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Abstract— Diffusion models have recently gained significant
attention in robotics due to their ability to generate multi-
modal distributions of system states and behaviors. However,
a key challenge remains: ensuring precise control over the
generated outcomes without compromising realism. This is
crucial for applications such as motion planning or trajectory
forecasting, where adherence to physical constraints and task-
specific objectives is essential. We propose a novel framework
that enhances controllability in diffusion models by leveraging
multi-modal prior distributions and enforcing strong modal
coupling. This allows us to initiate the denoising process
directly from distinct prior modes that correspond to different
possible system behaviors, ensuring sampling to align with the
training distribution. We evaluate our approach on motion
prediction using the Waymo dataset and multi-task control
in Maze2D environments. Experimental results show that our
framework outperforms both guidance-based techniques and
conditioned models with unimodal priors, achieving superior
fidelity, diversity, and controllability, even in the absence of
explicit conditioning. Overall, our approach provides a more
reliable and scalable solution for controllable motion generation
in robotics.

I. INTRODUCTION

Diffusion models [1] have recently emerged as a powerful
class of deep generative models, combining stability, multi-
modal expressiveness, and high-fidelity sample generation.
These attributes make them well-suited to address the com-
plexity and uncertainty prevalent in robotics applications.
Indeed, their impact spans diverse domains, ranging from
sensor simulation [2], e.g. synthesizing realistic camera data
for domain randomization and sim-to-real transfer [3]), to
trajectory generation [4] where they produce diverse motion
plans under challenging environmental conditions [5]), and
policy learning [6], wherein they model multi-step action
distributions for high-dimensional control tasks [7]). These
applications highlight how diffusion-based approaches can
reshape core robotics paradigms, facilitating robust and
adaptive robotic systems through high-fidelity probabilistic
modeling.

However, several challenges persist, and the chief one
among them is controllability. Generating samples that ad-
here to specific objectives and domain constraints is non-
trivial. Naive sampling may yield physically implausible
trajectories or policies lacking necessary structure. Even
worse, when controllability is insufficient, practitioners often
generate large numbers of samples to ensure they capture
desirable outcomes. This poses scalability concerns and
adds challenges to mine high-fidelity samples for large-scale
synthetic generations.
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Fig. 1: High-level comparison between guidance-based and our
proposed methods. (a) A standard diffusion model captures a multi-
modal data distribution. For illustrative purposes, only three modes
are visualized. A guidance function (in red) is employed to direct
the generation towards mode II, i.e., the less likely yet operational
behaviors. (b) When the guidance factor is low, it fails to effectively
steer the model, which continues to produce the more probable,
dominant modes. (c) Conversely, when the guidance factor is high,
sample fidelity and feasibility degrades. Because guidance is applied
to intermediate predictions during denoising, it can push these
predictions out of the data manifold’s high-fidelity region, causing
distribution match. (d)(e) In our method, the less likely data mode is
tightly coupled to a corresponding prior mode. During sampling, we
simply initiate the denoising process from that specific prior mode,
achieving direct controllability without sacrificing sample fidelity.

Existing solutions commonly resort to constraint-based
sampling or post-hoc guidance [8], [9]. The core idea is to
incorporate domain knowledge and task-specific constraints
during the sampling process. While such methods indeed
promote better alignment with target objectives, they risk
degrading sample fidelity by shifting outputs away from the
learned high-fidelity data manifold. This is because manually
imposed constraints or guidance signals risk overriding the
model’s intrinsic generative dynamics. Consequently, subop-
timal or unnatural samples that no longer reflect the true
data distribution would be led. Balancing fine-grained control
with the preservation of sample fidelity thus remains an open
research problem (Figure 1).

In this work, we propose a novel framework that achieves
strong controllability in diffusion models, without incurring
the distribution drift commonly encountered in guidance-
based approaches. The key idea is to replace the unimodal
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Fig. 2: High-level overview. Conventional diffusion models rely on a unimodal prior distribution, providing no inherent mechanism
to control which trajectories get emphasized. This limitation can neglect lower-probability yet operationally crucial motion plans - an
important limitation for robotics applications that demand flexible behaviors. In our work, we propose a multi-modal prior distribution and
enforcing strong modal coupling between prior and data distributions through a novel diffusion process. By denoising directly from the
relevant prior mode, we preserve trajectory fidelity and realism without risking distribution mismatch. Crucially, even with an unconditioned
diffusion model, our framework offers straightforward control over which data mode to attend, facilitating precise and adaptive motion
generation. In the figure, each prior corresponds to one system behavior. “ACC”, “DEC” and “MSP” refer to speed modes (acceleration,
deceleration, and maintaining speed), while “R”, “L” and “S” represent steering modes (right, left, and straight).

prior in a standard diffusion model with a multi-modal
distribution that is tightly coupled to the principle modes of
the target data. Therefore at sampling, rather than applying
post-hoc guidance to steer the generative process toward a
specific mode, we initiate the denoising process directly from
the corresponding prior mode. This ensures that sampling
remains inherently aligned with the training distribution,
eliminating the need for external guidance and mitigating
the risk of distribution mismatch (Figure 2).

Our current formulation assumes that the data modes sub-
ject to control are explicitly known, yet the diffusion model
itself does not require conditioning on these mode labels.
While this assumption may appear restrictive, it serves as a
foundation step towards enabling strong controllability over
data with unknown key modes, wherein the central challenge
shifts to accurately identifying the appropriate prior mode
based on target constraints. Nevertheless, we demonstrate
that by adopting a multi-modal prior distribution, strong
modal coupling, and a careful prior parametrization, our
method significantly outperforms guidance-based techniques
and even conditioned modeling with a unimodal prior, in
terms of both fidelity and controllability. We validate these
claims on the Waymo dataset for motion prediction, and in
Maze2D for multi-task control. The paper is organized as
follows. Section II and III cover the related work and the
necessary background. We detail the proposed method in
Section IV. Section V presents the experimental results, and
Section VI concludes the paper.

II. RELATED WORK

The multi-modal nature of human behaviors poses a
great challenge for predicting realistic trajectories and con-
trol sequences. Diffusion models have proven effective
in capturing this multi-modality within driving scenarios
while closely adhering to real-world behavior distributions.
SceneDM [10] utilizes a diffusion-based framework to model
joint-distributions of all agents in a scene. SceneDiffuser
[11] employs a latent diffusion architecture derived from
Bird’s Eye View representations, whereas MotionDiffuser
[4] demonstrates its capabilities of predicting realistic future
trajectories that align with true data distribution via PCA-
compressed trajectory representations. Additionally, VBD
[12] jointly optimizes a motion predictor and a denoiser
that share the same scene encoder, which further improves
realism and versatility. However, achieving such realism and
broad distribution coverage often requires drawing many
random samples from a standard Gaussian prior that is
unimodal. Our approach enhances the realism of generated
trajectories by incorporating a multi-modal prior that more
effectively captures distinct data modes.

The typical strategy to control diffusion-based generation
is incorporating domain-specific objectives into the gener-
ation process. Classifier guidance [13] guides the diffusion
model with a separate cost function that encodes the objec-
tives during sampling. Recent works [4] propose different
analytical guidance functions to achieve either realism or
safety-critical objectives. On the other hand, Classifier-free



guidance [8] additionally optimizes a time-dependent con-
ditional model to obtain guidance. For instance, VBD [12]
achieves this using the motion predictor jointly optimized for
goal-guided trajectory generation. However, the constraints
imposed by guidance often degrade the realism of model
generation due to distribution mismatch. Our approach com-
pletely avoids this issue by coupling prior and data modes.

III. BACKGROUND

Diffusion models are probabilistic generative models that
synthesize new data by iteratively denoising an initial noise
sample. These models begin by defining a forward stochastic
process that progressively adds noise to real data x0, even-
tually converting it into pure noise. Formally, this forward
noising process is defined as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) =
√

1− βtxt−1 +
√
βtϵt, (2)

where x1:T denotes the sequence of noised samples from
step 1 to T , ϵt is standard Gaussian noise, and βt is the
pre-defined forward variance. Let αt := 1 − βt and ᾱt :=∏t

i=1 αi. This forward process allows one to directly sample
xt at any intermediate step t in close form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (3)

In a typical diffusion setup, the variance schedule β1:T is
chosen such that ᾱT approaches 0 under a sufficiently large
T . This ensures the final noised state xT to converge to pure
noise, establishing a standard unimodal Gaussian prior.

A reverse process recovers clean samples by removing
noise step by step, modeled as a Gaussian distribution whose
mean is given by a neural network and whose variance is
fixed based on the forward variance schedule. Concretely,

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t I), (4)

σ2
t =

1− ᾱt−1

1− ᾱt
βt, (5)

where θ denotes the parameters of the neural denoiser trained
to maximize the variational lower bound [1] on the log-
likelihood of the observed data x0: maxθ − log pθ(x0|x1) +∑

t DKL[q(xt−1|xt, x0)||pθ(xt−1|xt)]. To simplify learning,
one can reparameterize µθ in terms of noise prediction:
µθ(xt) =

1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)), where ϵθ is optimized

to predict the true noise, approximating the score, i.e., the
gradient of log density ∇xt

log q(xt), across different noise
scales. Alternatively, one can predict the clean sample x0

θ,
using it directly to derive close-form posterior mean:

µθ(xt) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0
θ(xt, t). (6)

Controllability in diffusion models refers to the ability to
impose particular constraints on the generated samples. A
common strategy for achieving this is through guidance [8],
where an additional cost function f is integrated into each

Fig. 3: 2D toy example. (a) The data distribution with eight distinct
modes. (b) Results from DDPM [1], highlighting spurious samples
in the gaps between modes. (c)-(d) Results from our method,
which trains an unconditioned diffusion model but explicitly pairs
each prior mode with a data mode. This yields significantly fewer
spurious samples and provides direct control over which mode
is generated. (e)-(f) The pre-defined prior parametrizations. In
particular, (e) shows that when the prior means lie far from the
origin (i.e., have large magnitudes), the diffusion model struggles
to learn those corresponding modes effectively.

step of the reverse denoising process. Formally, the learned
scores are modified as follows:

ϵ̂θ(xt, t) = ϵθ(xt, t) + ω∇xt
f(xt), (7)

where ω controls the influence of f . This cost function
may encode a variety of task-specific constraints, such as
enforcing speed limits or steering preferences in autonomous
driving, restricting actions in control tasks, or nudging the
model towards a particular label or style in image generation.

IV. ENHANCED DIFFUSION CONTROLLABILITY VIA
MODAL COUPLING

A common approach to controlling diffusion-based gener-
ation is through guidance. However, as the guidance function
is not integrated into the core training objective, it imposes
post-hoc constraints that may incur a distribution mismatch,
causing samples to drift away from high-fidelity regions of
the data manifold.

To address these challenges, we propose adopting a multi-
modal prior, and pose the following question: if each prior
mode is coupled with a corresponding mode in the target
distribution, can we run the reverse process from different
prior modes for strong controllability without guidance? Not
only is the answer “yes”, but it also promises to eliminate
reliance on post-hoc constraints. As a result, each mode
of the target distribution is naturally accommodated during
sampling, with no mismatch risk posed by guidance.

In this work, we assume that the modes of data distribution
are explicitly known, and model the multi-modal prior as a
Gaussian mixture model:

xT ∼
k∑

i=1

ri · N (µi, σ
2
i I), (8)



where k is the number of modes, ri denotes the proportion
of data with mode label i, and µi and σ2

i specify the mean
and variance of the i-th Gaussian component, respectively.
Notably, when conditioning on a specific data x0 with label
L, the prior reduces to a unimodal Gaussian:

xT |x0 ∼ N (µL, σ
2
LI). (9)

This structure allows us to explicitly account for different
modes in the data while retaining a unimodal form given
a specific label. In the sequel, we will demonstrate that,
by coupling these prior modes with the corresponding data
modes and by carefully parameterizing each prior mode, we
can achieve robust mode control even using unconditioned
diffusion models.

A. Modal Coupling

We begin by defining forward and reverse diffusion pro-
cesses that accommodate a general Gaussian prior xT |x0 ∼
N (µ, σ2I).

Lemma 1. Let ηt := 1 +
∑t−1

m=1

(√∏t
n=m+1 αn

)
, and

consider the forward noising process

q(xt|xt−1) =
√
αtxt−1 +

√
1− αtσϵt +

µ

ηT
. (10)

where ϵt ∼ N (0, I). Then, for any step t,

q(xt|x0) = N (xt|
√
ᾱtx0 +

ηtµ

ηT
, (1− ᾱt)σ

2I). (11)

Under the standard assumption that ᾱT → 0 as T grows
large, it follows that q(xT |x0) = N (xT ;µ, σ

2I).

The proof is in Appendix VI-A. Lemma 1 establishes that
introducing the constant shift term µ/ηT at each forward step
and scaling the Gaussian noise by σ ensure the final marginal
q(xT |x0) to align with the desired Gaussian prior, which sets
the foundation for the corresponding reverse process.

Lemma 2. For the diffusion model with the forward process
defined in (10), the reverse process is:

p(xt−1|xt) = N (xt−1|µ(xt), β(xt)), (12)

where β(xt) =
1−ᾱt−1

1−ᾱt
βtσ

2, and

µ(xt) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
αt−1βt

1− ᾱt
x0 (13)

+
ηt−1(1− αt)−

√
αt(1− ᾱt−1)

(1− ᾱt)ηT
· µ,

=
1

√
αt

(xt −
µ

ηT
− 1− αt√

1− ᾱt
σϵt). (14)

We include the proof in Appendix VI-B. This concludes
the derivation of the proposed forward and reverse processes
that support an arbitrary Gaussian, thereby enabling any prior
mode to be directly coupled with a specific mode in the target
distribution. Given a labeled dataset X and a set of pre-
defined prior mode parameterizations, we train the diffusion

model x0
θ by:

min
θ

E
t∈[1,T ]

ϵ∼N(0,I)

[ ∑
(x0,L)∈X

∥x0
θ(x̂t(x0, L, ϵ), t)− x0∥2

]
, (15)

x̂t(x0, L, ϵ) =
√
ᾱtx0 +

√
1− ᾱtσLϵ+

ηtµL

ηT
. (16)

Here, we adopt the reparameterization of µθ, i.e., the mean
of posterior p(xt−1|xt), in term of clean sample prediction.
Switching to noise prediction is straightforward but omitted
due to performance considerations.

At sampling, we can either draw from the multi-modal
prior distribution (8) to generate across all data modes, or
select a unimodal prior (9) to concentrate on a specific mode,
allowing fine-grained control over the diffusion process.

B. Prior Parametrization

Next, we present our parametrization of the proposed
multi-modal prior distribution. As shown in Figure 3, it
is crucial to keep the prior modes well-separated (i.e., not
overlapping) so that the diffusion model can clearly distin-
guish the target mode from the others. Additionally, each
mode must be constrained from generating excessively large
samples that could complicate the diffusion process.

To specify the Gaussian mean of each prior mode, we
draw on the concept of placing evenly spaced points on a
high-dimensional sphere. Let d be the data dimension, and
k the number of modes. If k ≤ d + 1, which is often the
case in complex data distributions suited to diffusion models,
this arrangement can be achieved by placing the vertices of
a (k− 1)-simplex in Rd [14]. Let e1:k ⊂ Rk be the standard
basis vectors. We define the means µ1:k as follows:

wi = δ ·
√

k

k + 1
· (ei − 1k · 1

k
) (17)

µi = [w1
i , ..., w

k
i , 0, ..., 0]

T ∈ Rd, (18)

where δ is a hyper-parameter for adjusting the sphere radius
and wj

i denotes the j-th component of wi. One can verify
that ∥µi∥2= δ for all i ∈ [1, k], and that these points lie
at a pairwise distance of δ ·

√
2 + 2/(k − 1). Finally, we

choose the variance of each Gaussian so that their confidence
intervals are at a certain level do not overlap with respect to
the above pairwise distance. That is, for all i ∈ [1, k],

σi

√
X 2

d,c ≤ δ ·

√
2 +

2

(k − 1)
, (19)

where c denotes the desired confidence level and X 2
d,c is the

c quantile of the chi-square distribution with d degress of
freedom [15].

V. EXPERIMENTS

A. Waymo - Controllable Motion Prediction

We evaluate the proposed method on the motion predic-
tion task using the Waymo Open Motion Dataset [16] that
features diverse and realistic autonomous driving scenarios.
Because motion prediction is inherently probabilistic and



Method
minADE

(↓)
meanADE

(↓)
minFDE

(↓)
meanFDE

(↓)
minMR
(↓)

meanMR
(↓)

minOR
(↓)

meanOR
(↓)

VBD, S = 1 1.707 1.707 4.593 4.593 0.551 0.551 0.170 0.170
VBD, S = 3 1.265 1.717 3.294 4.597 0.394 0.549 0.126 0.172
VBD, S = 9 0.968 1.708 2.422 4.557 0.279 0.544 0.102 0.178

cVBD, k = 9, S = 1 1.425 1.425 3.667 3.667 0.437 0.437 0.173 0.173
cVBD, k = 9, S = 3 1.025 1.418 2.530 3.650 0.290 0.430 0.126 0.178

Ours, S = 1

k = 3, δ = 8 1.267 1.267 3.523 3.523 0.378 0.378 0.107 0.107
k = 3, δ = 15 1.216 1.216 3.221 3.221 0.367 0.367 0.117 0.117
k = 9, δ = 8 1.019 1.019 2.678 2.678 0.260 0.260 0.070 0.070
k = 9, δ = 15 0.940 0.940 2.423 2.423 0.212 0.212 0.057 0.057

Ours, S = 3

k = 3, δ = 8 1.093 1.281 2.986 3.565 0.299 0.382 0.090 0.109
k = 3, δ = 15 1.117 1.219 2.937 3.223 0.322 0.364 0.103 0.139
k = 9, δ = 8 0.892 1.017 2.323 2.662 0.210 0.262 0.050 0.065
k = 9, δ = 15 0.857 0.938 2.190 2.419 0.182 0.209 0.046 0.060

TABLE I: Quantitative validation for motion prediction accuracy on Waymo. We evaluate the proposed method using two configurations
for the number of modes: k = 3, which considers only steering modes, and k = 9, which incorporates both steering and speed modes.
S denotes the number of sampled trajectories per scenario for each setting. Due to limited computing resources, the training size was
reduced to one-tenth of its original size. We anticipate that the reported metrics would improve further if trained on the full dataset.

multi-modal, it is crucial to capture an unbiased distribution
of possible future trajectories. In our experiments, we focus
on the single-agent setting where distinct modes in the target
distribution are more clearly defined, thus better highlighting
the advantages of our approach.

We adopt Versatile Behavior Diffusion (VBD) [12] as the
backbone of our model. A query-centric, Transformer-based
scene encoder first processes the scene context, including
scenario information such as traffic lights, map polylines,
and agent trajectories, to capture interrelationships among
all scene components. Building on this contextual under-
standing, a denoiser model then predicts a clean control
sequence from a noised input. Under the single-agent setting,
the denoiser considers only the ego-agent’s control trajectory,
while other agents remain visible to the scene encoder, given
their potential influence on the ego-agent’s future behavior.

Next, we describe the parameter settings of the proposed
method. We adopt a two-layered mode design: the first layer
corresponds to steering modes (left turn, right turn, and go
straight), while the second layer addresses speed control
(acceleration, deceleration, and maintaining speed). If both
layers are considered, we take the Cartesian product of these
two layers, which yields k = 9 total modes. During training,
we set σi = 1 for all i ∈ [1, k]. The data dimension is 80,
corresponding to 2D control predictions over 40 future steps
(i.e., 4 seconds).

1) Motion Prediction Accuracy: Table I summarizes the
primary metrics used to evaluate prediction accuracy on
the test set. We report four standard metrics. Average Dis-
placement Error (ADE) measures the mean distance between
the ground-truth future ego-agent trajectories and the model
predictions, averaged over the future time horizon. Final
Displacement Error (FDE) measures the displacement error
at the final time step. Miss Rate (MR) measures the recall
of the trajectory predictions. And OffRoad (OR) assesses
prediction consistency in how often the predicted trajectories

drive off the road. For each metric, we report the minimum
and mean values computed from the sampled trajectories.
In addition, we implement a variant of VBD, referred to
as conditioned VBD (cVBD), which is given explicit mode
labels as part of its input.

Although enhancing prediction performance is not the
primary goal of this project, Table I demonstrates notable
improvements in the reported metrics, especially in the mean
statistics. We attribute these gains primarily to our use of a
multi-modal prior distribution, mirroring the positive results
observed on the 2D toy set (Figure 3). This benefit is
further underscored by the performance increase when the
number of modes k rises from 3 to 9. Meanwhile, the
configurations with δ = 15 outperform those with δ = 8,
emphasizing the importance of ensuring that prior mode
distributions do not overlap. Lastly, as cVBD still relies
on a unimodal prior distribution, its ability to effectively
learn each mode in the target distribution is limited. By
contrast, our method leverages strong modal coupling to
better capture multi-modal behavior, ultimately leading to
more robust predictions.

2) Controllable Trajectory Synthesis: We assess controlla-
bility in Table II by measuring how well sampled trajectories
remain realistic and feasible despite deviating from the
reference trajectories (Figure 4). To generate Table II, we
manually label potential ego-agent futures with an emphasis
on steering feasibility. For instance, if the ego-agent is in a
lane that allows turning, yet the reference trajectory continues
straight, we count the turning maneuver as feasible. However,
identifying valid speed modes that differ from the reference
is more challenging, and thus, occasional mislabeling may
occur. The final evaluation set comprises 140 scenarios,
which we provide in our codebase 1.

1https://github.com/RobinWangSD/Diffusion-with-Multi-Modal-Priors.git



Method
minADE

(↑)
meanADE

(↑)
minOR

(↓)
meanOR

(↓)
ACC[ST]

(↑)
ACC[SP]

(↑)
ACC

(↑)

VBD+G
ω = 1 1.049 1.814 0.070 0.108 0.877 0.450 0.387

ω = 10 1.790 2.717 0.070 0.113 0.952 0.624 0.601

ω = 100 2.294 3.443 0.121 0.184 0.944 0.711 0.701

cVBD, k = 9 1.996 2.901 0.111 0.205 0.883 0.806 0.707

Ours
k = 9, δ = 8 1.932 2.233 0.035 0.050 0.906 0.702 0.647

k = 9, δ = 15 2.162 2.369 0.023 0.026 0.917 0.701 0.662

TABLE II: Quantitative validation for trajectory synthesis controllability, using 9 sampled trajectories per scenario. The test set consists
of 140 scenarios, each manually labeled with potentially feasible ego-agent futures that deviate from the dataset’s original trajectories.
Note that higher ADE values imply a greater deviation from the reference trajectories, not indicating the degraded prediction performance.

Fig. 4: Qualitative results for motion prediction. In standard diffusion, trajectories are sampled randomly from a unimodal prior, offering
no inherent controllability. cVBD takes the intended mode as part of its model input, but still employs a unimodal prior, preventing it from
effectively presenting distinct data modes. VBD-G applies guidance to steer generation, but it relies heavily on the guidance influence
factor, making it difficult to balance sample fidelity against controllability. Our method integrates modal coupling with a multi-modal prior
distribution, yielding notable improvements in both sample fidelity and controllability.

In addition to the conditioned VBD baseline, we examine
a post-hoc guidance strategy for the unconditioned VBD
model, referred to as VBD+G. At each denoising step t ∈
[2, T ], we update the posterior mean:

µ̂θ(xt) = µθ(xt) + ω · ∇
µθ(xt)

f(x0
θ

(
µθ(xt), t− 1

)
), (20)

where µθ(xt) is the posterior mean estimate computed from
the predicted x0

θ(xt, t) via (6), ω is a parameter controlling
guidance strength, and f is the guidance function applied to
the predicted x0, treating µθ(xt) as xt−1. These steps follow
the procedures described in [12]. In our experiments, f aligns
with the mode list used during training for both the proposed
method and the conditioned VBD. Specifically, given a target
steer-speed label pair, f penalizes any input trajectory that

exceeds the specified steer-speed range.

To evaluate performance, we continue using Average Dis-
placement Error (ADE) with respect to reference trajectories,
which measures how far sampled trajectories differ from
the reference. We also include OffRoad (OR), an important
metric that captures fidelity and feasibility of sampled tra-
jectories. Finally, we introduce an overall accuracy (ACC)
metric to measure how often the samples match the intended
steer-speed mode, and further decompose it into separate
measures for steering (ACC[ST]) and speed (ACC[SP]).

As shown in Table II, the guidance-based method strug-
gles to balance sample fidelity and controllability. Although
increasing ω does improve overall accuracy, it also signif-
icantly worsens OffRoad. In contrast, our proposed method



Method U-Maze Medium Large

Diffuser

U-Maze 113.9 N/A N/A

Medium N/A 121.5 N/A

Large N/A N/A 123.0

Ours, k = 3, δ = 30 119.5 121.4 120.9

TABLE III: Quantitative evaluations on Maze2D. We adopt the
baseline performance from [17], using normalized accumulative
reward returns as the evaluation metric. Notably, the baseline trains
a separate diffusion model for each layout (or mode), unlike in Table
I where our comparisons focus on multi-modal data modeling and
the baseline there is a single model handling various modes.

consistently maintains high sample fidelity while achieving
reasonably high accuracy. Furthermore, as δ increases, thus
separating each prior mode more distinctly, performance
continues to improve. It is worth noting that VBD-G requires
extensive backpropagation through the diffusion model, mak-
ing its generation noticeably slower than our method which
simply performs a standard reverse process from the speci-
fied prior mode. Meanwhile, the conditioned VBD achieves
comparable performance to VBD-G at ω = 100.

B. Maze2d - Multi-task Control

The proposed method naturally extends to multi-task con-
trol. Rather than confining control-level constraints to a sin-
gle task, we can also view each task itself as a separate mode.
This perspective allows our method to compose multiple
tasks within a single, unconditioned diffusion model. We
illustrate this with evaluations in Maze2D, where a unified
model is trained to perform long-horizon path planning
across various maze configurations.

We define the diffusion model to predict 384-step state-
control trajectories conditioned on the given initial and goal
positions. Given that the state and control dimensions are
3 and 2, respectively, the target distribution has dimension
1920. We set σi = 1 for i ∈ [1, 3], and choose δ = 30.
As shown in Table III, the proposed method achieves per-
formance comparable to the baseline across all tested maze
configurations. Note that our aim is not to outperform the
existing methods. Instead, we demonstrate that by treating
each distinct task as an individual data mode, the proposed
method establishes effective modal coupling over a multi-
modal prior, which makes it possible to handle various tasks
using only a single unconditioned diffusion model.

VI. CONCLUSION

This paper presents a novel framework that enables fine-
grained control over diffusion models while preserving high-
fidelity sample generation. By aligning the sampling process
with key data modes from the outset, our method avoids the
distribution drift common in post-hoc guidance approaches.
Experimental evaluations show that the proposed method
consistently outperforms existing techniques on both quanti-
tative and qualitative measures. Moreover, this work lays a
strong foundation for future research aimed at relaxing the

assumption of explicit known data modes, thereby advancing
towards more controllable diffusion models.

APPENDIX

A. Proof of Lemma 1

The proof for (11) proceeds by induction. We begin with
the base case using the proposed forward process (10):

x1 =
√
α1x0 +

√
1− α1σϵ1 +

µ

ηT
(21)

∼ N (
√
ᾱ1x0 +

η1µ

ηT
, (1− ᾱ1)σ

2I) (22)

The derivation from (21) to (22) is based on the fact that
α1 = ᾱ1 and η1 = 1 by definition. Next, we assume that for
an arbitrary t ∈ [2, T ], it holds true that:

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1σϵt−1 +

ηt−1µ

ηT
. (23)

From the forward process (10), we have:

xt =
√
αtxt−1 +

√
1− αtσϵt +

µ

ηT
(24)

=
√
αt

(√
ᾱt−1x0 +

√
1− ᾱt−1σϵt−1 +

ηt−1µ

ηT

)
(25)

+
√
1− αtσϵt +

µ

ηT

=
√
ᾱtx0 +

√
αtηt−1 + 1

ηT
· µ (26)

+
(√

αt(1− ᾱt−1)σϵt−1 +
√
1− αtσϵt

)
.

Note that by the definition of ηt:

ηt = 1 +

t−1∑
m=1

(√√√√ t∏
n=m+1

αn

)
(27)

= 1 +

t−1∑
m=1

(√√√√ t−1∏
n=m+1

αn ·
√
αt

)
(28)

= 1 +
√
αt ·

[
1 +

t−2∑
m=1

(√√√√ t−1∏
n=m+1

αn

)]
(29)

= 1 +
√
αtηt−1. (30)

Meanwhile, to handle the last term in (26), we essentially
merge two zero-mean Gaussian distributions with distinct
variances. That is, merging N (0, σ2

1I) and N (0, σ2
2I) leads

to the new distribution N (0, (σ2
1 + σ2

2)I). Here, the merged
standard deviation is:

αt(1− ᾱt−1)σ
2 + (1− αt)σ

2 = (1− ᾱt)σ
2. (31)

Substituting everything back into (26), we have:

xt =
√
ᾱtx0 +

ηt
ηT

µ+
√
1− ᾱtσϵ

∗, (32)

where ϵ∗ denotes an arbitrary standard Gaussian sample. This
concludes the proof of Lemma 1.



B. Proof of Lemma 2

First, the reverse probability is tractable only when con-
ditioned on x0. By Bayes’ theorem, we have:

p(xt−1|xt, x0) = q(xt|xt−1, x0) ·
q(xt−1|x0)

q(xt|x0)
. (33)

Then by Lemma 1:

p(xt−1|xt, x0) (34)

∝ exp(−1

2

[ (xt −
√
αtxt−1 − µ/ηT )

2

(1− αt)σ2
(35)

+
(xt−1 −

√
ᾱt−1x0 − (ηt−1/ηT )µ)

2

(1− ᾱt−1)σ2

− (xt −
√
ᾱtx0 − (ηt/ηT )µ)

2

(1− ᾱt)σ2

]
)

∝ exp(−1

2

[( αt

(1− αt)σ2
+

1

(1− ᾱt−1σ2)

)
x2
t−1 (36)

+ 2

(
−√

αtxt +
√
αtµ/ηT

(1− αt)σ2

+
−√

ᾱt−1x0 − (ηt−1/ηT )µ

(1− ᾱt−1)σ2

)
xt−1

]
)

From (35) to (36), the constant terms that do not involve
xt−1 are all omitted. Following the standard Gaussian density
function, the mean and variance of p(xt−1|xt, x0) can be
parameterized as N (µ̃, β̃) where:

β̃ = 1/

(
αt

(1− αt)σ2
+

1

(1− ᾱt−1σ2)

)
(37)

=
1− ᾱt−1

1− ᾱt
· (1− αt)σ

2. (38)

Then we derive µ̃ as follows:

µ̃(xt, x0) = −
(
−√

αtxt +
√
αtµ/ηT

(1− αt)σ2
(39)

+
−√

ᾱt−1x0 − (ηt−1/ηT )µ

(1− ᾱt−1)σ2

)
· β̃t

=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x0 (40)

+
ηt−1(1− αt)−

√
αt(1− ᾱt−1)

(1− ᾱt)ηT
· µ

Furthermore, we can parameterize x0 in terms of xt and ϵt
based on (32):

µ̃t(xt) =

√
αt(1− ᾱt−1)

1− ᾱt
xt (41)

+

√
ᾱt−1(1− αt)

1− ᾱt
· xt −

√
1− ᾱtσϵt − (ηt/ηT )µ√

ᾱt

+
ηt−1(1− αt)−

√
αt(1− ᾱt−1)

(1− ᾱt)ηT
· µ

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

σϵt

)
(42)

+
µ

(1− ᾱt)ηT
·
(
ηt−1(1− αt)

−
√
αt(1− ᾱt−1)−

(1− αt)ηt√
αt

)

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

σϵt

)
(43)

+
µ

(1− ᾱt)ηT
· −(1− ᾱt)√

αt

=
1

√
αt

(
xt −

µ

ηT
− 1− αt√

1− ᾱt
σϵt

)
(44)

Last three equations are due to ηt = 1 +
√
αtηt−1.
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