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Abstract

Mathematical theorem proving is an important testbed for large language mod-
els’ deep and abstract reasoning capability. This paper focuses on improving
LLMs’ ability to write proofs in formal languages that permit automated proof
verification/evaluation. Most previous results provide human-written lemmas to
the theorem prover, which is an arguably oversimplified setting that does not suf-
ficiently test the provers’ planning and decomposition capabilities. Instead, we
work in a more natural setup where the lemmas that are directly relevant to the
theorem are not given to the theorem prover at test time. We design an RL-based
training algorithm that encourages the model to decompose a theorem into lemmas,
prove the lemmas, and then prove the theorem by using the lemmas. Our reward
mechanism is inspired by how mathematicians train themselves: even if a theorem
is too challenging to be proved by the current model, a positive reward is still given
to the model for any correct and novel lemmas that are proposed and proved in this
process. During training, our model proposes and proves lemmas that are not in
the training dataset. In fact, these newly-proposed correct lemmas consist of 37.7%
of the training replay buffer when we train on the dataset extracted from Archive
of Formal Proofs (AFP). The model trained by our RL algorithm outperforms that
trained by supervised finetuning, improving the pass rate from 40.8% to 45.5% on
AFP test set, and from 36.5% to 39.5% on an out-of-distribution test set.

1 Introduction

The reasoning abilities of large language models (LLMs) are a significant marker of artificial
intelligence and critical for complex and safety-sensitive applications. Yet recent studies highlight
the limited performance of LLMs on reasoning tasks (e.g., Miindler et al.| [2023]], Valmeekam et al.
[2023]] and references therein).

Automated theorem proving by LLMs is an excellent reasoning task that abstracts away the need
for numerical manipulation or tool use (e.g., using a calculator) and allows for precise correctness
evaluation with an automatic verifier (such as Isabelle [Nipkow et al., 2002]] and Lean [De Moura
et al., |2015]]), even without ground truth. Thanks to tools such as Sledgehammer [Paulsson and
Blanchette, [2012] that can automatically complete low-level details, the granularity of formal proofs
is similar to natural language proofs (see Fig.[T|Left for an illustrative example). Note that verifying
a proof is fundamentally much easier than generating the proof Thus, learning to prove theorems
from verifiers’ supervision is reminiscent of weak-to-strong generalization [Burns et al., [2023]].

Previous results in this area largely focus on setting where the theorem prover can use all the lemmas
in the formal proof library, including those particularly written to decompose a specific theorem’s

!The former is in P whereas the latter is undecidable in the worst case Turing et al.[[[1936],|Church| [[1936].
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Next, we deal with induction:

Fixan n, we have S(n + 1) = S(n) +2(n + 1)
by the definition of S

lemma sum_of_ints:
"2 * (Siznat=1.n.i) =n * (n+1)"

lemma diff_mod_equiv:
"(a-b)mod p=0=>3 mint.a=p*m+b”

i
8y induction hypothesis, we assume that S(n) = n(n +1). !
Wealso have n(n + 1) + 2(n +1) = (n+ 1)(n + 2). !
Finally, we can show S(n + 1) = (n + 1)(n +2) // In i
Isabelle, Suc n is another way to represent n + 1 |

[proot (.. || |[stedschammer |

+ | temma sum_of i !
! "2* (siznat=1.n. 1) =n* (n+1)" B
| |
+ [ proof- !
1| define 's" where S_def: "An.Sn=2* (Siznat=L.n.i)" | 1 theorem mathd_numbertheory_257:
H e o | Theorem: if an integer x satisfies
H show"Sn=n* (n+1) ' fixes x :: int 1< x <100, an
i proof (induct n) H assumes h0: "1Sx Ax < 100" (Z1997 — x) mod 77 = 0
' show "S 0=0* (0 + 1)" unfolding S_def by auto ' :nd hi. t=1..100. i) - x) mod 77 = 0" Thenx = 45. .
1 next ! shows "x =
! fixn have "S (n+1)=Sn+2* (n+1)" H roof proof -
i | 2 ' LS00~ 100
: unfolding S_def by simp I have h2: "2 * (Siznat=1..100. i) = 100 * 101" First, we show 2 « £120 = 100 « 101
| alsoassume "Sn=n * (n +1) | B e 8y invoking the following lemma [with n = 100]
H alsohave"n* (n+1)+2*(n+1)=(n+1)*(n+2)" H wy e " i 23, i=nn+1)
i ! 2 * (3izna +1)" </invoke> i=1
! by simp H using su 100"] by force . "
' finally show " (Suc n) = (Suc n) * (Suc n +1)" : have h3: "(5i-nat=1..100, ) = 5050" Therefore, 2127 i = 5050 by algebraic manipulation
H q:;" e H e :'“Z:’,‘{!'C;;‘:: BT e Then there is an integer m where 5050 = 77m + x
U] ! S e e e 8y invoking the following lemma
| | "a-b) mod p2.0= 3 miint. a = p * m+b" </invoke (a~b) modp = Oimplies3m,a =p-m+b
| Lemma2 Bi, i =n(n+1). y s;":‘v’:g";“, ::'f""f"“"’fe“““’ by (metis of_nat_numeral)| | .11, we can show x = 45 by combining equations
| X o
! Pmnlf. PP \ Laing ha ho by (smt (verit) above and the assumption 1 < x < 100.
1 Wefirst define S(n) = 2 Nty . \ qed
! Then we prove S(n) = n(n + 1) by induction on n: \
' 1 5(0) = \
i Basecases S(0) = 000+ 1) by nfoldig the definitionof S | e invoke
H \
|
|
|
|
|
|

Figure 1: Left: in the dashed callout block, we show an example of an Isabelle proof and its
explanation in natural language. Right: an example of a proof tree. The two child nodes correspond
to the two new lemmas proposed in the proof of the root node.

proof [Jiang et al., 2021 [Polu and Sutskever, 2020] This setting arguably oversimplifies the problem
and doesn’t sufficiently test the models’ planning and decomposition capabilities, and it is unclear
whether the resulting models can be used to prove new theorems from scratch when such lemmas are
not available at test time. Instead, we work in a more natural setup where the theorem prover needs
to propose and prove lemmas to decompose the proof hierarchically itself (see Section 2] for more
details). In Section[C.2] we demonstrate that this task is indeed much more challenging.
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Figure 2: Illustration of our algorithm Proof Tree Generator (ProD)-RL. In step 2b, locally correct
means that the statement is proved correctly using the proposed lemmas, and globally correct means
that all the proposed lemmas are also proved correctly. As an important feature of our algorithm,
even if Theorem 1 is not proved by the model because the proof to Lemmas 1 is incorrect, we still
train on the correct lemma (Lemma 2) by setting its reward r = 1.

In addition, most existing proof-generation algorithms leverage the formal verifier by (a) providing
the verifier’s current proof state to the LLMs step-by-step, and (b) using best-first search algorithms
such as A* to build a multi-step proof from many LLM-generated steps [Jiang et al.,[2022a} Han
et al.| 2021]]. The major challenge of these method is the high computation cost incurred in both (a)
and (b) because (a) requires re-running LLMs on a different context that contains a long verifier’s
proof state at every step, and (b) the search is expensive. Consequently, the best method along this
line of research requires more than 1k GPU days with A100s to train a model with 600M parameters
[Lample et al.,[2022], whereas our method only takes less than 36 GPU days to train a 7B model.

To address these issues, we design a method, called Proof Decomposer (ProD), that uses LLMs to
propose and prove new lemmas hierarchically and generate whole proofs directly without searching.
We augment the vanilla formal proof syntax so that the model can propose new lemmas by stating
their statements during the proof, and then prove the lemmas separately. Hence, a complete proof of
a theorem will form a tree structure where the child nodes are the lemmas proposed in the proof of
the parent node (Fig. [T|Right), and the theorem is proved only if all the proofs in the tree are correct.



We train our LLMs with reinforcement learning (RL) in a way that somewhat imitates the mathemati-
cian’s process: we reward correct partial proofs (i.e., proof sub-trees) even if the original theorem (i.e.,
the root node) is not proved entirely. Since our model can generate and prove novel lemmas during
training, it could still make progress even if the model is given a very challenging theorem. This is
similar to mathematicians publishing papers on interesting lemmas that do not solve the original goal.
We illustrate our algorithm in Fig.[2] and defer the details to Section[B.2]

We test our model ProD-RL by generating proof trees on holdout theorems that the model is never
trained on, and we show that our model ProD-RL outperforms several other baselines. Compared
with the supervised fine-tuned (SFT) model on the same training set, our model improves the pass
rate from 40.8% to 47.5% on the holdout test set, whereas vanilla reinforcement learning without
lemma proposals during training does not improve the corresponding SFT model (see Section[3.2)).
This is partly because our method encourages the model to propose and prove additional lemmas —
in fact, 37.7% of the proved lemmas during training are not in the dataset. As a result, the model still
improves even if it’s already fine-tuned on the same dataset with human-written ground-truth proofs.

2 Setup

Conditional proofs. We use the term conditional proof to denote a proof that, in addition to the
standard formal proof syntax, can propose new lemmas by enclosing their statements by <invoke>
and </invoke> tokens (examples shown in the blue boxes of Fig.[I). A conditional proof has the
following format:

t; <invoke> l; </invoke> to <invoke> [y </invoke> - - - t; <invoke> [}, </invoke> tj1

where t1, - - -, ;41 denote proof segments in the original formal proof syntax (see e.g., Fig.[I] proof
texts in black), and [y, - - - , [; denote proposed lemma statements (see e.g. Fig. |1} proof texts in red)E]

Proof tree nodes. With the proposed lemmas, a complete proof forms a tree structure (as shown in
Fig. . A node in a proof tree is a tuple of premises, context, a theorem statement, and a conditional
proof. Premises represent the lemmas that are treated as common knowledge, which are typically not
directly relevant to the proof. We allow the model to directly use them in the proof so that it does not
have to repetitively prove all the fundamental facts, such as properties of continuous functions and
natural numbers. Context represents the necessary contents to prepare the theorem statement, such as
the definition of specific objects/functions. We use the context as part of the prompt for the LLMs to
generate proofs, and to prepare the proof verifier to check the generated proofs.

Correctness of conditional proofs and proof trees. A proof tree node n with conditional proof
t, <invoke> [; </invoke> to <invoke> ls </invoke> - -- tj, <invoke> [; </invoke> ¢y is locally
correct if, after adding [y, . . ., [}, to the set of premises, 1. ..%5+1, is a proof to the statement of n
acceptable by the formal verifier under the context of n.

We consider a proof tree valid if, for every node, each of its child nodes corresponds to one proposed
lemma and shares the same premises and context with its parent node. A tree node n is globally
correct with respect to a given set of tree nodes N if we can construct a valid proof tree with root n
using the locally correct tree nodes in N. Intuitively, global correctness corresponds to the standard
notion of correctness (i.e., whether the theorem is proved), and local correctness is a weaker concept,
referring to the correctness of conditional proofs assuming the proposed lemmas.

Dataset construction. We construct the datasets by parsing raw proof-library files into examples
of the form (premises, context, statement, conditional proof). For any theorem s, we construct an
example where the premises are all the theorems from predecessor files. To compute the context, we
iteratively remove all the theorem statement and its proof from the proof-library files if the theorem
is not referred to in the remaining file contents (in other words, in the first iteration we peel off the
root nodes of the proof trees from the file, and then the nodes in the next level, etc.). Finally, to
augment the original proof of theorem s to a conditional proof with lemma proposal, for every proof
step ¢; that calls lemmas [; 1, .. .,1;,; (and these lemmas were removed from the context), we insert
the statements of these lemmas enclosed by the <invoke> and </invoke> tokens into the proof right
before ;. We defer additional details of our dataset construction process to Appendix [A]

*In this paper, we use the terms ‘lemma’ and ‘theorem’ relatively — theorem refers to the statement that we
are currently focusing on, and lemma refers to the statement proposed during the proof. In other words, there is
no fundamental difference between a lemma and a theorem.



We split the training and test set (AFP test) based on the dependency of the files in the proof library
so that the examples in the training set never refer to any files in the test set. We also construct an
additional test set AFP 2023 by parsing the AFP files submitted after the knowledge cutoff date of
the Llemma model (April 2023) to eliminate potential data leakage issues.

Compared with prior works [Jiang et al., 2021} [First et al., |2023]], the two major differences in our
setup are the availability of lemmas from the same file and the training/test split. In Section[C.2] we
discuss and test their effects in detail.

3 Experiments

3.1 Reinforcement learning algorithm

Due to limited space, we present a sketch of our RL algorithm here and defer the details to Appendix[B]

Proof tree generation. To generate proof trees using an autoregressive model 7y, we need to first
fine-tune the model to follow a specific format:

(a) the input x to the model 7y is the concatenation of a context and a theorem statement, and

(b) the expected output y of the model is a special token ¢( followed by a conditional proof, where
to is either <use_invoke> or <no_invoke>, denoting whether the following conditional proof
should propose new lemmas.

We let the model generate the special token ¢, before a conditional proof so that we can upscale the
probability of the <use_invoke> token during RL to propose more lemmas for better exploration. Us-
ing the fine-tuned model, we can generate conditional proofs and complete the proof tree recursively,
as shown in Alg.

Reinforcement learning. Our method is illustrated in Fig. 2| We start with a supervised fine-tuned
model so that it can generate conditional proofs in the desired format. At every round, we sample a
batch of examples from the training dataset and generate proof trees using the current model. Then we
call the proof verifier to test the generated proofs, and assign rewards based on the global correctness
of the conditional proofs. Finally, we train the model using REINFORCE with a replay buffer.

We update the model using partial proofs (i.e., proof sub-trees) even if the original theorem from
the dataset (i.e, the root of the proof tree) is not proved. Hence, our method can also be viewed as
an instantiation of hindsight experience replay [Andrychowicz et al.| |2017], where the hindsight
trajectories are correct proof sub-trees.

3.2 Main results

This section reports the models’ pass @k performance on AFP test and AFP 2023 datasets. For a
given dataset, pass@k measures the percentage of the theorems proved by at least one of k proofs
generated by the model. Recall that the theorems in the test set are selected based on the dependencies
of the AFP files and are not used in any proofs from the training set (see Section|C.2|for more details).
In other words, we do not train the model on test datasets using reinforcement learning. Instead, we
test whether ProD-RL is a fundamentally better model when tested on new theorems.

Table 1: Pass@16 of different models on AFP test sets. Our model with reinforcement learning
(ProD-RL) improves upon the SFT model and outperforms baseline methods.

SFT w/o RL w/o
Test set lemma proposal lemma proposal ProD-SFT  ProD-RL
AFP test | 434 424 40.8 45.5
AFP 2023 | 394 37.7 36.5 39.5

As a baseline method, we train a model on a variant of the SFT dataset where all lemmas are kept in
the context. It can be seen as a reproduction of [First et al.|[2023]] with a slightly different way to obtain
the context — |First et al.| [2023]] includes all the file content before the statement of the theorem,



whereas we only keep the statement of previous lemmas. We also run reinforcement learning on the
same RL dataset as our method (see Section[E.2]for more details).

Pass rate on AFP test Statistics of correct proofs
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Figure 3: Left: The pass rate of different models on AFP test. Our RL model improves upon the SFT
model whereas without proposing new lemmas (RL w/o lemma proposal), we do not observe any
improvement. Right:The pass rate of theorems in AFP test grouped by the depth of their ground-truth
proof. Grey bars represent the proof generated by the model SFT w/o lemma proposal, and the
colored bars represent the proof trees generated by ProD-RL with various depths.

Table [T] shows the performance of our model on the AFP test sets. For a fair comparison, the baseline
models are tested in our new setup without human-written lemmas. Note that the SFT model without
lemma proposal outperforms the SFT model with lemma proposal. We hypothesize that it is because
proposing correct lemmas itself is challenging, which distracts the model from learning to generate
direct proofs. However, RL with lemma proposal improves the SFT model and outperforms others
because the model proposes and proves additional lemmas that are not in the training dataset, whereas
RL without lemma proposal yields no improvement.

In Fig. 3] (Left), we plot the pass rates with different numbers of samples per theorem on both AFP
test and AFP 2023. Fig. [3]shows that on AFP test, the ProD-RL model significantly improves upon
baseline methods as well as the ProD-SFT. However, on AFP 2023, the improvement is minor over
SFT w/o lemma proposal, while ProD-RL still outperforms ProD-SFT. The results suggest that
the baseline methods are more robust to heavier distribution shifts, while our method has a larger
improvement when the test distribution is closer to the training distribution.

In Fig. B3] (Right), we decompose the proved theorems by the depth of their ground-truth proofs (shown
on the x-axis) and the depth of generated proof trees (indicated by color). When there are multiple
correct proof trees, we plot the one with the maximum depth. As a comparison, we also plot the
success rates of the proofs generated by the RL model trained w/o lemma proposal. Fig. 3] (Right)
shows that the improvement of ProD-RL mostly comes from proving theorems with low-to-medium
difficulty where the depth of the ground-truth proof is at most 2. For more complex theorems, both
models’ pass rates are low and the improvement of our method is not significant, meaning that they
are currently beyond the models’ capability.

Due to limited space, we defer the case study for the generated lemmas to Appendix [C.4]

4 Conclusion

In this paper, we design a reinforcement learning algorithm that encourages LLMs to write formal
proofs by decomposing them hierarchically. We also design a more natural testing setup by removing
the directly relevant lemmas from the context. We show that, by proposing and proving new lemmas
that are not present in the training dataset, the resulting model ProD-RL outperforms or achieves
comparable performance to baseline methods trained on the same dataset.
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A Dataset Construction

In this section, we present the dataset construction process in detail.

Recall that we construct the datasets by parsing raw proof-library files into examples of the form
(premises, context, statement, conditional proof). Hence, we first segment each of the files into blocks
c1 S1 p1 --- ¢ S pp where the s; are theorem statements, the p; are the corresponding proofs, and
the c; are the file contents between proofs, such as object definitions and local assumptions. Next,
we build proof trees from the segmented file by iteratively removing (s;, p;) pairs from the file if
the theorem s; is not referred to in the remaining file contents (in other words, in the first iteration
we peel off the root nodes of the proof trees from the file, and then the nodes in the next level, etc.).
Note that some theorems cannot be peeled off by this process because they are referred to in some
file content c; (e.g., lemmas used to instantiate local objects). We use 7. to denote the subset of
theorems peeled off during the process.

For every theorem s;, we construct an example where the context is the concatenation of {c; : j < i}
and {s; : j < ,5; & Tyee} in the order they appear in the file. That is, we exclude the lemmas peeled
off after we peel off s; — these are the lemmas that directly contributes to the proof of s;.

To construct the conditional proof of theorem s;, we add the proposed lemma statements to
the original proof p;. In particular, we split the proof p; into steps ti,--- ,t; using the for-
mal language parser. Then for every step t; that uses lemmas [ 1,...,1;,, from Ty, we in-
sert the statements of these lemmas enclosed by the <invoke> and </invoke> tokens, denoted by
(; = <invoke>l; 1 </invoke> - - - <invoke> [; , </invoke>, into the proof right before ¢,. In other
words, the conditional proof is the concatenation (; ¢; --- (i tr. Similar to[Jiang et al.|[2022a]], we
use Sledgehammer, a premise selection tool that automatically searches for proofs to the current goal,
to replace proof steps that are originally generated by it (see Section[E.3|for more details) so that the
mode can focus less on the tedious low-level details.

The premises are all the theorems from predecessor files, which are typically not directly relevant
to the theorem (otherwise they will be stated in the same file). Theorems in the premises set can be
used directly in the proof, or they can be selected by Sledgehammer to search for proof steps. In our
implementation, the premises are implicitly defined by the dependency graphs of the files.

For every example in the training dataset, if the conditional proof proposes at least one lemma, we
also add one augmented example by moving the proposed lemmas from the conditional proof to the
context — this augmented example does not propose new lemmas and is always locally correct.

B Methods

In this section, we first describe how to use LLMs to generate proof trees, and then introduce our
reinforcement learning method (ProD-RL) that rewards the model to decompose proofs hierarchically.

B.1 Generating proof-trees using LL.Ms

To generate proof trees using an autoregressive model 7y, we need to first fine-tune the model to
follow a specific format:

(a) the input «x to the model 7y is the concatenation of a context and a theorem statement, and

(b) the expected output y of the model is a special token ¢( followed by a conditional proof, where
tp is either <use_invoke> or <no_invoke>, denoting whether the following conditional proof
should propose new lemmas.

We let the model generate the special token ¢y before a conditional proof so that we can upscale the
probability of the <use_invoke> token during reinforcement learning to force the model to propose
more lemmas for better exploration.

We summarize our proof-tree generation algorithm in Alg.|l} Given a theorem statement s and the
corresponding context ¢, we first sample 7y autoregressively starting with the prompt x = ¢ s, and
ideally the model will output a special token ¢ followed by a conditional proof p (Line [3). Next,
we parse the conditional proof p and collect the proposed lemmas [, - - - , [ for the next round of
generation (Line [3). We will force the model to generate conditional proofs without proposing new



lemmas at a certain depth so that the proof tree doesn’t grow indefinitely, which can be implemented
easily by replacing the prompt with 2’ = ¢ s <no_invoke> (Line @)

Algorithm 1 Generate proof trees (test time)

1: Inputs: Model 7y, a set of contexts and statements Gy = {(c;, s;) };, maximum depth d.
2: for . < 0,1,--- ;d—1do
3: Sample proofs (tg; pi) ~ mg(- | ¢; s;) for lemmas (¢;, s;) in G,, where t¢; is the token
represents whether the proof should use invoke and p; is the conditional proof.
4: P, + {(Ci751',api) | v(ci75i) S GL}
5: Collect proposed lemmas (a condition proof p; might propose more than one lemma [;):
G411 < {(ci,15) | (ci, 84, pi) € P, and [; is proposed in p; }.

6: Sample proofs p; ~ my(- | ¢; s; <no_invoke>) for (¢;, s;) in Gg. (>) Truncate at depth d.
7. Py« {(Ci,Si,pi) | V(Ci, Si) S Gd}.
8: Return U P,.

B.2 Reinforcement learning with lemma proposal

Our reinforcement learning method is illustrated in Fig. 2| We start with a supervised fine-tuned
model so that it can generate conditional proofs in the desired format. Then at every round, we
randomly sample a batch of examples from the training dataset and perform the following steps.

Step 1: Generate proofs. To help exploration, we generate proof trees using a modified version of
Alg. [T (shown in Alg.[2]of Appendix [E.T)) with the following differences.

(a) For the theorems where the probability 7y (<use_invoke> | z) is among the top 25% in the batch,
we will force the model to generate conditional proofs with ¢y = <use_invoke>. Otherwise, we
sample to according to the probability of my (- | x).

(b) For every theorem where the model generates a conditional proof with new lemmas, we also let

the model generate another conditional proof without proposing lemmas. If any of these two
conditional proofs is globally correct, it can be used to construct proof trees for other theorems.

We also mix the ground-truth conditional proofs with proofs generated during RL by generating
additional proof trees starting with the ground-truth conditional proof using the current model 7. In
other words, the root node of a proof tree constructed in this manner is a ground-truth conditional
proof, but its descendants are generated by the model.

Step 2: Determine the reward of an example. In this step, we first check the local correctness of
each conditional proof using the formal verifier (Step 2a in Fig. [2).

In addition to the verifiers’ output, we apply two filters to help train the model: (a) we filter out trivial
lemma proposals — if a proposed lemma can directly imply the theorem (e.g., if the proposed lemma
has exactly the same statement as the theorem), we will simply discard this example, and (b) we
remove unnecessary lemma proposals — if the conditional proof is still correct after removing all the
references to a proposed lemma, we will delete this lemma from the conditional proof.

Then we compute the global correctness of the generated proofs using its definition. Finally, we
assign a binary reward r(c, s, p) to each tree node with context ¢, statement s, and conditional proof
p based on its global correctness (Step 2b in Fig. [2).

Step 3: Update the model by REINFORCE. In this step, we will first construct a training dataset
consisting of examples with format (prompt, target, weight) from the conditional proofs collected in
Step 1 and then update the model 7y using the weighted cross-entropy loss.

For each generated conditional proof, we add one example to the training dataset where the prompt is
the context concatenated with the theorem statement, and the target is the conditional proof prepended
by the <use_invoke> or <no_invoke> token. Note that the reward of a conditional proof depends not
only on the correctness of the conditional proof, but also on the correctness of the proposed lemmas.

To reduce the variance of our gradient updates, we train a value function V4 that predicts the expected
reward of the current policy on a given proof tree node (i.e., Vg =~ E,r(.|c,)[7(c, 5, p)]). The weight
of an example is the product of the value function outputs on invoked lemmas multiplied with a



length penalization to prefer shorter proofs — for proof tree node with conditional proof length i

and proposed lemmas I, - - - , I3, the weight w of this example is w = " Hle Vg (1;) with discount
factor v € (0,1), or w = 0 if the proof tree node is not locally correct.

For easier implementation, we train the value function to predict two special tokens, <true> and
<false>, conditioned on the context and theorem statement. Let p; be the probability of the <true>
token conditioned on the context and theorem statement, and pr the probability of the <false> token.
The output of the value function is then p/(p, + pr).

Similar to the SFT dataset, we add one augmented example by moving the proposed lemma from
the conditional proof to the context for any locally correct conditional proof with new lemmas. In
addition, we will use a replay buffer to stabilize the training.

Remarks. We will update the model using partial proofs (i.e., proof sub-trees) even if the original
theorem from the dataset (i.e, the root of the proof tree) is not proved. Hence, our method can also
be viewed as an instantiation of hindsight experience replay [Andrychowicz et al., 2017]], where the
hindsight trajectories are correct proof sub-trees.

C Experiment Details

This section presents our experimental results. We will first list additional experiment details
(Section[C.T)) and then compare our setup with prior works (Section [C.2}

C.1 Additional experiment details

Proof verification software. We use Isabelle [Nipkow et al.,[2002] as our proof verification software
since the proofs are declarative and human-readable without knowing the verifier’s proof state, and
we use PISA (Portal to ISAbelle, Jiang et al.|[2021]]) to interact with Isabelle. To check whether a
proof tree node is locally correct, we import all the theorems from its premises, move each of the
proposed lemmas from the conditional proof to the context, and then add a fake proof indicated by
the keyword ‘sorry’ to every lemma statement in the context (In Isabelle, ‘sorry’ will register the
statement as a fact even without any actual proof.) The remaining proof steps will follow the original
Isabelle syntax, and we can check its correctness directly. We set a 10s timeout for each proof step.

Datasets. Our SFT dataset is the combination of theorems from Archive of Formal Prooif’j (AFP,
retrieved on 2022-12-06) and Isabelle built-in files (such as HOL which contains the theorems that
define natural numbers, etc.). The resulting dataset contains 312k examples.

To construct the test set, we parse the AFP files submitted after the knowledge cutoff date of our
pretrained model (April 2023) to eliminate possible data leakagesﬂ The test dataset is handled
similarly, except that we only keep the theorems in 7. This AFP 2023 test set contains 2k theorems.

Testing setup. To measure the performance of the models, we sample k proof trees per theorem
independently on the test set and report the pass @k performance (that is, a theorem is proved if at
least one of the conditional proofs is globally correct with respect to all the generated tree nodes).
When generating proofs, we use temperature 0.7 and truncate the context to only include the last 1k
tokens. The proof trees are truncated at depth 2.

Supervised fine-tuning. We start from the Llemma 7b model [Azerbayev et al.,[2023|] and fine-tune
the model for 2 epochs with the standard cross entropy lossE] On theorems from AFP, we compute
the loss only on the special token and the proof, but not on the context and statement. On Isabelle
built-in theorems, we compute the loss on the statement to help the model internalize basic facts. We
use the AdamW optimizer [Loshchilov and Hutter, |2018]] with linear warmup, constant learning rate
le-5, macro batch size 128, and context window 2048.

Reinforcement learning. The dataset we use for the reinforcement learning stage is e, the set of
theorems that are iteratively peeled off when parsing AFP files, which contains 109k examples. We
initialize the model by supervised fine-tuning on a subset of AFP files, and then run RL for 20 rounds

*https://www.isa-afp.org/
“Here we use the archive of AFP retrieved on 2023-11-22.
>In our preliminary experiments, we observe that the model overfits after 2 epoch
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with a batch of 5k random examples per round. We truncate the proof tree at depth 3 and sample with
temperature 0.7 during training. We use the same hyperparameters as the SFT stage to update the
policy 7y, We initialize the value function V4 by a Llemma 7b model fine-tuned on our SFT dataset.

C.2 Comparison of our new setup with prior works

In this section, we concretely compare our new setup with prior works [Jiang et al.,[2021} [First et al.|
2023|]. Recall that there are two main differences in how we process our dataset:

(a) we split the train/test set based on file dependencies so that no theorems in the test set are referred
to in the training set, whereas PISA split theorems randomly, and

(b) when testing a proof, we remove certain lemmas from the context.

To show that our setup is indeed more challenging, we first construct datasets formatted similarly
to those in [[First et al., [2023|]. Specifically, we parse the AFP files into examples using the method
described in Section 2] with the only exception that all human-written lemmas are kept in the context.

Then we select a subset of theorems as the test set D! based on the dependency of the AFP files,

so that the examples in the test set are never used by the remaining theorems (see Section [E.3] for
more details). Then we split the remaining examples randomly into training and validation datasets,

denoted by D1 and D¥/! respectively. We use D! to denote the test dataset of our setup where

the lemmas are removed from the context. The validation dataset D¥¥|! mimics prior works’ setup
[Jiang et al., 2021} [First et al., [2023], and DY/! is an interpolation between prior works’ setup and our
setup. Table shows the performance of the model supervised fine-tuned on DY/l plus all Isabelle
built-in theorems. The results suggest that both features of our setup, removing the lemmas and

splitting the training/test set by file dependency, increase the difficulty of the task.

Table 2: Pass rate on different dataset formats and partitions of the SFT model trained on the D}/!.

The validation dataset D¥|! mimics the test setup of prior works, and our setup is D! where the

same model performs much worse. The results suggest that our setup is indeed more challenging.

Test setu DYl w/lemmas DYl w/lemmas DYl w/o lemmas
P splitrandomly  split by dependency  split by dependency

pass@4 45.7 39.7 35.7

C.3 Additional results

The effect of sampling temperature. In our preliminary experiments, We tune the sampling
temperature using the models trained on the AFP training sets DY/l and D! (that is, training sets
constructed with and without helper lemmas, respectively). We test the model on the AFP test set
DY with different temperatures to decide the best choice for testing our models. Fig. 4| shows the
performance of the SFT model without lemma proposal using different sampling temperatures. We

conclude that the temperature 0.7 is best for testing both models.

Results on miniF2F. We observe that the improvement of ProD-RL over SFT w/o lemma proposal is
significant only when the test distribution is close to the training distribution. On miniF2F [Zheng
et al.,|2021]] where the theorems are very different from theorems in the training dataset, ProD-RL
performs worse than SFT w/o lemma proposal, as shown in Table [3] We also observe that when
tested on miniF2F theorems, our model failed to propose meaningful lemmas. This may be because
proving to miniF2F-level mathematics questions typically does not require hierarchical decomposition.
Therefore we leave it as future work to extend our methods to other domains such as miniF2F and
PutnamBench [Tsoukalas et al., 2024].

C.4 Case study of proposed lemmas

In this section, we manually examine the new lemmas proposed during RL and list the typical cases
where new lemmas are proposed. Note that many AFP files focus on complex concepts and results in
mathematics or computer science, making manual examination challenging. Therefore, examples in
this section are biased toward easier theorems.
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Figure 4: Pass rate of the SFT model without lemma proposal tested with different sampling

temperature. We observe that lower temperature leads to better performance with 1 sample per
theorem, and mildly larger temperature have better performance with more samples.

Table 3: Pass @64 of different models on miniF2F. ProD-RL performs worse than SFT w/o lemma
proposal.

SFT w/o RL w/o
Test set lemma proposal lemma proposal ProD-SFT  ProD-RL
miniF2F valid | 46.3 40.6 44.7 414
miniF2F test | 40.6 38.9 39.3 39.3

Case 1: Model decomposes theorems into lemmas. In this case, the model correctly decom-
poses the proof of a theorem into several lemmas. The following example belongs to the AFP file
List-Infinite, which focuses on lists and sets with infinite size. The theorem (Line 1) states
that the cardinality of the set A U {z} equals |A| if z € A, or the successor integer of | A| otherwise
(i.e., |A| + 1 for finite A and oo otherwise). During the proof (Lines 2-4), our model proposes two
lemmas in Lines 2 and 3 to deal with the two possible cases (z & A or x € A) respectively. Finally,
Line 4 proves the original theorem using the two proposed lemmas.

theorem icard_insert_if: "icard (insert x A) = (if x € A then icard A else eSuc (icard A))"
<invoke> lemma icard_insert_disjoint: "x Q A —> icard (insert x A) = eSuc (icard A)" </invoke>
<invoke> lemma icard_insert_eq: "x € A=—> icard (insert x A) = icard A" </invoke>

by (simp add: icard_insert_eq icard_insert_disjoint)

Case 2: The proposed lemma is a rephrase of an existing lemma. We also find that some
proposed lemmas are rephrases of existing lemmas in the training dataset. Although in this case, the
proposed lemma is not fundamentally useful for proving new theorems, they can be viewed as data
augmentation to enhance the models’ performance. In the following example, the model produces a
lemma equivalent to one in an AFP file. Line 1 shows the original form of the lemma stated in the
AFP file, while Lines 2-4 show an equivalent lemma proposed by our model during RL.

lemma icard_mono: "A C B —> icard A < icard B"
lemma icard_mono:

assumes "A C B"

shows "icard A < icard B"

Case 3: The proposed lemma is novel but not useful to the original proof. We also observe cases
where the proposed lemma is novel, but the conditional proof of the theorem is incorrect. In the
following example, the proposed lemma states that the shortest path between vertices u, v is a lower
bound for the length of any path that connects u, v (in an unweighted and undirected graph):

lemma shortest_path_lower_bound:
assumes "p € connecting_paths u v"
shows "shortest_path u v < enat (walk_length p)"

12



This lemma is proposed to prove that the shortest path between the vertex u and itself has length O
(which is a theorem in the AFP file). However, the conditional proof of the theorem contains a few
mistakes while the proposed lemma is proved separately. In this case, we still train on the correct
lemma even though it might not be directly useful to the theorem in the training set.

Remarks.We observe that the lemmas proposed by the model typically do not involve complex ideas.
We attribute this to two main factors: (a) the limited size of our model and formal proof dataset,
and (b) the fact that many human-written lemmas in the AFP file are indeed about basic facts and
basic properties (which are often used to prove more complex theorems later). Nevertheless, our
model still proposes and proves reasonable lemmas that are not present in the training dataset, and
our experiments demonstrate that with these proposed lemmas, ProD-RL outperforms ProD-SFT on
holdout test sets. We leave it to future work to scale up our method and force the model to focus on
more challenging theorems.

D Related works

Most existing methods use search-based algorithms to generate formal proofs with language models
[Polu and Sutskever, [2020, Jiang et al.,|2021, Han et al., [2021} [Polu et al.,[2022, Jiang et al., 2022a].
Prior works also show that RL can improve the search-based models’ performance [Polu et al., 2022}
Wu et al.| 2022} Lample et al.|[2022]]. The major drawback of these methods is their high computation
cost at test time. A recent work [First et al.,|2023]] trains LLMs to generate a whole proof directly
without knowing the verifier’s state. Our baseline model, SFT without lemma proposal, can be viewed
as a reproduction of their method with a slightly different format. Orthogonally, Mikuta et al.|[2023]]
improve premise selection tools (such as sledgehammer) using transformer-based retrieval models.
Magnushammer could potentially be combined with our methods, which we leave as future works.

Another line of research aims to translate natural language proofs into formal proofs [Jiang et al.,
2022b},Zheng et al.| [2023]]. Xin et al.|[2023] build a library of useful lemmas by decomposing natural
language proofs into lemmas with an LLM and then formalizing the decomposed proofs. In contrast,
we propose new lemmas entirely in formal language.

In general, mathematical question-answering tasks (such as GSM8K [Cobbe et al., 2021] and MATH
[Hendrycks et al.,2021])) and theorem-proving tasks (such as|Welleck et al.|[2021]]) are well-accepted
benchmarks for the reasoning capability of large language models. Prior works show that instruction
tuning or RL can significantly improve the models’ performance [Shao et al., 2024]. However,
evaluation on these tasks is either performed by another language model (which is prone to errors)
[Lightman et al.,|2023]], or requires ground-truth answers that are hard to acquire at scale.

E Additional experiments details

E.1 Generating proof trees for RL

In Alg. 2] we present the algorithm for generating proof trees during RL training. Recall that,
compared with Alg. (1} there are two major differences:

(a) for the theorems where the probability 7y (<use_invoke> | x) is among the top 25% in the batch,
we will force the model to generate conditional proofs with ¢y = <use_invoke> (Line E]-@, and

(b) for every theorem where the model generates a conditional proof with new lemmas, we also let
the model generate another conditional proof without proposing new lemmas (Line [TT).

E.2 Training details of baseline models

In this section, we describe the additional details for training the baseline models using reinforcement
learning.

Our RL training pipeline for the baseline models is similar to that of ProD-RL, except that the models
only generate proofs without lemma proposal. For RL baselines, we use the same dataset and the same
hyperparameters as our method. To mix the ground-truth conditional proofs with generated proofs,
we convert the conditional proofs to proofs without lemma proposal by moving all the proposed
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Algorithm 2 Generate proof trees (train)

1: Inputs: Model 7y, theorems (represented by tuples of context, statement, and condition proof)
G = {(¢4, si, pF) }4i, maximum depth d.
2: forv.«0,1,--- ,ddo

7o (<use_invoke>|c;,s;)

3 Compute the invoke probability Vi, p; = o (<use_invokes|cr,s1) F o (<no_imvokeS[or 51
4 Let  be the 75% quantile of {p;};.

5: if © < d then

6: G = {(¢i, i, pF) | pi > K oru; < p; where u; ~ Unif|0, 1]}.

7: else

8 G =0.

9 Sample proofs p; ~ 7 (- | ¢; $; <no_invoke>) for lemmas (c¢;, s, p}) in G.

10: Sample proofs p; ~ 7y (- | ¢; s; <use_invoke>) for lemmas (c;, s;, pF) in G.

11: P, « {(ci, si, pi) | Vist. (ci, 84, 07) € GEU{(ci, S, 05) | Vi sit. (¢, iy pF) € é}

12: if « = 0 then

13: P, +~ P, UG. (>) In training, we also complete proof trees for ground-truth proofs.

14: Extract proposed lemmas (note that a condition proof p might propose more than one lemma
1): G+ {(¢,I,Null) | (¢,s,p) € P, and [ is proposed in p}.

15: Return UL, P,.

lemma in the conditional proof to the context, and the resulting proofs are always acceptable by the
verifier.

E.3 Additional experiment details

Details of using sledgehammer in the proof. Sledgehammer is a premise selection tool that can
automatically generate proofs to solve the current goal. Although sledgehammer is not always
applicable, Jiang et al.| [2022a] shows that letting the model to call sledgehammer whenever it is
applicable greatly improves the model’s performance.

To let the model use sledgehammer, we replace the actual proof steps in the training dataset by a call
to sledgehammer if the proof step either (a) contains the proof tactics ‘meson, metis, and smt’ (these
tactics are typically generated by sledgehammer), or (b) belongs to a predefined simple set of proof
tactics that can be easily generated. In particular, they are

[by auto, by simp, by blast, by fastforce, by force,
by eval, by presburger, by sos, by arith, by linarith,
by (auto simp: field_simps) ]

When testing a generated proof with calls to sledgehammer, we follow the pipeline of [Jiang et al.,
2022b]] — first, we try to replace the ‘sledgehammer’ command by one of the predefined tactics. If
all the attempts fail, we call the actual premises selection tool in Isabelle with a 10s timeout. If the
tool does not return a valid proof, we consider this step incorrect.

Note that[Jiang et al.|[2022a] decide when to replace the actual proof step by a call to sledgehammer
more aggressively. They attempt to call sledgehammer at every proof step, and replace the actual
proof step by sledgehammer if the attempt is successful. In contrast, our decision is made without
interacting with the formal verifier. This is because applying sledgehammer to every proof step
requires a lot of compute, which would significantly slow down the reinforcement learning process.

Dataset split. Here we describe how to split the training and test data based on the dependency
of the AFP files. We first compute the dependency graph by crawling the AFP website https:
//www.isa-afp.org/entries/, which lists the dependency of the AFP entries. Then we find
the set of AFP entries that all other entries do not depend on using the dependency graph, in which
we randomly sample 10% of the entries as the holdout test set. The resulting holdout entries are:

[Verified SAT_Based_AI_Planning, SIFPL, Khovanskii_Theorem,

Bondy, Rewriting_Z, Decreasing-Diagrams-II, Registers,
Locallexing, FeatherweightJava, FFT, Knot_Theory, Eval_FO,
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Saturation_Framework_Extensions, Hales_Jewett, SPARCvVS,
CoSMeDis, LP_Duality, PAPP_TImpossibility, Groebner_Macaulay,
Abstract-Hoare-Logics, PCF, Jordan_Hoelder, Knights_Tour,
FOL_Seqg _Calc3, Cartan_FP, InformationFlowSlicing_Inter, LOFT,
Diophantine_Eqns_Lin_Hom, Dynamic_Tables, Schutz_Spacetime,
Elliptic_Curves_Group_Law, ArrowImpossibilityGSs,
Goodstein_Lambda, XML, GenClock, Topological_Semantics].

Additional training detail. @We use the Llemma code base (https://github.com/
EleutherATI/math-1m) for finetuning and updating the model in reinforcement learning. The
discount factor used to compute the weight is 7 = exp(—0.0005).

E.4 Compute resources

For supervised finetuning and reinforcement learning, we use a machine with 8 A100-80G GPUs.
It takes approximately 8 GPU days in total (i.e., 1 day wall-clock time on a single machine with 8
GPUs) to finetune a 7B model on 300k examples for 2 epochs. It takes approximately 30 GPU hours
to run a single RL experiment.

To generate proofs using the trained model, we use a mix of A100-80G and A5000 GPUs. On 8
A5000 GPUs, generating proof trees of depth 2 for 4k test examples takes about 1-2 hours, depending
on the length of the proof and the number of new lemmas proposed.

E.5 Licenses for existing assets
In this section we list the licenses for existing assets used in this paper.

* LLemma [Azerbayev et al.,[2023]]: Llama 2 Community License Agreement
* Archive of Formal Proofs: GNU LGPL

* Portal to ISAbelle [Jiang et al., 2021]]: BSD 3-Clause License

* Isabelle [Nipkow et al.l 2002f]: BSD licenses

miniF2F [Zheng et al.,2021]: MIT License
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