On suitable modules and G-perfect ideals

A. A. Gerko

A module K over a commutative Noetherian local ring R is said to be suitable (see [1]) if $\operatorname{Hom}_R(K,K) \cong R$ and $\operatorname{Ext}^i_R(K,K) = 0$ for i>0. Trivial examples are a free module of rank 1 and a canonical module. We recall that the type of a module M (denoted type M) is by definition the dimension, over the residue field $k \cong R/\mathfrak{m}$ of R, of the first non-zero $\operatorname{Ext}^i_R(k,M)$. The type of a suitable module satisfies the condition

$$type K * dim_k(K/\mathfrak{m}K) = type R. \tag{1}$$

In [2] (where such modules are called semidualizing) an example of a ring of type 2^i is constructed with suitable modules of all types permissible by condition (1) for every natural number i.

Let S_1, \ldots, S_n be finite local algebras over a local ring R. We denote by \mathfrak{m}_i the maximal ideal in S_i and by \mathfrak{m} the maximal ideal of R. We consider the R-algebra $S = S_1 \otimes_R S_2 \otimes_R \cdots \otimes_R S_n$. For any $P \subset \{1, \ldots, n\}$ we put $S_P = \bigotimes_R S_i$, where i goes through P.

Proposition 1. For every i let S_i be free as an R-module, and let $S_i/\mathfrak{m}_i \cong R/\mathfrak{m}$. Then the algebra S is local, and for any $P \subset \{1, \ldots, n\}$ the S-module $K_P = \operatorname{Hom}_{S_P}(S, S_P)$ is suitable and

$$\operatorname{type} K_P = \operatorname{type} R * \prod_{i \in P} \dim_{S_i/\mathfrak{m}_i} \operatorname{Hom}_{S_i/\mathfrak{m}S_i}(S_i/\mathfrak{m}_i, S_i/\mathfrak{m}S_i).$$

Moreover, if all the rings $S_i/\mathfrak{m}S_i$ are not Gorenstein, then the modules K_P are mutually non-isomorphic.

Let us represent the natural number n as a product of primes: $n = \prod_{i=1}^{m} p_i$. We consider the ring $T_n = \bigotimes_{i=1}^{m} k \ltimes k^{p_i}$, where k is a field. The type of T_n is equal to n, and by what has been proved, for any divisor a of n there exists a suitable T_n -module K of type a. We also note that if under the hypotheses of Proposition 1 some of the rings S_i are isomorphic to each other, then in general the modules K_P cannot be distinguished by invariants like the Bass or Betti numbers.

It is interesting to ask whether this construction is universal, at least in the case of finite-dimensional algebras over fields. All examples known to the author follow this scheme.

Proposition 2. Let R be a complete local ring, and let x be an R-regular sequence. There is a one-to-one correspondence between the isomorphism classes of suitable modules over the rings R and R/(x).

The suitable modules are closely connected with G-dimension, the invariant characterizing Gorenstein rings in the same sense that projective dimension characterizes regular rings. We recall its definition.

Definition 3 [3]. We put G-dim_P P = 0 if the natural homomorphism

$$P \to \operatorname{Hom}_R(\operatorname{Hom}_R(P,R),R)$$

is bijective and $\operatorname{Ext}^i_R(P,R)=0=\operatorname{Ext}^i_R(P^*,R)$ for any i. In the general case

 $G\text{-}\dim_R M = \inf\{n \mid \text{there exists an exact sequence}\}$

$$0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$$
 with G-dim_R $P_i = 0$.

We denote by grade I the length of a maximal R-regular sequence in an ideal I. It is known that grade $I = \inf\{i \mid \operatorname{Ext}_R^i(R/I,R) \neq 0\}$.

This work was carried out with the partial support of the Russian Fund for Basic Research (grant no. 99-01-01144).

AMS2000 Mathematics Subject Classification. Primary 13H10; Secondary 13C99. DOI 10.1070/RM2001v056n04ABEH000423

Proposition 4 [1]. The following two conditions on an ideal I are equivalent:

- 1) G-dim $_R R/I = \operatorname{grade} I$ (in particular, G-dim $_R R/I < \infty$); 2) $\operatorname{Ext}_R^k(R/I,R) = 0$ for $k \neq \operatorname{grade} I$, and $\operatorname{Ext}_R^{\operatorname{grade} I}(R/I,R)$ is a suitable R/I-module.

Such ideals are said to be G-perfect. If, in addition, $\operatorname{Ext}_R^{\operatorname{grade} I}(R/I,R) \simeq R/I$, then the ideal is said to be G-Gorenstein.

The following result is known from [1].

Lemma 5 [1]. If \mathfrak{a} is a G-Gorenstein ideal, $\mathfrak{a} \subset I$, and grade $I = \operatorname{grade} \mathfrak{a}$, then

$$\operatorname{Ext}_R^{i+\operatorname{grade} I}(R/I,R) \cong \operatorname{Ext}_{R/\mathfrak{a}}^i(R/I,R/\mathfrak{a})$$

for every i > 0. In particular, $\operatorname{Ext}_R^{\operatorname{grade} I}(R/I, R) \cong (\mathfrak{a}: I)/\mathfrak{a}$.

The ideals I and J are said to be directly G-connected if there exists a Gorenstein ideal \mathfrak{a} such that $I = (\mathfrak{a} : J)$ and $J = (\mathfrak{a} : I)$. In this case grade $I = \operatorname{grade} \mathfrak{a} = \operatorname{grade} J$.

It follows from Lemma 5 that the ideals I and J are directly G-connected by a G-Gorenstein ideal $\mathfrak a$ if and only if $\operatorname{Ext}_R^{\operatorname{grade} J}(R/J,R)\cong I/\mathfrak a$ and $\operatorname{Ext}_R^{\operatorname{grade} I}(R/I,R)\cong J/\mathfrak a$.

Theorem 6. The following condition on an ideal I is equivalent to conditions 1)-2:

3) There exists and ideal J such that I and J are directly G-connected, $\operatorname{Ext}_R^{\operatorname{grade} I}(R/I,R)$ is a suitable R/I-module, and $\operatorname{Ext}_R^{\operatorname{grade} J}(R/J,R)$ is a suitable R/I-module.

Proof. 1)⇒3). As the ideal a we can take an ideal generated by a maximal regular sequence in I. 3) \Rightarrow 1). Let \mathfrak{a} be the corresponding G-Gorenstein ideal. Since condition 1) is satisfied simultaneously in the rings R and R/\mathfrak{a} , we can pass to the quotient ring R/\mathfrak{a} . In particular, we can assume that grade I=0. Then condition 3) assumes the following form: Ann I=J, Ann J = I, I is a suitable R/J-module, and J is a suitable R/I-module. Under these conditions, the exact sequences 0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0 and 0 \rightarrow J \rightarrow R \rightarrow R/J \rightarrow 0 are dual to each other, and for i > 1 we obtain the following isomorphisms: $\operatorname{Ext}_R^i(R/I,R) \cong \operatorname{Ext}_R^{i-1}(I,R)$, $\operatorname{Ext}_R^i(R/J,R) \cong \operatorname{Ext}_R^{i-1}(J,R)$, and $\operatorname{Ext}_R^1(R/I,R) = 0$, $\operatorname{Ext}_R^1(R/J,R) = 0$. It is now sufficient to show that $\operatorname{Ext}^i_R(R/I,R)=0=\operatorname{Ext}^i_R(R/J,R)$ for i>0. The base of the induction is proved; let $k \geq 1$ and let the assertion be true for $i \leq k$. We consider the spectral sequences of the exchange of rings

$$\operatorname{Ext}^i_{R/I}(J,\operatorname{Ext}^j_R(R/I,R))\Rightarrow\operatorname{Ext}^{i+j}_R(J,R)\quad\text{and}\quad\operatorname{Ext}^i_{R/J}(I,\operatorname{Ext}^j_R(R/J,R))\Rightarrow\operatorname{Ext}^{i+j}_R(I,R).$$

We have $\operatorname{Ext}_{R/I}^i(J,\operatorname{Ext}_R^{k-i}(R/I,R))=0$ for $i\geq 0$ by the induction hypothesis and by the condition of suitability of the R/I-module J. Consequently, $\operatorname{Ext}_R^{k+1}(R/J,R) \simeq \operatorname{Ext}_R^k(J,R) = 0$. Similarly, $\operatorname{Ext}_R^{k+1}(R/I,R) = 0.$

Bibliography

- [1] E. S. Golod, Trudy Mat. Inst. Steklov. 165 (1984), 62-66; English transl., Proc. Steklov Inst. Math. 165 (1985), 67-71.
- [2] L.W. Christensen, "Semi-dualizing complexes and their Auslander categories", KUMA Preprint no. 3, 1998.
- [3] M. Auslander and M. Bridger, "Stable module theory", Mem. Amer. Math. Soc. 94 (1969).

Moscow State University E-mail: gerko@mccme.ru

Received 01/JUN/01