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Abstract

We address the issue of multi-tip artifacts in Scan-
ning Tunneling Microscopy (STM) images by
applying the fast Fourier transform (FFT) as a
feature engineering method. We fine-tune vari-
ous neural network architectures using a synthetic
dataset, including Vision Transformers (ViT). The
FFT-based preprocessing significantly improves
the performance of ViT models compared to us-
ing only the grayscale channel. Ablation exper-
iments highlight the optimal conditions for syn-
thetic dataset generation. Unlike traditional meth-
ods that are challenging to implement for large
datasets and used offline, our method enables
on-the-fly classification at scale. Our findings
demonstrate the efficacy of combining the Fourier
transform with deep learning for enhanced artifact
detection in STM images, contributing to more
accurate analysis in material science research.

1. Introduction
Scanning Tunneling Microscopy is a powerful technique
used to obtain high-resolution images of surfaces at the
atomic level[1]. STM images are generated by scanning a
sharp metal tip very close to the sample surface and mea-
suring the tunneling current flowing between the tip and
the sample. This current varies with the distance between
the tip and the sample, allowing for precise mapping of the
surface’s topography.

During STM imaging, artifacts or distortions can arise that
are not present on the sample surface. These artifacts of-
ten result from unpredictable surface interactions that alter
the tip’s shape, leading to highly nonlinear changes in the
acquired data [2]. One prominent type of artifact is the
duplication of sample structures, which occurs when the
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probe shape includes multiple atoms at the apex. This multi-
tip or ghosting artifact results in duplicated signals, which
complicates data interpretation[3].

Deep learning methods are widely used for image clas-
sification, with Convolutional Neural Networks (CNNs)
traditionally serving as the foundation for computer vi-
sion algorithms. Recent advancements, such as Vision
Transformer[4], have established Transformers as a domi-
nant force in visual modeling due to their attention mech-
anism and large receptive field, which are crucial for vi-
sual tasks.[5],[6], [7]. While ViT models have achieved
good performance, they typically rely on image features
from the spatial domain[8]. Initial applications of machine
learning to STM-related issues have been documented, en-
abling automated identification of defects[9], texture seg-
mentaion [10] as well as denoising methods[11]. In addition,
advancements have been made toward autonomous STM
operation through ML-based tip shaping and lithography
[12],[13],[14]. Despite these advancements, the multi-tip
artifact issue in STM images has received limited attention,
highlighting the need for further research in this area.

Previous studies link probe morphology and image quality
through analytical simulations [15] or use inverse imaging of
the probe via sample features [16],[17],[18]. While effective,
these approaches are challenging to implement for general
use, especially with large datasets, and existing software
tools such as Gwyddion [19] are typically used offline after
data acquisition. In contrast, our method enables on-the-fly
classification at scale.

The Fourier transform, a powerful tool for extracting subtle
information, can reveal features such as perturbations that
are not noticeable in the spatial domain but become promi-
nent in the Fourier domain[20]. In this paper, we address
multi-tip artifacts in STM images by applying the Fourier
transform to decompose image content into constituent fre-
quencies. This transformation enhances the model’s ability
to identify and classify these artifacts accurately by making
key information more discernible in the frequency domain.
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2. Method
We generated a synthetic dataset using experimental STM
images originally recorded using an Omicron Variable Tem-
perature STM (VT-STM) microscope. The dataset is com-
posed of 2080 grayscale images of 400x400 pixels, man-
ually labeled as either containing (82 images) or not con-
taining (1998 images) the multi-tip artifact. We’ll refer to
artifact-free images as clean during the rest of the paper.
To create a balanced synthetic dataset, we transformed a
subset of clean images into synthetic multi-tip images. This
was achieved by summing the clean image and N of its
translations, where N represents the number of tips. The hy-
perparameters used for the dataset generation included the
X and Y components of the translation vector set between 2
to 8 pixels, the intensity of the translation set between 50%
to 80% of the original signal, and a uniform number of tips
up to 12.

The images were then cropped to 224x224, a suitable size
for training. The Fourier Transform produces a complex-
valued output image, which can be displayed using either
the real and imaginary parts or the amplitude and phase. We
applied FFT to obtain the amplitude and phase, and saved
each image as a three-channel image comprising greyscale,
amplitude , and phase. Figure 1 below shows an example
of a three-channel image before and after the application of
the multi-tip artifact.

Figure 1. Synthetic multi-tip image
The three columns show the image channels: grayscale and the
amplitude and phase of the FFT transformation. The first row
corresponds to a clean image. The second row shows the same
image after the application of the synthetic multi-tip artifact.

The dataset was split into 85% for training and 15% for
testing. The training set was further divided into 90% for
training and 10% for validation. All the experimental im-
ages with the multi-tip artifact were used exclusively in the
test set.

We employed various pre-trained neural network archi-
tectures to fine-tune on the synthetic dataset, specifically
ResNet with 18 and 50 layers, and Vision Transformer Base
(ViT-B) with 16 and 32 layers.

The neural networks were trained using 50 epochs with early
stopping, utilizing cross-entropy loss as the loss function
and the SGD optimizer with a learning rate of 0.01 and
momentum of 0.9. Data augmentation was applied through
torchvision’s TrivialAugmentWide.

3. Results
The results of the comparison on the test set are reported in
Table 1, with the best results highlighted in bold. There is
a considerable performance improvement in the ViT-B16
and ViT-B32 models using the proposed FFT-based prepro-
cessing method compared to the classical use of only the
grayscale channel. The improvement of ViT over ResNet
can be attributed to ResNet’s vulnerability to high-frequency
noise, whereas ViT shows robustness. Multi-Head Self-
Attention (MSA) in ViT performs low-pass filtering, high-
lighting the FFT-based method’s advantage in preserving
high-frequency components.

To better understand performance improvement, we tested
each neural network using each component of our method:
grayscale image, amplitude, and phase. The results of this
experiment are shown in Table 2, where it is clear that
the amplitude component is the main contributor to the in-
creased performance. This was expected, as it is known that
the amplitude holds more geometrical structure of features
in the image.

To further explore the validity of our method, we carried
out ablation experiments on the dataset. In Table 3, we ver-
ify the impact of different numbers of tips in the synthetic
dataset generation. Using our FFT-based method, the num-
ber of tips does not affect performance. In contrast, with
ViT-B16, the best model on the grayscale image, increasing
the number of tips beyond 12 does not benefit the model.
We also studied the effect of increased ranges of translation
vectors in the synthetic dataset generation. As shown in
Table 4, using a wider range has a detrimental effect on the
model performance.

4. Conclusion
In this study, we address the challenge of multi-tip arti-
facts in STM images by leveraging the Fourier transform to
decompose image content into constituent frequencies.

Our experimental results demonstrated that Vision Trans-
former models showed considerable performance improve-
ments when using the proposed FFT-based preprocessing
method compared to using only the greyscale channel. Fur-
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Table 1. Classification accuracies of different models with and
without our FFT-method on the test set.

MODEL ACCURACY FFT-BASED

RESNET18 52.43 ×
RESNET18 57.07

√

RESNET50 58.84 ×
RESNET50 65.24

√

VIT-B/32 78.96 ×
VIT-B/16 88.11 ×
VIT-B/16 97.25

√

VIT-B/32 97.86
√

Table 2. Classification accuracies of different models for each com-
ponent of our FFT-method on the test set.

MODEL IMAGE AMPLITUDE PHASE

RESNET18 52.43 60.06 53.04
RESNET50 58.84 62.50 51.21
VIT-B/16 88.11 97.56 66.15
VIT-B/32 78.96 97.86 68.90

Table 3. Classification accuracies of ViT-B/16 on the test set using
different range of possible tips on the synthetic dataset generation.

TIPS ACCURACY

4 75.30
8 75.61
12 84.76
16 71.34

Table 4. Classification accuracies on the test set using different
pixel ranges of translation vector on the synthetic dataset genera-
tion.

PIXEL RANGE ACCURACY

2-8 97.86
10-30 85.97
10-50 92.98

ther analysis revealed that the amplitude component was
the primary contributor to this improvement, underscoring
its importance in capturing the geometrical structure of fea-
tures in the images. Moreover, theoretical findings suggest
that Multi-Head Self-Attention (MSA) inherently performs
low-pass filtering on image signals, leading to rank collapse
and patch uniformity issues in deep Vision Transformers
[21]. This might explain why the FFT-based method out-
performs, as FFT-based preprocessing transforms image
data into the frequency domain, effectively highlighting and
preserving high-frequency components. These components
are crucial for detecting subtle features and structures in
STM images that MSA’s low-pass filtering might otherwise

smooth out. Additionally, ablation experiments provided
valuable insights into the optimal conditions for synthetic
dataset generation of multi-tip artifacts.

Overall, our study demonstrates the potential of combining
traditional image processing techniques like Fourier trans-
form with deep learning models for artifact detection in
STM image analysis. Our method enables on-the-fly clas-
sification, which is currently done manually or offline. In
future studies, we will include a baseline comparison with
existing methods and expert practitioners. This approach not
only enhances multi-tip detection but also facilitates more
comprehensive analysis of microscopy images, advancing
research in material science.

Software and Data
The data that support the findings of this study are available
from the corresponding author, upon reasonable request.
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