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Abstract

Semi-supervised learning (SSL) provides an effective means of leveraging un-1

labelled data to improve a model’s performance. Even though the domain has2

received a considerable amount of attention in the past years, most methods present3

the common drawback of lacking theoretical guarantees. Our starting point is to4

notice that the estimate of the risk that most discriminative SSL methods minimise5

is biased, even asymptotically. This bias impedes the use of standard statistical6

learning theory and can hurt empirical performance. We propose a simple way of7

removing the bias. Our debiasing approach is straightforward to implement and8

applicable to most deep SSL methods. We provide simple theoretical guarantees on9

the trustworthiness of these modified methods, without having to rely on the strong10

assumptions on the data distribution that SSL theory usually requires. In particular,11

we provide generalisation error bounds for the proposed methods. We evaluate12

debiased versions of different existing SSL methods, such as the Pseudo-label13

method and Fixmatch, and show that debiasing can compete with classic deep SSL14

techniques in various settings by providing better calibrated models. Additionally,15

we provide a theoretical explanation of the intuition of the popular SSL methods.16

1 Introduction17

The promise of semi-supervised learning (SSL) is to be able to learn powerful predictive models18

using partially labelled data. In turn, this would allow machine learning to be less dependent on19

the often costly and sometimes dangerously biased task of labelling data. Early SSL approaches—20

e.g. Scudder’s (1965) untaught pattern recognition machine—simply replaced unknown labels with21

predictions made by some estimate of the predictive model and used the obtained pseudo-labels to22

refine their initial estimate. Other more complex branches of SSL have been explored since, notably23

using generative models (from McLachlan, 1977, to Kingma et al., 2014) or graphs (notably following24

Zhu et al., 2003). Deep neural networks, which are state-of-the art supervised predictors, have been25

trained successfully using SSL. Somewhat surprisingly, the main ingredient of their success is still the26

notion of pseudo-labels (or one of its variants), combined with systematic use of data augmentation27

(e.g. Xie et al., 2019; Sohn et al., 2020; Rizve et al., 2021).28

An obvious SSL baseline is simply throwing away the unlabelled data. We will call such a baseline the29

complete case, following the missing data literature (e.g. Tsiatis, 2006). As reported in van Engelen &30

Hoos (2020), the main risk of SSL is the potential degradation caused by the introduction of unlabelled31

data. Indeed, semi-supervised learning outperforms the complete case baseline only in specific cases32

(Singh et al., 2008; Schölkopf et al., 2012; Li & Zhou, 2014). This degradation risk for generative33

models has been analysed in Chapelle et al. (2006, Chapter 4). To overcome this issue, previous works34

introduced the notion of safe semi-supervised learning for techniques which never reduce predictive35

performance by introducing unlabelled data (Li & Zhou, 2014; Guo et al., 2020). Our loose definition36
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of safeness is as follows: an SSL algorithm is safe if it has theoretical guarantees that are similar37

or stronger to the complete case baseline. The “theoretical” part of the definition is motivated by the38

fact that any empirical assessment of generalisation performances of an SSL algorithm is jeopardised39

by the scarcity of labels. Unfortunately, popular deep SSL techniques generally do not benefit from40

theoretical guarantees without strong and essentially untestable assumptions on the data distribution41

(Mey & Loog, 2019) such as the smoothness assumption (small perturbations on the features x do not42

cause large modification in the labels, p(y|pert(x)) ≈ p(y|x)) or the cluster assumption (data points43

are distributed on discrete clusters and points in the same cluster are likely to share the same label).44
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Figure 1: (Left) Data histogram. (Right) Posterior
probabilities p(1|x) of the same model trained following
either complete case (only labelled data), Pseudo-label
or our DePseudo-label.

Most semi-supervised methods rely on these dis-45

tributional assumptions to ensure performance46

in entropy minimisation, pseudo-labelling and47

consistency-based methods. However, no proof48

is given that guarantees the effectiveness of state-49

of-the-art methods (Tarvainen & Valpola, 2017;50

Miyato et al., 2018; Sohn et al., 2020; Pham51

et al., 2021). To illustrate that SSL requires spe-52

cific assumptions, we show in a toy example that53

pseudo-labelling fails at learning. To do so, we54

draw samples from two uniform distributions55

with a small overlap. Both supervised and semi-56

supervised neural networks are trained using the57

same labelled dataset. While the supervised al-58

gorithm learns perfectly the true distribution of59

p(1|x), the semi-supervised learning methods60

(both entropy minimisation and pseudo-label)61

underestimate p(1|x) for x ∈ [1, 3] (see Figure62

1). We also test our proposed method (DeSSL)63

on this dataset and show that the unbiased ver-64

sion of each SSL technique learns the true dis-65

tribution accurately. See Appendix A for the66

results with Entropy Minimisation.67

1.1 Contributions68

Rather than relying on the strong geometric assumptions usually used in SSL theory, we simply use69

the missing completely at random (MCAR) assumption, a standard assumption from the missing data70

literature (see e.g. Little & Rubin, 2019). With this only assumption on the data distribution, we71

propose a new safe SSL method derived from simply debiasing common SSL risk estimates. Our72

main contributions are:73

• We introduce debiased SSL (DeSSL), a safe method that can be applied to most deep SSL74

algorithms without assumptions on the data distribution;75

• We propose a theoretical explanation of the intuition of popular SSL methods. We provide76

theoretical guarantees on the safeness of using DeSSL both on consistency and calibration77

of the method. We also provide a generalisation error bound;78

• We show how simple it is to apply DeSSL to the most popular methods such as Pseudo-label79

and Fixmatch, and show empirically that DeSSL leads to models that are never worse than80

their classical counterparts, generally better calibrated and sometimes much more accurate.81

2 Semi-supervised learning82

2.1 Learning with labelled data83

The ultimate objective of most of the learning frameworks is to minimise a risk R, defined as84

the expectation of a particular loss function L over a data distribution p(x, y), on a set of models85

fθ(x), parametrised by θ ∈ Θ. Thus, the learning task is finding θ∗ that minimises the risk:86

R(θ) = E(X,Y )∼p(x,y)[L(θ;X,Y )]. The distribution p(x, y) being unknown, we generally minimise87
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an approximation of the risk, the empirical risk R̂(θ) computed on a sample of n i.i.d points drawn88

from p(x, y). R̂(θ) is an unbiased and consistent estimate of R(θ) under mild assumptions. Its89

unbiased nature is one of the basic properties that is used for the development of traditional learning90

theory and asymptotic statistics (van der Vaart, 2000; Shalev-Shwartz & Ben-David, 2014).91

2.2 Learning with both labelled and unlabelled data92

Semi-supervised learning leverages both labelled and unlabelled data to improve the model’s per-93

formance and generalisation. Further information on the distribution p(x) provides a better under-94

standing of the distributions p(x, y) and also p(y|x). Indeed, p(x) may contain information on p(y|x)95

(Schölkopf et al., 2012, Goodfellow et al., 2016, Chapter 7.6, van Engelen & Hoos, 2020).96

In the following, we have access to n samples drawn from the distribution p(x, y) where some of the97

labels are missing. We introduce a new random variable r ∈ {0, 1} that governs whether or not a98

data point is labelled (r = 0 missing, r = 1 observed). We note nl the number of labelled and nu the99

number of unlabelled datapoints.The MCAR assumption states that the missingness of a label y is100

independent of its features and the value of the label: p(x, y, r) = p(x, y)p(r), then r ∼ B(π). This101

is the case when nor features nor label carry information about the potential missingness of the labels.102

This description of semi-supervised learning as a missing data problem has already been done in103

multiple works –e.g. Seeger, 2000; Ahfock & McLachlan, 2019. Moreover, the MCAR assumption104

is implicitly made in most of the SSL works to design the experiments, indeed, missing labels are105

drawn completely as random in datasets such as MNIST, CIFAR or SVHN (Tarvainen & Valpola,106

2017; Miyato et al., 2018; Xie et al., 2019; Sohn et al., 2020).107

2.2.1 Complete case: throwing the unlabelled data away108

In missing data theory, the complete case is the learning scheme that only uses fully observed109

instances, namely labelled data. The natural estimator of the risk is then simply the empirical risk110

computed on the labelled data. Fortunately, in the MCAR setting, the complete case risk estimate111

keeps the same good properties of the traditional supervised one: it is unbiased and converges112

pointwisely to R(θ). Therefore, traditional learning theory holds for the complete case under MCAR.113

While these observations are hardly new (see e.g. Liu & Goldberg, 2020), they can be seen as114

particular cases of the theory that we develop below. The risk to minimise is115

R̂CC(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi). (1)

2.2.2 Incorporating unlabelled data116

A major drawback of the complete case framework is that a lot of data ends up not being exploited. A117

class of SSL approaches, mainly inductive methods with respect to the taxonomy of van Engelen &118

Hoos (2020), generally aim to minimise a modified estimator of the risk by including unlabelled data.119

Therefore, the optimisation problem generally becomes finding θ̂ that minimises the SSL risk,120

R̂SSL(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi)+
λ

nu

nu∑
i=1

H(θ;xi). (2)

where H is a term that does not depend on the labels and λ is a scalar weight which balances the121

labelled and unlabelled terms. In the literature, H can generally be seen as a surrogate of L. Indeed,122

it looks like the intuitive choices of H are equal or equivalent to a form of expectation of L on a123

distribution given by the model.124

2.2.3 Some examples of surrogates125

A recent overview of the recent SSL techniques has been proposed by van Engelen & Hoos (2020).126

In this work, we focus on methods suited for a discriminative probabilistic model pθ(y|x) that127

approximates the conditional p(y|x). We categorised methods into two distinct sections, entropy128

and consistency-based.129
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Entropy-based methods Entropy-based methods aim to minimise a term of entropy of the predic-130

tions computed on unlabelled data. Thus, they encourage the model to be confident on unlabelled131

data, implicitly using the cluster assumption. Entropy-based methods can all be described as an132

expectation of L under a distribution πx computed at the datapoint x:133

H(θ;x) = Eπx(x̃,ỹ)[L(θ; x̃, ỹ)]. (3)

For instance, Grandvalet & Bengio (2004) simply use the Shannon entropy as H(θ;x) which can be134

rewritten as equation (3) with πx(x̃, ỹ) = δx(x̃)pθ(ỹ|x̃), where δx is the dirac distribution in x. Also,135

pseudo-label methods, which consist in picking the class with the maximum predicted probability136

as a pseudo-label for the unlabelled data (Scudder, 1965), can also be described as Equation 3. See137

Appendix B for complete description of the entropy-based literature (Berthelot et al., 2019; 2020;138

Xie et al., 2019; Sohn et al., 2020; Rizve et al., 2021; Zhang et al., 2021a) and further details.139

Consistency-based methods Another range of SSL methods minimise a consistency objective140

that encourages invariant prediction for perturbations either on the data either on the model in order141

to enforce stability on model predictions. These methods rely on the smoothness assumption. In142

this category, we cite Π-model from (Sajjadi et al., 2016), temporal ensembling from (Laine & Aila,143

2017), Mean-teacher proposed by (Tarvainen & Valpola, 2017), virtual adversarial training (VAT)144

from (Miyato et al., 2018) and interpolation consistent training (ICT) from (Verma et al., 2019). We145

remark that these objectives H are equivalent to an expectation of L (see Appendix B). The general146

form of the unsupervised objective can be written as147

C1Eπx(x̃,ỹ)[L(θ; x̃, ỹ)] ≤ H(θ;x) = Div(fθ̂(x, .), pert(fθ(x, .)) ≤ C2Eπx(x̃,ỹ)[L(θ; x̃, ỹ)], (4)
where fθ̂ is the predictions of the model, the Div is a non-negative function that measures the148

divergence between two distributions, θ̂ is a fixed copy of the current parameter θ (the gradient is not149

propagated through θ̂), pert is a perturbation applied to the model or the data and 0 ≤ C1 ≤ C2.150

Previous works also remarked that H is an expectation of L for entropy-minimisation and pseudo-151

label (Zhu et al., 2022; Aminian et al., 2022). We describe a more general framework covering further152

methods and provide with our theory an intuition on the choice of H .153

2.3 Theoretical guarantees154

The main risk of SSL is the potential degradation caused by the introduction of unlabelled data when155

distributional assumptions are not satisfied (Singh et al., 2008; Schölkopf et al., 2012; Li & Zhou,156

2014), specifically in settings where the MCAR assumption does not hold anymore (Oliver et al.,157

2018; Guo et al., 2020). Additionally, in (Zhu et al., 2022), the authors show disparate impacts of158

pseudo-labelling on the different sub-classes of the population. To mitigate these problems, previous159

works introduced the notion safe semi-supervised learning for techniques which never reduce learning160

performance by introducing unlabelled data (Li & Zhou, 2014; Kawakita & Takeuchi, 2014; Li et al.,161

2016; Gan et al., 2017; Trapp et al., 2017; Guo et al., 2020). As remark by Oliver et al. (2018),162

SSL performances are enabled by leveraging large validation sets which is not suited for real-world163

applications. Then, theoretical guarantees are required to use safely SSL algorithms. For this reason,164

in our work, we consider as safe an SSL algorithm that has theoretical guarantees that are similar165

or stronger than those of the complete case baseline. Even though the methods presented above166

produce good performances in a variety of SSL benchmarks, they generally do not benefit from167

theoretical guarantees, even elementary. More over,Schölkopf et al. (2012) identify settings on the168

causal relation between the features x and the target y where SSL may systematically fail, even if169

classic SSL assumptions hold. Our example of Figure 1 also shows that classic SSL may fail to170

generalise in a very benign setting with a large number of labelled data.171

Presented methods minimise a biased version of the risk under the MCAR assumption and therefore172

classical learning theory cannot be applied anymore, as we argue more precisely in Appendix C.173

Learning over a biased estimate of the risk is not necessarily unsafe but it is difficult to provide174

theoretical guarantees on such methods even if some works try to do so with strong assumptions175

on the data distribution (Mey & Loog 2019, Section 4 and 5). Additionally, we remark that the176

choice of H can be confusing as seen in the literature. For instance, Grandvalet & Bengio (2004) and177

Corduneanu & Jaakkola (2003) perform respectively entropy and mutual information minimisation178

whereas Pereyra et al. (2017) and Krause et al. (2010) perform maximisation of the same quantities.179
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2.4 Related works180

Previous works already proposed safe SSL methods with theoretical guarantees. Unfortunately,181

so far these methods come with either strong assumptions or important computational burdens.182

Li & Zhou (2014) introduced a safe semi-supervised SVM and showed that the accuracy of their183

method is never worse than SVMs trained with only labelled data with the assumption that the true184

model is accessible. However, if the distributional assumptions are not satisfied, no improvement or185

degeneration is expected. Sakai et al. (2017) proposed an unbiased estimate of the risk for binary186

classification by including unlabelled data. The key idea is to use unlabelled data to better evaluate187

on the one hand the risk of positive class samples and on the other the risk of negative samples.188

They provided theoretical guarantees on its variance and a generalisation error bound. The method189

is designed only for binary classification and has not been tested in a deep learning setting. It has190

been extended to ordinal regression in follow-up work (Tsuchiya et al., 2021). In the context of191

kernel machines, Liu & Goldberg (2020) used an unbiased estimate of risk, like ours, for a specific192

choice of H . Guo et al. (2020) proposed DS3L, a safe method that needs to approximately solve193

a bi-level optimisation problem. In particular, the method is designed for a different setting, not194

under the MCAR assumption, where there is a class mismatch between labelled and unlabelled data.195

The resolution of the optimisation problem provides a solution not worse than the complete case but196

comes with approximations. They provide a generalisation error bound. Also, the method does not197

outperform classic SSL methods in the MCAR setting as it is designed for non-MCAR situations.198

Sokolovska et al. (2008) proposed a safe method with strong assumptions such that the feature space199

is finite and the marginal probability distribution of x is fully known. Fox-Roberts & Rosten (2014)200

proposed an unbiased estimator in the generative setting applicable to a large range of models and201

they prove that this estimator has a lower variance than the one of the complete case.202

3 DeSSL: Unbiased semi-supervised learning203

To overcome the issues introduced by the second term in the approximation of the risk for the semi-204

supervised learning approach, we propose DeSSL, an unbiased version of the SSL estimator using205

labelled data to annul the bias. The idea here is to retrieve the properties of classical learning theory.206

Fortunately, we will see that the proposed method can eventually have better properties than the com-207

plete case, in particular with regard to the variance of the estimate. The proposed DeSSL objective is208

R̂DeSSL(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi)+
λ

nu

nu∑
i=1

H(θ;xi)−
λ

nl

nl∑
i=1

H(θ;xi). (5)

209

Under the MCAR assumption, this estimator is unbiased for any value of the parameter λ. For proof210

of this result see Appendix D. We prove the optimality of debiasing with the labelled data in Appendix211

F.212

Intuitively, for entropy-based methods, H should be applied only on unlabelled data to enforce the213

confidence of the model only on unlabelled datapoints. Whereas, for consistency-based methods,214

H can be applied to any subset of data points. Our theory and proposed method remain the same215

whether H is applied to all the available data or not (see Appendix K).216

3.1 Does the DeSSL risk estimator make sense?217

The most intuitive interpretation is that by debiasing the risk estimator, we get back to the basics of218

learning theory. This way of debiasing is closely related to the method of control variates (Owen,219

2013, Chapter 8) which is a common variance reduction technique. The idea is to add an additional220

term to a Monte-Carlo estimator with a null expectation in order to reduce the variance of the221

estimator without modifying the expectation. Here, DeSSL can also be interpreted as a control variate222

on the risk’s gradient itself and should improve the optimisation scheme. This idea is close to the223

optimisation schemes introduced by Johnson & Zhang (2013) and Defazio et al. (2014) which reduce224

the variance of the gradients’ estimate to improve optimisation performance.225

5



Another interesting way to interpret DeSSL is as a constrained optimisation problem. Indeed, min-226

imising R̂DeSSL is equivalent to minimising the Lagrangian of the following optimisation problem:227

min
θ

R̂CC(θ)

s.t.
1

nu

nu∑
i=1

H(θ;xi) =
1

nl

nl∑
i=1

H(θ;xi).
(6)

The idea of this optimisation problem is to minimise the complete case risk estimator by assessing228

that some properties represented by H are on average equal for the labelled data and the unlabelled229

data. For example, if we consider entropy-minimisation, this program encourages the model to have230

the same confidence on the unlabelled examples as on the labelled ones.231

The debiasing term of our objective will penalise the confidence of the model on the labelled data.232

Pereyra et al. (2017) show that penalising the entropy in a supervised context acts as a strong233

regulator for supervised models and improves on the state-of-the-art on common benchmarks. This234

comforts us in the idea of debiasing using labelled data in the case of entropy-minimisation. Similarly,235

the debiasing term in pseudo-label turns the problem into plausibility inference as described by236

Barndorff-Nielsen (1976). Our objective also resembles doubly-robust risk estimates used for SSL in237

the context of kernel machines by Liu & Goldberg (2020) and for deep learning in a recent preprint238

(Hu et al., 2022). In both cases, their focus is quite different, as they consider weaker conditions239

than MCAR, but very specific choices of H .240

3.2 Is R̂DeSSL(θ) an accurate risk estimate?241

Because of the connections between our debiased estimate and variance reduction techniques, we242

have a natural interest in the variance of the estimate. Having a lower-variance estimate of the risk243

would mean estimating it more accurately, leading to better models. Similarly to traditional control244

variates (Owen, 2013), the variance can be computed, and optimised in λ:245

Theorem 3.1. The function λ 7→ V(R̂DeSSL(θ)) reaches its minimum for:246

λopt =
nu

n

Cov(L(θ;x, y), H(θ;x))

V(H(θ;x))
, (7)

and at λopt:247

V(R̂DeSSL(θ))|λopt =
(
1− nu

n
ρ2L,H

)
V(R̂CC(θ)) ≤ V(R̂CC(θ)), (8)

where ρL,H = Corr(L(θ;x, y), H(θ;x)).248

Additionally, V(R̂DeSSL(θ)) ≤ V(R̂CC(θ)) for all λ between 0 and 2λopt. A proof of this theorem249

is available as Appendix E. This theorem provides a formal justification to the heuristic idea that250

H should be a surrogate of L. Indeed, DeSSL is a more accurate risk estimate when H is strongly251

positively correlated with L, which is likely to be the case when H is equal or equivalent to an252

expectation of L. Then, choosing λ positive is a coherent choice. We also demonstrate in Appendix E253

that L and H are positively correlated when L is the negative likelihood and H is the entropy. Other254

SSL methods have variance reduction guarantees and already has shown great promises in SSL, see255

Fox-Roberts & Rosten (2014) and Sakai et al. (2017). In a purely supervised context, Chen et al.256

(2020) show that the effectiveness of data augmentation techniques lays partially on the variance257

reduction of the risk estimate. A natural application of this theorem would be to tune λ automatically258

by estimating λopt. In our case however, the estimation of Cov(L(θ;x, y), H(θ;x)) with few labels259

led to extremely unstable unsatisfactory results. However, we estimate it more accurately using the260

test set (which is of course impossible in practice) on different datasets and methods to provide261

intuition on the order of λopt and the range of the variance reduction regime in Appendix M.2.262

3.3 Calibration263

The calibration of a model is its capacity of predicting probability estimates that are representative264

of the true distribution. This property is determinant in real-world application when we need265
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reliable predictions. A scoring rule S is a function assigning a score to the predictive distribution266

pθ(y|x) relative to the event y|x ∼ p(y|x), S(pθ, (x, y)), where p(x, y) is the true distribution (see267

e.g. Gneiting & Raftery, 2007). A scoring rule measures both the accuracy and the quality of268

predictive uncertainty, meaning that better calibration is rewarded. The expected scoring rule is269

defined as S(pθ, p) = Ep[S(pθ, (x, y))]. A proper scoring rule is defined as a scoring rule such270

that S(pθ, p) ≤ S(p, p) (Gneiting & Raftery, 2007). The motivation behind having proper scoring271

rules comes from the following: suppose that the true data distribution p is accessible by our272

set of models. Then, the scoring rule encourages to predict pθ = p. The opposite of a proper273

scoring rule can then be used to train a model to encourage the calibration of predictive uncertainty:274

L(θ;x, y) = −S(pθ, (x, y)). Most common losses used to train models are proper scorings rule such275

as log-likelihood.276

Theorem 3.2. If S(pθ, (x, y)) = −L(θ;x, y) is a proper scoring rule, then S ′(pθ, (x, y, r)) =277

−( rnnl
L(θ;x, y) + λn( 1−r

nu
− r

nl
)H(θ;x)) is also a proper scoring rule.278

The proof is available in Appendix G, and follows directly from unbiasedness and the MCAR279

assumption. The main interpretation of this theorem is that we can expect DeSSL to be as well-280

calibrated as the complete case.281

3.4 Consistency282

We say that θ̂ is consistent if d(θ̂, θ∗)
p−→ 0 when n −→ ∞, where d is a distance on Θ. The asymptotic283

properties of θ̂ depend on the behaviours of the functions L and H . We will thus require the following284

standard assumptions.285

Assumption 3.3. The minimum θ∗ of R is well-separated: infθ:d(θ∗,θ)≥ϵ R(θ) > R(θ∗).286

Assumption 3.4. The uniform weak law of large number holds for both L and H .287

Theorem 3.5. Under the MCAR assumption, Assumption 3.3 and Assumption 3.4, θ̂ =288

argmin R̂DeSSL is consistent.289

For proof of this theorem see Appendix G. This theorem is a simple application of van der Vaart’s290

(2000) Theorem 5.7 proving the consistency of an M-estimator. Also, this result holds for the291

complete case, with λ = 0 which proves that the complete case is a solid baseline under the MCAR292

assumption. Going further, we prove the asymptotic normality of θ̂DeSSL and showed that the293

asymptotic variance can be optimised with respect to λ.294

Coupling of nl and nu under the MCAR assumption Under the MCAR assumption, nl and nu295

are random variables. We have that r ∼ B(π) (i.e. any x has the probability π of being labelled).296

Then, with n growing to infinity, we have nl

n = nl

nl+nu
−→ π. Therefore, both nl and nu grow to297

infinity and nl

nu
−→ π−1

π . This implies nu = O(nl) and then when n goes to infinity, both nu and nl298

go to infinity too and even if nu >> nl.299

3.5 Rademacher complexity and generalisation bounds300

In this section, we prove an upper bound for the generalisation error of DeSSL. The unbiasedness of301

R̂DeSSL can directly be used to derive generalisation bounds based on the Rademacher complexity302

(Bartlett & Mendelson, 2002), defined in our case as303

Rn = E(εi)i≤n

[
sup
θ∈Θ

(
1

nl

nl∑
i=1

εiL(θ;xi, yi)−
λ

nl

nl∑
i=1

εiH(θ;xi) +
λ

nu

nu∑
i=1

εiH(θ;xi)

)]
, (9)

where εi are i.i.d. Rademacher variables independent of the data. In the particular case of λ = 0,304

we recover the standard Rademacher complexity of the complete case. We can then now bound the305

generalisation error of a model trained using our new loss function.306

Theorem 3.6. We assume that labels are MCAR and that both L and H are bounded. Then, there307

exists a constant κ > 0, that depends on λ, L, H , and the ratio of observed labels, such that, with308

probability at least 1− δ, for all θ ∈ Θ,309

R(θ) ≤ R̂DeSSL(θ) + 2Rn + κ

√
log(4/δ)

n
. (10)
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The proof follows Shalev-Shwartz & Ben-David (2014, Chapter 26), and is available in Appendix J.310

4 Experiments311

We evaluate the performance of DeSSL against different classic methods. The goal here is to compare312

DeSSL methods and their original counterparts. In particular, we perform experiments with simple313

SSL methods such as pseudo-label (PseudoLabel) and entropy minimisation (EntMIN) with varying314

λ on MNIST (LeCun & Cortes, 2010) and CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) and315

compare them to the debiased method, respectively DeEntMin and DePseudoLabel. We also compare316

PseudoLabel and DePseudoLabel on five small datasets of MedMNIST (Yang et al., 2021a;b) with a317

fixed λ. The results of these experiments are reported below. In our figures, the error bars represent318

the size of the 95% confidence interval (CI). Finally, we modified the implementation of Fixmatch319

(Sohn et al., 2020) and compare it with its debiased version on CIFAR-10.320

We also compare DeEntMin and DePseudoLabel to the biased version on a large range of tabular321

datasets commonly used in SSL benchmarks (Chapelle et al., 2006; Guo et al., 2010). We do not322

observe differences between the performance, see Appendix P. Finally, we show how simple it is to323

debias an existing implementation, by demonstrating it on the consistency-based models benchmarked324

by (Oliver et al., 2018), namely VAT, Π-model and MeanTeacher on CIFAR-10 and SVHN (Netzer325

et al., 2011). We observe similar performances between the debiased and biased versions for the differ-326

ent methods, both in terms of cross-entropy and accuracy. Moreover, these results have been obtained327

using the hyperparameters finetuned for the biased versions. Therefore, it is likely that optimising the328

hyperparameters for DeSSL will yield even better with the right hyperparameters, see Appendix O.329

4.1 MNIST330
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Figure 2: The influence of λ on
Pseudo-label and DePseudo-label for
a Lenet trained on MNIST with nl =
1000: (Top) Mean test accuracy; (Bot-
tom) Mean test cross-entropy, with
95% CI.

MNIST is an advantageous dataset for SSL since classes are331

well-separated. We compare PseudoLabel and DePseudoLabel332

for a LeNet-like architecture using nl = 1000 labelled data on333

10 different splits of the training dataset into a labelled and unla-334

belled set. Models are then evaluated using the standard 10, 000335

test samples. We used 10% of nl as the validation set. We test336

the influence of the hyperparameter λ and report the accuracy,337

the cross-entropy and the expected calibration error (ECE, Guo338

et al., 2017) at the epoch of best validation accuracy, see Fig-339

ure 2 and Appendix L. In this example SSL and DeSSL have340

almost the same accuracy for all λ, however, DeSSL seems to341

be always better calibrated. To break the cluster assumption, we342

reproduced the same experiment on a modified MNIST. Indeed,343

we had label noise by replacing the true label for 20% of the344

dataset with a randomly sampled label, see Appendix L. In this345

setting, DeSSL performs better for large λ in terms of accuracy346

and also provides a better calibration.347

4.2 MedMNIST348

We compare PseudoLabel and DePseudoLabel on different datasets of MedMNIST, a large-scale349

MNIST-like collection of biomedical images. We selected the five smallest 2D datasets of the350

collection, for these datasets it is likely that the cluster assumption no longer holds. We trained351

a 5-layer CNN with a fixed λ = 1 and nl at 10% of the training data. We report in Table 1 the352

mean accuracy and cross-entropy on 5 different splits of the labelled and unlabelled data and the353

number of labelled data used. We report the AUC in Appendix L. DePseudoLabel competes with354

PseudoLabel in terms of accuracy and even success when PseudoLabel’s accuracy is less than the355

complete case. Moreover, DePseudoLabel is always better in terms of cross-entropy, so calibration,356

whereas PseudoLabel is always worse than the complete case.357
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Table 1: Test accuracy and cross-entropy of Complete Case (CC), PseudoLabel (PL) and DePseu-
doLabel (DePL) on five datasets of MedMNIST.

DATASET NL CC PL DEPL

CROSS-ENTROPY ACCURACY CROSS-ENTROPY ACCURACY CROSS-ENTROPY ACCURACY

DERMA 1000 1.95 ± 0.09 68.99± 1.20 2.51 ± 0.20 68.88± 1.03 1.88 ± 0.12 69.30± 0.85
PNEUMONIA 585 1.47 ± 0.04 83.94± 2.40 2.04 ± 0.04 85.83± 2.13 1.40 ± 0.06 84.36 ± 3.79
RETINA 160 1.68 ± 0.03 48.30± 3.06 1.80 ± 0.18 47.75± 2.50 1.67 ± 0.06 49.40 ± 2.62
BREAST 78 0.80 ± 0.04 76.15± 0.75 1.00 ± 0.26 74.74± 1.04 0.70 ± 0.03 76.67 ± 1.32
BLOOD 1700 6.11 ± 0.17 84.13± 0.83 6.61 ± 0.22 84.09± 1.17 6.53 ± 0.30 83.68 ± 0.59

4.3 CIFAR358
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Figure 3: Influence of λ on Pseudo-
label and DePseudo-label for a CNN
trained on CIFAR with nl = 4000:
(Left) Mean test accuracy; (Right)
Mean test cross-entropy, with 95% CI.

We compare PseudoLabel and DePseudoLabel on CIFAR-10359

and CIFAR-100. We trained a CNN-13 from Tarvainen &360

Valpola (2017) on 5 different splits. For this experiment, we use361

nl = 4000 and use the rest of the dataset as unlabelled. Models362

are then evaluated using the standard 10, 000 test samples. For a363

more realistic validation set, we used 10% of nl as the validation364

set. We test the influence of the hyperparameter λ and report the365

accuracy and the cross-entropy at the epoch of best validation366

accuracy, see Figure 3. We report the ECE in Appendix M. The367

performance of both methods on CIFAR-100 with nl = 10000368

are reported in Appendix M. We observe DeSSL provides both369

a better cross-entropy and ECE with the same accuracy for370

small λ. For larger λ, DeSSL performs better in all the reported371

metrics. We performed a paired Student’s t-test to ensure that372

our results are significant and reported the p-values in Appendix373

M. The p-values indicate that for λ close to 10, DeSSL is often374

significantly better in all the metrics. Moreover, DeSSL for large375

λ provides a better cross-entropy and ECE than the complete376

case whereas SSL never does.377

4.4 Fixmatch (Sohn et al., 2020)378

Table 2: 1st line: Accuracy, 2nd line:
Worst class accuracy, 3rd line: Cross-
entropy.

COMPLETE CASE FIXMATCH DEFIXMATCH

87.27 ± 0.25 93.87 ± 0.13 95.44 ± 0.10
70.08 ± 0.93 82.25 ± 2.27 87.16 ± 0.46
0.60 ± 0.01 0.27 ± 0.01 0.20 ± 0.01

We debiased a version of Fixmatch, see Appendix N for379

further details. For this experiment, we use nl = 4000 on 5380

different folds.First, we report that a strong baseline using381

data augmentation reach 87.27% accuracy. Then, we ob-382

serve that on the debiasing method improve both accuracy383

and cross-entropy of this modified version of Fixmatch.384

Inspired by Zhu et al. (2022), we show that our method385

improved performance on “poor” classes more equally than the biased version. Indeed, DeFixmatch386

improves Fixmatch by 1.57% overall but by 4.91% on the worst class. We report in Appendix N387

the accuracy per class of the different methods and the benefit ratio as defined by Zhu et al. (2022).388

5 Conclusion389

Motivated by the remarks of van Engelen & Hoos (2020) and Oliver et al. (2018) on the missingness390

of theoretical guarantees in SSL, we proposed a simple modification of SSL frameworks. We consider391

frameworks based on the inclusion of unlabelled data in the computation of the risk estimator and392

debias them using labelled data. We show theoretically that this debiasing comes with several the-393

oretical guarantees. We demonstrate these theoretical results experimentally on several common SSL394

datasets and some more challenging ones such as MNIST with label noise. DeSSL shows competitive395

performance in terms of accuracy compared to its biased version but improves significantly the396

calibration. There are several future directions open to us. We showed that λopt exists (Theorem 3.1)397

and therefore our formula provides guidelines for the optimisation of λ. Finally, an interesting im-398

provement would be to go beyond the MCAR assumption by considering settings with a distribution399

mismatch between labelled and unlabelled data (Guo et al., 2020; Cao et al., 2021; Hu et al., 2022).400
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A Toy example625

We trained a 4-layer neural network (1/20/100/20/1) with ReLU activation function using 25, 000626

labelled and 25, 000 unlabelled points drawn from two 1D uniform laws with an overlap. We used627

λ = 1 and a confidence threshold for Pseudo-label τ = 0.70. We optimised the model’s weights628

using a stochastic gradient descent (SGD) optimiser with a learning rate of 0.1.629

0 2 4 6 8 10

Figure 4: Data histogram
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Figure 5: 4-layer neural net trained using SSL methods on a 1D dataset drawn from two uniform laws. (Top-left)
Posterior probabilities p(1|x) of the same model trained following either complete case (only labelled data),
Pseudo-label or our DePseudo-label. (Top-right) Same for EntMin and DeEntMin (Bottom-left) Training cross-
entropy for Pseudo-label and DePseudo-label (Bottom-right) Training cross-entropy for EntMin and DeEntMin
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B Details on surrogates and more examples630

We provide in this appendix further details on our classification of SSL methods between entropy-631

based and consistency-based (see Section 2.2.3). We detail a general framework for both of these632

methods’ classes. We also show how popular SSL methods are related to our framework.633

B.1 Entropy-based634

We class as entropy-based, methods that aim to minimise a term of entropy such as Grandvalet &635

Bengio (2004) which minimises Shannon’s entropy or pseudo-label which is a form of entropy, see636

Remark E.5. These methods encourage the model to be confident on unlabelled data, implicitly using637

the cluster assumption. We recall those entropy-based methods can all be described as an expectation638

of L under a distribution πx computed at the datapoint x:639

H(θ;x) = Eπx(x̃,ỹ)[L(θ; x̃, ỹ)]. (11)

Pseudo-label: As presented in the core article, the unsupervised objective of pseudo-label can be640

written as an expectation of L on the distribution πx(x̃, ỹ) = δx(x̃)pθ(ỹ|x̃). Recently, Lee (2013)641

encouraged the pseudo-labels method for deep semi-supervised learning. Then, Rizve et al. (2021)642

recently improved the pseudo-label selection by introducing an uncertainty-aware mechanism on643

the confidence of the model concerning the predicted probabilities. Pham et al. (2021) reaches644

state-of-the-art on the Imagenet challenge using pseudo-labels on a large dataset of additional images.645

B.2 Pseudo-label and data augmentation646

Recently, several methods based on data augmentation have been proposed and proven to perform well647

on a large spectrum of SSL tasks. The idea is to have a model resilient to strong data-augmentation of648

the input (Berthelot et al., 2019; 2020; Sohn et al., 2020; Xie et al., 2019; Zhang et al., 2021a). These649

methods rely both on the cluster assumption and the smoothness assumption and are at the border650

between entropy-based and consistency-based methods. The idea is to have the same prediction651

for an input and an augmented version of it. For instance, in Sohn et al. (2020), we first compute652

pseudo-labels predicted using a weakly-augmented version of x (flip-and-shift data augmentation)653

and then minimise the likelihood with the predictions of the model on a strongly augmented version654

of x. In Xie et al. (2019), the method is a little bit different as we minimise the cross entropy between655

the prediction of the model on x and the predictions of an augmented version. In both cases, the656

unsupervised part of the risk estimator can be reformulated as Equation 11.657

Fixmatch: In Fixmatch, Sohn et al. (2020), the unsupervised objective can be written as:658

H(θ;x) = 1[max
y

pθ̂(y|x1) > τ ]L(θ;x2, argmax
y

pθ̂(y|x1)) (12)

where θ̂ is a fixed copy of the current parameters θ indicating that the gradient is not prop-659

agated through it, x1 is a weakly-augmented version of x and x2 a strongly-augmented660

one. Therefore, we write H as an expectation of L on the distribution πx(x̃, ỹ) =661

δx2
(x̃)δargmaxy pθ̂(y|x1)(ỹ)1[maxy pθ̂(y|x1) > τ ].662

UDA: In UDA, Xie et al. (2019), the unsupervised objective can be written as:663

H(θ;x) =
∑
y

pθ̂(y|x)L(θ;x1, y) (13)

where θ̂ is a fixed copy of the current parameters θ indicating that the gradient is not propagated664

through it and x1 is an augmented version of x. Therefore, we write H as an expectation of L on the665

distribution πx(x̃, ỹ) = δx1
(x̃)pθ̂(ỹ|x̃).666
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Others: Recently, have been proposed in the literature Zhang et al. (2021a) and Rizve et al. (2021).667

The former is an improved version of Fixmatch with a variable threshold τ with respect to the class668

and the training stage. The latter introduces a measurement of uncertainty in the pseudo-labelling669

step to improve the selection. They also introduce negative pseudo-labels to improve the single-label670

classification.671

B.3 Consistency-based672

Consistency-based methods aim to smooth the decision function of the models or have more stable673

predictions. These objectives H are not directly a form of expectation of L but are equivalent to an674

expectation of L. For all the following methods we can write the unsupervised objective H such that:675

676

C1Eπx(x̃,ỹ)[L(θ; x̃, ỹ)] ≤ H(θ;x) ≤ C2Eπx(x̃,ỹ)[L(θ; x̃, ỹ)], (14)

with 0 ≤ C1 ≤ C2.677

Indeed, consistency-based methods minimise an unsupervised objective that is a divergence between678

the model predictions and a modified version of the input (data augmentation) or a perturbation of the679

model. Using the fact that all norms are equivalent in a finite-dimensional space such as the space of680

the labels, we have the equivalence between a consistency-based H and an expectation of L.681

VAT The virtual adversarial training method proposed by (Miyato et al., 2018) generates the most682

impactful perturbation radv to add to x. The objective is to train a model robust to input perturbations.683

This method is closely related to adversarial training introduced by Goodfellow et al. (2014).684

H(θ;x) = Div(fθ̂(x, .), fθ(x+ radv, .))

where the Div is a non-negative function that measures the divergence between two distributions, the685

cross-entropy or the KL divergence for instance. If the divergence function is the cross-entropy, it is686

straightforward to write the unlabelled objective as Equation 3. If the objective function is the KL687

divergence, we can write the objective as688

H(θ;x) = Eπx(x̃+r,ỹ)[L(θ; x̃, ỹ)]− Eπx(x̃,ỹ)[L(θ̂; x̃, ỹ)] (15)

with πx(x̃, ỹ) = δx(x̃)pθ̂(y|x). Therefore, variation of H with respect to θ are the same as689

Eπx(x̃+r,ỹ)[L(θ; x̃, ỹ)]. VAT is also a method between consistency-based and entropy-based methods690

as long as we use the KL-divergence or the cross-entropy as the measure of divergence.691

Mean-Teacher A different form of pseudo-labelling is the Mean-Teacher approach proposed by692

(Tarvainen & Valpola, 2017) where pseudo-labels are generated by a teacher model for a student693

model. The parameters of the student model are updated, while the teacher’s are a moving average694

of the student’s parameters from the previous training steps. The idea is to have a more stable695

pseudo-labelling using the teacher than in the classic Pseudo-label. Final predictions are made by the696

student model. A generic form of the unsupervised part of the risk estimator is then697

H(θ;x) =
∑
y

(pθ(y|x)− pθ̂(y|x))
2,

where θ̂ are the fixed parameters of the teacher.698

Π-Model The Π-Models are intrinsically stochastic models (for example a model with dropout)699

encouraged to make consistent predictions through several passes of the same x in the model. The700

SSL loss is using the stochastic behaviour of the model where the model fθ and penalises different701

predictions for the same x (Sajjadi et al., 2016). Let’s note fθ(x, .)1 and fθ(x, .)2 two passes of x702

through the model fθ. A generic form of the unsupervised part of the risk estimator is then703

H(θ;x) = Div(fθ(x, .)1, fθ̂(x, .)2), (16)

where Div is a measure of divergence between two distributions (often the Kullback-Leibler diver-704

gence).705
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Temporal ensembling Temporal ensembling (Laine & Aila, 2017) is a form of Π-Model where706

we compare the current prediction of the model on the input x with an accumulation of the previous707

passes through the model. Then, the training is faster as the network is evaluated only once per input708

on each epoch and the perturbation is expected to be less noisy than for Π-models.709

ICT Interpolation consistency training (Verma et al., 2019) is an SSL method based on the mixup710

operation (Zhang et al., 2017). The model trained is then consistent to predictions at interpolations.711

The unsupervised term of the objective is then computed on two terms:712

H(θ;x1, x2) = Div
(
fθ(αx1 + (1− α)x2, .), αfθ̂(x1, .) + (1− α)fθ̂(x2, .)

)
, (17)

with α drawn with from a distribution B(a, a). With the exact same transformation, we will be able713

to show that this objective is equivalent to a form of expectation of L.714
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C On the semi-supervised bias715

We provide in this appendix a further explanation of the risk induced by the SSL bias as introduced716

in Section 2.3.717

Presented methods minimise a biased version of the risk under the MCAR assumption and therefore718

classical learning theory does not apply anymore,719

E[R̂SSL(θ)] = E[L(θ;x, y)]+λE[H(θ;x, y)] ̸= R(θ). (18)

Learning over a biased estimate of the risk is not necessarily unsafe but it is difficult to provide720

theoretical guarantees on such methods even if some works try to do so with strong assumptions on the721

data distribution (Mey & Loog 2019, Section 4 and 5, Zhang et al. 2021b). Previous works proposed722

generalisation error bounds of SSL methods under strong assumptions on the data distribution or the723

true model. We refer to the survey by Mey & Loog (2019). More recently, Wei et al. (2021) proves an724

upper bound for training deep models with the pseudo-label method under strong assumption. Under725

soft assumptions, Aminian et al. (2022) provides an error bound showing that the choice of H is726

crucial to provide good performances.727

Indeed, the unbiased nature of the risk estimate is crucial in the development of learning theory. This728

bias on the risk estimate may look like the one of a regularisation, such as the ridge regularisation.729

However, SSL and regularisation are intrinsically different for several reasons:730

• Regularisers have a vanishing impact in the limit of infinite data whereas SSL usually do731

not in the proposed methods, see Equation 18. A solution would be to choose λ with respect732

of the number of data points and make it vanish when n goes to infinity. However, in most733

works, the choice of λ is independent of the number of n or nl (Oliver et al., 2018; Sohn734

et al., 2020).735

• One of the main advantages of regularisation is to turn the learning problem into a “more736

convex” problem, see Shalev-Shwartz & Ben-David (2014, Chapter 13). Indeed, ridge737

regularisation will often turn a convex problem into a strongly-convex problem. However,738

SSL faces the danger to turn the learning problem as non-convex as previously noted by739

Sokolovska et al. (2008).740

• The objective of a regulariser is to bias the risk towards optimum with smooth decision741

functions whereas entropy-based SSL will lead to sharp decision functions.742

• Regularisation usually does not depend on the data whereas H does in the SSL framework.743

A entropy bias has been actually used by Pereyra et al. (2017) as a regulariser but as entropy744

maximisation which should has an effect that is the opposite of the SSL method introduced by745

Grandvalet & Bengio (2004), the entropy minimisation.746
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D Proof that R̂DeSSL(θ) is unbiased under MCAR747

Theorem D.1. Under the MCAR assumption, R̂DeSSL(θ) is an unbiased estimator of R(θ).748

As a consequence of the theorem, under the MCAR assumption, R̂CC(θ) is also unbiased as a special749

case of R̂DeSSL(θ) for λ = 0750

Proof: We first recall that the DeSSL risk estimator R̂DeSSL(θ) is defined for any λ by751

R̂DeSSL(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi) +
λ

nu

nu∑
i=1

H(θ;xi)−
λ

nl

nl∑
i=1

H(θ;xi)

=

n∑
i=1

(
ri
nl

L(θ;xi, yi) + λ

(
1− ri
nu

− ri
nl

)
H(θ;xi)

)
.

(19)

By the law of total expectation:752

E[R̂DeSSL(θ)] = Er

[
Ex,y[R̂DeSSL(θ)|r]

]
.

As far as we are under the MCAR assumption, the data (x, y) and the missingness variable r are753

independent thus, Er

[
Ex,y[R̂DeSSL(θ)|r]

]
= Er

[
Ex,y[R̂DeSSL(θ)]

]
.754

We focus on Ex,y[R̂DeSSL(θ)]. First, we replace R̂DeSSL(θ) by its definition and then use the755

linearity of the expectation. Then,756

Ex,y[R̂DeSSL(θ)] = E

[
1

nl

nl∑
i=1

L(θ;xi, yi) +
λ

nu

nu∑
i=1

H(θ;xi)−
λ

nl

nl∑
i=1

H(θ;xi)

]
by definition

=
1

nl

nl∑
i=1

E [L(θ;xi, yi)] +
λ

nu

nu∑
i=1

E [H(θ;xi)]−
λ

nl

nl∑
i=1

E [H(θ;xi)] by linearity

The couples (xi, yi) are i.i.d. samples following the same distribution. Then, we have757

Ex,y[R̂DeSSL(θ)] =
1

nl

nl∑
i=1

E [L(θ;x, y)] +
λ

nu

nu∑
i=1

E [H(θ;x)]− λ

nl

nl∑
i=1

E [H(θ;x)] i.i.d samples

= E [L(θ;x, y)]

= R(θ).

Finally, we have the results that , R̂DeSSL(θ) is unbiased as R(θ) is a constant,758

E[R̂DeSSL(θ)] = E
[
Ex,y[R̂DeSSL(θ)]|r

]
= Er [R(θ)] = R(θ). (20)
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E Proof and comments about Theorem 3.1759

Theorem 3.1 The function λ 7→ V(R̂DeSSL(θ)|r) reaches its minimum for:760

λopt =
nu

n

Cov(L(θ;x, y), H(θ;x))

V(H(θ;x))
(21)

and761

V(R̂DeSSL(θ)|r)|λopt
=
(
1− nu

n
ρ2L,H

)
V(R̂CC(θ))

≤ V(R̂CC(θ)),
(22)

where ρL,H = Corr(L(θ;x, y), H(θ;x)).762

Proof: For any λ ∈ R,we want to compute the variance:763

V(R̂DeSSL(θ)|r).

Under the MCAR assumption, x and y are both jointly independent of r. Also, the couples (xi, yi, ri)764

are independent. Therefore, we have765

V(R̂DeSSL(θ)|r) =
n∑

i=1

V(xi,yi)∼p(x,y|r)

(
ri
nl

L(θ, xi, yi) + λ

(
1− ri
nu

− ri
nl

)
H(θ, xi)

)
i.i.d samples

=

n∑
i=1

V(xi,yi)∼p(x,y)

(
ri
nl

L(θ, xi, yi) + λ

(
1− ri
nu

− ri
nl

)
H(θ, xi)

)
(x, y) and r independent

Using the fact that the couples (xi, yi) are i.i.d. samples following the same distribution, we have766

V(R̂DeSSL(θ)|r) =
n∑

i=1

V(x,y)∼p(x,y)

(
ri
nl

L(θ, x, y) + λ

(
1− ri
nu

− ri
nl

)
H(θ, x)

)

=

n∑
i=1

r2i
n2
l

V(L(θ, x, y)) + λ2

(
1− ri
nu

− ri
nl

)2

V(H(θ, x)) using covariance

+ 2λ
ri
nl

(
1− ri
nu

− ri
nl

)
Cov(L(θ, x, y), H(θ, x))

Now, we remark that the variable r is binary and therefore r2 = r, (1−r)2 = 1−r and r(1−r) = 0.767

Using that and simplifying, we have768

V(R̂DeSSL(θ)|r) =
n∑

i=1

ri
n2
l

V(L(θ, x, y)) + λ2 (1− ri)n
2
l + rin

2
u

n2
l n

2
u

V(H(θ, x))

− 2λ
ri
n2
l

Cov(L(θ, x, y), H(θ, x))

Finally, by summing and simplifying the expression (note that nl + nu = n), we compute the769

expression variance,770

V(R̂DeSSL(θ)|r) =
1

nl
V(L(θ, x, y)) + λ2 n

nlnu
V(H(θ, x))− 2λ

nl
Cov(L(θ, x, y), H(θ, x))

So V(R̂DeSSL(θ)|r) is a quadratic function in λ and reaches its minimum for λopt such that:771

λopt =
nu

n

Cov(L(θ, x, y), H(θ, x))

V(H(θ, x))
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And, at λopt, the variance of R̂DeSSL(θ)|r) becomes772

V(R̂DeSSL(θ)|r) =
1

nl
V(L(θ, x, y))

(
1− nu

n

Cov(L(θ, x, y), H(θ, x))2

V(H(θ, x))V(L(θ;x, y))

)
=

1

nl
V(L(θ, x, y))

(
1− nu

n
Corr(L(θ, x, y), H(θ, x))2

)
=
(
1− nu

n
ρ2L,H

) 1

nl
V(L(θ, x, y))

Remark E.1. If H is perfectly correlated with L (ρL,H = 1), then the variance of the DeSSL estimator773

is equal to the variance of the estimator with no missing labels.774

Remark E.2. Is it possible to estimate λopt in practice ? The data distribution p(x, y) being775

unknown, the computation of λopt is not possible directly. Therefore, we need to use an estimator of776

the covariance Cov(L(θ;x, y), H(θ;x)) and the variance V(H(θ;x)) (See Equation 23). Also, we777

have to be careful not to introduce a new bias with the computation of λopt, indeed, if we compute778

it using the training set, λopt becomes dependent of x and y and therefore R̂DeSSL(θ)|r) becomes779

biased. A solution would be to use a validation dataset for its computation. Another approach is to780

compute it using the splitting method (Avramidis & Wilson, 1993). Moreover, the computation of781

λopt is tiresome and time-consuming in practice as it has to be updated for every different value of θ,782

so at each gradient step.783

λ̂opt =
1
nl

∑nl

i=1(L(θ;xi, yi)− L̄(θ))(H(θ;xi)− H̄(θ))
1
n

∑n
i=1(H(θ;xi)− H̄(θ))2

(23)

where H̄(θ) = 1
n

∑n
i=1 H(θ;xi) and L̄(θ) = 1

nl

∑nl

i=1 L(θ;xi, yi)784

Remark E.3. About the sign of λ As explained in the article, the theorem still has a quantitative785

merit when it comes to choosing λ, by telling that the sign of λ is positive when H and L are786

positively correlated which will generally be the case with the examples mentioned in the article. For787

instance, concerning the entropy minimisation technique, the following proposition proves that the788

log-likelihood is negatively correlated with its entropy and therefore it justifies the choice of λ > 0 in789

the entropy minimisation.790

Proposition E.4. The log-likelihood of the true distribution log p(y|x) is negatively correlated with791

its entropy Hỹ(p(ỹ|x)) = −Eỹ∼p(.|x)[log p(ỹ|x)] .792

Cov(log p(y|x),Hỹ(p(ỹ|x))) < 0 (24)

Proof.

Cov(log p(y|x),Hỹ(p(ỹ|x))) = Ex,y[log p(y|x)Hỹ(p(ỹ|x))]− Ex,y[log p(y|x)]Ex[Hỹ(p(ỹ|x))]
(25)

= −Ex,y[log p(y|x)Eỹ|x[log p(ỹ|x)]] + Ex,y[log p(y|x)]Ex[Eỹ|x[log p(ỹ|x)]]
(26)
(27)

By the law of total expectation, we have that Ex[Eỹ|x[log p(ỹ|x)]] = Ex,ỹ[log p(ỹ|x)], then793

Cov(log p(y|x),Hỹ(p(ỹ|x)) = −Ex,y[log p(y|x)Eỹ|x[log p(ỹ|x)]] + Ex,y[log p(y|x)]2 (28)

= Ex,y[log p(y|x)]2 − Ex,y[log p(y|x)Eỹ|x[log p(ỹ|x)]] (29)

(30)

On the other hand, also with the law of total expectation, Ex,y[log p(y|x)Eỹ|x[log p(ỹ|x)]] =794

Ex[Ey|x[log p(y|x)]Eỹ|x[log p(ỹ|x)]], so795

Ex,y[log p(y|x)Eỹ|x[log p(ỹ|x)]] = Ex[Ey|x[log p(y|x)]2]
≥ Ex[Ey|x[log p(y|x)]]2 Jensen’s inequality

≥ Ex,y[log p(y|x)]2 total expectation law
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Finally, we have the results,796

Cov(log p(y|x),Hỹ(p(ỹ|x))) ≤ Ex,y[log p(y|x)]2 − Ex,y[log p(y|x)]2

≤ 0

797

Remark E.5. We can also see the Pseudo-label as a form of entropy. Indeed, modulo the confidence798

selection on the predicted probability, the Pseudo-label objective is the inverse of the Rényi min-799

entropy:800

H∞(x) = −max
y

log p(y|x)
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F Why debiasing with the labelled dataset?801

We remark that the debiasing can be performed with any subset of the training data, labelled and802

unlabelled. The choice of debiasing only with the labelled data can be explained both intuitively and803

computationally in regard to the Theorem 3.1. Intuitively, the debiasing term penalises the confidence804

on the labelled datapoints and then prevents the overfitting on the train dataset. As remarked in section805

3.1, Pereyra et al. (2017) showed that penalising low entropy models acts as a strong regulariser806

in supervised settings. This comforts the idea of penalising low entropy on the labelled dataset,807

i.e. debiaising the entropy minimisation with the labelled dataset. Considering Pseudo-Label-based808

methods, the objective for the labelled data is to predict the correct labels with moderate confidence.809

This is also similar to the concept of plausibility inference described by Barndorff-Nielsen (1976).810

In regard to Theorem 3.1, we show that the optimum choice of subset for debiaising is either only the811

labelled data or the whole dataset and both are equivalent.812

We consider a subset A of the training set. We defined a as follow:

ai =

{
1/|A| if xi ∈ A
0 otherwise .

The unbiased estimator is then:813

R̂DeSSL,A(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi)+
λ

nu

nu∑
i=1

H(θ;xi)−λ

n∑
i=1

aiH(θ;xi). (31)

814

We compute the variance of this quantity as in the proof of Theorem 3.1 and show that:815

V(R̂DeSSL,A(θ)|r) =
n∑

i=1

ri
n2
l

V(L(θ, x, y))+λ2

(
1− ri
nu

− ai

)2

V(H(θ, x))−2λ
riai
nl

Cov(L(θ, x, y), H(θ, x))

(32)

Suppose that no labelled datapoints are in A. Then, the last term of the variance is null. Hence,816

having no labelled datapoints in A leads to a variance increase. We also remark that debiasing with817

the entire dataset is equivalent that debiasing with the labelled datapoints. Indeed818

R̂DeSSL(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi) +
λ

nu

nu∑
i=1

H(θ;xi)−
1

n

n∑
i=1

H(θ;xi)

=
1

nl

nl∑
i=1

L(θ;xi, yi) +
λ

nu

nu∑
i=1

H(θ;xi)−
λ

n

nl∑
i=1

H(θ;xi)−
λ

n

nu∑
i=1

H(θ;xi)

=
1

nl

nl∑
i=1

L(θ;xi, yi) +
λnl

nnu

nu∑
i=1

H(θ;xi)−
λnl

nnl

nl∑
i=1

H(θ;xi),

which is equivalent to debiasing with only the labelled dataset by replacing λ by λnl

n .819

At this point we can still sample a random subset composed of l labelled datapoints and u unlabelled820

datapoints. Therefore ai = 1/(l + u)1{xi ∈ A}, we show in the following that the optimum choice821

of the couple (l, u) are (nl, 0) and (nl, nU ), so only the labelled or the whole dataset.822

We sample l labelled and u unlabelled datapoints to debiased the estimator, by simplifying the term
in the sum of Equation 32 as follow:

(
1− ri
nu

− ai

)2

=


(

1
nu

− 1
l+u

)2
if xi ∈ A and ri = 0

1
(l+u)2 if xi ∈ A and ri = 1
1
n2
u

if xi /∈ A and ri = 0

0 if xi /∈ A and ri = 1

.
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Then, by summing the term and simplifying, we get:823

V(R̂DeSSL(θ)|r) =
1

nl
V(L(θ, x, y)) + λ2

[
u

(
1

nu
− 1

l + u

)
+

l

(l + u)2
+

nu − u

n2
u

]
V(H(θ, x))

− 2λ
l

nl(l + u)
Cov(L(θ, x, y), H(θ, x))

=
1

nl
V(L(θ, x, y)) + λ2 nl

nu

nu − u+ l

l + u
V(H(θ, x))− 2λ

l

nl(l + u)
Cov(L(θ, x, y), H(θ, x))

We want to minimise V(R̂DeSSL(θ)|r) with respect to (λ, l, u). V(R̂DeSSL(θ)|r) reaches is mini-
mum in λ at

λopt =
nu

nl

l

nu − u+ l

Cov(L(θ, x, y), H(θ, x))

V(H(θ, x))
.

Then,824

V(R̂DeSSL(θ)|r) =
1

nl
V(L(θ, x, y))− nu

nl

l2

(nu − u+ l)(l + u)

Cov(L(θ, x, y), H(θ, x))2

V(H(θ, x))
.

We now want to minimise with respect to 0 ≤ u ≤ nu and 1 ≤ l ≤ nl. We can easily show that the825

(nu − u+ l)(l + u) reaches its mininum for u = 0 or u = nu and for both value:826

V(R̂DeSSL(θ)|r) =
1

nl
V(L(θ, x, y))− nu

nl

l

nu + l

Cov(L(θ, x, y), H(θ, x))2

V(H(θ, x))
.

Then l/(nu + l) is a increasing function, then reaches its maximum a l = nl. So finally, the optimal827

choices for the couple (nl, 0) and (nl, nu). We showed that these couples are equivalent.828
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G Proof of Theorem 3.2829

Theorem 3.2 If S(pθ, (x, y)) = −L(θ;x, y) is a proper scoring rule, then830

S ′(pθ, (x, y, r)) = −(
rn

nl
L(θ;x, y) + λn(

1− r

nu
− r

nl
)H(θ;x)) (33)

is also a proper scoring rule.831

Proof. The scoring rule considered in our SSL framework is:

S ′(pθ, (x, y, r)) = −
(
rn

nl
L(θ;x, y) + λn(

1− r

nu
− r

nl
)H(θ;x)

)
.

The proper scoring rule of the fully supervised problem is

S(pθ, (x, y, r)) = −L(θ;x, y).

Let p be the true distribution of the data (x, y, r). Under MCAR, r is independent of x and y, then832

p(x, y, r) = p(r)p(x, y).833

S ′(pθ, p) =

∫
p(x, y, r)S ′(pθ, (x, y, r)) dx dy dr

=

∫
p(x, y)p(r)S ′(pθ, (x, y, r)) dx dy dr by independence

= −
∫

p(x, y)p(r)
rn

nl
L(θ;x, y) + λn(

1− r

nu
− r

nl
)H(θ;x) dx dy dr

= −
∫
x,y

p(x, y)

(∫
r

p(r)
rn

nl
dr

)
︸ ︷︷ ︸

=1

L(θ;x, y) dx dy

− λn

∫
x,y

p(x, y)

(∫
r

p(r)

(
1− r

nu
− r

nl
)

)
dr

)
︸ ︷︷ ︸

=0

H(θ;x) dx dy

= −
∫
x,y

p(x, y)L(θ;x, y) dx dy

= S(pθ, p)

Therefore, if S(pθ, (x, y)) = −L(θ;x, y) is a proper scoring rule, then834

mathcalS′(pθ, (x, y, r)) = −( rnnl
L(θ;x, y) + λn( 1−r

nu
− r

nl
)H(θ;x)) is also a proper scoring rule.835

836
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H Proof of Theorem 3.5837

Assumption 3.3: the minimum θ∗ of R is well-separated.838

inf
θ:d(θ∗,θ)≥ϵ

R(θ) > R(θ∗) (34)

Assumption 3.4: uniform weak law of large numbers holds for a function L if:839

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

L(θ, xi, yi)− E[L(θ, x, y)]

∣∣∣∣∣ p−→ 0 (35)

Theorem 3.5. Under assumption A and assumption B for both L and H , θ̂ = argmin R̂DeSSL is840

asymptotically consistent with respect to n.841

This result is a direct application of Theorem 5.7 from van der Vaart (2000, Chapter 5) that states842

that under assumption A and B for L, θ̂ = argmin R̂ is asymptotically consistent with respect to n.843

Assumption A remains unchanged as we have M-estimators of the same R. We now aim to prove that844

under assumption B for both L and H , we have the assumption B on θ −→ rn
nl
L(θ;x, y) + λ(1−845

rn
nl
)H(θ;x).846

Lemma H.1. If the uniform law of large number holds for both L and H , then it holds for θ −→847
rn
nl
L(θ;x, y) + λ(1− rn

nl
)H(θ;x).848

Proof. Suppose assumption B for L, then the same result holds if we replace n with nl as n and nl849

are coupled by the law of r. Indeed, when n grows to infinity, nl too and inversely. Therefore,850

sup
θ∈Θ

∣∣∣∣∣ 1nl

nl∑
i=1

L(θ;xi, yi)− E[L(θ;x, y)]

∣∣∣∣∣ p−→
n

0

Now, suppose we have assumption B for H , then we can make the same remark than for L. Now, we851

have to show that:852

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rn

nl
L(θ;x, y) + λn

(
1− r

nu
− r

nl

)
H(θ;x)− E[L(θ;x, y)]

∣∣∣∣∣ p−→
n

0

We first split the absolute value and the sup operator as853

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rn

nl
L(θ;x, y) + λn

(
1− r

nu
− r

nl

)
H(θ;x)− E[L(θ;x, y)]

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ 1nl

n∑
i=1

rn

nl
L(θ;x, y)− E[L(θ;x, y)]

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

λn

(
1− r

nu
− r

nl

)
H(θ;x)

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ 1nl

nl∑
i=1

L(θ;x, y)− E[L(θ;x, y)]

∣∣∣∣∣︸ ︷︷ ︸
p−→
n

0

+ sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

λn

(
1− r

nu
− r

nl

)
H(θ;x)

∣∣∣∣∣ .

So we now have to prove that the second term is also converging to 0 in probability. Again by splitting854

the absolute value and the sup, we have855

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

λn

(
1− r

nu
− r

nl

)
H(θ;x)

∣∣∣∣∣ = sup
θ∈Θ

∣∣∣∣∣λn
n∑

i=1

(1− r)n

nu
H(θ;x)− λ

n

n∑
i=1

rn

nl
H(θ;x)

∣∣∣∣∣
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Then we have that,856

sup
θ∈Θ

∣∣∣∣∣ λnu

n∑
i=1

(1− r)H(θ;x) − λ

nl

n∑
i=1

rH(θ;x)

∣∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∣ λnu

n∑
i=1

(1− r)H(θ;x)− E[H(θ;x, y)]−

(
λ

nl

n∑
i=1

rH(θ;x)− E[H(θ;x, y)]

)∣∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∣ λnu

nl+nu∑
i=nl+1

H(θ;x)− E[H(θ;x, y)]−

(
λ

nl

nl∑
i=1

H(θ;x)− E[H(θ;x, y)]

)∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ λnu

nl+nu∑
i=n−l+1

H(θ;x)− E[H(θ;x, y)]

∣∣∣∣∣︸ ︷︷ ︸
p−→
n

0

+ sup
θ∈Θ

∣∣∣∣∣
(

λ

nl

nl∑
i=1

H(θ;x)− E[H(θ;x, y)]

)∣∣∣∣∣︸ ︷︷ ︸
p−→
n

0

.

Thus,857

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rn

nl
L(θ;x, y) + λn

(
1− r

nu
1− r

nl

)
H(θ;x)− E[L(θ;x, y)]

∣∣∣∣∣ p−→
n

0

And we now just have to apply the results of van der Vaart (2000, Theorem 5.7) to have the asymptotic858

consistent of θ̂ = argmin R̂DeSSL.859

860

Remark H.2. A sufficient condition on the function H to verify assumption B, the uniform weak861

law of large numbers, is to be bounded (Newey & McFadden, 1994, Lemma 2.4). For instance,862

the entropy H = −
∑

y pθ(y|x) log(pθ(y|x)) is bounded and therefore, the entropy minimisation is863

asymptotically consistent.864
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I Asymptotic normality of DeSSL865

In the following, we study a modified version of the objective to simplify the proof. Let us consider866

the following DeSSL objective L′(θ;x, y, r) = r
πL(θ;x, y) + λ

(
1−r
1−π − r

π

)
H(θ;x) which has the867

same properties than the original one (unbiasedness, variance reduction property, consistency and868

benefit from generalisation error bounds). The idea is to replace nl with πn to simplify the expression.869

The value nl converges to πn then the following Theorem should hold with the true DeSSL objective.870

We define the cross-covariance matrice between random vectors ∇L(θ;x, y) and ∇H(θ;x) as871

Kθ(i, j) = Cov(∇L(θ;x, y)i,∇H(θ;x)j).872

Theorem I.1. Suppose L and H are smooth functions in C2(Θ,R). Assume R(θ) admit a second-873

order Taylor expansion at θ∗ with a non-singular second order derivative Vθ∗ . Under the MCAR874

assumption, we have that θ̂DeSSL is asymptotically normal with covariance:875

ΣDeSSL =
1

π
V −1
θ∗ E

[
∇L(θ∗;x, y)∇L(θ∗;x, y)T

]
V −1
θ∗

+
λ2

π(1− π)
V −1
θ∗ E

[
∇H(θ∗;x, y)∇H(θ∗;x, y)T

]
V −1
θ∗

− λ

π
V −1
θ∗ Kθ∗V −1

θ∗ .

As a consequence, we can minimise the trace of the covariance. Indeed, Tr(ΣDeSSL) reaches its876

minimum at877

λopt = (1− π)
Tr(V −1

θ∗ Kθ∗V −1
θ∗ )

Tr(V −1
θ∗ E [∇H(θ∗;x)∇H(θ∗;x)T ]V −1

θ∗ )
, (36)

and at λopt :878

Tr(ΣDeSSL)−Tr(ΣCC) = −1− π

π

Tr(V −1
θ∗ Kθ∗V −1

θ∗ )2

Tr(V −1
θ∗ E [∇H(θ∗;x)∇H(θ∗;x)T ]V −1

θ∗ )
≤ 0. (37)

The complete case is the special case of DeSSL with λ = 0. Then, the Theorem holds for the879

complete case.880

Proof. We define L′(θ;x, y, r) = r
πL(θ;x, y) + λ

(
1−r
1−π − r

π

)
H(θ;x) The assumptions of the881

theorem are sufficient assumptions to apply Theorem 5.23 of Van der Vaart 1998 to the couple882

(θ̂DeSSL, L
′). Hence, we obtain the following representation for representation θ̂DeSSL:883

√
n(θ̂DeSSL − θ∗) =

1√
n
V −1
θ∗

n∑
i=1

ri
π
∇L(θ∗;xi, yi) + λ

(
1− ri
1− π

− ri
π

)
∇H(θ∗;xi) + op(1).

(38)
884

√
n(θ̂DeSSL − θ∗)

L−→ N (0,ΣDeSSL),

The asymptotic normality follows with variance:885

ΣDeSSL = V −1
θ∗ E

[
∇L′(θ∗;x, y)∇L′(θ∗;x, y)T

]
V −1
θ∗ .

Using the MCAR assumption, we simplify the expression of ΣDeSSL:886
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ΣDeSSL = V −1
θ∗ E

[
∇L′(θ∗;x, y)∇L′(θ∗;x, y)T

]
V −1
θ∗

=
1

π2
V −1
θ∗ E

[
r∇L(θ∗;x, y)∇L(θ∗;x, y)T

]
V −1
θ∗

+ λ2V −1
θ∗ E

[(
1− r

(1− π)2
+

r

π2

)
∇H(θ∗;x, y)∇H(θ∗;x, y)T

]
V −1
θ∗

− λ

π2
V −1
θ∗ E

[
r∇L(θ∗;x, y)∇H(θ∗;x, y)T

]
V −1
θ∗

=
1

π
V −1
θ∗ Cov(L(θ∗;x, y))V −1

θ∗ +
λ2

π(1− π)
V −1
θ∗ E

[
∇H(θ∗;x, y)∇H(θ∗;x, y)T

]
V −1
θ∗ − λ

π
V −1
θ∗ Kθ∗V −1

θ∗ .

We remark that the complete case is the particular case of DeSSL with λ = 0. Then,887

ΣDeSSL = ΣCC +
λ2

π(1− π)
V −1
θ∗ E

[
∇H(θ∗;x, y)∇H(θ∗;x, y)T

]
V −1
θ∗

− λ

π
V −1
θ∗ Kθ∗V −1

θ∗ .

The asymptotic relative efficiency of consequence, the asymptotic relative efficiency θ̂DeSSL com-888

pared to θ̂CC is defined as the quotient Tr(ΣDeSSL)
Tr(ΣCC) . This quotien can be minimised with respect to λ:889

890

λopt = (1− π)
Tr(V −1

θ∗ Kθ∗V −1
θ∗ )

Tr(V −1
θ∗ E [∇H(θ∗;x)∇H(θ∗;x)T ]V −1

θ∗ )
, (39)

and at λopt :891

Tr(ΣDeSSL)

Tr(ΣCC)
= 1− 1− π

π

Tr(V −1
θ∗ Kθ∗V −1

θ∗ )2

Tr(V −1
θ∗ E [∇H(θ∗;x)∇H(θ∗;x)T ]V −1

θ∗ )Tr(ΣCC)
≤ 1. (40)

892

Remark I.2. On the sign of λ. It is easy to show that a sufficient condition to have λopt > 0 is to893

have Kθ∗ positive semi-definite. Indeed, using that Vθ∗ is positive definite and Proposition 6.1 of894

Serre (2010), we show that Tr(V −1
θ∗ Kθ∗V −1

θ∗ ) > 0 and then λopt > 0.895

Remark I.3. Why minimising the trace of ΣDeSSL? Minimising the trace of ΣDeSSL leads to an896

estimator with a smaller asymptotic MSE, see Chen et al. (2020).897

Remark I.4. Fully supervised setting. We also remark that our theorem matches the theorem for the
supervised setting. Indeed, observing all the labelled corresponds to the case π = 1 and we obtain:

ΣDeSSL = ΣCC = ΣFully supervised.
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J Proof of Theorem 3.6898

Our proof will be based on the following result from Shalev-Shwartz & Ben-David (2014, Theorem899

26.5).900

Theorem J.1. Let H be a set of parameters, z ∼ D a random variable living in a space Z , c > 0,901

and ℓ : H×Z −→ [−c, c]. We denote902

LD(h) = Ez[ℓ(h, z)], and LS(h) =
1

m

m∑
i=1

ℓ(h, zi), (41)

where z1, ..., zm are i.i.d. samples from D. For any δ > 0, with probability at least 1− δ, we have903

LD(h) ≤ LS(h) + 2E(εi)i≤m

[
sup
h∈H

(
1

m

m∑
i=1

εiℓ(h, zi)

)]
+ 4c

√
2 log(4/δ)

m
, (42)

where ε1, ..., εm are i.i.d. Rademacher variables independent from z1, ..., zm.904

We can now restate and prove our generalisation bound.905

Theorem 3.6. We assume that both L and H are bounded and that the labels are MCAR. Then,906

there exists a constant κ > 0, that depends on λ, L, H , and the ratio of observed labels, such that,907

with probability at least 1− δ, for all θ ∈ Θ,908

R(θ) ≤ R̂DeSSL(θ) + 2Rn + κ

√
log(4/δ)

n
, (43)

where Rn is the Rademacher complexity909

Rn = E(εi)i≤n

[
sup
θ∈Θ

(
1

nl

nl∑
i=1

εiL(θ;xi, yi)−
λ

nl

nl∑
i=1

εiH(θ;xi) +
λ

nu

nu∑
i=1

εiH(θ;xi)

)]
, (44)

with ε1, ..., εm i.i.d. Rademacher variables independent from the data.910

Proof. We use Theorem J.1 with z = (x, y, r), H = Θ, m = n, and911

ℓ(h, z) =
nri
nl

L(θ;xi, yi) + λ

(
n(1− ri)

nu
− nri

nl

)
H(θ;xi). (45)

The unbiasedness of our estimate under the MCAR assumption, proven in Appendix D, ensures that912

the condition of Equation (41) is satisfied with LD(h) = R(θ) and LS(h) = R̂DeSSL(θ). Now,913

since L and H are bounded, there exists M > 0 such that |L| < M and |H| < M . We can then914

bound ℓ:915

|ℓ(h, z)| ≤ n

nl
M + λmax

{
n

nu
,
n

nl

}
M = c. (46)

Now that we have chosen a c that bounds ℓ, we can use Theorem J.1 and finally get Equation (43)916

with κ = 4c
√
2.917
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K DeSSL with H applied on all available data918

For consistency-based SSL methods it is common to use all the available data for the consistency919

term:920

R̂SSL(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi)+
λ

n

n∑
i=1

H(θ;xi). (47)

With the same idea, we debias the risk estimate with the labelled data:921

R̂DeSSL(θ) =
1

nl

nl∑
i=1

L(θ;xi, yi)+
λ

n

n∑
i=1

H(θ;xi)

− λ

nl

nl∑
i=1

H(θ;xi).

(48)

Under MCAR, this risk estimate is unbiased and the main theorem of the article hold with minor922

modifications. In Theorem 3.1, λopt is slightly different and the expression of the variance at λopt923

remains the same. The scoring rule in Theorem 3.2 is different but the theorem remains the same.924

Both Theorem 3.5 and 3.6 remain the same with very similar proofs.925

Theorem K.1. The function λ 7→ V(R̂DeSSL(θ)) reaches its minimum for:926

λopt =
Cov(L(θ;x, y), H(θ;x))

V(H(θ;x))
(49)

and927

V(R̂DeSSL(θ))|λopt = (1− nu

n
ρ2L,H)V(R̂CC(θ))

≤ V(R̂CC(θ))
(50)

where ρL,H = Corr(L(θ;x, y), H(θ;x)).928

When H is applied on all labelled and unlabelled data, the scoring rule used in the learning process929

is then S ′(pθ, (x, y, r)) = −( rnnl
L(θ;x, y) + λ(1− rn

nl
)H(θ;x)) and we have S ′ is a proper scoring930

rule.931
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L MNIST and MedMNIST932

L.1 MNIST933
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Figure 6: The influence of λ on Pseudo-label and DePseudo-label for a Lenet trained on MNIST with nl = 1000:
(Left) Test accuracy; (Middle) Mean test cross-entropy; (Right) Mean test ECE, with 95% CI

L.2 MNIST label noise934
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Figure 7: The influence of λ on Pseudo-label and DePseudo-label for a Lenet trained on MNIST with label
noise with nl = 1000: (Left) Mean test accuracy; (Middle) Mean test cross-entropy; (Right) Test ECE, with
95% CI.
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L.3 MedMNIST935

Table 3: Test AUC of Complete Case , PseudoLabel and DePseudoLabel on five datasets of MedM-
NIST.

DATASET COMPLETE CASE PSEUDOLABEL DEPSEUDOLABEL

DERMA 84.26 ± 0.50 82.64 ± 1.19 83.82 ± 0.95
PNEUMONIA 94.28 ± 0.46 94.34 ± 0.91 94.15 ± 0.33
RETINA 70.70 ± 0.74 70.12 ± 1.01 69.97 ± 1.44
BREAST 74.67 ± 3.68 74.86 ± 3.18 75.33 ± 3.05
BLOOD 97.83 ± 0.23 97.83 ± 0.23 97.72 ± 0.15
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M PseudoLabel and DePseudoLabel on CIFAR: p-values936

M.1 CIFAR-10937
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Figure 8: The influence of λ on Pseudo-label and DePseudo-label on CIFAR-10 with nl= 4000: (Left)
Mean test accuracy; (Middle) Mean test cross-entropy; (Right) Test ECE, with 95% CI.
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Figure 9: p-values of a paired student test between PseudoLabel and DePseudoLabel (Right) DePseu-
doLabel is better than PseudoLabel; (Left) DePseudoLabel is worst than PseudoLabel.

M.2 Computation of λopt on the test set.938

As explained in the main text, the estimation of Cov(L(θ;x, y), H(θ;x)) with few labels led to939

extremely unstable unsatisfactory results. However, we test the formula on CIFAR-10 and different940

methods to provide intuition on the order of λopt and the range of the variance reduction regime941

(between 0 and 2λopt). To do so, we estimate λopt on the test set for CIFAR-10 by training a CNN13942

using only 4, 000 labelled data on 200 epochs. The value of λopt is 1.67, 31.16 and 0.66 for entropy943

minimisation, pseudo label and Fixmatch. Therefore, the reduced variance regime covers the intuitive944

choices of λ in the SSL literature. Unfortunately, computing λopt on the test set is not applicable in945

practice.946
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M.3 CIFAR-100947
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Figure 10: The influence of λ on Pseudo-label and DePseudo-label on CIFAR-100 with nl= 4000:
(Left) Mean test accuracy; (Middle) Mean test cross-entropy; (Right) Test ECE, with 95% CI.
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N Fixmatch (Sohn et al., 2020)948

N.1 Per class accuracy949

In recent work, Zhu et al. (2022) exposed the disparate effect of SSL on different classes. Indeed,950

classes with a high complete case accuracy benefit more from SSL than classes with a low baseline951

accuracy. They introduced a metric called the benefit ratio (BR) that quantifies the impact of SSL on952

a class C:953

BR(C) =
accSSL(C)− accCC(C)

accS(C)− accCC(C)
, (51)

where accSSL(C), accCC(C) and accS(C) are respectively the accuracy of the class with an SSL954

trained model, a complete-case model and a fully supervised model (a model that has access to all955

labels). Inspired by this work, we report the per class accuracy and the benefit ratio in Table N.1. We956

see that the “poor” classes such as bird, cat and dog tend to benefit from DeFixmatch much more957

than from Fixmatch. We compute accS(C) using a pre-trained model with the same architecture1.958

Zhu et al. (2022) also promote the idea that a fair SSL algorithm should benefit different sub-classes959

equally, then having BR(C) = BR(C ′) for all C, C ′. While perfect equality seems unachievable in960

practice, we propose to look at the standard deviation of the BR through the different classes. While961

the standard deviation of Fixmatch is 0.12, the one of DeFixmatch is 0.06. Therefore, DeFixmatch962

improves the sub-populations’ accuracies more equally.963

Table 4: Mean accuracy per class and mean benefit ratio (BR) on 5 folds for Fixmatch, DeFixmatch
and the Complete Case. Bold: “poor” complete case accuracy classes.

COMPLETE CASE FIXMATCH DEFIXMATCH

ACCURACY ACCURACY BR ACCURACY BR
AIRPLANE 86.94 95.94 0.88 96.62 0.94
AUTOMOBILE 95.26 97.54 0.68 98.22 0.89
BIRD 80.46 90.80 0.68 92.64 0.80
CAT 70.08 82.50 0.56 87.16 0.78
DEER 88.88 95.86 0.78 97.26 0.94
DOG 79.66 87.16 0.53 90.98 0.81
FROG 93.12 97.84 0.80 98.62 0.94
HORSE 90.96 96.94 0.83 97.64 0.92
SHIP 94.12 97.26 0.67 98.06 0.84
TRUCK 93.18 96.82 0.84 97.20 0.93

N.2 Fixmatch details964

As first detailed in Appendix B, Fixmatch is a pseudo-label based method with data augmentation.
Indeed, Fixmatch uses weak augmentations of x (flip-and-shift) for the pseudo-labels selection and
then minimises the likelihood with the prediction of the model on a strongly augmented version of x.
Weak augmentations are also used for the supervised part of the loss. In this context,

L(θ;x, y) = Ex1∼weak(x)[− log(pθ(y|x1))]

and

H(θ;x) = Ex1∼weak(x)

[
1[max

y
pθ̂(y|x1) > τ ]Ex2∼strong(x)[− log(pθ(argmax

y
pθ̂(y|x1)|x2))]

]
where x1 is a weak augmentation of x and x2 is a strong augmentation. We tried to debias an965

implementation of Fixmatch 1 however training was very unstable and led to model that were much966

worst than the complete case. We believed that this behaviour is because the supervised part of967

1https://https://github.com/LeeDoYup/FixMatch-pytorch
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the loss does not include strong augmentation. Indeed, our theoretical results encourage to have a968

strong correlation between L and H , therefore including strong augmentations in the supervised term.969

Moreover, a solid baseline for CIFAR-10 using only labelled data integrated strong augmentations970

(Cubuk et al., 2020). We modify the implementation, see Code in supplementary materials. Therefore,971

the supervised loss term can be written as:972

L(θ;x, y) =
1

2

(
Ex1∼weak(x)[− log(pθ(y|x1))] + Ex2∼strong(x)[− log(pθ(y|x2))]

)
, (52)

where x1 is a weak augmentation of x and x2 is a strong augmentation. This modification encourages973

us to choose λ = 1
2 as the original Fixmatch implementation used λ = 1. We also remark that this974

modification degrades the performance of Fixmatch (less than 2%) reported in the work of Sohn975

et al. (2020). However, including strong augmentations in the supervised part greatly improves the976

performance of the Complete Case.977
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O CIFAR and SVHN: Oliver et al. (2018) implementation of978

consistency-based model.979

In this section, we present the results on CIFAR and SVHN by debiasing the implementation of980

(Oliver et al., 2018) of Π-Model, Mean-Teacher and VAT 2. We mimic the experiments of Oliver et al.981

(2018, figure-4) with the same configuration and the exact same hyperparameters (Oliver et al., 2018,982

Appendix B and C). We perform an early stopping independently on both cross-entropy and accuracy.983

As reported below, we reach almost the same results as the biased methods.984
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Figure 11: Test accuracy for each SSL approaches on CIFAR-10 with various amounts of labelled data nl.(Left)
Π-model and DeΠ-model. (Right) VAT+EntMin and VAT+DeEntMin. (Bottom) Mean-teacher and DeMean-
teacher. Shadows represent 95% CI.
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Figure 12: Test cross-entropy for each SSL approaches on CIFAR-10 with various amounts of labelled data
nl.(Left) Π-model and DeΠ-model. (Right) VAT+EntMin and VAT+DeEntMin. (Bottom) Mean-teacher and
DeMean-teacher. Shadows represent 95% CI.

2https://github.com/brain-research/realistic-ssl-evaluation
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O.2 SVHN986
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Figure 13: Test accuracy for each SSL approaches on CIFAR-10 with various amounts of labelled data nl.(Left)
Π-model and DeΠ-model. (Right) VAT+EntMin and VAT+DeEntMin. (Bottom) Mean-teacher and DeMean-
teacher. Shadows represent 95% CI.
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Figure 14: Test cross-entropy for each SSL approaches on CIFAR-10 with various amounts of labelled data
nl.(Left) Π-model and DeΠ-model. (Right) VAT+EntMin and VAT+DeEntMin. (Bottom) Mean-teacher and
DeMean-teacher. Shadows represent 95% CI.
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P Tabular benchmarks987

In this section, we tested these methods against the benchmarks of Chapelle et al., 2006, Chapter988

21 and UCI datasets already used in an SSL context in (Guo et al., 2010). We trained a logistic989

regression for the case of 100 labelled datapoints and finetune λ with a very small validation set, 20990

datapoints. We evaluated the performance in accuracy and cross-entropy of PseudoLabel, EntMin,991

DePseudoLabel and DeEntMin992

P.1 SSL Benchmark993
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Figure 15: Mean accuracy and cross-entropy for each SSL datasets (Chapelle et al., 2006) on a logistic
regression. (Top-Left) PseudoLabel and DePseudoLabel accuracy (Top-Right) PseudoLabel and DePseudoLabel
cross-entropy (Bottom-Left) EntMin and DeEntMin accuracy (Bottom-Right) EntMin and DeEntMin cross-
entropy.
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P.2 UCI datasets994
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Figure 16: Mean accuracy and cross-entropy for each UCI datasets (Guo et al., 2010) on a logistic regression.
(Top-Left) PseudoLabel and DePseudoLabel accuracy (Top-Right) PseudoLabel and DePseudoLabel cross-
entropy (Bottom-Left) EntMin and DeEntMin accuracy (Bottom-Right) EntMin and DeEntMin cross-entropy.
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Q Computation details995

Q.1 Computation resources996

Deep Learning experiments of this work required approximately 9,200 hours of GPU computation.997

In particular, Fixmatch was trained using 4 GPUs. Here are the details:998

• MNIST : 300 hours999

• medMNIST: 3 hours1000

• CIFAR-10: 525 hours1001

• CIFAR-100: 1500 hours1002

• Fixmatch : 960 hours1003

• Realistic SSL evaluation on both CIFAR and SVHN: 5880 hours1004

Q.2 Computation libraries and tools1005

• Python (Van Rossum & Drake Jr, 1995)1006

• PyTorch (Paszke et al., 2019)1007

• TensorFlow (Abadi et al., 2015)1008

• Scikit-learn (Pedregosa et al., 2011)1009

• Seaborn (Waskom et al., 2017)1010

• Python imaging library (Lundh et al., 2012)1011

• Numpy (Harris et al., 2020)1012

• Pandas (McKinney et al., 2010)1013

• RandAugment (Cubuk et al., 2020)1014

• Fixmatch-Pytorch 31015

• Realistic-SSL-evaluation (Oliver et al., 2018)1016

3https://https://github.com/LeeDoYup/FixMatch-pytorch
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