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Abstract

Large language models (LLMs) have recently transformed from text-based as-
sistants to autonomous agents capable of planning, reasoning, and iteratively
improving their actions. While numerical reward signals and verifiers can effec-
tively rank candidate actions, they often provide limited contextual guidance. In
contrast, natural language feedback better aligns with the generative capabilities
of LLMs, providing richer and more actionable suggestions. However, parsing
and implementing this feedback effectively can be challenging for LLM-based
agents. In this work, we introduce Critique-Guided Improvement (CGI), a novel
two-player framework, comprising an actor model that explores an environment
and a critic model that generates detailed nature language feedback. By training
the critic to produce fine-grained assessments and actionable revisions, and the
actor to utilize these critiques, our approach promotes more robust exploration of
alternative strategies. Experiments in three interactive environments show that CGI
outperforms existing baselines by a substantial margin. Notably, even a small critic
model surpasses GPT-4 in feedback quality. The resulting actor achieves state-
of-the-art performance, demonstrating the power of explicit guidance to enhance
decision-making in LLM-based agents.

1 Introduction

Recent advances in large language models (LLMs) [1; 2; 3] have broadened their applicability from
conventional chat and text-based interactions to more dynamic, agentic roles. In these roles, LLM-
based agents [4; 5; 6] harness the reasoning and planning capabilities of LLMs to automate complex
tasks across diverse domains, including code generation [7; 8], software engineering [9; 10], and web
applications [11; 12]. A key requirement in these agentic tasks is the ability to iteratively acquire,
store, and use new information to improve performance. Thus, a central challenge emerges: How can
high-quality feedback be obtained and utilized efficiently?

A common approach for providing feedback is to rely on numerical signals, such as verifiers [13; 14]
or reward models [15; 16]. In this paradigm, LLMs are typically trained as discriminators to
evaluate and select the best action from a set of candidates. One widely used method is Best-of-N
(BoN) [17; 18], where the agent generates IV possible actions and a trained reward model picks the
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highest-scoring one. However, numerical feedback has limited informativeness: it reduces guidance
to scalar scores that merely filter candidate actions, overlooking context-specific suggestions, avenues
for exploration, or strategies for refining suboptimal behavior.

A more direct and flexible approach involves using natural language feedback. Rather than providing
only a “best” action, LLMs can generate detailed critiques and explicit, context-aware recommen-
dations for improvement. However, transitioning to natural language feedback presents two main
challenges: 1) Weak Feedback: Many techniques rely on self-refinement or self-correction [19; 20; 21],
which heavily depend on the LLM’s inherent capacity. This reliance can lead to degraded performance,
especially when models hallucinate or encounter complex problems [20; 22]; 2) Poor Utilization:
Unlike numerical feedback, which directly selects an action to execute, verbal critiques require
the agent to accurately interpret and integrate the guidance into its decision-making process. LLM
agents often struggle with this, sometimes demonstrating limited flexibility in adjusting or discarding
previously generated plans [23; 24].

In response, we propose Critique-Guided Improvement (CGI), a two-player framework in which an
actor model interacts with the environment while a critic model provides supervisory feedback. CGI
features two main stages: Critique Generation and Action Refinement. In the Critique Generation
stage, we train a critic model to produce precise evaluations and actionable revision instructions.
In the Action Refinement stage, the actor model learns to effectively apply these critiques through
iterative supervised fine-tuning, thereby improving both its reasoning and its ability to integrate
external feedback.

We conduct extensive experiments in three interactive environments [11; 25; 26], demonstrating
that CGI substantially enhances performance over baseline approaches. Notably, our critic model,
when trained on a small backbone (e.g., Llama-3-8B), outperforms even GPT-4 as a critic by a large
margin (+29.16%). Additionally, the action-refinement process further boosts results, surpassing
state-of-the-art metrics by 26.74%.

In summary, our contributions are as follows: /) We tackle the challenge of obtaining and utilizing
high-quality nature language feedback in agentic tasks. 2) We present Critique-Guided Improvement
(CGI), a novel two-player framework that provides more informative feedback to LLM-based agents
by combining a specialized critic model with an actor model. 3) We develop a training strategy that
iteratively refines the actor’s actions based on natural language critiques, enabling both improved
reasoning and enhanced adaptability. 4) We conduct extensive experiments across three diverse
interactive environments. By leveraging CGI, the agent can continuously improve its performance in
long-horizon tasks and enhance task efficiency by achieving higher scores in fewer steps.

2 Related Work

Learning from Feedback Current feedback can be categorized into numerical and natural language
feedback. Numerical feedback [27; 28; 29; 30] is typically provided by training a reward model (RM)
or verifiers. In this approach, the model learns to predict either the correctness of a solution [13; 29]
or the preference between multiple solutions [17; 31]. Specifically, the RM generates a continuous
numerical score, which is then incorporated into a classification objective. In contrast, natural
language feedback offers denser rewards by evaluating the model’s actions using natural language.
This feedback can be generated in two main ways: by prompting an off-the-shelf LLM to act as a
verifier (i.e., LLM-as-judge) [32; 33], or through self-refinement and self-critique [20; 34], where
the model evaluates and improves its own outputs. Our trained critic model provides natural language
feedback, offering denser and more accurate rewards.

Agent Learning in Interactive Environments. Previous approaches to agent learning in interactive
environments can be classified into three main categories: /) Prompt-based methods [21; 35; 36; 37]
utilize human-written prompts to guide LLMs in summarizing experiences. These summaries, which
may include causal abstractions from both successful and failed attempts [20; 38] or transferable
skills [39], are integrated into the model’s memory to enhance its knowledge and performance.
2) Training-based methods [40; 12; 41] rely on techniques such as Supervised Fine-Tuning (SFT) [42;
43] or Direct Preference Optimization (DPO) [44; 45]. to train LLMs. The training data may come
from expert models or be generated through exploration strategies like Monte Carlo Tree Search
(MCTS). 3) Inference-time sampling methods [14; 15; 16] employ techniques such as Best-of-N



(BoN) [17; 18] and Tree-of-Thought (ToT) [46] to identify optimal actions during inference. These
methods leverage the prior knowledge in LLMs, enabling more efficient search processes. Our CGI
method introduces a novel variation of inference-time sampling by using a trained critic that evaluates
candidate actions and suggests revisions to enhance inference performance.

3 Preliminary

Partially Observable Markov Decision Process We define the collection of environments as €.
For a specific environment e € &£, the embodied tasks for LLM agents are typically modeled as a
Partially Observable Markov Decision Process (POMDP): (X, S, A, O, T ).. Here, X denotes the set
of instructions, S represents the set of environment states, .4 is the set of available actions at each state,
and O represents the observations available to the agent. The transition function 7 : S x A — S
is defined by the environment, while the reward function R : § x A — [0, 1] specifies the reward
received by the agent from the environment. For an actor model 7y parameterized by 6, the actor
selects the next action a; ~ (a7, e) at each time step ¢, based on the interaction history 7¢, which
is defined as
Tt:{xaa0)007'-')at—170t—1}7 TO:{:I;}-

The trajectory is then represented as

7= (x,a9,00,-..,ar,07) ~ m(T | T,€).

Iterative Supervised Fine-Tuning in Agentic Task Iterative Supervised Fine-Tuning (SFT) is a
process of exploration and learning [47; 48; 49]. It iteratively utilizes the correct responses from the
actor model to enhance the model’s problem-solving abilities. The process involves K iterations,
each consisting of two steps: exploration and learning. For the collection of environments &, in

the exploration step of iteration k, the model ﬁg ~1 from the previous iteration is applied to each
environment e, resulting in |£| trajectories {70 )}If:ll. These trajectories are then filtered using the
reward function R(7), retaining only the correct ones. The filtered trajectories form a new dataset
Deorrect = {T(j)} ;V:ll, where N’ is the number of trajectories retained. In the learning step of iteration
k, this new dataset is used to fine-tune the actor model 7y to obtain 77(’3'.

4 Methodology

In this section, we first provide an overview of the proposed Critique-Guided Improvement (CGI)
framework (§ 4.1), explaining how the actor and critic collaborate to enhance performance. We then
detail the two key stages of CGI, critique generation and action refinement, which respectively address
the challenges of critic’s weak feedback and the actor’s poor utilization. In the Critique Generation
stage (§ 4.2), the critic model learns to evaluate the actor’s candidate actions and provide actionable
feedback. In the Action Refinement stage (§ 4.3), the actor refines its actions by integrating critiques
from the critic model into its interaction with the environment. Algorithm 1 summarizes the CGI
framework (see Appendix C for definitions of all notifications).

4.1 Overview of the CGI Framework

The CGI framework follows a two-player setting, where the actor model 7y generates multiple
candidate actions, and the critic model 7, provides feedback to refine them. For a specific environment
e € &, at each time step ¢, given the refined trajectory history

! i i
Ty = {1‘70/0700, .. '7a't—1aot—1}7

the actor generates M candidate actions, stored in the action buffer A; = {a; ;}},. The critic then

evaluates each candidate and generates corresponding critiques ¢; = {my(c | 7/, as i, e)},. Using
these critiques, the actor refines its decision and generates the final action a} =mg(a | 7/, ¢, €), which
is then executed in the environment. This iterative process produces the refined trajectory:

’ / /
7 ={z,a4,00,...,ap,07}.

In this collaborative framework, higher-quality critiques c; and better utilization of feedback lead to
improved refined actions aj, ultimately enhancing the final performance R (7).
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Figure 1: An overview of CGI, illustrated with a ScienceWorld example. The actor first generates
candidate actions, and the critic then assesses each action and generates suggested revisions. The
actor refines its actions based on the critique. The Critique Generation stage enhances the critic
model’s ability to provide effective feedback, while the Action Refinement stage helps the actor
model better utilize the critique.

4.2 Critique Generation

The Critique Generation stage trains the critic model to assess the alignment between LLM-
generated actions and optimal ones at each step, and convert this assessment into structured natural
language critiques. We first define the critique structure, then outline the training method for critic.

Critique Structure The critique generated by the critic model 74 consists of two components:
Discrimination, which involves analyzing and assessing the quality of the candidate action, and
Revision, which provides actionable suggestions for improvement.

For the discrimination component, the critic model evaluates the candidate action in three predefined
dimensions:

* Contribution: Assessing how well the candidate action contributes to solving the overall task.
Irrelevant actions receive a low score.

* Feasibility: Determining whether the candidate action is valid according to the agent’s prede-
fined action list.

» Efficiency: Evaluating whether the candidate action approaches the task optimally, avoiding
unnecessary steps or redundancy.

For the revision component, the critic model first assigns an overall grade to each candidate action (i.e.,
[Excellent/Good/Neutral/Poor/Very Poorl), then generates concise and actionable suggestions
based on its analysis of the candidate actions (see Appendix D for detailed prompts).

Fine-tuning the Critic Model To collect high-quality step-level expert critiques, we employ an
expert critic annotator (e.g., GPT-4 [1]) to generate critiques for each candidate action based on a
reference expert trajectory. For a specific environment e € £, at time step ¢, the actor generates
candidate actions a;. Given the refined history trajectory 7/ and the expert trajectory 7¢*P, the expert
critic exp, assesses the alignment between candidate actions and the optimal ones, converting this
assessment into structured critiques according to a predefined format. Formally, the critiques for each
candidate action are represented as: ¢; ~ Texp(c | at, 71, 7P, €).

Subsequently, the actor refines its next step by generating a} based on the critique ¢;. Critiques are
collected only when R (7") =1, ensuring they originate from correct trajectories. We collect step-level



Algorithm 1 Critique-Guided Improvement (CGI)

1: Input: Initialized policy actor model 7y, critic model 74, environment set £, full instruction set
X, reward function R, the expert critiques Deyitique, the expert path Deypert, the general dataset
Dgeneral, max time step 7', and the iteration rounds K.

2: Procedure Fine-tune the Critic Model:

3: Minimize the following objective to obtain the critic model 7y:
Leritic(#) = E(c, ! ar.0)~Dasiigne | 108 T (¢t | T/ a1, €) ];
4: Procedure Iterative Action Refinement:
5: 7rg — Mhpses
6: for iteration £ = 1 to K do
7 Dirain < Dexpert;
8:  Perform Exploration Step
Actor wg ~! interacts with e € £ under the guidance of critic T3
9:
10: Collect Dreﬁne = Ueeé' Dfeﬁne’ where Dl?eﬁne = {(Ttlv Ct, a:&)}?:l;
11:
12: Collect Dcorrect = UeGE Dgorrect’ Dtrain — Dtrain U Dcorrect;
13:  Perform Learning Step
14: Minimize the following objective to obtain actor model 7rf,f :
‘CaCtOT(G) = 6 {]E(T,.’L‘,C)ND"-am |:10g o (T | .T, 6)] + E(agth/7Ctve)N'Dreﬁne |:10g o (aff ‘ Tt’? Ct? 6)] }
(1= 8) Ea ) Dy | o8 Ty | 2)]:
15: end for

expert critiques from each environment, forming the dataset Driique = UeegDCemique . The critic model

is then fine-tuned using supervised learning with the collected expert critiques. Specifically, we apply
the standard language modeling loss, defined as:

ﬁcrm‘c(¢) = E(ct,rtﬂat,e)NDCmique 1Og T (Ct | Ttla at, 6) } .

This approach enables the critic model to generate structured, step-level critiques that provide both
discrimination and revision, which are crucial for guiding the actor model toward more effective
decision-making.

4.3 Action Refinement

Although the critic model is trained to provide high-quality critiques, the actor may not fully utilize
the feedback. Therefore, action refinement is necessary to enhance the actor’s ability to effectively
leverage critiques for improving its actions. A key challenge in this process is policy misalignment.
During training, the actor model learns to incorporate critiques based on its current policy. However,
after training, the model’s policy may evolve, making it difficult to integrate critiques effectively for
newly generated candidate actions. This misalignment can lead to suboptimal action refinement.

To address this issue, we propose an iterative action refinement method based on supervised fine-
tuning (SFT). This method consists of two main components: exploration and learning. In the
exploration step at iteration k, for a specific environment e € £, the actor model 77{271 interacts
with the environment under the guidance of the critic model 74. At each time step ¢, the refined
action is given by a} = my(a | 7/, ct, ), forming a set of critique-action pairs { (77, c;, a})}i_,. Here,
7{ represents the previously refined trajectory, and ¢; denotes the current critique. To ensure the
quality of the trajectories, we filter them based on the environment reward R. Only trajectories for
which R(7’) = 1, along with their corresponding critique-action pairs, are retained. We collect
correct trajectories and critique-action pairs from each environment, yielding two datasets: D orrect =
Ueee D¢ reet And Diefine = Ueege Dipine- The dataset Degprer €nhances the model’s reasoning ability
by providing correct trajectories, while Di.,e improves its capacity to utilize critiques and generate
refined actions.



In the learning step of iteration %, the newly collected datasets, combined with the expert path Deypert
for each environment, are used to fine-tune the actor model 7y. To avoid overfitting, we follow
previous work [50] by fine-tuning the original model 7y rather than the previous iteration model wg -1
Furthermore, following AgentTuning [51], we incorporate general datasets such as ShareGPT3? to
improve generalization. The training objective is defined as:

Eactor(e) = 5 {]E(T,w,e)NDm.m |:10g 71-9(7— ‘ €T, €)i| + E(a;,Tt’,ct,e)NDreﬁne log 7"'9(0’; | Tf{v Ct, e)i|}

(1= ) Ea s |l 70y | 2)]

where Digzin = Dexpert U Deorrect- After this refinement step, a new dataset with higher-quality samples
is generated for further training. Overall, this iterative action refinement process allows the actor
model to progressively improve its reasoning capabilities and better integrate critiques through
continuous interaction with the environment.

5 Experiment Settings

In this section, we conduct extensive experiments in three interactive environments to demonstrate
the effectiveness of the critic model and our CGI framework.

5.1 Interactive and Agentic Environments

Following previous work [40; 52], we conduct experiments on three types of representative interactive
environments:

* WebShop [11], which is an interactive web environment for online shopping. It contains 12K
instructions and offers over one million real products from amazon.com. Agents can click buttons
on the webpage or perform searches using the search engine.

» ScienceWorld [25], which is a text-based scientific environment designed to evaluate agents’
scientific reasoning abilities. It includes 30 types of scientific tasks at the standard elementary
science curriculum level.

» TextCraft [26], which is a text-based environment to create Minecraft items. It constructs a crafting
tree based on Minecraft’s recipes. Each task provides a target item and a list of crafting commands
generated by the tree. Agents receive a reward of 1 when they successfully craft the target item.

Evaluation Metrics Following the setup of AgentGym [40], we evaluate our model on the test sets
for these three environments (200 simulations for ScienceWorld and WebShop, 100 for TextCraft). For
ScienceWorld and WebShop, we use the average final score as the evaluation metric. For TextCraft,
we use the success rate as the evaluation metric. Further details can be found in Appendix E.

5.2 Training Settings

We use Llama-3-8B-Instruct [3] as the backbone model for both the actor and critic models. To
collect training data, we randomly sample 500 simulations from WebShop, 350 from ScienceWorld,
and 374 from TextCraft. We train the critic model by using the expert critic (i.e., GPT-40) to guide
the actor in interacting with the environment three times, collecting expert critiques during each
interaction. For action refinement, we perform three iterations and report the results of the third
iteration in Table 2. The training data for the critic model and each iteration of action refinement are
provided in Table 4. Additional details can be found in Appendix F.

5.3 Baselines

To evaluate the effectiveness of our critic model, we fix the actor model as LLlama-3-8B-Instruct [3].
We then compare our critic model against two types of approaches (see Appendix G for imple-
mentation details): /) Numerical based: We use DGAP [14], a discriminator trained to assess the
alignment between actor actions and expert actions at the step level, and Explicit RM [15], which

3ht‘cps ://huggingface.co/datasets/Vtuber-plan/sharegpt-cleaned
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Table 1: We compared the natural language feedback provided by the trained critic model with other
methods, including numerical-based (i.e., DGAP, Explict RM), and verbal-based (i.e., self-critique,
GPT-40). Our critic offers better guidance to the actor model in all three interactive scenarios.

Model Method WebShop ScienceWorld TextCraft Average
No Critique 13.49 14.48 10.00 12.65
DGAP 30.41 19.52 21.00 23.64
o Explicit RM 14.21 18.41 15.00 15.87
Llama-3-8B-Instruct Self-Critique 1.50 10.06 19.00 10.19
GPT-4o 17.78 33.06 46.00 32.28
Critic Model (Ours) 56.80 68.51 59.00 61.44
No Critique 8.35 49.20 2.00 19.85
DGAP 11.17 55.86 9.00 2534
Explicit RM 11.18 48.41 14.00 24.53
Llama-3-70B-Instruct Self-Critique 3.00 28.17 40.00 2372
GPT-4o 16.24 4373 56.00 38.65
Critic Model (Ours) 5220 72.44 73.00 65.88
No Critique 76.12 32.85 46.00 51.66
DGAP 73.97 38.26 56.00 56.08
Explicit RM 74.33 41.57 52.00 55.97
Llama-3-8B-Instruct + SET Self-Critique 50.18 31.22 21.00 34.13
GPT-40 55.65 48.48 58.00 54.04
Critic Model (Ours) 74.68 55.94 56.00 62.21

is trained to predict the Q-value, i.e., expected accumulated rewards at each time step. 2) Verbal
based: We employ a self-critique method where the actor model itself generates critiques for each
candidate action at the step level. Additionally, we use GPT-40 (gpt-40-2024-08-06) [1] as a critic,
which serves as a strong general-purpose evaluator. The structure of the critiques aligns with that in
Appendix D. Each approach guides the actor’s inference, and we evaluate their effectiveness based
on the actor’s performance®.

For the assessment of CGI, consistent with the methodology used in AgentGym [40], we select a
combination of closed-source models, including GPT-3.5-turbo [53], GPT-40 [54], Claude 3 [55], and
DeepSeek-Chat [56], as well as open-source models such as Llama-3-70B-Instruct [3]. Additionally,
we include agents trained on expert trajectories, such as AgentLM (13B and 70B) [57] and Agent-
Flan [42]. We also compare our approach to Iterative SFT, which iteratively refines the actor model
using correct trajectories collected from interactions with the environment, and Reflexion [20], a
self-reinforcement method that concludes each iteration with a summary to guide decision-making in
subsequent iterations. We report the results from the third iteration for both approaches.

6 Main Results

We first evaluate our critic model against numerical- and verbal-based methods to assess its effective-
ness. As shown in Table 1, our 8B critic model significantly outperforms GPT-40 on both the Llama-3
(8B and 70B) and Llama-3-8B’s fine-tuned variant trained on expert data. Furthermore, Table 2
demonstrates that through iterative action refinement of the actor model, our CGI notably enhances
actor performance in interactive environments. It outperforms both advanced closed-source models
(e.g., GPT-40) and agents trained on expert trajectories (e.g., AgentLM-70B and Agent-FLAN).
Based on these results, we identify three key findings.

Finding 1: Verbal critique feedback is more effective than numerical signal. As shown in
Table 1, the Critic Model consistently outperforms numerical feedback from the discriminator. For
the Llama-3-8B model, it achieves an average improvement of 42.89% over the no-critique baseline,
while the discriminator yields only a 5.09% gain. The advantage persists with the stronger Llama-3-
70B and the fine-tuned Llama-3-8B models, where the Critic Model delivers a 46.03% and 10.55%
improvement, respectively, compared to 5.49% and 4.42% from the discriminator. These results
indicate that the discriminator’s numerical feedback relies heavily on the model’s inherent capabilities,
as it essentially performs action-level filtering. For example, in the ScienceWorld, the discriminator
enables Llama-3-70B to reach 55.86%, but only 18.52% for Llama-3-8B. In contrast, the Critic

“In the subsequent experiments of this paper, we set the number of candidate actions sampled at inference
time to M = 5.



Table 2: Results from three interactive environments. The CGI here employs a two-player setting
with a fine-tuned LLama-3-8B critic model and an 8B actor model refined through three iterations.
We compare its performance with various models.

Method WebShop ScienceWorld TextCraft Average
Closed-source Models
DeepSeek-Chat 11.00 16.80 23.00 16.93
Claude-3-Haiku 5.50 0.83 0.00 2.11
Claude-3-Sonnet 1.50 2.78 38.00 14.09
GPT-3.5-Turbo 12.50 7.64 47.00 22.38
GPT-40 25.48 46.91 64.00 45.46
Open-source Models
Llama-3-70B-Instruct 8.35 49.20 2.00 19.85
AgentLM-13B 39.50 2.75 0.00 14.08
AgentLM-70B 49.50 10.68 4.00 21.39
Agent-FLAN 40.35 28.64 16.00 28.33
Llama-3-8B-Instruct 13.49 14.48 10.00 12.66
w/ Reflexion 14.08 12.55 8.00 11.54
w/ Iterative SFT 78.21 41.42 55.00 58.21
w/ CGI (Ours) 76.17 78.43 68.00 74.20
Llama3 w/ Critique IterSFT Reflexion CaGl
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Figure 2: Performance of different iterative methods across iterations in three agentic tasks.

Model shows minimal sensitivity to the base model, achieving 68.51% with Llama-3-8B and 72.44%
with Llama-3-70B. However, the self-critique approach, which also relies on verbal feedback, shows
a negative effect on both Llama-3-70B, 8B and its fine-tuned variant. This suggests that while verbal
feedback can convey richer information, untrained self-critique methods often produce low-quality or
unstructured feedback, failing to provide effective guidance.

Finding 2: Fine-tuned models struggle to utilize critiques. While supervised fine-tuning signifi-
cantly improves baseline performance (+33.11%), our experiments reveal a key limitation: fine-tuned
models struggle to effectively incorporate critique feedback. In the ScienceWorld scenario, Vanilla
Llama3-8B and Llama3-70B show substantial improvements with Critic guidance, achieving average
scores of 68.51% and 72.44%, respectively. However, despite having a stronger base performance,
fine-tuned Llama3-8B only reaches 55.94% with the same critique mechanism. This issue persists
in the WebShop scenario, where critique guidance even causes a performance decline in fine-tuned
Llama3-8B, dropping from 76.12% to 74.68%. These results suggest that while fine-tuning enhances
base performance, it may reduce the model’s responsiveness to external feedback. For example, in
the ScienceWorld scenario, despite the critic model advising the actor to "look around" and assess the
environment for possible actions, the actor persists in executing “Go to Bathroom”, an action that
seems closest to the task description. This behavior disregards the fact that the actor cannot reach the
bathroom from its current position, leading to a deadlock (see Appendix H.1). Our iterative action
refinement approach helps mitigate this issue; after three iterations, the model shows a significant
improvement in critique utilization, with its performance surpassing that of the actor model with only
supervised fine-tuning by +15.99%, achieving state-of-the-art results compared to various baselines.

Finding 3: CGI continuously enhance model performance via action refinement. As shown
in Figure 2, compared to other iterative methods (e.g., Reflexion and vanilla iterative SFT), CGI
consistently supports model performance improvement. In contrast, Reflexion shows minimal
improvement and can even cause performance degradation. This aligns with previous findings [20],
where self-critique struggles to escape local minima in agentic tasks that require significant diversity
and exploration. Iterative SFT achieves a notable improvement only in the first iteration, with
minimal progress in the following 2-3 iterations. This issue is more pronounced in long-horizon
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Figure 3: Revision Ration of actor model at different trajectory stages across three tasks. #lter-k
denotes the k-th iteration of action refinement. Revision Ratio represents the proportion of actions
that differ after critique compared to those without critique.

tasks (e.g., ScienceWorld and TextCraft), suggesting that the model may over-sample simpler tasks
while under-sampling more complex ones. Consequently, the training set for subsequent iterations
becomes dominated by easier tasks, with few solutions for harder ones. As iterations progress, this
bias deepens, leading to a long-tail distribution where solutions to more challenging tasks are scarce,
ultimately causing the model to plateau or even degrade. In contrast, CGI leverages high-quality
critiques and enhances the actor’s utilization, enabling the model to consistently sample solutions to
more difficult tasks, thus supporting sustained performance improvement.

7 Further Analysis

7.1 Qualitative Analysis of CGI

In this section, we conduct a qualitative analysis to examine how CGI enhances performance in
agentic tasks. Specifically, we focus on two key aspects: /) Trajectory-level: Identifying the stages
in the trajectory where CGI provides the most significant improvement; 2) Task-level: Evaluating
CGTI’s performance across tasks of varying trajectory length (see Appendix E for categorization).

CGI significantly improves early-stage performance. To determine at which stage of the trajec-
tory CGI contributes most to performance improvements, we divide the trajectory into five stages
based on its length and compute the extent to which the critique influences the actor model’s behavior,
measured by the Revision Ratio. As shown in Figure 3, across three tasks, actor models exhibit
the highest action revision frequency in stage 1, with the revision ratio dropping sharply in later
stages. This suggests that the critique primarily guides the actor during early exploration, helping
reduce ineffective searches. Notably, as the actor undergoes more refinement iterations, its revision
ratio in stage 1 increases (+8.02% on ScienceWorld, +17.81% on WebShop, +9.12% on TextCraft),
indicating that better critique utilization accelerates effective exploration. This, in turn, enhances
CGT’s efficiency, enabling it to achieve higher scores in fewer steps (Figure 8).

. . ® Vanilla w/ Critique #lterl #lter2 #lter3
CGI helps the model to continuously improve on

long-horizon tasks. To investigate the effect of CGI % 80 || l I | I
on tasks of varying trajectory length, we categorize the 2 oo | |
ScienceWorld scenarios into three difficult-level groups £ |
based on the average length of the oracle agent’s trajec- %40
tories. Longer trajectories correspond to higher diffi- g 20 . - n

0

culty levels. As shown in Figure 4, the vanilla model
(Llama3-8B) performs poorly, with performance de-
creasing as the task length increases. Critique-Guided  Figure 4: Performance of models across
Inference leads to a significant improvement, particu-  varying trajectory length. Vanilla refers to

larly on easy tasks, where performance increases by the Llama3-8B model, w/ Critique refers
+59.64%. Although there is also a notable improvement o the critique-guided inference with our

on harder tasks (+43.95%), the gain is less pronounced  trained Critic-Llama3, and #Iter-k repre-
compared to easier tasks. However, with iterative action  gents the k-th iteration of action refinement.
refinement, the model exhibits the greatest improve-

ment on hard tasks, with a +28.75% increase after three iterations. These results suggest that models

Easy Medium Hard



without action refinement can quickly adapt to critiques for easy and medium-level tasks. However,
for longer tasks, the model’s ability to leverage critiques diminishes. Action refinement helps the
model continuously follow critiques, thereby enhancing performance on long-horizon tasks.

7.2 Effects of Number of Candidate Actions

To further evaluate the scalability of CGI, we varied
the number of candidate actions (M) sampled at each
step during inference. As shown in Figure 5, we ob-
serve the following trends: CGI achieves a significant
improvement with just one candidate action, reaching
an average score of 56.89%. As M increases, perfor-
mance improves further, rising from 56.89% to 61.72%.
However, when M = 7, performance plateaus, indi-
cating saturation. Other numerical- and verbal-based
methods exhibit similar trends. For GPT-4 as a critic,
performance increases with M, improving from 32.28%
to 38.13%. DGAP is particularly sensitive to the num-
ber of candidate actions, with performance rising from
15.02% to 25.07%. This highlights that numerical meth-
ods are highly dependent on the quality of the sampled

Self-Critique DGAP GPT-4 Critique
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Figure 5: Performance of different meth-
ods across varying candidate actions. The
average score is the mean final score across
three environments.

candidate actions, as they only discriminate but not suggest meaningful revisions. In contrast, self-
critique does not benefit from an increase in M. This suggests that low-quality critiques can degrade
performance, regardless of the number of candidate actions.

8 Ablation Study

To analyze the contribution of the three types of data
(i.e., Deorrect> Drefines and Dienerat) used to enhance the ac-
tor model during the action refinement stage, we conduct
an ablation study. Specifically, we remove each dataset
from the training data used in the first iteration of action
refinement and evaluate the final performance under the
guidance of the critic model. As shown in Figure 6,
removing any one of the three datasets results in a per-
formance drop compared to the actor model trained with
the full dataset (CGI 4yer1). The most significant de-
crease occurs when the critique-action pairs are removed
(W/0 Drefine), Where the average performance across the
three tasks drops from 68.50% to 50.37%. This decline
is more pronounced for longer tasks, with performance
reductions of 5.4% on WebShop, 22% on TextCraft, and
26.94% on ScienceWorld. These results highlight that
enhancing the actor’s critique utilization ability is the
most critical factor in improving overall performance.
A less severe drop is observed when the generalization

B CGlyen

e

Webshop ScienceWorld TextCraft

W/O Deorrect ~ W/O Drefine ~ W/O Dgeneral

©
o

(o))
o

Average Final Score
N
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Figure 6: Ablation study of the three data
types used in action refinement: D orect
(correct trajectories to improve the actor’s
reasoning ability), Diesine (Critique-action
pairs to enhance critique utilization), and
Daeneral (data to maintain the model’s gen-
eralization capability). CGI 4 refers to
the actor model trained in the first iteration
of action refinement using the full dataset.

data set is excluded (W/0 Dgenerar), highlighting the importance of general instructions for model
generalization, which helps the model adapt to the unseen test set.

9 Conclusion

We have introduced Critique-Guided Improvement (CGI), a two-player framework that emphasizes
nature language feedback for iterative refinement of LLM-based agents. By separating the roles of an
actor, which proposes actions, and a critic, which provides verbal guidance, CGI circumvents the
limitations of purely numerical signals and addresses the challenges arising from self-refinement.
Experimental results in three interactive and agentic environments confirm the effectiveness of CGI,
with a small critic model outperforming GPT-4 in providing feedback.
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paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section 1
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix A
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3, Section 4 and Appendix D, E, F

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Section 4
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 4, Section 5 and Appendix F
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We set temperature to O for all models in experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix E
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Section 5, Appendix E and F
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix D
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:Section 5, Appendix E and F
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Section 5, Appendix E and F
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects
nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

21



Answer:

Justification: The paper does not use LLMs for writing, editing, or formatting.
Guidelines:
e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendix

A Limitations

CGI incurs higher computational time compared to baseline methods but remains within a reasonable
range. As shown in Table 3, CGI requires approximately four times the computational time of
the baseline. However, this additional cost results in a substantial performance improvement, with
CGI achieving a 43.31% gain over No Critique. This indicates that the extra computational time is
effectively utilized. In contrast, other verbal-based methods, such as GPT-40 and Self-Critique, do
not produce significant improvements and require more computational time than CGI.

B Broader Impacts

Positive Societal Impacts. By generating and leveraging natural language critiques, CGI enhances
the performance in embodied Al tasks (e.g., , ScienceWorld) and real-world scenarios (e.g., , Web-
Shop), leading to improved task performance. This contributes to enabling agents to better understand
and align with human goals, ultimately supporting more helpful, interpretable Al systems. Moreover,
our critic model demonstrates strong performance despite using a relatively small backbone (Llama-
3-8B), which significantly reduces the computational and environmental costs compared to larger
proprietary models. This also promotes broader accessibility to advanced feedback mechanisms.

Negative Societal Impacts and Risks. Natural-language critiques may inadvertently incorporate
biases from the training data or expose private information through the agent’s reasoning process.
Moreover, as these critiques provide explicit, step-by-step explanations, they could be misused by
bad actors to facilitate disinformation, social engineering, or the generation of unsafe code. The
relatively small size of the critic model further reduces the cost of replication and misuse, increasing
the associated risks.

C Notations

Dataset Definitions

Symbol
Meaning
Deritique Expert critique dataset generated by expert critic (GPT-40), used for training the critic
model as described in §4.2
Deorrect Correct trajectory dataset collected during each iteration of the action refinement
process
Direfine Critique-action pairs dataset used for learning how to utilize critiques effectively
Deeneral General conversational dataset (e.g., ShareGPT) used to maintain general language
modeling capabilities during fine-tuning
Loss Function Parameters
Symbol
Meaning
Lactor Actor model loss function with three components: learning from expert/correct trajec-
tories, learning to utilize critiques, and maintaining general capabilities
B Weight parameter balancing agentic task learning vs. general capabilities (typically
8 =0.8)
y General text responses from datasets like ShareGPT for maintaining language modeling
abilities
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D Instruction Prompt Examples

The system prompts for three agentic environments are presented in Listing 1. The instruction for
critique generation introduced in §4.2 is presented in Listing 2.

Listing 1: Prompt details for ScienceWorld, WebShop, and TextCraft.

ScienceWorld Instruction:

You are an agent for the science world. Every round I will give you an
observation, you have to respond with an action based on the observation
to finish the given task.

Here are the actions you may take:

{"action": "open/close OBJ", "description”: "open/close a container”,}
{"action": "de/activate OBJ", "description”: "activate/deactivate a
device",}

{"action": "connect OBJ to OBJ", "description"”: "connect electrical
components”, }

{"action": "disconnect OBJ", "description”: "disconnect electrical
components”,}

{"action”: "use OBJ [on OBJ]", "description”: "use a device/item",}
{"action"”: "look around”, "description”: "describe the current room”,k}
{"action": "look at OBJ", "description”: "describe an object in detail”,}
{"action"”: "look in OBJ", "description”: "describe a container's contents
”7}

{"action"”: "read OBJ", "description”: "read a note or book",}

{"action": "move OBJ to OBJ", "description”: "move an object to a
container”, }

{"action": "pick up OBJ", "description”: "move an object to the inventory
”’ }

{"action"”: "put down OBJ", "description”: "drop an inventory item”,}
{"action"”": "pour OBJ into OBJ", "description”: "pour a liquid into a
container”, 3}

{"action"”: "dunk OBJ into OBJ", "description”: "dunk a container into a
liquid”, }

{"action”: "mix OBJ", "description”: "chemically mix a container”,6}
{"action": "go to LOC"”, "description”: "move to a new location”,}
{"action": "eat OBJ", "description”: "eat a food”,}

{"action": "flush OBJ", "description”: "flush a toilet”,}

{"action": "focus on OBJ", "description”: "signal intent on a task object
”7}

{"action”: "wait"”, "description”: "take no action for 10 iterations”,}
{"action": "waitl1"”, "description”: "take no action for 1 iteration”, }
{"action": "task"”, "description”: "describe current task”,}

{"action": "inventory"”, "description”: "list your inventory"}

Your response should use the following format:

Thought: your thoughts.
Action: your next action

WebShop Instruction:
You are web shopping. I will give you instructions about what to do. You
have to follow the instructions. Every round I will give you an
observation and a list of available actions, you have to respond an
action based on the state and instruction.
You can use search action if search is available. You can click one of
the buttons in clickables. An action should be of the following structure
search[keywords] click[value]. If the action is not valid, perform
nothing. Keywords in search are up to you, but the value in click must be
a value in the list of available actions. Remember that your keywords in
search should be carefully designed. Your response should use the
following format:

Thought: I think
Action: click[something] or search[something]
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TextCraft Instruction:
You are given a few useful crafting recipes to craft items in Minecraft.
Crafting commands are of the format "craft [target object] using [input
ingredients]”. Every round I will give you an observation, you have to
respond to an action based on the state and instruction. You can "get” an
object (ingredients) from the inventory or the environment, look up the
game "inventory” by inventory, or "craft” (target) using any of the
crafting commands. You can use ONLY these crafting commands provided, do
not use your own crafting commands. However, if the crafting command uses
a generic ingredient like "planks”, you can use special types of the
same ingredient e.g. dark oak "planks” in the command instead. Your
response should use the following format:

Thought:
Action:

Listing 2: The instruction prompts for Critique Generation.

Critique Generation Instruction:
Your task is to critique the candidate's next-step action based on the
agent's task goal and interaction history.

{available_actions}

Critique Steps

Step 1: Analyze Candidate Action

Examine the candidate's action based on the following criteria and assign
an overall grade using this scale: Excellent, Good, Neutral, Poor, Very
Poor.

Critique Dimensions

- Contribution: Assess whether the action contributes to completing the
agent's task. This includes both direct actions (e.g., picking up the
target OBJ) and indirect actions (e.g., reasonable exploration that can
provide additional environmental information and facilitate future
progress).

- Feasibility: Assess whether the action is valid according to the agent'
s predefined Allowed Action Types list.

- Efficiency: Analyze whether the action optimally achieves the task
without unnecessary steps or redundancy.

Step 2: Provide Revision Suggestions

Suggest a modification to align the candidate's action better with the
task or the agent's action capabilities. Note that the suggested revision
should be based on the Allowed Action and Object Types.

Critique Format

Please structure your critique in the following format:

## Contribution: [Analysis of Contribution].

## Feasibility: [Analysis of feasibility].

## Efficiency: [Analysis of efficiency].

## Overall Grading: [Overall grade: Excellent/Good/Neutral/Poor/Very Poor
1.

## Suggested Revision: [Brief revision suggestion, if applicable].

Inputs:
The agent's task goal and interaction history:

{history}
Candidate next step action: {candidate_action}

Now, please provide your critique:
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Critique Generation Instruction (with expert path):

Your task is to critique the candidate next-step action based on the

agent's task goal and interaction history. The gold path for current task
is provided as a reference to guide your critique, but do not explicitly
mention it in your critique.

{available_actions}
Critique Steps

Step 1: Analyze Candidate Action

Examine the candidate's action based on the following criteria, then
assign an overall grade using this scale: Excellent, Good, Neutral, Poor,
Very Poor.

Critique Dimensions

-Contribution: Assess whether the action contributes to completing the

agent's task. This includes both direct actions (e.g., picking up the
target OBJ) and indirect actions (e.g., reasonable exploration that can

provide additional environmental information and facilitate future

progress).

-Feasibility: Assess whether the action is valid according to the agent's
predefined Allowed Action Types list.

-Efficiency: Analyze whether the action optimally achieves the task

without unnecessary steps or redundancy.

Step 2: Provide Revision Suggestions

Suggest a modification to align the candidate's action better with the
task or the agent's action capabilities. For example, if the action is
not allowed, recommend an alternative from the action list that aligns
better with the task goal.

Critique Format

Please structure your critique in the following format:

## Contribution: [Analysis of Contribution].

## Feasibility: [Analysis of feasibility].

## Efficiency: [Analysis of efficiency].

## Overall Grading: [Overall grade: Excellent/Good/Neutral/Poor/Very Poor
].
## Suggested Revision: [Brief revision suggestion, if applicablel].
Referenced Gold Path for Current Task:

{gold_path}

Inputs:
The agent's task goal and interaction history:

{history}
Candidate next step action: {candidate_action}

Now, please provide your critique:
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Table 3: Computational efficiency of different methods in three agentic environments per task.

Method WebShop Sciworld Textcraft
Inference Time Performance Inference Time Performance Inference Time Performance

No Critique 0.38 min 13.49 1.49 min 14.48 1.02 min 10.00

w/ DGAP 1.13 min 30.41 3.13 min 19.52 1.33 min 21.00

w/ Self-Critique 1.36 min 1.50 3.42min 10.06 2.17 min 19.00

w/ GPT-40 2.34 min 17.78 6.28 min 33.06 3.28 min 46.00

w/ Critic Model 1.22 min 56.80 3.41 min 68.51 1.98 min 59.00

E Evaluation Settings

In the experiments presented in this paper, we used three agentic environments: WebShop, SciWorld,
and TextCraft.

E.1 Details of Environments

WebShop WebShop is an interactive web environment designed for web shopping. In this environ-
ment, agents are given instructions and must purchase a product that meets specified criteria. Agents
can either click a button on the webpage or use the search engine to find the product. We evaluate
performance using the success rate, with a maximum of 10 rounds per task.

ScienceWorld ScienceWorld is a benchmark environment for testing agents’ scientific reasoning
abilities, based on a standard elementary science curriculum. It includes 30 types of tasks, such
as using measurement instruments and conducting mechanics experiments. The action space is
task-specific, with the environment simulator providing the effects of actions. We use reward as the
evaluation metric, with a maximum of 30 rounds per task. Task lengths are classified based on the
ScienceWorld environment, which provides gold-standard trajectories from 30 hand-coded oracle
agents. We adopt the following categorization: Short (11.76), Medium (28.58), and Long (94.30).
These lengths correspond to the average number of steps taken by the oracle agent.

TextCraft TextCraft is a text-only environment for crafting Minecraft items. It constructs a crafting
tree based on Minecraft’s crafting recipes, consisting of 544 nodes, each representing a target item.
For each task, the agent is given a target item and a list of crafting commands generated by the
tree. Tasks vary in complexity, ranging from 1 to 4 steps. The environment supports three valid
actions:“craft <item> using <ingredients>", “get <item>", and “inventory”. After each round, the
environment checks the agent’s actions and returns the execution state. Agents are rewarded with 1
point only upon successfully crafting the target item. We evaluate performance using the success rate,

with a maximum of 20 rounds per task.

E.2 Computational Efficiency Analysis

We evaluated the computational efficiency of CGI by conducting experiments in three agentic
environments, using Llama-3-8B as the actor model. We measured the average inference time per
task. As shown in Table 3, although CGI incurred higher computation times compared to inference
without critique guidance (i.e., No Critique), these times remained within an acceptable range.
Furthermore, CGI demonstrated a substantial reduction in inference time compared to using GPT-4
as the critic, while achieving significant performance improvements.
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F Implementation Details

In our experiments, we use the Llama-3-8B-Instruct [3] as the base model for both the actor and the
critic.

F.1 Training Data

Critique Generation The training data for the critic model consists of expert critiques generated
by the expert critic (i.e., GPT-40) in the ScienceWorld, Webshop, and TextCraft environments, as
described in § 4.2. The specific training set sizes during the SFT phases for Llama3-8B-Instruct are
14K from ScienceWorld, 10K from Webshop, and 8K from TextCraft. Examples of our SFT training
data are provided below:

SFT Example:
{"conversations":
[{"from": "human", "value": "Your task is to critique the candidate's
next-step action based on the agent's task goal and interaction history.
Allowed Action Types:- search[KEYWORDS]: perform a web search - click[OBJ
1: click an object or link on a webpage. Step 1: Analyze Candidate Action
.Examine the candidate's action based on the following criteria and
assign an overall grade using this scale: Excellent, Good, Neutral, Poor,
Very Poor. Critique Dimensions: Contribution: Assess whether the action
contributes to completing the agent's task. This includes both direct
actions and indirect actions. Feasibility: Assess whether the action is
valid according to the agent's predefined action list. Specifically,
check if the action is part of the Allowed Action Types, whether the O0BJ/
KEYWORDS within the action is clearly specified, and whether it is
formatted correctly according to the system's requirements. Efficiency:
Analyze whether the action optimally achieves the task without
unnecessary steps or redundancy. Step 2: Provide Revision Suggestionn:
Suggest a modification to align the candidate's action better with the
task or the agent's action capabilities. For example, if the action is
not allowed, recommend an alternative from the action list that aligns
better with the task goal. Critique Format:Please structure your critique
in the following format : ## Contribution: [Analysis of Contribution].
## Feasibility: [Analysis of feasibility]. ## Efficiency: [Analysis of
efficiency].## Overall Grading: [Overall grade: Excellent/Good/Neutral/
Poor/Very Poor]. ## Suggested Revision: [Brief revision suggestion, if
applicable]. ### InputsThe Agent's Task Goal and Interaction History:
WebShop [SEP] Instruction: [SEP] Find me machine wash, moisture wicking
men's t-shirts & tanks with polyester spandex [SEP] Search Candidate Next
Step Action: search[machine wash moisture wicking men's t-shirts with
polyester spandex long sleeve red blue XXL price: under 50]. Now, please
provide your critique:"},
{"from": "gpt", "value"”: "## Contribution: The candidate's action
contributes to the task by attempting to perform a search for the
specified product. It includes most of the necessary attributes such as
material, sleeve length, color, size, and price, which are crucial for
finding the desired item. ## Feasibility: The action is feasible as it
uses the allowed action type "search[KEYWORDS]"”. However, there are some
discrepancies in the keywords used. The candidate action uses "XXL"
instead of "xx-large"” and "price: under 50" instead of "price < 50.00".
While these variations might still yield relevant results, they do not
exactly match the specified format. ## Efficiency: The action is
relatively efficient as it attempts to gather relevant search results in
one step. However, the slight variations in keyword formatting could
potentially lead to less precise search results, which might require
additional steps to refine the search. ## Overall Grading: Good. ##
Suggested Revision: Modify the search keywords to exactly match the
specified format: search[machine wash moisture wicking men's t-shirts &
tanks polyester spandex long sleeve red blue size xx-large price <
50.00]. This ensures consistency and potentially more accurate search
results.”"}],
"system”: ""}}
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Table 4: Training dataset size for each iteration of Action Refinement stage.

Env Gold #Iter 1 #Iter 2 #Iter 3

Path Critique Path Critique Path Critique Path Critique
ScienceWorld 378 4106 133 1464 158 1803 193 2205
WebShop 427 1659 106 663 283 1637 344 2010
TextCract 441 1701 233 1423 310 2070 340 2049
OverAll 1246 6740 472 3550 751 5510 877 6264

Action Refinement As described in § 4.3, we performed action refinement three times. Each
training dataset consists of two parts: Correct Path, which includes the correct trajectories obtained by
the actor from interactions with the environment in the previous iteration; and Correct Critique, which
includes the <critique, action> pairs that the actor correctly followed during the previous iteration.
The dataset size for each iteration of Llama-3-8B-Instruct is detailed in Table 4.

F.2 Finetuning Details

We ran SFT experiments using 8 NVIDIA A100-40GB GPUs. For action refinement, to prevent
policy drift, we only trained the base model (i.e., , Llama-3-8B-Instruct) each time. We conduct
experiments with the LlamaFactory code base®. The configurations of our hyper-parameters are
detailed in Table 5.

Table 5: Fine-tuning hyper-parameters for Critique Generation and Action Reinement stage.

Configuration Critique Generation Action Refinement
Model Llama-3-8B-Instruct Llama-3-8B-Instruct
Number of epochs 3 3
Devices 8 A100 GPU (40 GB) 8 A100 GPU (40 GB)
Total Batch size 64 samples 64 samples
Optimizer Adam [58] Adam [58]
(1 =0.9,8,=098,e=1x10"8) (B =0.9,8, =0.98,e =1 x 1079)
Learning rate 2x107° 2x107°
Warmup Ratio 0.05 0.05
Cutoff Length 4096 4096
Training Time 5h 46m 24s 11h 11m 55s
F.3 Effect of Iteration Count B Vanilla = #lterl  #lter2  #lter3 m #lterd
(]
Here we analyze the impact of the number of it- & 80 | | | | | | |
erations on the performance of CGI. As shown in 2 60 | | | | |
Figure 7, the fourth iteration leads to a performance &
drop in ScienceWorld and TextCraft, while the im- & 40
provement in WebShop is marginal (+0.67%). The  § 20 i -
third iteration achieves the highest average perfor- < 0 i

mance across all tasks. These results suggest that ad- WebShop Sciworld TextCraft
ditional iterations do not yield further gains. There- Figure 7: Performance of models with varying
fore, we report the results from the third iteration in  iteration counts across three tasks.

the main results section (§ 6).

F.4 Effect of Training with Expert Trajectories and Updating the Critic

In this section, we analyze two key factors: /) whether our critic heavily depends on expert trajectories;
2) whether updating the critic model through iterations can continue to improve performance. To
evaluate the first factor, we replace the gold-standard expert trajectories with GPT-40-generated

6ht‘cps ://github.com/hiyouga/LLaMA-Factory
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Table 6: Performance comparison across different methods and datasets

Method WebShop ScienceWorld TextCraft Average
Llama3-8B 13.49 14.48 10.00 12.66
w/ GPT-40 17.78 33.06 46.00 32.28
w/ Critic (Trained on GPT-40 Traj) 43.21 56.93 52.00 50.71
w/ Critic (Trained on Expert Traj) 56.80 68.51 59.00 61.44
w/ Updated Critic 62.51 74.56 64.00 67.02

trajectories across three environments, following the exact pipeline described in §4.2 for training
the critic model. For the second factor, we perform iterative updates on the critic model after action
refinement to adapt to the updated actor’s policy. Specifically, we use the critic from the first iteration
to generate new critique data and retrain the critic.

As shown in Table 6, CGI remains highly effective even without gold-standard expert data. Our
method achieves an average performance of 50.71, significantly outperforming both the baseline and
the GPT-40 model that generated the initial data. This highlights the robustness of our framework.
Additionally, the critic can be dynamically updated. The results indicate that updating the critic leads
to further performance improvements (from 61.44% to 67.02%), demonstrating that the critic is not
limited to being static and can evolve alongside the actor.

G Baselines

G.1 Critique Methods

In Section 6, we compare our trained Critic-Llama3 model with other verbal- and numerical-based
methods. For the verbal-based approaches, such as self-critique and GPT-4, we generate critiques
by prompting the model with the instructions provided in Appendix D. For the numerical-based
method (i.e., DGAP), following [14], we compute the cosine similarity between the actor model
(Llama-3-8B) and expert data at each step. We collected 23K data points for Scienceworld, 16K for
WebShop, and 12K for TextCraft. Examples of the reward model training data are provided below:

DGAP Example:

{"input”: "Your task is to measure the melting point of lead, which is

located around the kitchen. 10. look around. Action: go to hallway”, "

Score”: "10"}

{"input"”: "Your task is to measure the melting point of lead, which is

located around the kitchen. 10. look around. Action: look at art studio”,
"Score”: "0"}

{"input”: "Your task is to measure the melting point of lead, which is

located around the kitchen. 10. look around. 9. go to hallway. Action:

put down orange”, "Score": "@"}

{"input"”: "Your task is to measure the melting point of lead, which is
located around the kitchen. 10. look around. Action: look at hallway”, "

Score": "9.03"}

{"input”: "Your task is to measure the melting point of lead, which is
located around the kitchen. 10. look around. 9. look at hallway. Action:

open door to outside”, "Score”": "6.13"}

{"input"”: "Your task is to measure the melting point of lead, which is
located around the kitchen. 10. look around. 9. look at hallway. 8. open

door to outside. Action: teleport to kitchen", "Score”: "8.87"}

G.2 Iterative Methods

In Section 6, we compare CGI with two iterative baselines: Reflexion and Iterative SFT. Following
[20], we prompt the model for self-reflection (Listing 3) at the end of each iteration. The insights
gained from the current round are then incorporated into the system prompt to guide the model’s
decision-making in the subsequent round. For Iterative SFT, we use the actor model wg from the
previous round to interact with the environment. The newly collected correct trajectories are combined
with the expert path to form the training data for the next round. Specifically, for iterations 1 to 3, we
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used 1,676, 1,719, and 1,750 trajectories, respectively, mixing them with the general dataset (i.e.,
ShareGPT) at a 1:4 ratio for training. To prevent policy drift, we update 7} at each iteration. Each
iteration consists of 3 epochs. The learning rate for Iterative SFT is set to 2e-5, with a 3% warm-up
and a cosine scheduler. We use the AdamW optimizer with a weight decay of 0 and apply a maximum
gradient clipping norm of 1 to prevent gradient explosion. The batch size is set to 2 per device, with a
sequence length of 4,096 and an accumulation count of 4, adjusted based on sequence parallelism.

Listing 3: The instruction prompt for Reflexion.

Reflexion Instruction:

Your task is to provide a next plan of action based on the previous
attempt's interaction history. The next plan should reflect the lessons
learned from the failure and adjust for better results.

Previous Trial:
{history}

Next Plan:

H Case Study

H.1 Failure Cases of Fine-tuned Llama3
We provide negative examples where the fine-tuned Llama3-8B does not follow the critique.

Listing 4: Failure Cases of Fine-Tuned Llama3-8B in ScienceWorld

Task Description:

Your task is to measure the temperature of unknown substance B, which is
located around the bathroom. First, focus on the thermometer. Next, focus
on the unknown substance B. If the unknown substance B temperature is
above 100.0 degrees celsius, place it in the orange box. If the unknown
substance B temperature is below 100.0 degrees celsius, place it in the
yellow box. The boxes are located around the bathroom.

History:

Action: open door to kitchen

Observation: The door is now open.

Action: go to kitchen

Observation: You move to the kitchen.

Action: open door to hallway

Observation: The door is now open

Action: go to hallway

Observation: You move to the hallway.

Critique:

### Feasibility: The candidate action "open door to bathroom” is
efficient in terms of task progression, as it directly addresses the need
to access the bathroom. However, the agent should consider checking the
current state first to ensure the action is feasible by "Look Around”.

### Overall Grading: Netual
Action: go to bathroom
Observation: No known action matches that input.

H.2 Critic-Llama3 Outperforms GPT-40
We provide the following examples to explain why our critic outperforms GPT-40 when the actor
model is fixed as Llama3-8B. Compared to GPT-4o, our critic demonstrates superior spatial reasoning
and a higher degree of goal-directed behavior.

Listing 5: Comparison between Critic-Llama3 and GPT-40 as Critics

Example 1: Spatial Reasoning

31



— #CGl Iterl #CGlI lter2 — #CGl Iter3 —— Vanilla

3-1 3-2 3 L~ 42— 43

Figure 8: Visualizing trajectories of CGI, and base model (Llama-3-8B-Instructt), the x-axis repre-
sents time steps, ranging from O to T, while the y-axis denotes scores, which vary from 0 to 100. Each
graph illustrates the trajectories corresponding to different tasks in test variation. Task identifiers are
positioned at the bottom right of each figure.

State: Agent is in the workshop. Task requires an object in the bathroom.
Action: focus on thermometer

GPT-40 (Incorrect): Overall Grading: Excellent.

It approves the action based on the task description, ignoring the agent'
s location.

Our Critic (Correct): Overall Grading: Very Poor.

It correctly identifies the thermometer is not in the current room and
suggests navigating first.

Example 2: Goal-Directedness

Task: Find a living thing.

Action: move to the closet (an exploratory but inefficient action).
GPT-40 (Inefficient): Overall Grading: Neutral.

It allows this exploratory step.

Our Critic (Efficient): Overall Grading: Poor.

It rejects the inefficient action and suggests a more direct one, like
opening the door to explore other rooms.

H.3 Trajectory Visualization of ScienceWorld

We visualize the cumulative scores of the actor performing different numbers of action refinements
(#Iter k) and the base model in the ScienceWorld scene’. As shown in Figure 8, our CGI method
shows a notable improvement in efficiency, achieving higher scores in fewer steps. Furthermore, as
the number of action refinements increases, efficiency also improves.

"Detailed information of each task can be found in https://github.com/allenai/ScienceWorld
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