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ABSTRACT

Designing novel proteins that bind to small molecules is a long-standing challenge
in computational biology, with applications in developing catalysts, biosensors, and
more. Current computational methods rely on the assumption that the binding pose
of the target molecule is known, which is not always feasible, as conformations of
novel targets are often unknown and tend to change upon binding. In this work, we
formulate proteins and molecules as unified biotokens, and present ATOMFLOW, a
novel deep generative model under the flow-matching framework for the design of
ligand-binding proteins from the 2D target molecular graph alone. Operating on
representative atoms of biotokens, ATOMFLOW captures the flexibility of ligands
and generates ligand conformations and protein backbone structures iteratively.
We consider the multi-scale nature of biotokens and demonstrate that ATOMFLOW
can be effectively trained on a subset of structures from the Protein Data Bank,
by matching flow vector field using an SE(3) equivariant structure prediction
network. Experimental results show that our method can generate high-fidelity
ligand-binding proteins and achieve performance comparable to the state-of-the-art
model RFDiffusionAA, while not requiring bound ligand structures. As a general
framework, ATOMFLOW holds the potential to be applied to various biomolecule
generation tasks in the future.

1 INTRODUCTION

Proteins are essential macromolecules that drive vital biological processes, primarily through
binding with small molecules (Schreier et al., 2009). While progress has been made in design-
ing ligand-binding proteins for functions like catalysis and biosensing (Bennett et al., 2023),
challenges persist due to complex protein-molecule interactions and ligand flexibility. Tradi-
tional approaches rely on shape complementarity to dock molecules onto native protein scaf-
folds (Bick et al., 2017; Polizzi & DeGrado, 2020), but these methods are computationally expensive.

OQO (ideal) OQO (orange: 7v11, green: ideal)

Figure 1: The conformer of OQO deforms upon
binding to coagulation factor XIa. Green: ideal
conformer. Orange: bound conformer.

Recently, RFDiffusionAA (Krishna et al., 2024),
built on the all-atom structure prediction model
RoseTTAFoldAA (Krishna et al., 2024), has
demonstrated superior performance in design-
ing ligand-binding proteins by explicitly mod-
eling protein-molecule interactions. However,
current methods assume a known, rigid bind-
ing conformation, which is often unavailable
for molecules lacking natural protein-binding
partners (Bick et al., 2017). Sampling diverse
conformers and filtering them with expert knowl-
edge (Krishna et al., 2024) is computationally
demanding, while enforcing ligand rigidity is suboptimal, as ligands typically undergo conformational
changes upon binding (Mobley & Dill, 2009). Figure.1 illustrates this phenomenon. Although recent
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methods (Zhang et al., 2024; Stark et al., 2024) address ligand flexibility, they only design protein
regions that directly interact with ligands and require the rest of the protein as input.

To address the aforementioned issues, we present Atomic Flow-matching (ATOMFLOW), a novel
deep generative model grounded in the flow-matching framework (Lipman et al., 2022) for the design
of ligand-binding proteins from 2D molecular graphs alone. We follow the in silico evaluation
pipeline of the state-of-the-art method RFDiffusionAA, evaluating ATOMFLOW on several key
metrics including self-consistency, binding affinity, diversity, and novelty. ATOMFLOW matches
the overall performance of RFDiffusionAA and demonstrates advantages in various situations. An
ablation study further highlights that when the bound structure is unknown, ATOMFLOW successfully
designs protein binders with high binding affinity, whereas RFDiffusionAA can be constrained by its
dependence on a fixed, suboptimal ligand structure.

2 RELATED WORK

Ligand-binding Protein Design. Traditional ligand-binding protein design relies on docking
molecules into shape-complementary protein pockets (Polizzi & DeGrado, 2020; Lu et al., 2024).
While deep learning accelerates screening (An et al., 2023), conventional methods remain computa-
tionally expensive and expert-dependent (Bick et al., 2017). Recent deep generative models offer
data-driven alternatives, designing proteins conditioned on binding targets (Shi et al., 2022; Kong
et al., 2023; Watson et al., 2023; Zhang et al., 2024). For molecule binder design, RFDiffusion (Wat-
son et al., 2023) generates proteins using a heuristic potential for shape complementarity, while
RFDiffusionAA (Krishna et al., 2024) improves performance by explicitly modeling protein-molecule
interactions. However, these methods assume fixed ligand binding poses and impose rigidity con-
straints. Other approaches focus on designing binding pockets while considering ligand flexibil-
ity (Stark et al., 2024; Zhang et al., 2024), but they only modify protein regions interacting with
ligands. Our model, by contrast, fully designs ligand-binding proteins from 2D molecular graphs
while accounting for ligand flexibility.

Protein Generative Model and Structure Prediction. Recent deep generative models advance
protein design (Ingraham et al., 2023; Lin & AlQuraishi, 2023; Yim et al., 2023b;a; Wu et al.,
2024; Watson et al., 2023; Krishna et al., 2024). For example, Genie (Lin & AlQuraishi, 2023)
diffuses Cα coordinates, while FrameDiff (Yim et al., 2023b) extends this to SE(3) diffusion on
residue frames. FrameFlow (Yim et al., 2023a) accelerates this process via flow matching. However,
these models focus on single-chain proteins and lack multi-molecule modeling. Our approach treats
proteins and molecules as biotokens, applying flow-matching on representative atoms to design
ligand-binding proteins from molecular graphs, capturing biomolecular flexibility and interactions.
Related structure prediction methods like RoseTTAFoldAA (Krishna et al., 2024) and AlphaFold
3 (Abramson et al., 2024) tokenize biomolecules for universal modeling. Our ATOMFLOW follows
this practice while emphasizing biointeraction patterns through structural modeling on key atoms,
enhancing protein-molecule information flow (Bryant et al., 2024).

3 PRELIMINARIES

Notations. We represent a protein-ligand complex as a series of N biotokens {ai | ai = (si, xi), i =
1, 2, . . . , N}, where ai corresponds to either a protein residue or ligand atom. si denotes the token
type, and xi ∈ R3 is the token position. Let Sprotein and Satom be the amino acid types and chemical
elements, respectively. For protein residues, si ∈ Sprotein, and xi is the C-α position; for ligand atoms,
si ∈ Satom, and xi is the atomic position. We define the protein token set as P and the ligand token set
as M, where Np = |P| and Nm = |M|, with N = Np+Nm. Each biotoken has token-level features
f token ∈ RN×ct and pair-level features f pair ∈ RN×N×cp , where ct and cp are feature dimensions.

Problem Formulation. Given a ligand molecule as a chemical graph G = (V, E) and a protein residue
count Np, we aim to generate a protein-ligand complex. The goal is to generate the token positions
{xi}, where xm = {xi | ai ∈ M} represents a valid conformer of G, and xp = {xi | ai ∈ P}
represents a protein binder with high binding affinity. Following prior work (Krishna et al., 2024;
Yim et al., 2023b), we also generate protein token frames {Ti = (ri, ti) | ai ∈ P}, which recover
full backbone coordinates. Residue type design {si | ai ∈ P} is handled by a reverse folding
model (Dauparas et al., 2023).
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4 METHOD

ATOMFLOW uses a unified biotoken representation to jointly generate protein and ligand structures
by learning the distribution of token positions conditioned on a ligand chemical graph G. Figure 2
illustrates the overall framework. We introduce a rectified flow on token positions x ∈ RN×3 and
approximate its vector field with an SE(3)-equivariant structure prediction network. Below, we
summarize key points of our method.
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Figure 2: Overview of ATOMFLOW. Biotokens (protein residues and ligand atoms) are jointly
embedded. A flow matching procedure gradually refines noisy coordinates into a plausible complex
structure, using an SE(3)-equivariant network.

4.1 FLOW MATCHING FOR PROTEIN-LIGAND COMPLEX GENERATION

We jointly generate the protein-ligand complex structure x = xm ∪ xp in RN×3, treating any two
structures that can be aligned by an SE(3) transformation as identical elements in the quotient space
Q. To make training tractable, we define a rectified flow on Q using a conditional vector field:

ut(x | x1) =
1

1− t

(
alignx(x1)− x

)
, (1)

where x1 is the target structure from the data distribution, and alignx(x1) is its best RMSD alignment
to x. We train the network to approximate ut(x | x1) by minimizing:

LCFM−FAPE(θ) = Et,pdata(x1),pt(x|x1)

[ 1

1− t
FAPE

(
x̂1(x, t; θ),x1

)]
. (2)

Here, x̂1 is predicted by our structure network. With approximation (Appendix A.5), we find it more
numerically stable to use an FAPE-based loss, with does not change the final training target (Jumper
et al., 2021): We partition the FAPE loss into protein-protein, protein-ligand, and ligand-ligand
interactions with appropriate scaling factors.

4.2 BIOTOKEN REPRESENTATION AND CONDITIONING

We embed both protein residues and ligand atoms into a unified token space. For ligand tokens, we
encode atomic elements and known chemical properties in f token, while bond connectivity forms
f pair. Protein residues incorporate positional indices and any additional known constraints into these

3



Published at the GEM workshop, ICLR 2025

features. This unified representation lets the transformer-based network handle protein and ligand
tokens jointly, without separate processing pipelines.

4.3 STRUCTURE PREDICTION NETWORK

The SE(3)-equivariant network x̂1(x, t; θ) takes noisy coordinates x, time t, and token/pair embed-
dings, then predicts a set of local frames (one per token). We ultimately extract each token’s 3D
position from its predicted frame. We encode input coordinates via a binned distance map, which is
SE(3)-invariant and accommodates both atomic and residue-scale distances. We transform token-
and pair-level features (including t) into single and pair representations (s, z), concatenating relevant
inputs before a series of linear projections. A transformer stack refines the pair representation z,
which then feeds into an invariant point attention (IPA) module (Jumper et al., 2021) to output token
frames. For ligand atoms, the rotation is identity (only translation is used). The final structure is thus
an SE(3)-aware prediction of all token coordinates. Additionally, we add a distance prediction head
from the refined pair representation. The resulting cross-entropy loss on binned distances provides an
additional training signal that helps stabilize learning.

4.4 TRAINING AND INFERENCE

We draw training samples (x1,G) and randomly sample t ∈ [0, 1]. We mix x1 with a noise sample
from the prior distribution q(x) to obtain a noisy input. The network is trained by minimizing the
FAPE-based conditional flow matching loss in Equation 2. For inference, we start with a random
sample x0 ∼ q(x) and numerically integrate the learned vector field from t = 0 to t = 1 using an
ODE solver (e.g., Euler’s method). At each step, we predict x̂1, align it, and update x accordingly.
The final structure at t = 1 is our designed protein-ligand complex.

5 EXPERIMENTS

Following prior work on protein design (Yim et al., 2023a; Lin & AlQuraishi, 2023; Watson et al.,
2023) and binder design (Krishna et al., 2024), we evaluate our method (ATOMFLOW) through in
silico experiments on key binder metrics: self-consistency, binding affinity, diversity, and novelty.

5.1 EXPERIMENT SETUP

Training Data. We train our denoising model on two datasets: PDBBind (Liu et al., 2017), a protein-
ligand conformer set from the Protein Data Bank (PDB) (Berman et al., 2000), and SCOPe (Chandonia
et al., 2022), a protein structure classification set. The model is first trained on protein-only generation
for 400k steps, then finetuned to co-generate proteins and ligands for 300k steps.

Baselines and Variants. We compare ATOMFLOW to RFDiffusionAA (Krishna et al., 2024), which
requires a fixed ligand structure as input. We train two ATOMFLOW variants: ATOMFLOW-N (no
structure hint) and ATOMFLOW-H (with pairwise distance hints for ligand atoms). We exclude
PocketGen (Zhang et al., 2024) and FlowSite (Stark et al., 2024) because they only refine existing
pockets; see Appendix for additional experiments.

Evaluation Set. Following (Krishna et al., 2024), we evaluate on ligands FAD, SAM, IAI, and OQO
(some seen during training, some not). Each ligand also varies in length. We further test on an
extended set in Appendix A.6.

5.2 SELF-CONSISTENCY AND CONFORMER LEGITIMACY

We assess output validity by (1) self-consistency RMSD (scRMSD) for protein structures and (2)
detecting any structural violation in the generated ligand conformer. Self-consistency measures how
well a generated structure agrees with the fold predicted by an external model. We follow (Lin &
AlQuraishi, 2023; Watson et al., 2023), generating sequences via LigandMPNN (Dauparas et al.,
2023), folding them with ESMFold (Lin et al., 2023), and comparing the folded structure to the model
output. We sample 10 structures for each ligand in {100,150,200,250,300} residues.Figure 3A,D
show scRMSD results. Additional plots are in Appendix A.6.

ATOMFLOW (ATOMFLOW-N, ATOMFLOW-H) and RFDiffusionAA outperform RFDiffusion, indi-
cating that direct protein-ligand interaction modeling improves structure quality. ATOMFLOW-H
slightly benefits from the distance hint, but ATOMFLOW-N remains highly competitive.
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Figure 3: (A) scRMSD distribution over the evaluation set. ATOMFLOW outperforms RFDiffusion with a
curve similar to RFDiffusionAA. (B) PoseBusters score distribution of ATOMFLOW-N on the extended set,
showing few violations. (C) Vina score distribution (lower is better) on the evaluation set. ATOMFLOW and
RFDiffusionAA are comparable, outperforming RFDiffusion. (D) Per-ligand results of scRMSD and Vina
energy.

5.3 BINDING AFFINITY

We next assess how strongly each designed binder interacts with its ligand via AutoDock Vina
Score (Eberhardt et al., 2021), averaged over 8 Rosetta-packed (Leaver-Fay et al., 2011) variants per
design. Figure 3C,D illustrates results for the same evaluation set.

RFDiffusion, which lacks direct protein-ligand modeling, yields poor binding energy. By contrast,
ATOMFLOW approaches RFDiffusionAA in most cases. ATOMFLOW-H’s provided ligand hint can
limit exploring alternative binding states, resulting in slightly higher scores.

Figure 4: For the 2GJ ligand (luminespib), ATOMFLOW-N outperforms RFDiffusionAA on Vina energy without
requiring a bound conformer. PLIP (Adasme et al., 2021) analysis suggests that ATOMFLOW’s designed binder
forms more favorable interactions (right).

We also tested ligand 2GJ (luminespib) where RFDiffusionAA needs the native bound structure, but
ATOMFLOW does not. ATOMFLOW generated binders with lower energies (Fig. 4), highlighting the
benefit of co-modeling flexible conformers.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed ATOMFLOW, a de novo protein binder design method for small molecule
ligands considering the flexibility of ligand structure. Unlike previous works, ATOMFLOW no longer
relies on a given bound ligand conformer as input. We represent the protein-ligand complex as
unified biotokens, learning the structure distribution of both the proteins and the ligands simulta-
neously from the data with an SE(3)-equivariant flow matching model on the representative atoms.
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During the evaluation, ATOMFLOW shows comparable design quality to the state-of-the-art model
RFDiffusionAA, which requires the ligand conformer to be fixed before design. Further evaluation
exhibits the advantage of ATOMFLOW in the circumstance when the ligand conformer is not known.
A direct future work is to support more precise control of the generated structures, and we’re working
to migrate ATOMFLOW to all kinds of biomolecules, including DNA, RNA, and metal ions.
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A APPENDIX

A.1 PROTEIN FRAMES

Proteins are composed of amino acid chains linked by peptide bonds, forming a backbone with
protruding side chains. Each amino acid’s position and orientation are described by a local coordinate
system, or protein frame, centered on three key backbone atoms: the alpha carbon (Cα), the carbonyl
carbon (C), and the amide nitrogen (N). These atoms act as reference points for establishing the frame.
The alpha carbon (Cα) typically acts as the origin. The vector from Cα to the amide nitrogen (N) is
normalized to define one axis of the frame. A second axis is defined by the normalized vector from
Cα to the carbonyl carbon (C). The third axis is formed by the cross product of these two vectors,
creating an orthogonal, right-handed coordinate system. The residue frame is typically represented
as an SE(3) transformation T = (R, t), which maps a vector from this local system to the global
coordinate system. In this transformation, t corresponds to the position of Cα in the global system,
and R represents the rotation needed to align the residue’s structure within the global context.

Cα
N C

x
y

z

Figure 5: A protein frame illustration. The Cα, C, N atoms form a panel, which is the xy panel. The
x-axis is defined as the orientation from Cα to N, while the y-axis is on the panel and perpendicular
to the x-axis. The z-axis is perpendicular to the xy panel.

A.2 FLOW MATCHING

Building upon the significant success of diffusion models in various generative tasks, flow matching
models (Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) allow for faster and more reliable
sampling from a distribution learned from data. The generative process of flow matching models
is usually defined by a probability path pt(x), t ∈ [0, 1] that gradually transforms from a known
noisy distribution p0(x) = q(x), such as N (x|0, I) for x ∈ R, to an approximate data distribution
p1 ≈ pdata(x). A vector field ut(x), which leads to an ODE dϕt(x)

dt = ut(ϕt(x)), is used to generate
the probability path via the push-forward equation,

pt = [ϕt]∗p0 = p0(ϕ
−1
t (x))det

[
∂ϕ−1

t

∂x
(x)

]
, (3)

which could be approximated with a trainable network v̂t(x; θ).

Due to the complexity of defining an appropriate pt and ut, we could alternatively define a conditional
probability path pt(x|x1), which is usually derived through a conditional vector field ut(x|x1) for
each data point x1 (Lipman et al., 2022). The conditional vector field is then approximated with a
trainable network v̂t(x; θ). Lipman et al. (2022) has proved that the conditional flow matching loss,

LCFM(θ) = Et,pdata(x1),pt(x|x1)∥v̂t(x; θ)− ut(x|x1)∥, (4)

has identical gradients w.r.t. θ with LFM = Et,pdata(x)||v̂t(x; θ)− ut(x)||, which means the model
can generate a marginal vector field by simply learning from the x1-conditioned vector fields, without
access to pt(x) and ut(x). After training, a neural ODE is obtained, ready for sampling from p0 to pt
with an ODE solver (Jardine, 2011).

A.3 DETAILS ON BIOTOKENS

Token Features For ligand atom tokens, the token-level feature set includes: chirality, degree,
formal charge, implicit valence, number of H atoms, number of radical electrons, orbital hybridization,
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aromaticity, and ring size. The pair-level feature is provided as one-hot embedding of the bond type.
For residue tokens, no token-level feature is known, while the pair-level feature only contains the
binned distance of residue index between residues. All features are encoded as a one-hot vector and
concatenated.

Token Frames The final loss we adopted LCFM-FAPE requires aligning the predicted structure to the
local frame of every token. The frames of protein residues can be naturally defined as in Section 3.
However, the frames of ligand atoms could not be chosen directly. Since a frame could be calculated
from the coordinate of 3 atoms, we need to choose an atom triplet for every atom token.

We first obtain a canonical rank of every atom that does not depend on the input order (Schneider
et al., 2015). The atoms are then renamed to their rank. For atoms x with a degree greater than or
equal to 2, we select the lexicographically smallest triplet (u, x, v) to define the frame, where u and
v are neighbors of x. For atoms with a degree of 1, u is the only neighbor of x, and v is chosen as
one of u ’s neighbors. This method ensures that each atom’s frame is defined in a consistent manner,
irrespective of its position in the input sequence, thereby facilitating the model to learn a consistent
structural target.

Extending Token Types and Features Though ATOMFLOW only considers the interaction between
protein and molecule ligands, the unified biotoken has the potential to extend to all biological entities,
including DNA, RNA, etc, by defining the token position, token frame, local and pair features, and
the representation of the internal structure. For example, an RNA can be represented as a sequence of
nucleotides, with the token position defined as its mass center, and the token frame calculated from
an atom triplet, such as C2-N1-C6.

The token features can also be extended to support more types of known information. For example,
the local features could also contain an embedding to indicate the preferred secondary structure, or
whether a ligand atom is required to be closer to the designed protein; the pair features could also
contain the motif information with a distance map.

A.4 DETAILS ON THE FLOW MATCHING PROCESS

For all types of tokens, we only consider their token positions to simplify the flow matching process.
Thus, the positions of all tokens lie in the Euclidean space RN×3. Since a complex could be arbitrarily
moved or rotated in the coordinate space without changing its structure, we need an algorithm that
treats different position series as the same if they could be aligned with an SE(3) translation. Thus,
every data point we consider now lies in the quotient space RN×3/SE(3). This quotient space is
proved to be a Riemannian manifold (Diepeveen et al., 2024).

For a Riemannian manifold, the flow matching process could be defined using a premetric (Chen &
Lipman, 2024). A premetric d : M×M → R should satisfy: 1. d(x, y) ≥ 0 for all x, y ∈ M; 2.
d(x, y) = 0 iff x = y; 3. ∇d(x, y) ̸= 0 iff x ̸= y.

We define our premetric as the minimum point-wise rooted sum of squared distance (RMSD) among
all pairs of possible structures in the original space RN×3 for two elements in the quotient space
d(x, y) = ∥alignx(y)− x∥, which satisfies all three conditions.

Proof. Since the premetric is defined as a norm, it satisfies condition 1 by nature. When x = y, the
best alignment that aligns y to x could derive the exact same position as x, yielding a zero norm.
When x ̸= y, when y is aligned to x, there’s still a structural difference between the structures, thus
the premetric is not zero. For condition 3, by defining y′ = alignx(y), we have

∇d(x, y) = ∇

√√√√ n∑
i=1

(y′i − xi)2 =
y′ − x

||y′ − x||
=

alignx(y)− x

||alignx(y)− x||
≥ 0. (5)

Thus d(x, y) satisfies all the conditions as a qualified premetric.

With such premetric, and a monotonically decreasing differentiable scheduler κ(t) = 1− t, we could
obtain a well-defined conditional vector field that linearly interpolates between the noisy and real
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data (Chen & Lipman, 2024)

ut(x|x1) =
d log κ(t)

dt
d(x, x1)

∇d(x, x1)

∥∇d(x, x1)∥2
=

1

1− t
(alignx(x1)− x). (6)

The vector field in equation 6 is calculated by substituting equation 5 into the left side. This vector
field provides the direction for moving straight towards x1, and generates a probability flow that
interpolates linearly between noisy sample x0 and data sample x1.

Since the vector field is defined as a function of x1, we could learn the vector field with a structure
prediction model x̂1(x, t; θ). By substituting equation 6 into equation 4, we obtain the training loss

LCFM(θ) = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥ . (7)

A.5 DETAILS ON THE PREDICTION NETWORK

Structure Module Specifications The main components of the structure module are derived from
Alphafold 2 (Jumper et al., 2021), while our implementation builds on top of the widely acknowledged
reimplementation OpenFold (Ahdritz et al., 2024). The TransformerStack consists of 14 layers of
simplified Evoformer block, and the IPAStack consists of 4 layers of Invariant Point Attention (IPA)
blocks. The MSA operations in the Evoformer block are simplified by replacing the operations on
the MSA feature matrix with the single representation si. The weights of the IPA blocks are shared,
and the structural loss is calculated on the outputs of each block and averaged.

Training Details During training, we equally sample data from the SCOPe dataset (v2.08) and the
PDBBind dataset (2020). We simply drop the data with more than 512 tokens, and we don’t crop
the filtered complexes since the cutoff is large enough and only filters out a relatively small portion
of the data. We train our model on 10 NIVIDA RTX 4090 acceleration cards, with a batch size set
to 10, which means the batch size on each device is set to 1. We use the Adam Optimizer (Kingma,
2014) with a weight-decaying learning rate scheduler, starting from 10−3 and decays the learning
rate by 0.95 every 50k steps. We separate the training process into two stages: 1) initial training,
α1 = 0.5, α4 = 0.3, α2 = α3 = 0; 2) finetuning, α1 = α2 = α3 = 0.5, α4 = 0.3.

Ligand tokens are not given during the first training stage. The first stage trains an unconditional
protein generation model, while the second stage turns it to a conditional protein binder and ligand
conformer generation model. The FAPE loss is defined as an average of all pairs of tokens in the
original paper, so the calculation process first yield a FAPE matrix and then produce the average
value of the matrix. The protein-protein, protein-ligand and ligand-ligand loss calculates the average
value of the sub-matrixs defined as (row: protein, col: protein), (row: protein, col: ligand), and (row:
ligand, col:ligand).

Since training a protein design model is significantly time-consuming, the design choices of our
training strategy is largely determined by grid searching possible design space and save the training
trajectory of the first 30∼50k steps. We compare the training trajectories and select the best configu-
ration that meets the following criteria: a) The final distogram loss should close the minimum we get
among the configurations (around 2.0). b) The LCFM-FAPE should not decline too fast at the first 10k
steps. The first 10k steps is for the transformer stack to learn a relatively steady output, indicated by
the decline of the distogram loss. A decline of LCFM-FAPE at this stage will resulted in an undesired
local minimum. Then LCFM-FAPE should decline fast right after the distogram loss turns to decline
much smoother. We select the configuration with the lowest LCFM-FAPE at the end of training.

We decide the end of each training stage when the training converges, with the following criteria: a)
the decline rate of every single loss is small. b) the structural violence of sampled structures (counts
of CA atom violation) converges.

An initial study on directly train the second stage shows unsatisfactory training trajectory. Since the
ligand conformer is way easier to generate compared to protein folds, the FAPE loss declines too
fast even before the distogram loss, resulted in unstable TransformerStack output, and leading to a
diverge of the model after 30k steps. The resulted model with minimum loss is able to predict the
ligand structure, with random protein residue position, which is unusable.
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Loss Function LCFM calculates an aligned RMSD by aligning x1 and x̂1 to x, while the FAPE loss
calculates an averaged RMSD by aligning x̂1 to each residue frame of x1, which could be extended
to the token frame (Appendix A.3). Let alignx,i(y) denote aligning y to the i-th token frame of x, we
have

LCFM = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1

N

N∑
i=1

(
alignx,i(x̂1(x, t; θ))− alignx,i(x1))

)∥∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1

N

N∑
i=1

(
alignx1,i

(x̂1(x, t; θ))− alignx1,i
(x1)

)∥∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1

N

N∑
i=1

(
alignx1,i

(x̂1(x, t; θ))− x1

)∥∥∥∥∥
= LCFM-FAPE

Proposition 1. alignx1
(x̂1) = x1 ⇐⇒ LCFM = 0 ⇐⇒ LCFM-FAPE = 0.

Proof. When alignx1
(x̂1) = x1, we have ∀i, alignx1,i

(x̂1) = x1. As a result, LCFM = LCFM-FAPE =
0. This establishes that:

alignx1
(x̂1) = x1 ⇐⇒ LCFM = 0 and alignx1

(x̂1) = x1 ⇐⇒ LCFM-FAPE = 0. (8)

Now, assume LCFM = 0. Suppose alignx1
(x̂1) ̸= x1. Then for all transformations R and t, we

have Rx̂1 + t ̸= x1, which implies: ∥alignx1
(x̂1) − x1∥ ̸= 0, leading to LCFM ̸= 0. This is a

contradiction. Therefore, alignx1
(x̂1) = x1. This proves that

LCFM = 0 ⇐⇒ alignx1
(x̂1) = x1. (9)

Similarly, assume LCFM-FAPE = 0. Suppose alignx1
(x̂1) ̸= x1. Then: ∥alignx1,i

(x̂1) − x1∥ ̸= 0,

which leads to LCFM-FAPE ̸= 0, again a contradiction. Therefore, alignx1
(x̂1) = x1. This proves that:

LCFM-FAPE = 0 ⇐⇒ alignx1
(x̂1) = x1. (10)

The proposition is proved by combining equation 8,9,10.

This means that both LCFM and LCFM-FAPE provide an optimization direction towards minimizing the
SE(3) invariant structural difference between the predicted structure and the ground truth structure.
Thus, we adopt LCFM-FAPE as a realistic approximation of LCFM and adopt it as the training objection
during evaluation.

A.6 EVALUATION DETAILS

Specifications Following RFDiffusionAA, we use FAD, SAM, IAI, and OQO as the selected
evaluation set. FAD and SAM are witnessed by both models as training data, while IAI and OQO are
not, demonstrating the generalization ability. To further investigate the performance of our method,
we conduct experiments on an extended set of 20 ligands (ligands from PDB id 6cjs, 6e4c, 6gj6, 5zk7,
6qto, 6i78, 6ggd, 6cjj, 6i67, 6iby, 6nw3, 6o5g, 6hlb, 6efk, 6gga, 6mhd, 6i8m, 6s56, 6tel, and 6ffe).
The extended dataset includes ligand sizes (including hydrogen) ranging from 21 to 104 in length.

Extended Set We illustrate the designability (scRMSD) and binding affinity (Vina energy) of
ATOMFLOW-N in Figure 7. The extended evaluation shows that the performance of ATOMFLOW
on the extended set is similar to the evaluation set shown in the main article, and demonstrates that
ATOMFLOW is able to tackle almost all kinds of ligands.
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A B

Figure 6: (A) Cluster counts for each ligand at various thresholds; ATOMFLOW is consistently diverse. (B)
Scatter of designability (scRMSD) vs. novelty (pdbTM). ATOMFLOW achieves self-consistency and high novelty,
although most designable folds still resemble known proteins.

Diversity and Novelty We measure diversity by clustering 100 designed structures (200 residues
each) per ligand with MaxCluster (Herbert, 2008), counting how many clusters form at different
distance thresholds. We measure novelty by the highest TM-score (Zhang, 2005) found via Fold-
Seek (Kempen et al., 2024) (pdbTM) and each design’s scRMSD.

Figure 6A shows that our method produces multiple distinct folds, suggesting effective protein-only
training in addition to complexes. Figure 6B indicates that ATOMFLOW can generate novel structures
with acceptable designability, though truly new folds remain challenging.

Additional Binding Affinity Metric We are aware that Vina might not be a perfect proxy for
binding affinity. We noticed that AlphaProteo adopts several metrics produced by AlphaFold 3 as in
silico filters. At the time we finished our draft, there’s no publicly available AlphaFold 3 for us to run
locally. Recently, several AlphaFold 3 replications and the original AlphaFold 3 are released. We
developed an alternative in silico metric based on Chai-1, calculating the minimum value across all
interchain terms in the PAE matrix (min_ipAE, lower is better). Note that this metric is proved to
be a good indicator for protein-protein binder design, but not validated on small molecule-protein
binders. The results in Figure 8 show that the AtomFlow-generated binders have lower min_ipAE
than the ones from RFDiffusion-AA, and both models have the ability to generate binders with
similar min_ipAE as natural ones. We’re working to develop better metrics as in silico proxy for
ligand-binding protein design based on wet lab verification.

Diversity and Novelty Results of the Baseline. We conducted the diversity and novelty experiment
on RFDiffusion-AA with the same configuration as our results reported in the main text. The results
are shown in Figure 9. The diversity of AtomFlow designs is better than RFDiffusion-AA, while the
AtomFlow generated results tends to be more conservative in terms of pdbTM novelty. We believe
this is because we didn’t train AtomFlow on a full training set including all PDB structures and the
distillation data. This is our future work and we’ll release an updated model once available.

Discussion on Pocket Design Models While the pocket design models address ligand-protein
interactions, their focus is limited to refining pocket residues within a predefined radius. They lack
the capacity to design full protein folds, making direct comparison with AtomFlow infeasible. We
conducted an unfair experiment with PocketGen by providing a template binder to it, as detailed in
Tabel 1. Despite this, the results demonstrate that AtomFlow consistently outperforms PocketGen in
terms of fold quality across all radii.

Geometrical Distributions of Generated Structure We evaluated the common chemical bond
length generated by AtomFlow vs. the ground truth bond length in our training set. Results shown
in Figure 10 demonstrate that the AtomFlow generated ligands have similar geometric distribution
to ground truth. We further evaluated the generated structures by plotting the Ramachandran plots.
Results shown in Figure 11 suggests that the proteins generated by AtomFlow effectively capture the
key structural characteristics of natural proteins.

Chemical Validity We evaluated the generated ligands with several important chemical validity
metrics: QED, an index of drug-likeness, with a value between 0 (drug-unlike) and 1 (drug-like); SA,
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the difficulty of chemical synthesis for molecules, with a value between 0 (easy to synthesize) and 10
(very difficult to synthesize); LogP, an important parameter to characterize the overall hydrophobicity
of organic compounds. Results are shown in Tabel 2.

A

B

Figure 7: A: scRMSD of designs for each ligand in the extended set; B: Vina energy of designs for
each ligand in the extended set.
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Figure 8: min_ipAE distribution of the generation results in the affinity experiment of the main text.
The result of the native binder is displayed as a grey line.

Ligand AtomFlow (r=inf) PG (r=3.5) PG (r=5) PG (r=6.5) PG (r=8) PG (r=9.5)
FAD 0.79/3.74 7.10/7.38 6.75/7.81 7.29/8.35 20.92/24.23 23.12/25.23
SAM 0.83/2.01 2.12/2.62 2.77/2.99 2.94/4.03 12.39/14.49 13.79/14.74
IAI 0.56/1.82 0.71/0.85 0.95/1.02 2.04/2.28 3.59/5.53 9.02/11.71
OQO 0.59/1.63 1.20/1.26 1.70/1.79 2.40/2.45 11.59/11.94 2.13/2.41

Table 1: For this experiment, we used the natural binders of four ligands—FAD (7bkc), SAM (7c7m),
IAI (5sdv), and OQO (7v11)—as input. To evaluate the design capability of PocketGen (PG) under
different constraints, we progressively increased the design radius (minimum distance to ligand)
from 3.5 to 9.5. The masked target area expanded with the radius, requiring the model to redesign
increasingly larger regions of the protein. When the radius exceeded the protein’s dimensions (radius
greater than the protein size), all residues were masked, simulating our full-design setting. The
table below presents the min/median scRMSD values for designs generated by PocketGen at each
radius. For reference, scRMSD < 2 is generally considered a successful design. Notably, PocketGen’s
performance deteriorated significantly as the radius increased, reflecting its reliance on template
residues. (At radius=8 for OQO, PocketGen generated designs with several residues misaligned with
the ligand, leading to abnormally high scRMSD values.) Additionally, PocketGen does not support
radius settings beyond 10, preventing direct simulation of ATOMFLOW ’s fully template-free design
scenario. The results of ATOMFLOW is derived from our main experiment.

QED SA LogP
AtomFlow 0.458±0.292 0.683±0.160 0.559±4.030
PDBBind 0.429±0.246 0.696±0.144 -0.311±3.240

Table 2: QED, SA, and LogP of AtomFlow generated structures and PDBBind structures.

BA

Figure 9: A: Cluster count based on different thresholds for the maximum difference within the
cluster for each ligand in the evaluation set. B: Scatter plot of designability (scRMSD) vs. novelty
(pdbTM) for ligands in the evaluation set.
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Dataset AtomFlow

Figure 10: Chemical bond distribution of AtomFlow generated ligands for the extended set and
ground truth ligands in the PDBBind dataset.

Figure 11: The Ramachandran plots for the generated protein (left) and the PDBBind protein (right),
which demonstrate comparable coverage in the primary secondary structure regions.
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