (7) Primal ∇1f , proxηg
Projected gradient (9) Primal ∇1f , projC

Mirror descent (11) Primal ∇1f , projϕC ,∇ϕ
Newton (15) Primal [∇2

1f(x, θ)]−1, ∇1f(x, θ)
Block proximal gradient (16) Primal [∇1f ]j , [proxηg]j

Conic programming (20) Residual map root projRp×K∗×R+

We then have ∂1F (x, θ) = ∇2
1f(x, θ) and ∂2F (x, θ) = ∂2∇1f(x, θ), the Hessian of f in its first158

argument and the Jacobian in the second argument of ∇1f(x, θ). In practice, we use autodiff to159

compute Jacobian products automatically. Equivalently, we can use the gradient descent fixed point160

T (x, θ) = x− η∇1f(x, θ), (5)

which holds for all step sizes η > 0. Using (3), it is easy to verify that we end up with the same linear161

system since η cancels out.162

KKT conditions. We now show that the KKT conditions, manually differentiated in several works163

[19, 35, 6, 53, 52], fit our framework. As we will see, the key will be to group the optimal primal and164

dual variables as our x?(θ). Let us consider the general problem165

argmin
z∈Rp

f(z, θ) subject to G(z, θ) ≤ 0, H(z, θ) = 0,

where z ∈ Rp is the primal variable, f : Rp×Rn → R, G : Rp×Rn → Rr and H : Rp×Rn → Rq .166

The stationarity, primal feasibility and complementary slackness conditions give167

∇1f(z, θ) + [∂1G(z, θ)]>λ+ [∂1H(z, θ)]>ν = 0

H(z, θ) = 0

λ ◦G(z, θ) = 0, (6)

where ν ∈ Rq and λ ∈ Rr+ are the dual variables, also known as KKT multipliers. The system of168

(potentially nonlinear) equations (6) fits our framework, as we can group the primal and dual solutions169

as x?(θ) = (z?(θ), ν?(θ), λ?(θ)) to form the root of a function F (x?(θ), θ), where F : Rd × Rn →170

Rd and d = p+ q + r. The primal and dual solutions can be obtained from a generic solver, such as171

an interior point method. In practice, the above mapping F will be defined directly in Python (see172

Figure 6 in Appendix A) and F will be differentiated automatically via autodiff.173

Proximal gradient fixed point. Unfortunately, not all algorithms return both primal and dual174

solutions. Moreover, if the objective contains non-smooth terms, proximal gradient descent may be175

more efficient. We now discuss its fixed point. Let x?(θ) be implicitly defined as176

x?(θ) := argmin
x∈Rd

f(x, θ) + g(x, θ),

where f : Rd × Rn → R is twice-differentiable convex and g : Rd × Rn → R is convex but possibly177

non-smooth. Let us define the proximity operator associated with g by178

proxg(y, θ) := argmin
x∈Rd

1

2
‖x− y‖22 + g(x, θ).

To implicitly differentiate through x?(θ), we use the fixed point mapping [55, p.150]179

T (x, θ) = proxηg(x− η∇1f(x, θ), θ), (7)

for any step size η > 0. The proximity operator is 1-Lipschitz continuous [50]. By Rademacher’s180

theorem, it is differentiable almost everywhere. Many proximity operators enjoy a closed form and181

can easily be differentiated, as discussed in Appendix B.182

5



Projected gradient fixed point. As a special case, when g(x, θ) is the indicator function IC(θ)(x),183

where C(θ) is a convex set depending on θ, we obtain184

x?(θ) = argmin
x∈C(θ)

f(x, θ). (8)

The proximity operator proxg becomes the Euclidean projection onto C(θ)185

proxg(y, θ) = projC(y, θ) := argmin
x∈C(θ)

‖x− y‖22

and (7) becomes the projected gradient fixed point186

T (x, θ) = projC(x− η∇1f(x, θ), θ). (9)

Compared to the KKT conditions, this fixed point is particularly suitable when the projection enjoys187

a closed form. We discuss how to compute the JVP / VJP for a wealth of convex sets in Appendix B.188

Mirror descent fixed point. We again consider the case when x?(θ) is implicitly defined as the189

solution of (8). We now generalize the projected gradient fixed point beyond Euclidean geometry.190

Let the Bregman divergence Dϕ : dom(ϕ)× relint(dom(ϕ))→ R+ generated by ϕ be defined by191

Dϕ(x, y) := ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉.

We define the Bregman projection of y onto C(θ) ⊆ dom(ϕ) by192

projϕC (y, θ) := argmin
x∈C(θ)

Dϕ(x,∇ϕ∗(y)). (10)

Definition (10) incudes the mirror map∇ϕ∗(y) for convenience. It can be seen as a mapping from193

Rd to dom(ϕ), ensuring that (10) is well-defined. The mirror descent fixed point mapping is then194

x̂ = ∇ϕ(x)

y = x̂− η∇1f(x, θ)

T (x, θ) = projϕC (y, θ). (11)

Because T involves the composition of several functions, manually deriving its JVP/VJP is error195

prone. This shows that our approach leveraging autodiff allows to handle more advanced fixed point196

mappings. A common example of ϕ is ϕ(x) = 〈x, log x− 1〉, where dom(ϕ) = Rd+. In this case,197

Dϕ is the Kullback-Leibler divergence. An advantage of the Kullback-Leibler projection is that it198

sometimes easier to compute than the Euclidean projection, as we detail in Appendix B.199

Other fixed points. More fixed points are described in Appendix C.200

2.3 Jacobian bounds201

In practice, either by the limitations of finite precision arithmetic or because we perform a finite202

number of iterations, we rarely reach the exact solution x?(θ), but instead only reach an approximate203

solution x̂ and apply the implicit differentiation equation (2) at this approximate solution. This204

motivates the need for approximation guarantees of this approach205

Definition 1. Let F : Rd × Rn → Rd be an optimality criterion mapping. Let A := −∂1F and206

B := ∂2F . We define the Jacobian estimate at (x, θ) as the solution to the following linear equation207

A(x, θ)J(x, θ) = B(x, θ). It is a function J : Rd × Rn → Rd×n.208

It holds by construction that J(x?(θ), θ) = ∂x?(θ). Computing J(x̂, θ) for an approximate solution209

x̂ of x?(θ) therefore allows to approximate the true Jacobian ∂x?(θ). In practice, an algorithm used210

to solve (1) depends on θ. Note however that, what we compute is not the Jacobian of x̂(θ), unlike211

works unrolling an algorithm that differentiate through its iterations, but an estimate of ∂x?(θ). We212

therefore use the notation x̂, leaving the dependence on θ implicit.213

We develop bounds of the form ‖J(x̂, θ)− ∂x?(θ)‖ < C‖x̂− x?(θ)‖, hence showing that the error214

on the estimated Jacobian is at most of the same order as that of x̂ as an approximation of x?(θ).215

These bounds are based on the following main theorem, whose proof is included in Appendix D.216

6



0 2000 4000 6000 8000 10000
Number of features

0

50

100

150

Ru
nt

im
e 

pe
r s

te
p 

(s
ec

on
ds

) Mirror descent (MD)
Unrolling
Implicit diff (ID)

(a)

0 2000 4000 6000 8000 10000
Number of features

0

100

200

300

400

500
Proximal gradient (PG)

Unrolling
Implicit diff (ID)

(b)

0 2000 4000 6000 8000 10000
Number of features

0

100

200

300

400

500

Block coordinate descent (BCD)
Unrolling
ID w/ MD fixed point
ID w/ PG fixed point

(c)

Figure 2: CPU runtime comparison of implicit differentiation and unrolling for hyperparameter
optimization of multiclass SVMs for multiple problem sizes. Error bars represent 90% confidence
intervals. (a) Mirror descent solver, with mirror descent fixed point for implicit differentiation.
(b) Proximal gradient solver, with proximal gradient fixed point for implicit differentiation. (c)
Block coordinate descent solver; for implicit differentiation we obtain x?(θ) by BCD but perform
differentiation with the mirror descent and proximal gradient fixed points. This showcases that the
solver and fixed point can be independently chosen.

Theorem 1 (Jacobian estimate). Let F : Rd × Rn → Rd. Assume that there exist α, β, γ, ε, R > 0217

such that A = −∂1F and B = ∂2F satisfy, for all v ∈ Rd, θ ∈ Rn and x such that ‖x−x?(θ)‖ ≤ ε:218

A is well-conditioned, Lipschitz: ‖A(x, θ)v‖ ≥ α‖v‖ , ‖A(x, θ)−A(x?(θ), θ)‖op ≤ γ‖x− x?(θ)‖.219

B is bounded and Lipschitz: ‖B(x?(θ), θ)‖ ≤ R , ‖B(x, θ)−B(x?(θ), θ)‖ ≤ β‖x− x?(θ)‖.220

Under these conditions, when ‖x̂− x?(θ)‖ ≤ ε, we have221

‖J(x̂, θ)− ∂x?(θ)‖ ≤
(
βα−1 + γRα−2

)
‖x̂− x?(θ)‖ .

This result is similar to [40, Theorem 7.2], that is concerned with the stability of solutions to inverse222

problems. Here we consider that A(·, θ) is uniformly well-conditioned, rather than only at x?(θ).223

This does not affect the first order in ε of this bound, and makes it valid for all x̂. It is also more224

tailored to applications to equation-specific cases.225

Indeed, Theorem 1 can be applied to specific functions F or T for some root and fixed-point equations.226

In particular, for gradient descent fixed point, where T (x, θ) = x− η∇1f(x, θ), this yields227

A(x, θ) = η∇2
1f(x, θ) and B(x, θ) = −η∂2∇1f(x, θ) .

This guarantees precision on the estimated Jacobian under regularity conditions on f directly; see228

Corollary 1 in Appendix D.229

For proximal gradient descent, where T (x, θ) = proxηg(x− η∇1f(x, θ), θ), this yields230

A(x, θ) = I − ∂1T (x, θ) = I − (I − η∇2
1f(x, θ))∂1proxηg(x− η∇1f(x, θ), θ)

B(x, θ) = ∂2proxηg(x− η∇1f(x, θ), θ)− η∂2∇1f(x, θ)∂1proxηg(x− η∇1f(x, θ), θ) .

An important special case is that of a function to minimize in the form f(x, θ) + g(x), where the231

prox function g is smooth, and does not depend on θ, as is the case in our experiments in §3.2. For232

this setting, we derive similar guarantees in Corollary 2 in Appendix D. Recent work also exploits233

local smoothness of solutions to derive similar bounds [11, Theorem 13].234

3 Experiments235

To conclude this work, we demonstrate the ease of formulating and solving bi-level optimization236

problems with our modular framework. We also present an application to the sensitivity analysis of237

molecular dynamics.238

3.1 Hyperparameter optimization of multiclass SVMs239

In this example, we consider the hyperparamer optimization of multiclass SVMs [23] trained in the240

dual. Here, x?(θ) is the optimal dual solution, a matrix of shape m× k, where m is the number of241

7



Table 2: Mean AUC (and 95% confidence interval) for the cancer survival prediction problem.

Method L1 logreg L2 logreg DictL + L2 logreg Task-driven DictL

AUC (%) 71.6± 2.0 72.4± 2.8 68.3± 2.3 73.2± 2.1

training examples and k is the number of classes, and θ ∈ R+ is the regularization parameter. The242

challenge in differentiating x?(θ) is that each row of x?(θ) is constrained to belong to the probability243

simplex4k. More formally, let Xtr ∈ Rm×p be the training feature matrix and Ytr ∈ {0, 1}m×k be244

the training labels (in row-wise one-hot encoding). Let W (x, θ) := X>tr(Ytr − x)/θ ∈ Rp×k be the245

dual-primal mapping. Then, we consider the following bi-level optimization problem246

argmin
θ=exp(λ)

1

2
‖XvalW (x?(θ), θ)− Yval‖2F︸ ︷︷ ︸

outer problem

subject to x?(θ) = argmin
x∈C

f(x, θ) :=
θ

2
‖W (x, θ)‖2F︸ ︷︷ ︸

inner problem

,

(12)
where C = 4k × · · · ×4k is the Cartesian product of m probability simplices. We apply the change247

of variable θ = exp(λ) in order to guarantee that the hyper-parameter θ is positive. The matrix248

W (x?(θ), θ) ∈ Rp×k contains the optimal primal solution, the feature weights for each class. The249

outer loss is computed against validation data Xval and Yval.250

In order to differentiate x?(θ), several ways are possible using our framework. The first one would be251

to map (12) to a quadratic program form (18) and use the KKT conditions to form a mapping F (x, θ).252

A more direct way is to use proximal gradient fixed point (9). Since C is a Cartesian product, the253

projection can be easily computed by row-wise projections on the simplex, which we map over rows254

(using vectorized operations) via jax.vmap. As we explained in §B.1, this projection’s Jacobian255

enjoys a closed form. A third way to differentiate x?(θ) is using the mirror descent fixed point256

(11). Under the KL geometry, projϕC (y, θ) corresponds to a row-wise softmax. It is therefore easy to257

compute and differentiate. Figure 2 compares the runtime performance of implicit differentiation vs.258

unrolling for the latter two fixed points. A code example is included in Figure 8 in the Appendix.259

3.2 Task-driven dictionary learning260

Task-driven dictionary learning was proposed to learn sparse codes for input data in such a way that261

the codes solve an outer learning problem [47, 64, 70]. Formally, given a data matrix Xtr ∈ Rm×p262

and a dictionary of k atoms θ ∈ Rk×p, a sparse code is defined as a matrix x?(θ) ∈ Rm×k that263

minimizes in x a reconstruction loss f(x, θ) := `(Xtr, xθ) regularized by a sparsity-inducing penalty264

g(x). Instead of optimizing the dictionary θ to minimize the reconstruction loss, [47] proposed to265

optimize an outer problem that depends on the code. For example, given a set of labels Ytr ∈ {0, 1}m,266

we consider a logistic regression problem which results in the bilevel optimization problem:267

min
θ∈Rk×p,w∈Rk,b∈R

σ(x?(θ)w + b; ytr)︸ ︷︷ ︸
outer problem

subject to x?(θ) ∈ argmin
x∈Rm×k

f(x, θ) + g(x)︸ ︷︷ ︸
inner problem

. (13)

When ` is the squared Frobenius distance between matrices, and g the elastic net penalty, [47, Eq.268

21] derive manually, using optimality conditions (notably the support of the codes selected at the269

optimum), an explicit re-parameterization of x?(θ) as a linear system involving θ. This closed-270

form allows for a direct computation of the Jacobian of x? w.r.t. θ. Similarly, [64] derive first271

order conditions in the case where ` is a β-divergence, while [70] propose to use unrolling of ISTA272

iterations. Our approach bypasses all of these computations, giving the user more leisure to focus273

directly on modeling (loss, regularizer) aspects (see code snippet in Figure 9 in Appendix).274

We illustrate this on a problem of breast cancer survival prediction from gene expression data,275

framed as a binary classification problem to discriminate patients who survive longer than 5 years276

(m1 = 200) vs patients who die within 5 years of diagnosis (m0 = 99), from p = 1, 000 gene277

expression values. As shown in Table 2, solving (13) (Task-driven DictL) reaches a classification278

performance competitive with state-of-the-art L1 or L2 regularized logistic regression with 100 times279

fewer variables. See Appendix E.2 for more details.280

8



Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

Figure 3: Distilled MNIST dataset θ ∈ Rk×p obtained by solving (14). We learn one image per class
such that a logistic regression model trained on θ achieves the lowest logistic loss on the MNIST
training set. Implicit differentiation was 4 times faster than unrolling.

3.3 Dataset distillation281

Dataset distillation [67, 46] aims to learn a small synthetic training dataset such that a model trained282

on this learned data set achieves small loss on the original training set. Formally, letXtr ∈ Rm×p and283

ytr ∈ [k]m denote the original training set. The distilled dataset will contain one prototype example284

for each class and therefore θ ∈ Rk×p. The dataset distillation problem can then naturally be cast as285

a bi-level problem, where in the inner problem we estimate a logistic regression model x?(θ) ∈ Rp286

trained on the distilled images θ ∈ Rk×p, while in the outer problem we want to minimize the loss287

achieved by x?(θ) over the training set:288

argmin
θ∈Rk×p

f(x?(θ), Xtr; ytr)︸ ︷︷ ︸
outer problem

subject to x?(θ) ∈ argmin
x∈Rp

f(x, θ; [k]) + ε‖x‖2︸ ︷︷ ︸
inner problem

, (14)

where f(x,X; y) := `(Xx, y), ` denotes the multiclass logistic regression loss, and ε = 10−3 is a289

regularization parameter that we found had a very positive effect on convergence.290

In this problem, and unlike in the general hyperparameter optimization setup, both the inner and outer291

problems are high-dimensional, making it an ideal test-bed for gradient-based bi-level optimization292

methods. For this experiment, we use the MNIST dataset. The number of parameters in the inner293

problem is p = 282 = 784. while the number of parameters of the outer loss is k × p = 7840. We294

solve this problem using gradient descent on both the inner and outer problem, with the gradient295

of the outer loss computed using implicit differentiation, as described in §2. This is fundamentally296

different from the approach used in the original paper, where they used differentiation of the unrolled297

iterates instead. For the same solver, we found that the implicit differentiation approach was 4 times298

faster than the original one. The obtained distilled images θ are visualized in Figure 3 and a code299

example is given in Figure 10 in the Appendix.300

3.4 Sensitivity analysis of molecular dynamics301

Figure 4: Particle positions
and position sensitivity vectors,
with respect to increasing the
diameter of the blue particles.

Many applications of physical simulations require solving optimiza-302

tion problems, such as energy minimization in molecular [62] and303

continuum [8] mechanics, structural optimization [41] and data304

assimilation [32]. However, even fully differentiable simulators305

may not have efficient or accurate derivatives. We revisit an exam-306

ple from JAX-MD [62], the problem of finding energy minimizing307

configurations to a system of packed particles in an m-dimensional308

box of width `,309

x?(θ) = argmin
x∈Rk×m

∑
ij

U(xij mod `, θ),

where U(xij , θ) is the pairwise potential energy function, with half310

the particles at diameter 1 and half at diameter θ = 0.6, which we311

optimize with a domain-specific optimizer [13]. Here we consider312

sensitivity of particle position with respect to diameter ∂x?(θ),313

rather than sensitivity of the total energy from the original experi-314

ment. Figure 4 shows results calculated via forward-mode implicit differentiation (JVP). Whereas315

differentiating the unrolled optimizer happens to work for total energy, here it typically does not even316

converge (see Appendix Fig. 15), due the discontinuous optimization method.317

9



References318

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,319

M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}320

symposium on operating systems design and implementation ({OSDI} 16), pages 265–283,321

2016.322

[2] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex323

optimization layers. arXiv preprint arXiv:1910.12430, 2019.324

[3] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. M. Moursi. Differentiating through a cone325

program. arXiv preprint arXiv:1904.09043, 2019.326

[4] A. Ali, E. Wong, and J. Z. Kolter. A semismooth newton method for fast, generic convex327

programming. In International Conference on Machine Learning, pages 70–79. PMLR, 2017.328

[5] B. Amos. Differentiable optimization-based modeling for machine learning. PhD thesis, PhD329

thesis. Carnegie Mellon University, 2019.330

[6] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In331

Proc. of ICML, pages 136–145, 2017.332

[7] S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. arXiv preprint arXiv:1909.01377,333

2019.334

[8] A. Beatson, J. Ash, G. Roeder, T. Xue, and R. P. Adams. Learning composable energy surrogates335

for pde order reduction. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,336

editors, Advances in Neural Information Processing Systems, volume 33, pages 338–348. Curran337

Associates, Inc., 2020.338

[9] Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889–339

1900, 2000.340

[10] Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit341

differentiation of lasso-type models for hyperparameter optimization. In Proc. of ICML, pages342

810–821, 2020.343

[11] Q. Bertrand, Q. Klopfenstein, M. Massias, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon.344

Implicit differentiation for fast hyperparameter selection in non-smooth convex learning. arXiv345

preprint arXiv:2105.01637, 2021.346

[12] M. J. Best, N. Chakravarti, and V. A. Ubhaya. Minimizing separable convex functions subject347

to simple chain constraints. SIAM Journal on Optimization, 10(3):658–672, 2000.348

[13] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch. Structural relaxation made349

simple. Phys. Rev. Lett., 97:170201, Oct 2006.350

[14] M. Blondel. Structured prediction with projection oracles. In Proc. of NeurIPS, 2019.351

[15] M. Blondel, V. Seguy, and A. Rolet. Smooth and sparse optimal transport. In Proc. of AISTATS,352

pages 880–889. PMLR, 2018.353

[16] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga. Fast differentiable sorting and ranking. In354

Proc. of ICML, pages 950–959, 2020.355

[17] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and S. Wanderman-356

Milne. Jax: composable transformations of python+ numpy programs, 2018. URL http://github.357

com/google/jax, 4:16, 2020.358

[18] P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research Letters,359

3(3):163–166, 1984.360

[19] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for361

support vector machines. Machine learning, 46(1):131–159, 2002.362

10

https://www.sciencedirect.com/science/article/pii/0167637784900105


[20] X. Chen, Y. Zhang, C. Reisinger, and L. Song. Understanding deep architecture with reasoning363

layer. Advances in Neural Information Processing Systems, 33, 2020.364

[21] H. Cherkaoui, J. Sulam, and T. Moreau. Learning to solve tv regularised problems with unrolled365

algorithms. Advances in Neural Information Processing Systems, 33, 2020.366

[22] L. Condat. Fast projection onto the simplex and the `1 ball. Mathematical Programming,367

158(1-2):575–585, 2016.368

[23] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based369

vector machines. Journal of machine learning research, 2(Dec):265–292, 2001.370

[24] M. Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. In Advances in371

Neural Information Processing Systems, volume 2, 2013.372

[25] C.-A. Deledalle, S. Vaiter, J. Fadili, and G. Peyré. Stein unbiased gradient estimator of the risk373

(sugar) for multiple parameter selection. SIAM Journal on Imaging Sciences, 7(4):2448–2487,374

2014.375

[26] S. Diamond and S. Boyd. Cvxpy: A python-embedded modeling language for convex optimiza-376

tion. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.377

[27] J. Djolonga and A. Krause. Differentiable learning of submodular models. Proc. of NeurIPS,378

30:1013–1023, 2017.379

[28] J. Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and380

Statistics, pages 318–326. PMLR, 2012.381

[29] J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the `1-ball382

for learning in high dimensions. In Proc. of ICML, 2008.383

[30] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based384

hyperparameter optimization. In International Conference on Machine Learning, pages 1165–385

1173. PMLR, 2017.386

[31] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for387

hyperparameter optimization and meta-learning. In International Conference on Machine388

Learning, pages 1568–1577. PMLR, 2018.389

[32] T. Frerix, D. Kochkov, J. A. Smith, D. Cremers, M. P. Brenner, and S. Hoyer. Variational data390

assimilation with a learned inverse observation operator. 2021.391

[33] R. Frostig, M. Johnson, D. Maclaurin, A. Paszke, and A. Radul. Decomposing reverse-mode392

automatic differentiation. In LAFI 2021 workshop at POPL, 2021.393

[34] R. Frostig, M. J. Johnson, and C. Leary. Compiling machine learning programs via high-level394

tracing. Machine Learning and Systems (MLSys), 2018.395

[35] S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo. On differentiating396

parameterized argmin and argmax problems with application to bi-level optimization. arXiv397

preprint arXiv:1607.05447, 2016.398

[36] S. Gould, R. Hartley, and D. Campbell. Deep declarative networks: A new hope. arXiv preprint399

arXiv:1909.04866, 2019.400

[37] S. Grotzinger and C. Witzgall. Projections onto order simplexes. Applied mathematics and401

Optimization, 12(1):247–270, 1984.402

[38] I. Guyon. Design of experiments of the nips 2003 variable selection benchmark. In NIPS 2003403

workshop on feature extraction and feature selection, volume 253, 2003.404

[39] M. R. Hestenes, E. Stiefel, et al. Methods of conjugate gradients for solving linear systems,405

volume 49. NBS Washington, DC, 1952.406

11

https://hal.archives-ouvertes.fr/hal-01056171
https://stanford.edu/~jduchi/projects/DuchiShSiCh08.pdf
https://stanford.edu/~jduchi/projects/DuchiShSiCh08.pdf
https://stanford.edu/~jduchi/projects/DuchiShSiCh08.pdf


[40] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and407

Applied Mathematics, second edition, 2002.408

[41] S. Hoyer, J. Sohl-Dickstein, and S. Greydanus. Neural reparameterization improves structural409

optimization. 2019.410

[42] Y. Kim, C. Denton, L. Hoang, and A. M. Rush. Structured attention networks. arXiv preprint411

arXiv:1702.00887, 2017.412

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint413

arXiv:1412.6980, 2014.414

[44] S. G. Krantz and H. R. Parks. The implicit function theorem: history, theory, and applications.415

Springer Science & Business Media, 2012.416

[45] C. H. Lim and S. J. Wright. Efficient bregman projections onto the permutahedron and related417

polytopes. In Proc. of AISTATS, pages 1205–1213. PMLR, 2016.418

[46] J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters by implicit419

differentiation. In International Conference on Artificial Intelligence and Statistics, pages420

1540–1552. PMLR, 2020.421

[47] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Transactions on Pattern422

Analysis and Machine Intelligence, 34(4):791–804, 2012.423

[48] A. F. Martins and R. F. Astudillo. From softmax to sparsemax: A sparse model of attention and424

multi-label classification. In Proc. of ICML, 2016.425

[49] C. Michelot. A finite algorithm for finding the projection of a point onto the canonical simplex426

of Rn. Journal of Optimization Theory and Applications, 50(1):195–200, 1986.427

[50] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la S.M.F., 93:273–299,428

1965.429

[51] V. Niculae and M. Blondel. A regularized framework for sparse and structured neural attention.430

In Proc. of NeurIPS, 2017.431

[52] V. Niculae and A. Martins. Lp-sparsemap: Differentiable relaxed optimization for sparse432

structured prediction. In International Conference on Machine Learning, pages 7348–7359,433

2020.434

[53] V. Niculae, A. Martins, M. Blondel, and C. Cardie. Sparsemap: Differentiable sparse structured435

inference. In International Conference on Machine Learning, pages 3799–3808. PMLR, 2018.436

[54] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting437

and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,438

169(3):1042–1068, 2016.439

[55] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127–440

239, 2014.441

[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,442

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning443

library. arXiv preprint arXiv:1912.01703, 2019.444

[57] F. Pedregosa. Hyperparameter optimization with approximate gradient. In International445

conference on machine learning. PMLR, 2016.446

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,447

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,448

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine449

Learning Research, 12:2825–2830, 2011.450

[59] A. Rajeswaran, C. Finn, S. Kakade, and S. Levine. Meta-learning with implicit gradients. arXiv451

preprint arXiv:1909.04630, 2019.452

12

https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
https://link.springer.com/article/10.1007/BF00938486
https://link.springer.com/article/10.1007/BF00938486
https://link.springer.com/article/10.1007/BF00938486
https://arxiv.org/pdf/1602.02355.pdf


[60] N. Rappoport and R. Shamir. Multi-omic and multi-view clustering algorithms: review and453

cancer benchmark. Nucleic Acids Res., 46:10546–10562, 2018.454

[61] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving455

nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–456

869, 1986.457

[62] S. Schoenholz and E. D. Cubuk. Jax md: A framework for differentiable physics. In458

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural459

Information Processing Systems, volume 33, pages 11428–11441. Curran Associates, Inc.,460

2020.461

[63] M. W. Seeger. Cross-validation optimization for large scale structured classification kernel462

methods. Journal of Machine Learning Research, 9(6), 2008.463

[64] P. Sprechmann, A. M. Bronstein, and G. Sapiro. Supervised non-euclidean sparse nmf via464

bilevel optimization with applications to speech enhancement. In 2014 4th Joint Workshop on465

Hands-free Speech Communication and Microphone Arrays (HSCMA), pages 11–15. IEEE,466

2014.467

[65] S. Vaiter, C.-A. Deledalle, G. Peyré, C. Dossal, and J. Fadili. Local behavior of sparse analysis468

regularization: Applications to risk estimation. Applied and Computational Harmonic Analysis,469

35(3):433–451, 2013.470

[66] H. A. v. d. Vorst and H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant471

of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and472

Statistical Computing, 13(2):631–644, 1992.473

[67] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. Dataset distillation. arXiv preprint474

arXiv:1811.10959, 2018.475

[68] R. E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM,476

7(8):463–464, 1964.477

[69] Y. Wu, M. Ren, R. Liao, and R. B. Grosse. Understanding short-horizon bias in stochastic478

meta-optimization. In 6th International Conference on Learning Representations, ICLR 2018,479

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-480

view.net, 2018.481

[70] J. Zarka, L. Thiry, T. Angles, and S. Mallat. Deep network classification by scattering and482

homotopy dictionary learning. arXiv preprint arXiv:1910.03561, 2019.483

13



Checklist484

1. For all authors...485

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s486

contributions and scope? [Yes] Our paper builds on the premise that reinstantiating487

the implicit function theorem for every optimization problem a user may encounter488

is cumbersome. We make the case that a modular approach is needed to bypass that489

issue. This approach raises several challenges, notably in the way these implicit solvers490

can be automatically instantiated, consistently, across the large corpus of optimization491

approaches favored by users.492

(b) Did you describe the limitations of your work? [Yes] , We discuss several limitations493

in our work. For instance, implicit differentiation requires x̂ to be sufficiently close to494

x? to be meaningful. This is the main topic of §2.3495

(c) Did you discuss any potential negative societal impacts of your work? [N/A] As a496

purely methodological paper, we do not foresee negative societal impacts of our work.497

(d) Have you read the ethics review guidelines and ensured that your paper conforms to498

them? [Yes] We confirm our paper conforms to those guidelines.499

2. If you are including theoretical results...500

(a) Did you state the full set of assumptions of all theoretical results? [Yes] , The paper501

contains one theoretical section, §2.3.502

(b) Did you include complete proofs of all theoretical results? [Yes] , All proofs are503

included in the Appendix D504

3. If you ran experiments...505

(a) Did you include the code, data, and instructions needed to reproduce the main exper-506

imental results (either in the supplemental material or as a URL)? [No] At the time507

of submission, we are in the course of an approval process for open-source release508

required by our organization. We believe that the library itself comprises a contribution,509

and will have it available in open source by the time of this paper’s publication (at the510

latest).511

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they512

were chosen)? [Yes] , Experiments were mostly run with minimal parameter tuning to513

reflect the simplicity of the approach we advocate. This is reflected in §3 and Appendix514

E515

(c) Did you report error bars (e.g., with respect to the random seed after running ex-516

periments multiple times)? [Yes] , see Figure 2 and std for the dictionary learning517

task.518

(d) Did you include the total amount of compute and the type of resources used (e.g., type519

of GPUs, internal cluster, or cloud provider)? [Yes] , see Appendix E520

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...521

(a) If your work uses existing assets, did you cite the creators? [Yes] , see §3 and Appendix522

E523

(b) Did you mention the license of the assets? [Yes] , see Appendix E524

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]525

526

(d) Did you discuss whether and how consent was obtained from people whose data you’re527

using/curating? [N/A]528

(e) Did you discuss whether the data you are using/curating contains personally identifiable529

information or offensive content? [N/A]530

5. If you used crowdsourcing or conducted research with human subjects...531

(a) Did you include the full text of instructions given to participants and screenshots, if532

applicable? [N/A]533

(b) Did you describe any potential participant risks, with links to Institutional Review534

Board (IRB) approvals, if applicable? [N/A]535

(c) Did you include the estimated hourly wage paid to participants and the total amount536

spent on participant compensation? [N/A]537

14


