
Prediction Risk and Estimation Risk of the Ridgeless
Least Squares Estimator under General Assumptions

on Regression Errors

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent years, there has been a significant growth in research focusing on min-1

imum ℓ2 norm (ridgeless) interpolation least squares estimators. However, the2

majority of these analyses have been limited to an unrealistic regression error struc-3

ture, assuming independent and identically distributed errors with zero mean and4

common variance. In this paper, we explore prediction risk as well as estimation5

risk under more general regression error assumptions, highlighting the benefits of6

overparameterization in a more realistic setting that allows for clustered or serial7

dependence. Notably, we establish that the estimation difficulties associated with8

the variance components of both risks can be summarized through the trace of the9

variance-covariance matrix of the regression errors. Our findings suggest that the10

benefits of overparameterization can extend to time series, panel and grouped data.11

1 Introduction12

Recent years have witnessed a fast growing body of work that analyzes minimum ℓ2 norm (ridgeless)13

interpolation least squares estimators [see, e.g., 2, 17, 27, and references therein]. Researchers in this14

field were inspired by the ability of deep neural networks to accurately predict noisy training data15

with perfect fits, a phenomenon known as “double descent” or “benign overfitting” [e.g., 3–5, 29, 22,16

among many others]. They discovered that to achieve this phenomenon, overparameterization is17

critical.18

In the setting of linear regression, we have the training data {(xi, yi) ∈ Rp × R : i = 1, · · · , n}, where19

the outcome variable yi is generated from20

yi = x⊤i β + εi, i = 1, . . . , n,

xi is a vector of features (or regressors), β is a vector of unknown parameters, and εi is a regression21

error. Here, n is the sample size of the training data and p is the dimension of the parameter vector β.22

In the literature, the main object for the theoretical analyses has been mainly on the out-of-sample23

prediction risk. That is, for the ridge or interpolation estimator β̂, the literature has focused on24

E
[
(x⊤0 β̂ − x⊤0 β)

2 | x1, . . . , xn

]
,

where x0 is a test observation that is identically distributed as xi but independent of the training data.25

For example, Dobriban and Wager [13], Wu and Xu [28], Richards et al. [23], Hastie et al. [17]26

analyzed the predictive risk of ridge(less) regression and obtained exact asymptotic expressions under27

the assumption that p/n converges to some constant as both p and n go to infinity. Overall, they28

found the double descent behavior of the ridgeless least squares estimator in terms of the prediction29
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risk. Bartlett et al. [2], Kobak et al. [19], Tsigler and Bartlett [27] characterized the phenomenon of30

benign overfitting in a different setting.31

To the best of our knowledge, a vast majority of the theoretical analyses have been confined to a32

simple data generating process, namely, the observations are independent and identically distributed33

(i.i.d.), and the regression errors have mean zero, have the common variance, and are independent of34

the feature vectors. That is,35

(yi, x⊤i )⊤ ∼ i.i.d. with E[εi] = 0, E[ε2
i ] = σ2 < ∞ and εi is independent of xi. (1)

This assumption, although convenient, is likely to be unrealistic in various real-world examples. For36

instance, Liao et al. [21] adopted high-dimensional linear models to examine the double descent37

phenomenon in economic forecasts. In their applications, the outcome variables include S&P firms’38

earnings, U.S. equity premium, U.S. unemployment rate, and countries’ GDP growth rate. As in39

their applications, economic forecasts are associated with time series or panel data. As a result, it40

is improbable that (1) holds in these applications. As another example, Spiess et al. [26] examined41

the performance of high-dimensional synthetic control estimators with many control units. The42

outcome variable in their application is the state-level smoking rates in the Abadie et al. [1] dataset.43

Considering the geographical aspects of the U.S. states, it is unlikely that the regression errors44

underlying the synthetic control estimators adhere to (1). In short, it is desirable to go beyond the45

simple but unrealistic regression error assumption given in (1).46
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Figure 1: Comparison of in-sample and out-of-sample mean squared error (MSE) across various
degrees of clustered noise. The vertical line indicates p = n (= 1, 415).

To further motivate, we start with our own real-data example from American Community Survey47

(ACS) 2018, extracted from IPUMS USA [24]. The ACS is an ongoing annual survey by the48

US Census Bureau that provides key information about the US population. To have a relatively49

homogeneous population, the sample extract is restricted to white males residing in California with at50

least a bachelor’s degree. We consider a demographic group defined by their age, the type of degree,51

and the field of degree. Then, we compute the average of log hourly wages for each age-degree-52

field group, treat each group average as the outcome variable, and predict group wages by various53

group-level regression models where the regressors are constructed using the indicator variables of54

age, degree, and field as well as their interactions. We consider 7 specifications ranging from 20955

to 2,182 regressors. To understand the role of non-i.i.d. regressor errors, we add the artificial noise56

to the training sample. See Appendix A for details regarding how to generate the artificial noise.57

In the experiment, the constant c varies such that c = 0 corresponds to no clustered dependence58

across observations but as a positive c gets larger, the noise has a larger share of clustered errors but59

the variance of the overall regression errors remains the same regardless of the value of c. Figure 160

shows the in-sample (train) vs. out-of-sample (test) mean squared error (MSE) for various values61

of c ∈ {0, 0.25, 0.5, 0.75}. It can be seen that the experimental results are almost identical across62

different values of c especially when p > n, suggesting that the double descent phenomenon might63

be universal for various degrees of clustered dependence, provided that the overall variance of the64

regression errors remains the same. It is our main goal to provide a firm foundation for this empirical65

phenomenon. To do so, we articulate the following research questions:66
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• How to analyze the out-of-sample prediction risk of the ridgeless least squares estimator67

under general assumptions on the regression errors?68

• Why does not the prediction risk seem to be affected by the degrees of dependence across69

observations?70

To delve into the prediction risk, suppose that Σ := E[x0x⊤0 ] is finite and positive definite. Then,71

E
[
(x⊤0 β̂ − x⊤0 β)

2 | x1, . . . , xn

]
= E

[
(β̂ − β)⊤Σ(β̂ − β) | x1, . . . , xn

]
.

If Σ = I (i.e., the case of isotropic features), where I is the identity matrix, the mean squared error72

of the estimator defined by E[∥β̂ − β∥2], where ∥ · ∥ is the usual Euclidean norm, is the same as73

the expectation of the prediction risk defined above. However, if Σ , I, the link between the two74

quantities is less intimate. One may regard the prediction risk as the Σ-weighted mean squared error75

of the estimator; whereas E[∥β̂ − β∥2] can be viewed as an “unweighted” version, even if Σ , I. In76

other words, regardless of the variance-covariance structure of the feature vector, E[∥β̂ − β∥2] treats77

each component of β “equally.” The mean squared error of the estimator is arguably one of the most78

standard criteria to evaluate the quality of the estimator in statistics. For instance, in the celebrated79

work by James and Stein [18], the mean squared error criterion is used to show that the sample mean80

vector is not necessarily optimal even for standard normal vectors (so-called “Stein’s paradox”).81

Many follow-up papers used the same criterion; e.g., Hansen [16] compared the mean-squared error82

of ordinary least squares, James–Stein, and Lasso estimators in an underparameterized regime. Both83

Σ-weighted and unweighted versions of the mean squared error are interesting objects to study. For84

example, Dobriban and Wager [13] called the former “predictive risk” and the latter “estimation risk”85

in high-dimensional linear models; Berthier et al. [6] called the former “generalization error” and the86

latter “reconstruction error” in the context of stochastic gradient descent for the least squares problem87

using the noiseless linear model. In this paper, we analyze both weighted and unweighted mean88

squared errors of the ridgeless estimator under general assumptions on the data-generating processes,89

not to mention anisotropic features. Furthermore, our focus is on the finite-sample analysis, that is,90

both p and n are fixed but p > n.91

Although most of the existing papers consider the simple setting as in (1), our work is not the first paper92

to consider more general regression errors in the overparameterized regime. Chinot et al. [9], Chinot93

and Lerasle [8] analyzed minimum norm interpolation estimators as well as regularized empirical94

risk minimizers in linear models without any conditions on the regression errors. Specifically,95

Chinot and Lerasle [8] showed that, with high probability, without assumption on the regression96

errors, for the minimum norm interpolation estimator, (β̂ − β)⊤Σ(β̂ − β) is bounded from above97

by
(
∥β∥2

∑
i≥c·n λi(Σ) ∨

∑n
i=1 ε

2
i

)
/n, where c is an absolute constant and λi(Σ) is the eigenvalues of98

Σ in descending order. Chinot and Lerasle [8] also obtained the bounds on the estimation error99

(β̂ − β)⊤(β̂ − β). Our work is distinct and complements these papers in the sense that we allow for100

a general variance-covariance matrix of the regression errors. The main motivation of not making101

any assumptions on εi in Chinot et al. [9] and Chinot and Lerasle [8] is to allow for potentially102

adversarial errors. We aim to allow for a general variance-covariance matrix of the regression errors103

to accommodate time series and clustered data, which are common in applications. See, e.g., Hansen104

[15] for a textbook treatment (see Chapter 14 for time series and Section 4.21 for clustered data).105

The main contribution of this paper is that we provide exact finite-sample characterization of the vari-106

ance component of the prediction and estimation risks under the assumption that X = [x1, x2, · · · , xn]⊤107

is left-spherical (e.g., xi’s can be i.i.d. normal with mean zero but more general); εi’s can be corre-108

lated and have non-identical variances; and εi’s are independent of xi’s. Specifically, the variance109

term can be factorized into a product between two terms: one term depends only on the trace of the110

variance-covariance matrix, say Ω, of εi’s; the other term is solely determined by the distribution of111

xi’s. Interestingly, we find that although Ωmay contain non-zero off-diagonal elements, only the trace112

of Ωmatters, as hinted by Figure 1, and further demonstrate our finding via numerical experiments. In113

addition, we obtain exact finite-sample expression for the bias terms when the regression coefficients114

follow the random-effects hypothesis [13]. Our finite-sample findings offer a distinct viewpoint on115

the prediction and estimation risks, contrasting with the asymptotic inverse relationship (for optimally116

chosen ridge estimators) between the predictive and estimation risks uncovered by Dobriban and117

Wager [13]. Finally, we connect our findings to the existing results on the prediction risk [e.g., 17] by118

considering the asymptotic behavior of estimation risk.119
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One of the limitations of our theoretical analysis is that the design matrix X is assumed to be left-120

spherical, although it is more general than i.i.d. normal with mean zero. We not only view this as a121

convenient assumption but also expect that our findings will hold at least approximately even if X122

does not follow the left-spherical distribution. It is a topic for future research to formally investigate123

this conjecture.124

2 The Framework under General Assumptions on Regression Errors125

We first describe the minimum ℓ2 norm (ridgeless) interpolation least squares estimator in the126

overparameterized case (p > n). Define127

y := [y1, y2, · · · , yn]⊤ ∈ Rn,

ε := [ε1, ε2, · · · , εn]⊤ ∈ Rn,

X⊤ :=
[
x1, x2, · · · , xn

]
∈ Rp×n,

so that y = Xβ + ε. The estimator we consider is128

β̂ := arg min
b∈Rp

{∥b∥ : Xb = y} = (X⊤X)†X⊤y = X†y,

where A† denotes the Moore–Penrose inverse of a matrix A.129

The main object of interest in this paper is the prediction and estimation risks of β̂ under the130

data scenario such that the regression error εi may not be i.i.d. Formally, we make the following131

assumptions.132

Assumption 2.1. (i) y = Xβ+ ε, where ε is independent of X, and E[ε] = 0. (ii) Ω := E[εε⊤] is finite133

and positive definite (but not necessarily spherical).134

We emphasize that Assumption 2.1 is more general than the standard assumption in the literature135

on benign overfitting that typically assumes that Ω ≡ σ2I. Assumption 2.1 allows for non-identical136

variances across the elements of ε because the diagonal elements of Ω can be different among each137

other. Furthermore, it allows for non-zero off-diagonal elements in Ω. It is difficult to assume that the138

regression errors are independent among each other with time series or clustered data; thus, in these139

settings, it is important to allow for general Ω , σ2I. Below we present a couple of such examples.140

Example 2.1 (AR(1) Errors). Suppose that the regressor error follows an autoregressive process:141

εi = ρεi−1 + ηi, (2)

where ρ ∈ (−1, 1) is an autoregressive parameter, ηi is independent and identically distributed with142

mean zero and variance σ2(0 < σ2 < ∞) and is independent of X. Then, the (i, j) element of Ω is143

Ωi j =
σ2

1 − ρ2 ρ
|i− j|.

Note that Ωi j , 0 as long as ρ , 0.144

Example 2.2 (Clustered Errors). Suppose that regression errors are mutually independent across145

clusters but they can be arbitrarily correlated within the same cluster. For instance, students in146

the same school may affect each other and also have the same teachers; thus it would be difficult147

to assume independence across student test scores within the same school. However, it might be148

reasonable that student test scores are independent across different schools. For example, assume that149

(i) if the regression error εi belongs to cluster g, where g = 1, . . . ,G and G is the number of clusters,150

E[ε2
i ] = σ2

g for some constant σ2
g > 0 that can vary over g; (ii) if the regression errors εi and ε j (i , j)151

belong to the same cluster g, E[εiε j] = ρg for some constant ρg , 0 that can be different across g;152

and (iii) if the regression errors εi and ε j (i , j) do not belong to the same cluster, E[εiε j] = 0. Then,153

Ω is block diagonal with possibly non-identical blocks.154

For vector a and square matrix A, let ∥a∥2A := a⊤Aa. Conditional on X and given A, we define155

BiasA(β̂ | X) := ∥E[β̂ | X] − β∥A and VarA(β̂ | X) := Tr(Cov(β̂ | X)A),

and we write Var = VarI and Bias = BiasI for the sake of brevity in notation.156
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The mean squared prediction error for an unseen test observation x0 with the positive definite157

covariance matrix Σ := E[x0x⊤0 ] (assuming that x0 is independent of the training data X) and the mean158

squared estimation error of β̂ conditional on X can be written as:159

RP(β̂ | X) := E
[
(x⊤0 β̂ − x⊤0 β)

2 | X
]
= [BiasΣ(β̂ | X)]2 + VarΣ(β̂ | X),

RE(β̂ | X) := E
[
∥β̂ − β∥2 | X

]
= [Bias(β̂ | X)]2 + Var(β̂ | X).

In what follows, we obtain exact finite-sample expressions for prediction and estimation risks:160

RP(β̂) := EX[RP(β̂ | X)] and RE(β̂) := EX[RE(β̂ | X)].

We first analyze the variance terms for both risks and then study the bias terms.161

3 The Variance Components of Prediction and Estimation Risks162

3.1 The variance component of prediction risk163

We rewrite the variance component of prediction risk as follows:164

VarΣ(β̂ | X) = Tr(Cov(β̂ | X)Σ) = Tr(X†ΩX†⊤Σ) = ∥S X†T∥2F , (3)

where positive definite symmetric matrices S := Σ1/2 and T := Ω1/2 are the square root matrices of165

the positive definite matrices Σ and Ω, respectively. To compute the above Frobenius norm of the166

matrix S X†T , we need to compute the alignment of the right-singular vectors of B := S X† ∈ Rp×n
167

with the left-eigenvectors of T ∈ Rn×n. Here, B is a random matrix while T is fixed. Therefore, we168

need the distribution of the right-singular vectors of the random matrix B.169

Perhaps surprisingly, to compute the expected variance EX[VarΣ(β̂ | X)], it turns out that we do not170

need the distribution of the singular vectors if we make a minimal assumption (the left-spherical171

symmetry of X) which is weaker than the assumption that {xi}
n
i=1 is i.i.d. normal with E[x1] = 0.172

Definition 3.1 (Left-Spherical Symmetry [10–12, 14]). A random matrix Z or its distribution is173

called to be left-spherical if OZ and Z have the same distribution (OZ d
= Z) for any fixed orthogonal174

matrix O ∈ O(n) := {A ∈ Rn×n : AA⊤ = A⊤A = I}.175

Assumption 3.2. The design matrix X is left-spherical.176

For the isotropic error case (Ω = I), we have EX[VarΣ(β̂ | X)] = EX[Tr((X⊤X)†Σ)] directly from177

equation 3 since X†X†⊤ = (X⊤X)†. Moreover, for the arbitrary error, the left-spherical symmetry of X178

plays a critical role to factor out the same EX[Tr((X⊤X)†Σ)] and the trace of the variance-covariance179

matrix of the regression errors, Tr(Ω), from the variance after the expectation over X.180

Lemma 3.3. For a subset S ⊂ Rm×m satisfying C−1 ∈ S for all C ∈ S, if matrix-valued random
variables Z and AZ have the same distribution measure µZ for any A ∈ S, then we have

EZ[ f (Z)] = EZ[ f (AZ)] = EZ[EA′∼ν[ f (A′Z)]]

for any function f ∈ L1(µZ) and any probability density function ν on S.181

Theorem 3.4. Let Assumptions 2.1, and 3.2 hold. Then, we have182

EX[VarΣ(β̂ | X)] =
1
n

Tr(Ω)EX[Tr((X⊤X)†Σ)].

Sketch of Proof. With B = Σ1/2X† and T = Ω1/2, we can rewrite the variance as follows:183

VarΣ(β̂ | X) = ∥BT∥2F = ∥UDV⊤UT DT V⊤T ∥
2
F= ∥DV⊤UT DT ∥

2
F

from the singular value decompositions B = UDV⊤ and T = UT DT V⊤T with orthogonal matrices184

U,V,UT ,VT , and diagonal matrices D,DT . Then, we need to compute the alignment V⊤UT of the185

right-singular vectors of B with the left-eigenvectors of T because186

∥DV⊤UT DT ∥
2
F = λ

(
(X⊤X)†Σ

)⊤
Γ(X)λ(Ω) = a(X)⊤Γ(X)b,
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Figure 2: Our theory (dashed lines) matches the expected variances (solid lines) of the prediction (left)
and estimation risks (right) in Example 2.1 (AR(1) Errors). Each point (σ2, ρ2) represents a different
noise covariance matrix Ω, but with the same Tr(Ω) along each line {(σ2, ρ2) : σ2/κ2 + ρ2 = 1} for
some κ2 > 0, they have the same expected variance. We set n = 50, p = 100, and evaluate on 100
samples of X and 100 samples of ε (for each realization of X) to approximate the expectations.

where v(i) := V:i, u( j) := (UT ): j, γi j := ⟨v(i), u( j)⟩2 ≥ 0, Γ(X) := (γi j)i, j ∈ R
n×n and λ(A) ∈ Rn is a187

vector where its elements are the eigenvalues of A.188

Now, we want to compute the expected variance. To do so, from Lemma 3.3 with S = O(n) and the189

left-spherical symmetry of X, we can obtain190

EX[a(X)⊤Γ(X)b] = EX

[
EO∼ν[a(OX)⊤Γ(OX)b]

]
= EX

[
a(X)⊤EO∼ν[Γ(OX)]b

]
,

where ν is the unique uniform distribution (the Haar measure) over the orthogonal matrices O(n).191

Here, we can show that EO∼ν[Γ(OX)] = 1
n J, where J is the all-ones matrix with Ji j = 1(i, j =192

1, 2, · · · , n). Therefore, we have the expected variance as follows:193

EX[VarΣ(β̂ | X)] = EX

[
a(X)⊤

1
n

Jb
]
=

1
n

n∑
i, j=1

EX[ai(X)]b j =
1
n
EX[Tr((X⊤X)†Σ)] Tr(Ω).

□194

The proofs of Lemma 3.3 and Theorem 3.4 are in the supplementary appendix.195

3.2 The variance component of estimation risk196

For the expected variance EX[Var(β̂ | X)] of the estimation risk, a similar argument still holds if197

plugging-in B = X† instead of B = Σ1/2X†.198

Theorem 3.5. Let Assumptions 2.1, and 3.2 hold. Then, we have199

EX[Var(β̂ | X)] =
1

np
Tr(Ω)EX[Tr(Λ†)],

where XX⊤/p = UΛU⊤ for some orthogonal matrix U ∈ O(n).200

3.3 Numerical experiments201

In this section, we validate our theory with some numerical experiments of Examples 2.1 and202

2.2, especially how the expected variance is related to the general covariance Ω of the regressor203

error ε. In the both examples, we sample {xi}
n
i=1 from N(0,Σ) with a general feature covariance204

Σ = UΣDΣU⊤Σ for an orthogonal matrix UΣ ∈ O(p) and a diagonal matrix DΣ ≻ 0. In this setting, we205

have rank(XX⊤) = n and Λ† = Λ−1 almost everywhere.206
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Figure 3: Our theory (dashed lines) matches the expected variances (solid lines) of the prediction
(left) and estimation risks (right) in Example 2.2 (Clustered Errors). Each point (σ2, ρ2) represents a
different noise covariance matrixΩ, but with the same Tr(Ω) along each line {(σ2

1, σ
2
2) : n1

n σ
2
1+

n2
n σ

2
2 =

κ2} for some κ2 > 0, they have the same expected variance. We set G = 2, (n1 = 5, n2 = 15), n =
20, p = 40, ρ1 = ρ2 = 0.05, and evaluate on 100 samples of X and 100 samples of ε (for each
realization of X) to approximate the expectations.

AR(1) Errors As shown in Example 2.1, when the regressor error follows an autoregressive process207

in equation 2, we have Ωi j = σ
2ρ|i− j|/(1 − ρ2) and Tr(Ω)/n = σ2/(1 − ρ2). Therefore, for pairs of208

(σ2, ρ2) with the same Tr(Ω)/n, they are expected to yield the same variances of the prediction and209

estimation risk from Theorem 3.4 and 3.5 even though they have different off-diagonal elements in Ω.210

To be specific, the pairs (σ2, ρ2) on a line {(σ2, ρ2) : σ2/κ2 + ρ2 = 1} have the same Tr(Ω)/n and the211

same expected variance which gets larger for the line with respect to a larger κ2.212

Figure 2 (left) shows the contour plots of EX[VarΣ(β̂ | X)] and 1
n Tr(Ω)EX[Tr((X⊤X)†Σ)] for different213

pairs of (σ2, ρ2) in Example 2.1. They have different slopes −κ−2 according to the value of κ2 =214

Tr(Ω)/n. The right panel shows equivalent contour plots for estimation risk.215

Clustered Errors Now consider the block diagonal covariance matrix Ω = diag(Ω1,Ω2, · · · ,ΩG)216

in Example 2.2, where Ωg is an ng × ng matrix with (Ωg)ii = σ
2
g and (Ωg)i j = ρg (i , j) for each217

i, j = 1, 2, · · · , ng and g = 1, 2, · · · ,G. Let n =
∑G

g=1 ng. We then have Tr(Ω)/n =
∑G

g=1 Tr(Ωg)/n =218 ∑G
g=1(ng/n)σ2

g. Therefore, given a partition {ng}
G
g=1 of the n observations, the covariance matrices Ω219

with different {σ2
g}

G
g=1 have the same Tr(Ω)/n if (σ2

1, σ
2
2, · · · , σ

2
G) ∈ RG are on the same hyperplane220

n1
n σ

2
1 +

n2
n σ

2
2 + · · · +

nG
n σ

2
G = κ

2 for some κ2 > 0.221

Figure 3 (left) shows the contour plots of EX[VarΣ(β̂ | X)] and 1
n Tr(Ω)EX[Tr((X⊤X)†Σ)] for different222

pairs of (σ2
1, σ

2
2) for a simple two-clusters example (G = 2) of Example 2.2 with (n1, n2) = (5, 15).223

Here, we use a fixed value of ρ1 = ρ2 = 0.05, but the results are the same regardless of their values,224

as shown in the appendix. Unlike Example 2.1, the hyperplanes are orthogonal to v = [n1, n2]⊤225

regardless of the value of κ2 = Tr(Ω)/n. Again, the right panel shows equivalent contour plots for226

estimation risk.227

4 The Bias Components of Prediction and Estimation Risks228

Our main contribution is to allow for general assumptions on the regression errors, and thus the bias229

parts remain the same as they do not change with respect to the regression errors. For completeness,230

in this section, we briefly summarize the results on the bias components. First, we make the following231

assumption for a constant rank deficiency of X⊤X which holds, for example, each xi has a positive232

definite covariance matrix and is independent of each other.233

Assumption 4.1. rank(X) = n almost everywhere.234

7



4.1 The bias component of prediction risk235

The bias term of prediction risk can be expressed as follows:236

[BiasΣ(β̂ | X)]2 = (S β)⊤ lim
λ↘0
λ2(S −1Σ̂S + λI)−2S β, (4)

where Σ̂ := X⊤X/n. Now, in order to obtain an exact closed form solution, we make the following237

assumption:238

Assumption 4.2. Eβ[S β(S β)⊤] = r2
Σ
I/p, where r2

Σ
:= Eβ[∥β∥2Σ] < ∞ and β is independent of X.239

A similar assumption (see Assumption 4.4) has been shown to be useful to obtain closed-form240

expressions in the literature [e.g., 13, 23, 20, 7].241

Under this assumption, since [BiasΣ(β̂ | X)]2 = Tr[S β(S β)⊤ limλ↘0 λ
2(S −1Σ̂S + λI)−2] from equa-242

tion 4, we have the expected bias (conditional on X) as follows:243

Eβ[BiasΣ(β̂ | X)2 | X] =
r2
Σ

p
lim
λ↘0

p∑
i=1

λ2

(s̃i + λ)2 =
r2
Σ

p
|{i ∈ [p] : s̃i = 0}| = r2

Σ

p − n
p
,

where s̃i are the eigenvalues of S −1Σ̂S ∈ Rp×p and rank(S −1Σ̂S ) = rank(X) = n almost everywhere244

under Assumption 4.1. This bias is independent of the distribution of X or the spectral density of245

S −1Σ̂S , but only depending on the rank deficiency of the realization of X.246

Finally, the prediction risk RP(β̂) can be summarized as follows:247

Corollary 4.3. Let Assumptions 2.1, 3.2, 4.1, and 4.2 hold. Then, we have248

RP(β̂) = r2
Σ

(
1 −

n
p

)
+

Tr(Ω)
n
EX

[
Tr((X⊤X)†Σ)

]
.

4.2 The bias component of estimation risk249

For the bias component of estimation risk, we can obtain a similar result with 4.1 as follows:250

[Bias(β̂ | X)]2 = β⊤(I − Σ̂†Σ̂)β = lim
λ↘0
β⊤λ(Σ̂ + λI)−1β.

Assumption 4.4. Eβ[ββ⊤] = r2I/p, where r2 := Eβ[∥β∥2] < ∞ and β is independent of X.251

Under Assumption 4.4, we have the expected bias (conditional on X) as follows:252

Eβ[Bias(β̂ | X)2 | X] =
r2

p
lim
λ↘0

p∑
i=1

λ

si + λ
=

r2

p
|{i ∈ [p] : si = 0}| = r2 p − n

p
, (5)

where si are the eigenvalues of Σ̂ ∈ Rp×p and rank(Σ̂) = rank(X) = n under Assumption 4.1.253

Thanks to Theorem 3.5 and equation 5, we obtain the following corollary for estimation risk.254

Corollary 4.5. Let Assumptions 2.1, 3.2, 4.1, and 4.4 hold. Then, we have255

RE(β̂) = r2
(
1 −

n
p

)
+

Tr(Ω)
n
EX

[∫
1
s

dFXX⊤/n(s)
]
,

where FA(s) := 1
n
∑n

i=1 1{λi(A) ≤ s} is the empirical spectral distribution of a matrix A and256

λ1(A), λ2(A), · · · , λn(A) are the eigenvalues of A.257

The proof of Corollary 4.5 is in the appendix.258

4.2.1 Asymptotic analysis of estimation risk259

To study the asymptotic behavior of estimation risk, we follow the previous approaches [13, 17].260

First, we define the Stieltjes transform as follows:261

Definition 4.6. The Stieltjes transform sF(z) of a df F is defined as:

sF(z) :=
∫

1
x − z

dF(x), for z ∈ C \ supp(F).

8



100 101 102

= p/n

10 2

10 1

100

101

102 Prediction Risk
variance
variance (theory)
variance (theory, iso.)
bias
bias (theory)

100 101 102

= p/n

10 2

10 1

100

101

102 Estimation Risk
variance
variance (theory)
variance (theory, iso.)
bias
bias (theory)

Figure 4: The “descent curve” in the overparameterization regime for prediction risk (left) and
estimation risk (right). We test Ω’s with Tr(Ω)/n = 1, 2, 4 in black, blue, red, respectively. For the
anisotropic feature, the expected variance (×) and its theoretical expression (�) are Θ

(
Tr(Ω)/n
γ−1

)
and

larger than that in the high-dimensional asymptotics for the isotropic Σ = I. For the isotropic Σ = I,
the variance terms (dotted) and the bias terms (dashed) in the high-dimensional asymptotics are

1
γ−1 limn→∞

Tr(Ω)
n and r2

(
1 − 1

γ

)
, respectively.

We are now ready to investigate the asymptotic behavior of the mean squared estimation error with262

the following theorem:263

Theorem 4.7. [25, Theorem 1.1] Suppose that the rows {xi}
n
i=1 in X are i.i.d. centered random vectors264

with E[x1x⊤1 ] = Σ and that the empirical spectral distribution FΣ(s) = 1
p
∑p

i=1 1{τi ≤ s} of Σ converges265

almost surely to a probability distribution function H as p→ ∞. When p/n→ γ > 0 as n, p→ ∞,266

then a.s., FXX⊤/n converges vaguely to a df F and the limit s∗ := limz↘0 sF(z) of its Stieltjes transform267

sF is the unique solution to the equation:268

1 −
1
γ
=

∫
1

1 + τs∗
dH(τ). (6)

This theorem is a direct consequence of Theorem 1.1 in Silverstein and Bai [25]. Then, from Corollary269

4.5, we can write the limit of estimation risk as follows:270

Corollary 4.8. Let Assumptions 2.1, 3.2, 4.1, and 4.4 hold. Then, under the same assumption as271

Theorem 4.7, as n, p→ ∞ and p/n→ γ, where 1 < γ < ∞ is a constant, we have272

RE(β̂) = E
[
∥β̂ − β∥2

]
→ r2

(
1 −

1
γ

)
+ s∗ lim

n→∞

Tr(Ω)
n
.

Here, the limit s∗ of the Stieltjes transform sF is highly connected with the shape of the spectral273

distribution of Σ. For example, in the case of isotropic features (Σ = I), i.e., dH(τ) = δ(τ − 1)dτ, we274

have s∗iso = (γ − 1)−1 from 1 − 1
γ
= 1

1+s∗iso
. In addition, if Ω = σ2I, then the limit of the mean squared275

error is exactly the same as the expression for γ > 1 in equation (10) of Hastie et al. [17, Theorem 1].276

This is because prediction risk is the same as estimation risk when Σ = I.277

Remark 4.9. Generally, if the support of H is bounded within [cH ,CH] ⊂ R for some positive constants278

0 < cH ≤ CH < ∞, then we can observe the double descent phenomenon in the overparameterization279

regime with limγ↘1 s∗ = ∞ and limγ→∞ s∗ = 0 with s∗ = Θ
(

1
γ−1

)
from the following inequalities:280

C−1
H

1
γ − 1

≤ s∗ ≤ c−1
H

1
γ − 1

. (7)

In fact, a tighter lower bound is available:281

s∗ ≥ µ−1
H (γ − 1)−1, (8)

where µH := Eτ∼H[τ], i.e., the mean of distribution H. The proofs of equation 7 and equation 8 are282

given in the supplementary appendix.283

We conclude this paper by plotting the “descent curve” in the overparameterization regime in Figure284

4. On one hand, the expected variance (×) perfectly matches its theoretical counterpart (�) and goes285

to zero as γ gets large. On the other hand, the bias term is bounded even if γ → ∞. The appendix286

contains the experimental details for all the figures.287
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Appendix365

A Details for drawing Figure 1366

To draw Figure 1, we use a sample extract from American Community Survey (ACS) 2018. To367

have a relatively homogeneous population, the sample extract is restricted to white males residing in368

California with at least a bachelor’s degree. We consider a demographic group defined by their age in369

years (between 25 and 70), the type of degree (bachelor’s, master’s, professional, and doctoral), and370

the field of degree (172 unique values). Then, we compute the average of log hourly wages for each371

age-degree-field group (all together 7,073 unique groups in the sample). We treat each group average372

as the outcome variable (say, ya,d, f ) and predict group wages by various group-level regression models373

where the regressors are constructed using the indicator variables of age, degree, and field as well as374

their interactions: that is,375

ya,d, f = x⊤a,d, f β + εa,d, f .

For the regressors xa,d, f , we consider 7 specifications ranging from 209 to 2,183 regressors:376

• Spec. 1 (p = 209): dummy variables for age (say, xa) + dummy variables for the type of377

degree (say, xd) + dummy variables for the field of degree (say, x f ),378

• Spec. 2 (p = 391): Spec. 1 + all interactions between xd and xa,379

• Spec. 3 (p = 598): Spec. 1 + all interactions between xd and x f ,380

• Spec. 4 (p = 778): Spec. 1 + all interactions between xd and xa + all interactions between381

xd and x f ,382

• Spec. 5 (p = 1640): Spec. 1 + all interactions between xd and xa + all interactions between383

xa and x f ,384

• Spec. 6 (p = 1754): Spec. 1 + all interactions between xd and x f + all interactions between385

xa and x f ,386

• Spec. 7 (p = 2182): Spec. 1 + all three-way interactions among xa, xd and x f .387

Here, the dummy variable are constructed using one-hot encoding. We randomly split the sample388

into the train and test samples with a ratio of 1 : 4. The resulting sample sizes are 1,415 and 5,658,389

respectively. To understand the role of non-i.i.d. regressor errors, we add the artificial noise to the390

training sample: that is, we compute the ridgeless least squares estimator using the training sample of391

(ỹa,d, f , x⊤a,d, f )
⊤, where ỹa,d, f = ya,d, f + ua,d, f . Here, the artificial noise ua,d, f has the form392

ua,d, f ≡
(1 − c)ea,d, f + c · e f√

(1 − c)2 + c2
,

where ea,d, f ∼ N(0, σ2), independently across age (a), degree (d) and field ( f ); e f is the average of393

another independent N(0, σ2) variable within f (hence, e f is identical for each value of f ) and thus394

the source of clustered errors; and c ∈ {0, 0.25, 0.5, 0.75} is a constant that will be varied across the395

experiment. As c gets larger, the noise has a larger share of clustered errors but the variance of the396

overall regression errors (ua,d, f ) remains the same: in other words, var(ua,d, f ) = σ2 for each value of397

c. Figure 1 was generated with σ = 0.5 by generating the artificial noise only once.398

B Details for drawing Figures 2, 3, and 4399

To draw Figure 2, 3, and 4, we sample {xi}
n
i=1 from N(0,Σ) with Σ = UΣDΣU⊤Σ where UΣ is an400

orthogonal matrix random variable, drawn from the uniform (Haar) distribution on O(p), and DΣ401

is a diagonal matrix with its elements di = |zi|/
∑p

i=1 |zi| being sampled with zi ∼ N(0, 1) for each402

i = 1, 2, · · · , p. With this general anisotropic Σ, the term EX[Tr(Λ−1)]/p is somewhat larger than403

µ−1
H s∗iso = (γ − 1)−1 which is 1 in Figure 2 and 3 since µH = 1 and γ = 2. For example, in Figure 2,404

when σ2 = 1, ρ2 = 0, we have Tr(Ω)/n = 1 but Tr(Ω)EX[Tr(Λ−1)]/(np) > 1.405

In Figure 4, we fix n = 50 and use p = nγ for γ ∈ [1, 100].406
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To compute the expectations of EX[Var(β̂|X)] and EX[Tr(Λ−1)] over X, we sample NX sam-407

ples of X’s, X1, X2, · · · , XNX . Moreover, to compute the expectation over ε in Var(β̂|Xi) ≡408

Tr
(
Eε[β̂β̂⊤] − Eε[β̂]Eε[β̂]⊤

)
, we sample Nε samples of ε’s, ε1, ε2, · · · , εNε for each realization Xi.409

To be specific,410

EX[Var(β̂|X)] ≈
1

NX

NX∑
i=1

Var(β̂|Xi) ≈
1

NX

NX∑
i=1

Tr

 1
Nε

Nε∑
j=1

β̂i, jβ̂
⊤
i, j −

1
Nε

Nε∑
j=1

β̂i, j
1

Nε

Nε∑
j=1

β̂⊤i, j


1
p
EX[Tr(Λ−1)] ≈

1
NX

NX∑
i=1

Tr((XiX⊤i )−1) =
1

NX

NX∑
i=1

n∑
k=1

1
λk(XiX⊤i )

,

where β̂i, j = arg minβ{∥b∥ : Xib − yi, j = 0}, yi, j = Xiβ + ε j, and λk(XiX⊤i ) is the k-th eigenvalue of411

XiX⊤i . We can do similarly for the variance part of the prediction risk.412

Figure 5 shows an additional experimental result.413
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Figure 5: We use the same setting as Figure 3, except uniformly sample each ρi from [0, 0.05] for
each experiment with the pairs (σ2

1, σ
2
1). As expected, the off-diagonal elements ρi of Ω do not affect

the expected variances.

C Proofs omitted in the main text414

Proof of Lemma 3.3. For a given A ∈ S, since A−1 ∈ S, we have Z d
= A−1Z := Z̃ and415

EZ[ f (Z)] = EA−1Z[ f (Z)] = EZ̃[ f (AZ̃)] = EZ[ f (AZ)].

This naturally leads to

EZ[EA′∼ν[ f (A′Z)]] = EA′∼ν[EZ[ f (A′Z)]] = EA′∼ν[EZ[ f (Z)]] = EZ[ f (Z)]

where the first equality comes from Fubini’s theorem and the integrability of f . □416

Proof of Theorem 3.4. Since β̂ = X†y, we have Cov(β̂ | X) = X†Cov(y | X)X†⊤ = X†ΩX†⊤, which417

leads to the following expression for the variance component of prediction risk:418

VarΣ(β̂ | X) = Tr(Cov(β̂ | X)Σ) = Tr(X†ΩX†⊤Σ) = ∥S X†T∥2F = ∥BT∥2F ,

where S = Σ1/2,T = Ω1/2, and B = S X†. Using the singular value decomposition (SVD) of B and T ,419

respectively, we can rewrite this as follows:420

∥BT∥2F = ∥UDV⊤UT DT V⊤T ∥
2
F= ∥DV⊤UT DT ∥

2
F ,

where B = UDV⊤ and T = UT DT V⊤T with orthogonal matrices U,V,UT ,VT , and diagonal matrices421

D,DT . Now we need to compute the alignment V⊤UT of the right-singular vectors of B with the422
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left-eigenvectors of T .423

∥DV⊤UT DT ∥
2
F =

n∑
i, j=1

(
Dii

∑n

k=1
V⊤ik (UT )k j(DT ) j j

)2

=
∑n

i, j=1
λi(B)2λ j(T )2γi j

=
∑n

i, j=1
λi

(
(X⊤X)†Σ

)
λ j(Ω)γi j

= λ
(
(X⊤X)†Σ

)⊤
1×n

Γ(X)
n×n

λ(Ω)
n×1

,

where γi j := ⟨V:i, (UT ): j⟩
2 ≥ 0, Γ(X) := (γi j)i, j ∈ R

n×n and λ(A) ∈ Rn is a vector with its element424

λi(A) as the i-th largest eigenvalue of A.425

Therefore, we can rewrite the variance as VarΣ(β̂ | X) = a(X)⊤Γ(X)b with426

a(X) := λ
(
(X⊤X)†Σ

)
∈ Rn,

b := λ(Ω) ∈ Rn,

Γ(X)i j = γi j = ⟨v(i), u( j)⟩2,

where v(i) := V:i and u( j) := (UT ): j. Note that the alignment matrix Γ(X) is a doubly stochastic matrix427

since
∑

j γi j =
∑

i γi j = 1 and 0 ≤ γi j ≤ 1.428

Now, we want to compute the expected variance. To do so, from Lemma 3.3 with S = O(n), we can429

obtain430

EX[a(X)⊤Γ(X)b] = EX

[
EO∼ν[a(OX)⊤Γ(OX)b]

]
= EX

[
a(X)⊤EO∼ν[Γ(OX)]b

]
,

where ν is the unique uniform distribution (the Haar measure) over the orthogonal matrices O(n). For431

an orthogonal matrix O ∈ O(n), we have432

Γ(OX)i j = ⟨Ov(i), u( j)⟩2 = (v(i)⊤O⊤u( j))2,

since S (OX)† = S X†O⊤ = BO⊤ = UD(OV)⊤. Here, (OX)† = X†O⊤ follows from the orthogonality433

of O ∈ O(n). Since the Haar measure is invariant under the matrix multiplication in O(n), if we take434

the expectation over the Haar measure, then we have435

Γ̄(X)i j := EO∼ν[Γ(OX)i j] = EO∼ν[(v(i)⊤O⊤u( j))2] = EO∼ν[(v(i)⊤O⊤O( j)⊤u( j))2].

Here, for a given j, we can choose a matrix O( j) ∈ O(n) such that its first column is u( j) and436

O( j)⊤u( j) = e1, then Γ̄(X)i j is independent of j (say Γ̄(X)i j = αi). Since Γ(X) is doubly stochastic,437

so is Γ̄(X) and we have
∑n

j=1 Γ̄(X)i j = nαi = 1 which yields Γ̄(X)i j = αi = 1/n, regardless of the438

distribution of V; thus, Γ̄(X) = 1
n J, where Ji j = 1(i, j = 1, 2, · · · , n).439

Therefore, we have the expected variance as follows:440

EX[VarΣ(β̂ | X)] = EX[a(X)⊤
1
n

Jb] =
1
n

n∑
i, j=1

EX[ai(X)]b j =
1
n
EX[Tr((X⊤X)†Σ)] Tr(Ω).

□441

Proof of Corollary 4.5. Note that442

EX[Var(β̂|X)] =
Tr(Ω)

p
EX

1
n

∑
i

1
λi


=

Tr(Ω)
p
EX

[∫
1
s

dFXX⊤/p(s)
]

=
Tr(Ω)

n
EX

[∫
1
s

dFXX⊤/n(s)
]
.

Then, the desired result follows directly from equation 5. □443
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Proof of equation 4. The bias term of the prediction risk can be expressed as follows:444

[BiasΣ(β̂ | X)]2 = ∥E[β̂ | X] − β∥2Σ
= ∥(Σ̂†Σ̂ − I)β∥2Σ
= β⊤(I − Σ̂†Σ̂)Σ(I − Σ̂†Σ̂)β

= β⊤ lim
λ↘0
λ(Σ̂ + λI)−1Σ lim

λ↘0
λ(Σ̂ + λI)−1β

= (S β)⊤ lim
λ↘0
λ2(S −1Σ̂S + λI)−2S β,

where Σ̂ = X⊤X/n. Here, the fourth equality comes from the equation445

I − Σ̂†Σ̂ = lim
λ↘0

I − (Σ̂ + λI)−1Σ̂

= lim
λ↘0

I − (Σ̂ + λI)−1(Σ̂ + λI − λI)

= lim
λ↘0
λ(Σ̂ + λI)−1.

□446

Proof of equation 7. The RHS of equation 6 is bounded above by
∫

1
1+cH s∗ dH(τ) = 1

1+cH s∗ , and thus447

1 − 1
γ
≤ 1

1+cH s∗ , which yields s∗ ≤ c−1
H

1
γ−1 . We can similarly prove the other inequality in equation 7448

with a lower bound 1
1+CH s∗ on the RHS of equation 6. □449

Proof of equation 8. To further explore the inequalities equation 7, we rewrite equation 6 from450

Theorem 4.7 as follows:451

1 −
1
γ
= Eτ∼H

[
g(τ; s∗)

]
, where g(t; s) :=

1
1 + ts

for t, s > 0.

Here, since g(t; s) is convex with respect to t > 0 for a given s > 0, by Jensen’s inequality, we then
have

Eτ∼H[g(τ; µ−1
H s∗iso)] ≥ g

(
µH; µ−1

H s∗iso

)
= g(1; s∗iso) = 1 − γ−1

where µH = Eτ∼H[τ]. Therefore, the limit Stieltjes transform s∗ in the anisotropic case should be larger452

than µ−1
H s∗iso of the isotropic case to satisfy Eτ∼H[g(τ; s∗)] = 1−γ−1 since g(t; s) is a decreasing function453

with respect to s ≥ 0 when t > 0. This leads to a tighter lower bound s∗ ≥ µ−1
H s∗iso = µ

−1
H (γ − 1)−1 than454

equation 7 because µH ≤ CH . □455
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