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Bridging Fourier and Spatial-Spectral Domains for
Hyperspectral Image Denoising
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ABSTRACT
Remarkable progresses have been made in hyperspectral image
(HSI) denoising. However, the majority of existing methods are
predominantly confined to the spatial-spectral domain, overlooking
the untapped potential inherent in the Fourier domain. This paper
presents a novel approach to address HSI denoising by bridging
the information from the Fourier and spatial-spectral domains. Our
method highlights key insights into the Fourier properties within spa-
tial and spectral domains through the Fourier transform. Specifically,
we note that the amplitude predominantly encodes noise and photon
reflection characteristics, while the phase holds structural informa-
tion. Additionally, the Fourier transform offers a receptive field that
spans the entire image, enabling effective global noise distribution
capture. These insights unveil new perspectives on the physical prop-
erties of HSIs, motivating us to leverage complementary information
exchange between Fourier and spatial-spectral domains. To this
end, we introduce the Fourier-prior Integration Denoising Network
(FIDNet), a potent yet straightforward approach that utilizes Fourier
insights to synergistically interact with spatial-spectral domains for
superior HSI denoising. In FIDNet, we independently extract spatial
and Fourier features through dual branches and merge these represen-
tations to enhance spectral evolution modeling through the inherent
structure consistency constraints and continuing reflection variation
revealed in Fourier prior. Our proposed method demonstrates robust
generalization across synthetic and real-world benchmark datasets,
outperforming state-of-the-art methods in both quantitative quality
and visual results.

KEYWORDS
Hyperspectral denoising, Fourier-prior, Spatial-spectral modeling

1 INTRODUCTION
Hyperspectral images (HSIs), characterized by numerous contiguous
spectral bands, offer rich spectral information with diverse applica-
tions ranging from medical diagnosis [5] to geological analysis [26]
and vegetation monitoring [25]. However, practical HSIs often suf-
fer from contamination and degradation due to sensor limitations,
atmospheric interference, and environmental factors. These factors
adversely impact downstream computer vision tasks, particularly in
classification [41] and object detection [35]. Consequently, restoring
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Figure 1: (a) In the spatial domain, the amplitude and phase
components from the Fourier domain inherently embody global
noise patterns and spatial structures, enhancing local spatial
representations and addressing diverse data distributions. These
properties provide potential solutions to separate noise and struc-
ture, boosting model generalization. (b) In the spectral domain,
the amplitude implies photon reflection variation between dif-
ferent bands, supporting model to reduce spectral distortion,
while phase enforces structural consistency, aiding structural
recovery.

clean HSIs from noisy observations has become a pivotal challenge
in the realms of computational photography and computer vision.

Recent advancements in deep learning (DL) have yielded con-
volutional neural network (CNN) and Transformer-based meth-
ods [2, 16, 17, 20, 30] for end-to-end translation from noisy to
clean HSIs. Despite their progress, these methods retain intrinsic
limitations. CNN-based approaches extract local features with con-
volution filters, failing to model long-range spatial dependencies
and global noise distributions. Transformer-based methods, although
capturing global dependencies and pixel correlations, are computa-
tionally intensive and inflexible across various datasets. Importantly,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Examples of physical properties of amplitude and phase components in spatial-spectral domains. For amplitude components,
we swap the amplitude on the static spatial degradation and dynamic spectral evolution scenarios. The reconstructed results imply
that the amplitude contains most noise information and crucial photon reflection information. For phase components, the similar
reconstructed results only using phase representations on the static spatial degradation and dynamic spectral evolution scenarios
reveal that the phase components are more related to structure and edge information.

these DL methods often overlook the intrinsic physical properties
of noise patterns and structural information, potentially leading to
overfitting on specific synthetic datasets.

To address these challenges, this paper delves into the integration
of Fourier knowledge into spatial-spectral domains for HSI denois-
ing. The Fourier priors encompass both spatial and spectral aspects,
as depicted in Fig. 1. Specifically, we uncover and leverage the phys-
ical properties of amplitude and phase in the Fourier domain. They
provide global noise distribution and structural information in the
spatial domain, implicitly embed reflection variation information,
and enforce structural consistency in the spectral domain. This robust
Fourier prior presents a potential solution for enhancing model per-
formance and generalization capabilities. To visualize these above
properties, we utilize fast Fourier transforms (FFT) to decompose
HSIs into amplitude and phase components following inspiration
from [34]. Our investigations unveil intriguing phenomena related
to these components, as shown in Fig. 2. For instance, the upper
part of Fig. 2 reveals the physical attributes of amplitude. Swapping
the amplitude components within the same spatial context yields
pairs (Noisy & Pseudo-N and Clean & Pseudo-C) with analogous
spatial appearances. Similarly, swapping amplitude components of
different spectral bands results in spectral similarity (Specturm-1 &
Pseudo-S1 and Specturm-2 & Pseudo-S2). This signifies that noise
and photon reflection data primarily reside in amplitude components.
Moreover, in the lower part of Fig. 2, we unveil the physical prop-
erties of the phase component. As can be seen, results (Pha-Rec)
reconstructed only through phase in spatial and spectral contexts
encapsulate structural information. Furthermore, Fourier features’

image-size receptive field facilitates global noise distribution and
structure information capture.

These insights motivate us to incorporate the complementary in-
formation from Fourier domain, enabling the extraction of physical
properties that cannot be separated in the spatial-spectral domain.
Hence, we introduce the Fourier-prior Integration Denoising Net-
work (FIDNet), an elegant structure designed for effective HSI de-
noising, as depicted in Fig. 3. Considering the notable modality dis-
parities between Fourier and spatial-spectral domains, effective fea-
ture extraction and fusion strategies are essential. FIDNet achieves
this by permuting input spectral dimension into batch dimension,
enabling focused feature extraction without premature spectral in-
clusion. Spatial and Fourier domain features are then separately
extracted in two branches to overcome inter-domain disparities. The
fused features, enriched with Fourier-specific attributes, prove more
suitable for spectral evolution modeling by simply detaching spectral
dimension back to their original positions, in line with Fig. 1 insights.
We simply employ a vanilla 3-D UNet [31] structure for spectral
modeling. More sophisticated architectures may indeed yield larger
performance gains, but in this paper, such advancements are not
the primary focus. Ultimately, the denoised HSI is generated from
the independent spatial and Fourier-integrated spectral feature with
several 2-D convolution layers. Notably, the proposed FIDNet can
handle input HSIs with varying spectral numbers flexibly, avoiding
dataset-specific training.

Overall, our work makes following main contributions:
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• We reveal the physical properties of amplitude and phase
components in the spatial degradation and spectral evolu-
tion contexts, and integrate the Fourier and spatial-spectral
information for HSI denoising.

• we introduce a novel Fourier-prior Integration Denoising Net-
work (FIDNet), which leverages complementary information
from both Fourier and spatial-spectral domains to generate
noise-free HSIs. To the best of our knowledge, we are the first
to introduce amplitude and phase components for the HSI
denoising task, marking a novel advancement in the field.

• We tailor the amplitude-phase block and Fourier-spatial fu-
sion module to exploit the characteristics of amplitude-phase
components and effectively capture the complementary rela-
tionships from Fourier domain.

• Our FIDNet is simple yet powerful. Experimental results
demonstrate that our method surpasses state-of-the-art ap-
proaches on synthetic datasets and showcases exceptional
generalizability to various datasets.

2 RELATED WORKS
2.1 Hyperspectral Image Denoising
Mainstream HSI denoising methods can be broadly categorized into
two main groups: traditional model-based methods and DL-based
methods. Traditional model-based methods [10, 18] rely on hand-
crafted mathematical and statistical priors to remove noise from
hyperspectral images. For example, Wang et al. [28] introduce a
tensor-based HSI noise removal algorithm, while He et al. [11]
devised a low-rank matrix recovery approach with a global spatial-
spectral total variation constraint. DL-based methods [33, 38] utilize
neural networks to automatically learn and extract features from hy-
perspectral images for denoising. Wei et al. [30] propose a powerful
3D Quasi-Recurrent Neural Network (QRNN) module for effectively
capturing spatial and spectral dependencies. Cao et al. [2] introduce
a sophisticated deep spatial-spectral global reasoning network that
effectively combines local and global information for HSI denoising.
Li et al. [16, 17] introduce vision transformer into HSI denoising
task to explore the intrinsic similarity characteristics in both spatial
and spectral dimensions. However, these methods rarely explore the
potential solutions in the Fourier domain, which is a critical aspect
of noise removal.

2.2 Fourier Transform in Deep Learning
The Fourier transform is a fundamental tool for Fourier analysis,
revealing two crucial physical properties. High-fourier components
capture intricate textures and fine details, while Low-fourier com-
ponents represent smoother regions. Approaches like [21, 23, 32]
use network structures to handle these components separately for
improved detail extraction. However, in denoising, noise mainly
resides in high-Fourier components, leading to residual noise in
reconstructed images. FFT-transformed Fourier information also
offers global statistics, enabling long-range dependency capture.
Works such as [24, 34, 36] utilize FFT to enhance neural network
representation and generalization. Recent studies [9, 12, 27, 37, 42]
split Fourier domain into amplitude and phase, enhancing spatial-
Fourier learning. Motivated by these successes, we extensively in-
vestigate amplitude and phase components, bridging Fourier and

spatial-spectral domains for high-dimensional HSI denoising, push-
ing beyond conventional spatial-Fourier domains relationship explo-
ration.

3 METHOD
3.1 Motivation and Background
The Fourier transform serves as a pivotal component in our method,
and a brief review of its principles would be beneficial for compre-
hending our work. Given a band 𝑥 ∈ R𝐻×𝑊 ×1 in HSI, the Fourier
transform of the band 𝑥 can be formulated as follows:

F (𝑥) (𝑢, 𝑣) =
𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑥 (ℎ,𝑤)𝑒− 𝑗2𝜋
(
ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣

)
, (1)

where 𝑢 and 𝑣 are the horizontal and vertical coordinates. F (𝑥) can
be denoted as F (𝑥) = 𝑅(𝑥) + 𝑗𝐼 (𝑥), where 𝑅(𝑥) and 𝐼 (𝑥) represent
the real and imaginary parts of F (𝑥). Afterward, the amplitude
A(𝑥) and phase P(𝑥) components from F (𝑥) can be calculated as:

A(𝑥) (𝑢, 𝑣) =
√︁
𝑅2 (𝑥) (𝑢, 𝑣) + 𝐼2 (𝑥) (𝑢, 𝑣),

P(𝑥) (𝑢, 𝑣) = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝐼 (𝑥) (𝑢, 𝑣)
𝑅(𝑥) (𝑢, 𝑣) ) .

(2)

Correspondingly, the reconstructed process of 𝑅(𝑥) and 𝐼 (𝑥) can
be calculated as:

R(𝑥) (𝑢, 𝑣) = A(𝑥) (𝑢, 𝑣) cosP(𝑥) (𝑢, 𝑣),
I(𝑥) (𝑢, 𝑣) = A(𝑥) (𝑢, 𝑣) sinP(𝑥) (𝑢, 𝑣) . (3)

where the Fourier information F (𝑥) = 𝑅(𝑥) + 𝑗𝐼 (𝑥) can be recon-
structed to the original band 𝑥 by the inverse Fourier transform F −1

.
Targeting at HSI denoising, we explore what the A and P physi-

cally represent in the spatial-spectral domains. As demonstrated and
analyzed in Fig. 1 and Fig. 2, we conclude that the noise degradation
and photon reflection information predominantly manifest in the am-
plitude component whereas phase components encapsulate structural
information. Therefore, the relationship between the spatial-spectral
and the characteristics of the amplitude and phase in the Fourier
domain is physically well-defined. Based on the above analysis, we
are inspired to restore amplitude and phase components with mu-
tual guidance and explore potential solutions for HSI denoising in
both spatial-spectral and Fourier domains. Now we elaborate on our
FIDNet, detailed in Fig. 3.

3.2 Fourier-prior Integration Denoising Network
3.2.1 Structure Flow. For the given noisy sequential input HSIs
𝑌 ∈ R𝑁×𝐵×𝐻×𝑊 , we reshape 𝑌 as 𝑌

′ ∈ R(𝑁×𝐵)×1×𝐻×𝑊 to in-
dependently consider spatial and Fourier information, respectively.
Then we feed 𝑌

′
into a 1 × 1 convolution layer to generate the initial

feature 𝐹𝑖𝑛𝑖 ∈ R(𝑁×𝐵)×𝐶×𝐻×𝑊 . Subsequently, 𝐹𝑖𝑛𝑖 is fed into both
the Spatial Extractor and Fourier Extractor simultaneously to extract
distinct spatial and Fourier representations 𝐹𝑠𝑝𝑎 and 𝐹𝑓 𝑜𝑢𝑟𝑖𝑒𝑟 with
the same shape as 𝐹𝑖𝑛𝑖 . Then, the 𝐹𝑠𝑝𝑎 and 𝐹𝑓 𝑜𝑢𝑟𝑖𝑒𝑟 in different
domains mutually leverage each other’s complementary information
by a simple but efficient Fourier-Spatial Fusion Module (FSFM) to
enhance and merge both representations to get powerful fused fea-
ture 𝐹𝑏𝑖 ∈ R(𝑁×𝐵)×𝐶×𝐻×𝑊 . Afterward, to incorporate the inherent
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Figure 3: The overall framework of FIDNet.

reflective variations and structural consistency constraints of ampli-
tude and phase into the spectral evolution modeling, we cleverly
detach the spectral dimension 𝐵 of the fused features from the batch
dimension (𝑁 ×𝐵) and transpose it before the feature slices (𝐻 ×𝑊 ).
This arrangement maintains the sequence of each slice in the original
input image, i.e., 𝐹𝑏𝑖 is transformed as 𝐹

′

𝑏𝑖
∈ R𝑁×𝐶×𝐵×𝐻×𝑊 . Since

each slice possesses Fourier characteristics, it inherently introduces
constraints related to reflective variations and structural consistency.
To reduce computational complexity, we directly employ a Vanilla 3-
D UNet for spectral evolution learning on the channels 𝐶 dimension
and 𝐹𝑡𝑟𝑖 ∈ R𝑁×1×𝐵×𝐻×𝑊 is generated. Ultimately, the Restorer
reconstructs the clean sequential output HSIs 𝑋𝑜𝑢𝑡 ∈ R𝑁×𝐵×𝐻×𝑊

using 𝐹
′
𝑡𝑟𝑖

∈ R(𝑁×𝐵)×1×𝐻×𝑊 transposed from 𝐹𝑡𝑟𝑖 and the skip
connection from 𝐹𝑠𝑝𝑎 .

3.2.2 Loss Function. In FIDNet, we propose a joint spatial-
spectral and Fourier domain loss for supervising the network training.
For the spatial-spectral domain, we minimize the 𝐿1 loss of the de-
noised HSI 𝑋𝑜𝑢𝑡 and the ground truth 𝑋𝑔𝑡 , formulated as follows:

L𝑠 =
X𝑜𝑢𝑡 − X𝑔𝑡


1 . (4)

In the Fourier domain, we utilize the FFT to transform 𝑋𝑜𝑢𝑡 and 𝑋𝑔𝑡
into the Fourier space, obtaining their corresponding amplitude and
phase components. Subsequently, we compute the 𝐿1-norms of the
amplitude and phase differences between 𝑋𝑜𝑢𝑡 and 𝑋𝑔𝑡 as part of

the loss function:

L𝑎𝑚𝑝 =
A(𝑋𝑜𝑢𝑡 ) − A(𝑋𝑔𝑡 )


1

L𝑝ℎ𝑎 =
P(𝑋𝑜𝑢𝑡 ) − P(𝑋𝑔𝑡 )


1 .

(5)

Finally, the overall loss L𝑡𝑜𝑡𝑎𝑙 is the combination of L𝑠 , L𝑎𝑚𝑝 and
L𝑝ℎ𝑎 , which is formulated as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑠 + 𝜆(L𝑎𝑚𝑝 + L𝑝ℎ𝑎), (6)

where 𝜆 is the weight factor and is empirically set as 0.01.

3.2.3 Spatial Extractor & Restorer. In the Spatial Extractor, it
consists of cascaded ConvNormReLU blocks [7] to extract spatial
features. The Restorer with a symmetrical structure to reconstruct
the clean HSIs.

3.2.4 Fourier Extractor & APB.. In Fourier Extractor, it consists
of multiple Amplitude-Phase Block (APB, see Fig. 2(b)) to extract
distinct features from Fourier domain. In APB, the amplitude and
phase components are first calculated by FFT. Then, their features
𝐹𝑎𝑚𝑝 , 𝐹𝑝ℎ𝑎 ∈ R(𝑁×𝐵)×𝐶×𝐻×𝑊 are extracted by a cascaded Con-
vNormReLU block, and reconstructed to Fourier feature by IFFT.

3.2.5 FSFM & BCA.. In Fourier-Spatial Fusion Module (FSFM)
(see Fig. 2(c)), it adaptively exploits the complementary information
from the spatial-Fourier domain by using BCA and generates pow-
erful features for better spectral evolution modeling. Specifically,
Bidomain Cross Attention (BCA) (see Fig. 2(d)) utilizes two inputs,
the source modality and the complementary modality. To fully inter-
act with these modalities, it generates the query 𝑄 from the source
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Table 1: Quantitative evaluation of all the competing methods under mixture noise case on different datasets.

Methods
ICVL CAVE PAVIA WDC

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy 13.97 0.3392 0.8987 14.17 0.4188 1.1371 13.89 0.3400 0.9746 13.98 0.2148 1.0120
LRTDTV [28] 34.46 0.9184 0.1127 33.82 0.9085 0.2938 29.65 0.8963 0.2445 36.33 0.8597 0.2148
LLRGTV [11] 31.39 0.8756 0.2538 27.12 0.7221 0.6567 28.41 0.8923 0.3142 34.32 0.8260 0.3150
QRNN3D [30] 39.22 0.9904 0.0809 36.55 0.9825 0.4244 32.93 0.9698 0.1570 33.96 0.8744 0.1344
GRNet [2] 31.67 0.9557 0.1431 28.44 0.8899 0.6329 26.57 0.8536 0.2815 25.14 0.7682 0.3255
MAC-Net [33] 30.75 0.9332 0.2673 28.53 0.8920 0.6234 27.34 0.8813 0.3530 30.74 0.7740 0.5371
T3SC [1] 35.68 0.9790 0.1389 33.61 0.9728 0.4137 31.39 0.9523 0.2314 30.49 0.9064 0.1972
MAN [13] 35.85 0.9691 0.1458 35.15 0.9712 0.4990 32.94 0.9711 0.1820 32.77 0.8065 0.1638
SST [16] 39.58 0.9928 0.0480 34.89 0.9616 0.4095 32.85 0.9588 0.1555 30.59 0.8924 0.1860
SERT [17] 40.44 0.9941 0.0470 35.86 0.9737 0.3403 33.28 0.9653 0.1451 31.33 0.9098 0.1609
HSDT [14] 40.76 0.9940 0.0505 38.52 0.9892 0.2362 34.25 0.9768 0.1295 37.79 0.9465 0.1049
FIDNet (Ours) 40.89 0.9941 0.0463 37.89 0.9888 0.2219 34.26 0.9722 0.1266 39.36 0.9523 0.1042

Table 2: Quantitative evaluation of all the competing methods under different complex noise cases on the KAIST dataset.

Methods
Non-i.i.d Gaussian Gaussian+Stripe Gaussian+Deadline Gaussian+Impulse Gaussian+Mixture

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy 18.26 0.6145 1.0741 18.10 0.6136 1.0746 17.23 0.5770 1.0960 15.00 0.4625 1.0965 13.70 0.4216 1.1133
LRTDTV 37.33 0.9510 0.2195 37.16 0.9498 0.2113 36.49 0.9413 0.2354 37.03 0.9505 0.2445 35.60 0.9355 0.2503
LLRGTV 36.66 0.9109 0.3678 36.68 0.9152 0.3510 34.76 0.8761 0.4268 33.61 0.8502 0.5109 32.14 0.8166 0.5218
QRNN3D 39.42 0.9874 0.2085 39.24 0.9877 0.2086 38.99 0.9868 0.2167 38.15 0.9853 0.2505 37.10 0.9831 0.2934
GRNet 30.58 0.9131 0.5235 30.41 0.9093 0.5298 30.22 0.9044 0.5280 28.77 0.8870 0.5996 28.29 0.8847 0.5780
MAC-Net 34.33 0.9537 0.4795 33.37 0.9520 0.4733 32.82 0.9428 0.4718 31.02 0.9205 0.5925 28.41 0.9041 0.5840
T3SC 37.79 0.9915 0.1603 37.68 0.9915 0.1678 37.04 0.9903 0.1888 34.87 0.9808 0.2561 33.62 0.9750 0.2958
MAN [13] 38.76 0.9887 0.2076 38.54 0.9889 0.2102 38.16 0.9881 0.2117 36.38 0.9779 0.3220 35.27 0.9704 0.3818
SST [16] 36.79 0.9774 0.2267 36.59 0.9779 0.2294 36.34 0.9762 0.2323 35.62 0.9726 0.2622 34.65 0.9638 0.3050
SERT [17] 37.77 0.9851 0.1918 37.57 0.9849 0.1956 37.35 0.9836 0.1976 36.58 0.9803 0.2262 35.71 0.9761 0.2459
HSDT [14] 40.18 0.9905 0.1413 40.07 0.9909 0.1406 39.76 0.9920 0.1465 39.47 0.9913 0.1537 38.31 0.9904 0.1582
FIDNet 40.52 0.9935 0.1236 40.30 0.9937 0.1257 40.14 0.9929 0.1300 39.55 0.9930 0.1381 38.84 0.9907 0.1489

modality and obtains the key 𝐾 and value 𝑉 from complementary
modality by applying different large kernel convolutional (LKC)
layers [8], providing the large modality receptive field. After that,
the attention process of the BCA can be written as follows:

Attention(Q,K,V) = Softmax

(
QK𝑇√︁
𝑑𝑘

)
V, (7)

where
√︁
𝑑𝑘 is a scalar as defined in [4]. To capture the incorpora-

tion of modalities along the channel dimension, multiplication is
calculated between the corresponding elements along the channel
dimension.

4 EXPERIMENTS
In this section, we comprehensively assess the performance of var-
ious methods on synthetic and real datasets and substantiate the
efficacy of our proposed approach through a combination of quanti-
tative and qualitative analyses.

4.1 Benckmarks
4.1.1 Datasets. Following the experimental setting in [17], we
select 100 images from the ICVL1 dataset for training. For testing
of synthetic experiments, we randomly select 50 images from ICVL
(excluding the training set), 10 images from the KAIST [3] and 30
images from CAVE [22]. In addition, the remote sensing datasets
WDC Mall2 and Pavia Center [6] are adopt further verify the gener-
alization capabilities of each model. For the real experiments, the
HYDICE Urban [19] and AVIRIS Indian Pines [15] are adopted for
testing.

4.1.2 Training data. In this section, we detail our dataset selection
and preprocessing. From the ICVL dataset, containing a total of 201
images, we randomly choose 100 images with the size of 1392
× 1300 × 31 for training. Specifically, these selected images are
firstly center-cropped into a size of 1024 × 1024 × 31. To diversify
the training set, we apply augmentations such as random flipping,

1http://icvl.cs.bgu.ac.il/hyperspectral/
2https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

http://icvl.cs.bgu.ac.il/hyperspectral/
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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(a) Noisy (b) LRTDTV (c) LLRGTV (d) QRNN3D

(e) GRNet (f) MAC-Net (g) T3SC (h) SST

(i) SERT (j) HSDT (k) FIDNet (Ours) (l) GT

Figure 4: Denoising visual comparison of the WDC Mall dataset.
The visual image is synthesized by HSI bands 76, 43, and 10.

Table 3: The number and size of the testing set for all datasets.

Datasets Number Original size Cropped size

ICVL 50 1392 × 1300 × 31 512 × 512 × 31
CAVE 30 512 × 512 × 31 512 × 512 × 31
KAIST 10 3376 × 2704 × 31 2048 × 2048 × 31
Pavia Center 1 1096 × 715 × 102 384 × 384 × 102
WDC Mall 1 1208 × 307 × 191 256 × 256 × 191
Indian Pines 1 145 × 145 × 220 144 × 144 × 220
Urban 1 307 × 307 × 210 224 × 224 × 210

rotation, and scaling. Consequently, we create cube data of size 64
× 64 × 31 at scales 1:1, 1:2, and 1:4, with strides 64, 32, and 32,
resulting in 53,000 training samples.

4.1.3 Testing data. Regarding the testing set, we consider both
synthetic and real-world data. The details of testing datasets are
shown in Table 3. For synthetic experment, the ICVL, CAVE [22],
KAIST [3], Pavia Center [6] and WDC Mall are employed as test-
ing data. For real-world data, we adopt the Indian Pines [15] and
Urban [19] contained unknown noises as testing data.

4.1.4 Methods and Metrics. To demonstrate the effectiveness of
our approach, we evaluate its performance against several state-of-
the-art methods, including two traditional models (LRTDTV [28]
and LLRGTV [11]) and five deep-learning methods (QRNN3D [30],
GRNet [2], MACNet [33], T3SC [1], MAN [13], SST [16], SERT [17],
HSDT [14]). We utilize widely accepted image quality metrics, in-
cluding PSNR, SSIM [29], and SAM [39], for a comprehensive
assessment of denoising performance.

(a) Noisy (b) LRTDTV (c) LLRGTV (d) QRNN3D

(e) GRNet (f) MAC-Net (g) T3SC (h) SST

(i) SERT (j) HSDT (k) FIDNet (Ours) (l) GT

Figure 5: Denoising visual comparison of the KAIST dataset.
The visual image is synthesized by HSI bands 29, 19, 9.

4.2 Implementation Details
To simulate complex noisy scenarios in real-world HSIs, we employ
five noise patterns: Non-i.i.d Gaussian noise, Non-i.i.d Gaussian
noise with stripe noise, deadline noise, impulse noise, and a mixture
of these patterns. Comprehensive noise configuration specifics can
be referenced in [17]. We train FIDNet for 50 epochs with a batch
size of 16 and the learning rate is initialized as 2× 10−4 and decayed
to 1 × 10−4 after 40 epochs with Adam optimizer, where the 𝛽1 and
𝛽2 are set to 0.9 and 0.99 respectively. We set the basic channel 𝐶
= 12. The traditional models are run on the Intel Core i7-13700KF
CPU, whereas all deep-learning techniques are trained on NVIDIA
GeForce RTX 3090 GPUs.

4.3 Experimental Results and Analysis
In this section, we present additional visual results on the ICVL and
CAVE test sets to further illustrate the performance of FIDNet. It is
evident from Fig. 6 of ICVL that noticeable stripe noise remains in
SERT’s result, whereas FIDNet successfully removes the majority of
the noise, resulting in superior visual quality. From Fig 6 of CAVE,
FIDNet exhibits colors and textures that are much closer to the
ground truth, highlighting its superior performance.

In synthetic and real-world experiments, all DL methods are
trained on the ICVL dataset. For methods (GRNet, T3SC, SST,
SERT) that are not flexible with large spectral numbers, we employ
a sliding window manner for denoising and take the average value
as the final result.

4.3.1 Synthetic Experiments. To underscore FIDNet’s robust-
ness, we initially assess its performance on four diverse benchmarks:
ICVL, CAVE, and remotely sensed datasets Pavia Center and WDC
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(a) Noisy (b) LRTDTV (c) GRNet (d) MAC-Net (e) T3SC (f) SST (g) SERT (h) HSDT (i) FIDNet (Ours) (j) GT

(k) Noisy (l) LRTDTV (m) GRNet (n) MAC-Net (o) T3SC (p) SST (q) SERT (r) HSDT (s) FIDNet (Ours) (t) GT

Figure 6: Denoising visual comparison of ICVL and CAVE dataset. The visual image is synthesized by HSI bands 29, 19, 9.

(a) Noisy (b) LRTDTV (c) QRNN3D (d) GRNet (e) MAC-Net (f) T3SC (g) SST (h) SERT (i) HSDT (j) FIDNet

Figure 7: Visual comparison of the real-world dataset Indian Pines. The visual image is synthesized by HSI bands 127, 24, 2.

(a) Noisy (b) LRTDTV (c) QRNN3D (d) GRNet (e) MAC-Net (f) T3SC (g) SST (h) SERT (i) HSDT (j) FIDNet

Figure 8: Visual comparison of the real-world dataset Urban. The visual image is synthesized by HSI bands 102, 138, 202.

Mall, incorporating intricate mixture noise scenarios. As depicted
in Table 1, SOTA methods exhibit remarkable results on ICVL but
reveal limitations in generalization across the other datasets. In con-
trast, FIDNet consistently excels, notably surpassing SST and SERT
by 8.77 dB and 8.03 dB in PSNR on WDC Mall, possibly due to
overfitting within specific data domains by other methods. Moreover,
visual representation using the WDC Mall dataset in Fig. 4 illustrates
our method’s efficacy, preserving image structure while minimiz-
ing residual noise. Additionally, we thoroughly evaluate FIDNet’s
denoising performance on the KAIST dataset, encompassing var-
ious complex noise scenarios and a substantial spatial resolution.
Quantitative and qualitative evaluations, as showcased in Table 2
and Fig. 5, respectively, establish FIDNet’s superiority over SOTA
approaches in all metrics. Furthermore, performance disparities be-
tween KAIST and ICVL training datasets expose deficiencies in
recent SOTA methods, SST, SERT, and HSDT, emphasizing FID-
Net’s robust generalization and dataset insensitivity. This success
can be attributed to FIDNet’s adept utilization of Fourier prior knowl-
edge, effectively decoupling noise and structure based on physical
principles, and enhancing its capacity to capture spectral variations
while preserving structural coherence within the spectral domain.

Table 4: Comparison on Parameter count (M), FLOPS (G), and
runtime (sec.). These metrics are compared using the ICVL
dataset with a size of 512×512×31. The runtime of each method
is tested on the NVIDIA 3090 GPU.

Methods GRNet MACNet T3SC SST SERT HSDT FIDNet

PSNR 31.67 30.75 35.68 39.58 40.44 40.76 40.89
Params 41.44 0.43 0.83 4.10 1.91 0.13 0.48
GFLOPS 610.7 - - 2082.4 1018.9 - 2115.6
Times 0.466 2.709 0.758 2.265 0.872 1.032 0.841

4.3.2 Real-World Experiments. To address real-world noise and
produce visually appealing HSIs, we conduct denoising experiments
on real-world Indian Pines and Urban datasets. The visual outcomes,
depicted in Fig.7 and Fig.8, highlight FIDNet’s consistent production
of realistic, artifact-free textures. This robust performance substanti-
ates the efficacy of our approach.

4.3.3 Efficiency Experiments. The practical applicability of a
model hinges on its efficiency, encompassing factors like parameter
counts (Params, M), computational complexity (FLOPS, G), and
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runtime (s). Therefore, we compare the efficiency of each method
on ICVL datasets. The results in Table 4 indicate that the simple yet
efficient FIDNet achieves low parameter costs and efficient inference
times.

4.4 Ablation Study
4.4.1 Network Structure. The global structure of FIDNet con-
sists of four main modules: Spatial Extractor, Fourier Extractor,
Spectral Evolution Module, and Restorer. The Spatial Extractor and
Restorer are symmetric, each composed of two cascaded ConvNorm-
ReLU blocks [7]. The Fourier Extractor consists of two proposed
Amplitude-Phase Blocks (APBs). The Spectral Evolution module is
a 3-D UNet composed of Residual Dense Blocks (RDBs) [40].

4.4.2 Components and Losses. In FIDNet, the Fourier prior
is derived through the Fourier Extractor, while the Fourier-Spatial
Fusion Module (FSFM) seamlessly combines Fourier and spatial fea-
tures, accompanied by the domain-specific loss function. To validate
the effectiveness of this proposed Fourier prior and its associated
losses, we establish a baseline with a Spatial Extractor, Spectral
Evolution, and Restorer, and enhance it with the Fourier Extractor,
denoted as baseline+F. This involves direct element-wise addition
of spatial-Fourier domain features. These models are assessed using
loss functions 𝐿𝑠 in Eq.4 and 𝐿𝑡𝑜𝑡𝑎𝑙 in Eq.6, and their performance
and efficiency are compared in Table 5.

Table 5: Ablation study on the effect of Fourier Extractor and
FSFM using different loss functions under WDC Mall dataset.

Models PSNR (𝐿𝑠 ) PSNR (𝐿𝑡𝑜𝑡𝑎𝑙 ) Params (M) GFLOPS

Baseline 38.39 38.53 0.46 1470.3
Baseline+F 38.74 39.02 0.47 1545.0
FIDNet 39.03 39.36 0.48 1641.1

Key insights drawn from the results are as follows: Integrating
Fourier priors substantially improves the baseline model’s denoising
ability. However, due to distinct feature expressions in spatial and
Fourier domains, FSFM is introduced for seamless fusion, leading to
further performance enhancement. Furthermore, supervised training
using 𝐿𝑡𝑜𝑡𝑎𝑙 on amplitude and phase components boosts performance
across all models, underscoring its efficacy.

4.5 Number of Feature Channel
To investigate the influence of module channel numbers, experiments
are conducted on the WDC Mall dataset, as depicted in Table 6.
Unlike the Spectral Evolution Module, the Spatial Extractor, Fourier
Extractor, and Restorer focus on feature extraction from individual
spectral bands. Therefore, we maintain consistency in the feature
channel numbers 𝐶𝑆𝐹𝑅 for the Spatial Extractor, Fourier Extractor,
and Restorer.

The empirical findings underscore that augmenting parameter
counts and computational costs may yield incremental performance
enhancements (Model 6). However, it is imperative to weigh this
against the associated trade-off between resource expenditure and
performance gains, which may not always be fully justified. In con-
trast, a strategic choice of 12 channels for both𝐶𝑆𝐹𝑅 and the channel

Table 6: Different channel combinations between modules. 𝐶𝑆𝐹𝑅
and 𝐶𝑆𝑝𝑒𝑐 denote the channel number of (Spatial Extractor,
Fourier Extractor, Restorer), and the Spectral Evolution Module,
respectively.

Models 𝐶𝑆𝐹𝑅 𝐶𝑆𝑝𝑒𝑐 PSNR Parmas GFlops

1 8 8 37.88 0.22 820.4
2 8 12 38.52 0.47 1500.8
3 8 16 38.56 0.82 2444.4

4 12 8 38.44 0.25 1138.3
5 12 12 39.36 0.48 1629.5
6 12 16 39.47 0.85 2784.7

7 16 8 38.53 0.29 1570.1
8 16 12 39.24 0.54 2272.9
9 16 16 39.27 0.89 3239.0

number of the Spectral Evolution Module 𝐶𝑆𝑝𝑒𝑐 (Model 5) strikes
a harmonious equilibrium between performance optimization and
computational efficiency, underscoring the importance of meticulous
parameter selection in achieving optimal model efficacy.

4.6 Weight of Fourier Loss
To enhance the acquisition of Fourier features during training, we
integrate Fourier loss into the training process. By adjusting the
weights 𝜆 assigned to the Fourier loss, we observe diverse learn-
ing effects. As illustrated in Table 7, the network achieves peak
performance when the value of 𝜆 is configured to 0.01.

Table 7: Evaluation results on WDC Mall using different values
of weights 𝜆 for Fourier loss.

Models 𝜆 PSNR SSIM SAM

1 1 38.62 0.9440 0.1121
2 0.1 38.71 0.9435 0.1269
3 0.01 39.36 0.9523 0.1078
4 0.001 39.28 0.9490 0.1100
5 0 39.03 0.9484 0.1087

5 CONCLUSION
This paper explores the attributes of amplitude and phase compo-
nents in the spatial-spectral domain for HSI denoising. Amplitude
encapsulates noise and photon reflections, while the phase encodes
structural information. Leveraging these insights, we introduce FID-
Net, a novel solution seamlessly integrating Fourier priors into the
spatial-spectral context. FIDNet adeptly fuses spatial and Fourier
features, harnessing their complementary strengths to yield advan-
tageous attributes from both domains for better spectral modeling,
outperforming mainstream denoising methods in comprehensive
experiments. It establishes a new benchmark on datasets, showcas-
ing versatility in handling varying spectral bands for real-world
applicability.
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