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ABSTRACT

To maintain user trust, large language models (LLMs) should signal low confi-
dence on examples they get incorrect, instead of misleading the user. The standard
approach of estimating confidence is to use the softmax probabilities of these mod-
els, but state-of-the-art LLMs such as GPT-4 and Claude do not provide access to
these probabilities. We first study eliciting confidence linguistically—asking an
LLM for its confidence in its answer—but we find that this leaves a lot of room
for improvement (79% AUC on GPT-4 averaged across 12 question-answering
datasets—only 5% above a random baseline). We then explore using a surrogate
confidence model—using a model where we do have probabilities to evaluate the
original model’s confidence in a given question. Surprisingly, even though these
probabilities come from a different model, this method leads to higher AUC than
linguistic confidences on 10 out of 12 datasets. Our best method mixing linguistic
confidences and surrogate model probabilities gives state-of-the-art performance
on all 12 datasets (85% average AUC on GPT-4).

1 INTRODUCTION

As large language models (LLMs) are increasingly deployed, it is important that they signal low
confidence on examples where they make mistakes. This problem is called selective classification
(or classification with a reject option) and is widely studied in machine learning (Cordella et al.,
1995; Geifman & El-Yaniv, 2017; Feng et al., 2019; Jones et al., 2021), learning theory (El-Yaniv &
Wiener, 2010; Bartlett & Wegkamp, 2008), and natural language processing (Kamath et al., 2020;
Liang et al., 2022; Xiong et al., 2023). Traditional approaches leverage the model’s softmax proba-
bility (Hendrycks & Gimpel, 2017; Jones et al., 2021; Liang et al., 2022) or the model’s representa-
tions (Lee et al., 2018). This paper’s goal is to produce good confidence estimates for state-of-the-art
LLMs such as GPT-4 and Claude, which do not provide model probabilities or representations.

We first examine a natural idea of eliciting linguistic confidence scores (Tian et al., 2023; Lin et al.,
2022; Xiong et al., 2023)—prompting the LLM to ask for its confidence that its answer is correct
(Figure 1, GPT-4 Linguistic). We find that while linguistic confidences work better than a random
guessing baseline, it leaves a lot of room for improvement. Our results hold across 12 standard
datasets (8 MMLU datasets, TruthfulQA, CommonsenseQA, OpenbookQA, and MedQA), 5 models
(GPT-4, Claude, GPT-3.5, Llama-2, and text-davinci-003), and 24 different prompt formats (e.g.,
chain-of-thought, different instructions, fake few-shot prompts). Averaged across the datasets, GPT-
4 achieves a modest selective classification AUC of 78.8%, which is only 5.3% above a random
guessing baseline. When model probabilities are available (for less accurate models such as Llama-
2), the linguistic confidences perform much worse than using model probabilities (60.9% vs. 73.1%
AUC on Llama-2).

Instead, we propose a surrogate model approach of taking the answer from GPT-4 or Claude, but
the confidence from a different model such as Llama 2 (Figure 1, Surrogate). The surrogate model
method improves the average selective classification AUC for GPT-4 to 81.8%. Even using a much
smaller Llama-13B model improves the AUC for models such as GPT-4, Claude, and GPT-3.5.
Intriguingly, the model generating the confidence score is different (and much worse) than the model
generating the answer, but its confidence scores transfer over.

We find that the linguistic confidence scores are still useful: adding these scores to the surrogate
model’s probabilities leads to further gains (Figure 1, Mixture). For example, this mixture method
increases the selective classification AUC of GPT-4 to 83.0%. The mixture method also outperforms
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Figure 1: Our goal is to provide good confidence estimates for state-of-the-art LLMs such as GPT-4
and Claude which do not give access to internal model probabilities. One natural approach (GPT-4
linguistic) is to prompt the model and ask for its confidence. Interestingly, we find that taking the an-
swer from GPT-4, but the internal model probability from a different surrogate model (e.g., an open
model such as Llama-2) gets even better results (0.82 AUC). Mixing GPT-4’s linguistic probabilities
with the surrogate model probabilities gives further gains (0.83 AUC). Our AUC numbers are better
than concurrent work (Xiong et al., 2023), but combining these approaches leads to the best results
(Mixture++; 0.85 AUC). Our findings also hold for Claude and GPT-3.5 (Section 4 and 5).

concurrent work (Xiong et al., 2023) on self-consistency (AUC: 82.6%), which is more expensive
(involves sampling GPT-4 five times per input) and involves post-processing. Combining our method
with self-consistency leads to the best results: average AUC of 84.5%.

Our analysis suggests that linguistic confidence scores do not work well by themselves because they
are very coarse-grained—for example, GPT-4 outputs the exact same confidence (0.9) on 50% of
examples, which limits its ability to separate correct and incorrect answers. Surrogate model prob-
abilities appear to work well even on a different model, because the examples that are challenging
for one model transfer over to a different model. Finally, mixing in just a small fraction of surro-
gate model probabilities allow answers which previously had the same linguistic confidence to be
separable through different composite confidence scores, boosting the overall performance.

2 SETUP

Our goal is selective classification: outputting confidence scores that are higher on inputs where the
model is correct, than inputs where the model is incorrect (El-Yaniv & Wiener, 2010; Geifman &
El-Yaniv, 2017). We focus on state-of-the-art language models such as GPT-4 and Claude, which
do not expose probabilities computed in their softmax output layer.

Task. Given a text input x, a model outputs a (possibly stochastic) answer y(x). Let R(x, y) = 1
if an answer y is correct for input x, and 0 otherwise. Our goal is to output a confidence score
C(x) ∈ [0, 1]. Good confidence scores are essential in real world machine learning systems: for
inputs when C(x) is lower, we can defer to a human expert or alert the user, instead of misleading
the user with an incorrect answer.

Metrics. A popular metric for selective classification is the AUC (area under the coverage-accuracy
curve) (El-Yaniv & Wiener, 2010; Liang et al., 2022), which examines how accurate the model is
if allowed to abstain (say "I don’t know") on some examples. Let A(c) be the selective accuracy
at coverage c: the accuracy if the model only makes a prediction on the c proportion of data with
highest confidence scores1. The AUC is the average selective accuracy A(c) over all c:

AUC(C, y) =
∫ 1

0

A(c)dc (2.1)

A random baseline (outputting uniform random probabilities for each input) achieves AUC(C, y) =
Accuracy, so a model with good confidence scores should achieve a higher AUC than accuracy.

1The classifier used to select the c proportion of examples can be deterministic or randomized. We report
results with a deterministic classifier, but also compute results with a randomized classifier in A.16.
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We also examine the AUROC (area under the receiver operator curve), a standard metric (Hendrycks
& Gimpel, 2017; Xiong et al., 2023) which examines how well the confidence scores can distinguish
between correct and incorrect examples. Outputting random confidence scores gets an AUROC of
0.5, so a model with good confidence scores should achieve AUROC above 0.5.

We also report ECE (expected calibration error) numbers in Appendix A.6. ECE examines if a
model’s confidence aligns with its accuracy, but does not indicate the model’s ability to distinguish
between correct and incorrect examples, so we focus on the AUC and AUROC metrics.2

Datasets. We study model performance and confidence on twelve standard question answering
datasets: TruthfulQA (TQA) (Lin et al., 2021), CommonsenseQA (CSQA) (Talmor et al., 2019),
OpenbookQA (OBQA) (Mihaylov et al., 2018), MedQA (Jin et al., 2021), and 8 MMLU (Hendrycks
et al., 2021) datasets - professional law (Law), business ethics (Ethics), conceptual physics (Physics),
econometrics (Econ), abstract algebra (Algebra), college chemistry (Chem), computer security (Se-
curity), and US Foreign Policy (Policy). These datasets span several diverse categories including
math reasoning, scientific knowledge, computer science, social science, and commonsense reason-
ing. We sample 250 questions from the test split of each dataset to report results on (if the test set is
smaller, we use the full test set). See Appendix A.1 for more details.

Models. We study state-of-the-art language models, most of which do not provide access to internal
probabilities as of the writing of this paper - GPT-4 (OpenAI, 2023a), Claude-v1.3 (Anthropic,
2023), and GPT-3.5-Turbo (OpenAI, 2022) (June 13th, 2023, snapshot). We also study a few recent
models which do provide model probabilities for systematic comparisons—Llama-2 and Llama-2-
chat (70b and 13b sizes) (Touvron et al., 2023) and text-davinci-003 OpenAI (2023b). If Llama-2
is mentioned in the text without further identifiers, we refer to the Llama-2-70b base model.

2.1 CONFIDENCE ELICITATION METHODS

Linguistic Confidences. We zero-shot prompt models to elicit linguistic confidences, sampling the
answer and confidence together in a single generation, greedily at temperature T = 0. We exper-
iment with 24 different prompts across various categories (chain-of-thought, different instructions,
fake few shot examples) and found the results to be consistent across prompts. We report results on
our best prompt (see more details on the exact prompt in Appendix A.3).

Model Probabilities. Weaker models such as Llama-2 and text-davinci-003 provide token-level
probabilities for text. We let the confidence score be the probability of the generated answer choice.

Surrogate models for confidences. Since models such as GPT-4 do not give a confidence estimate,
we propose using a surrogate model (e.g., Llama-2) to provide confidence estimates. Formally,
given an input x we output y(x) = ygpt-4(x) (GPT-4’s answer) and C(x) = Cllama-2(x) (Llama-2’s
confidence). Even though these confidence scores come from a different model, Section 4 shows
that the surrogate method outperforms linguistic confidence scores.

Mixture of models. We also propose a mixture of models method where we combine

Algorithm 1: Mixture of Models Confidence
Data: A question x
Result: A prediction ŷ, a confidence score c
ŷ, c1 = MainModel (x) ;
c2 = SurrogateModel (x) ;
c = (1− α)c1 + αc2 ;

the linguistic confidence from the main model
and the surrogate model’s confidence score:
given input x we output (1−α)CM (x)+αCS(x)
where M is the main model and S is the surro-
gate model (Algorithm 1). We use Llama-2-70b
as our surrogate model since that performs the
best, and optimize α to minimize AUC. Interest-
ingly, in Section 5, we show that even α = 0.001
works well. For details on the optimal α values
for each model, see Appendix A.8.

3 LINGUISTIC CONFIDENCES: ASKING THE MODEL FOR ITS CONFIDENCE

State-of-the-art language models such as GPT-4 and Claude do not give access to internal model
probabilities. In this section, we examine linguistically eliciting confidence: prompt models to as-
sign their answers a confidence score between 0 and 1. We find that these linguistic confidences

2Intuitively, calibration requires that if we output a 0.6 confidence on 100 examples, then we should get
0.6 · 100 = 60 of them correct. For a classifier with accuracy A, one (degenerate) way to have perfect
calibration (best possible ECE) is to output confidence C(x) = A for every example x.
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Metric Confidence Type TQA MedQA CSQA OBQA Law Ethics Physics

AUC

Text-davinci Linguistic 0.484 0.504 0.713 0.775 0.532 0.590 0.579
Text-davinci Prob 0.608 0.656 0.861 0.929 0.714 0.783 0.697
Llama-2 Linguistic 0.583 0.584 0.689 0.803 0.581 0.639 0.628
Llama-2 Prob 0.711 0.735 0.804 0.923 0.749 0.834 0.763
GPT-3.5 Linguistic 0.590 0.536 0.684 0.781 0.508 0.674 0.526
Claude Linguistic 0.679 0.687 0.788 0.874 0.647 0.863 0.713
GPT-4 Linguistic 0.883 0.828 0.786 0.958 0.711 0.850 0.819

AUROC

Text-davinci Linguistic 0.525 0.500 0.503 0.509 0.500 0.500 0.500
Text-davinci Prob 0.718 0.696 0.806 0.840 0.715 0.758 0.637
Llama-2 Linguistic 0.618 0.541 0.555 0.484 0.517 0.602 0.593
Llama-2 Prob 0.745 0.722 0.731 0.777 0.733 0.868 0.732
GPT-3.5 Linguistic 0.535 0.500 0.520 0.516 0.508 0.509 0.504
Claude Linguistic 0.669 0.584 0.631 0.647 0.586 0.760 0.652
GPT-4 Linguistic 0.665 0.716 0.547 0.656 0.591 0.720 0.522

Metric Confidence Type Econ Algebra Chem Security Policy Avg

AUC

Text-davinci Linguistic 0.412 0.300 0.440 0.690 0.851 0.573
Text-davinci Prob 0.431 0.338 0.644 0.890 0.939 0.708
Llama-2 Linguistic 0.402 0.212 0.470 0.792 0.922 0.609
Llama-2 Prob 0.498 0.263 0.647 0.866 0.981 0.731
GPT-3.5 Linguistic 0.412 0.330 0.460 0.737 0.806 0.587
Claude Linguistic 0.621 0.339 0.591 0.823 0.918 0.712
GPT-4 Linguistic 0.628 0.534 0.616 0.886 0.955 0.788

AUROC

Text-davinci Linguistic 0.500 0.500 0.500 0.500 0.506 0.504
Text-davinci Prob 0.549 0.532 0.695 0.858 0.795 0.717
Llama-2 Linguistic 0.533 0.424 0.520 0.613 0.576 0.548
Llama-2 Prob 0.622 0.546 0.732 0.775 0.871 0.738
GPT-3.5 Linguistic 0.518 0.522 0.500 0.519 0.519 0.514
Claude Linguistic 0.573 0.543 0.668 0.687 0.645 0.637
GPT-4 Linguistic 0.551 0.599 0.691 0.750 0.753 0.647

Table 1: AUC and AUROC - Linguistic Confidences vs Model Probabilities We compare the
AUC and AUROC values for linguistic confidences and model probabilities in weaker models (text-
davinci-003 and Llama-2-70b), and find that model probabilities consistently outperform linguis-
tic confidences. For closed source models (which don’t provide model probabilities), we see that
Claude and GPT-4 provide the best linguistic confidences in both AUC and AUROC. The same
model is used to provide both the answer and the confidence estimate.

leave a lot of room for improvement (around 50-65% AUROC, compared to 50% for a random
guessing baseline). These linguistic confidences are also much worse than internal model probabil-
ities when available (for weaker models such as text-davinci-003 and Llama-2). We show AUC and
AUROC results on all datasets and models in Table 1.

Linguistic confidences are mediocre. The AUROC values of linguistic confidences from text-
davinci, Llama-2-70b, and GPT-3.5 are close to 50% (Table 1), which is the score achieved by
guessing a random confidence, indicating that linguistic confidences are not a reliable means of sep-
arating correct and incorrect examples. The linguistic confidences of the strongest models, Claude
and GPT-4, are better and result in AUROCs in the 60-65% range, but still leave a lot of room for
improvement. AUC values show a similar story: the AUC of linguistic confidences are close to their
accuracy (which is the score achieved by a random guessing baseline). Averaged over the datasets,
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Llama-2 has an accuracy of 58.8% and AUC of 62.8%; GPT-4 has an accuracy of 73.5% and AUC
of 78.8%; and Claude has an accuracy of 65.5% and AUC of 71.3%.

Linguistic confidences are worse than model probabilities. The best current models (GPT-4 and
Claude) do not provide model probabilities, but we compare the quality of model probabilities and
linguistic confidences for text-davinci-003 and the Llama-2 models. For these models, the model
probabilities result in better AUC and AUROC values for all of our datasets (Table 1). For Llama-2,
the model probabilities achieve a 13.5% higher AUC and 19% higher AUROC than the linguistic
confidences. The Chat model (Llama-2-70b-Chat) shows similar trends (Appendix A.5). We mea-
sure the correlation between linguistic confidences and model probabilities in Appendix A.14.

Linguistic confidences are robust to prompts. We examine linguistic confidences using 24 dis-
tinct prompts, including asking for numerical confidence or probability scores, asking the model
to categorize its confidence into ‘not sure’, ‘sure’, and ‘very sure’, allowing the model to explain
confidences with chain-of-thought, asking the model for its confidence in a follow-up question, and
varying the prompt instructions. We show results for the best prompt, as there was very little differ-
ence in performance across prompts—our results hold for other prompts as well (Appendix A.3).

Linguistic confidences improve with scale, but not enough. The quality of linguistic confidences
improves with model scale. We see that GPT-4 and Claude have the best linguistic confidences,
followed by the Llama-2-70b models, GPT-3.5, and finally text-davinci-003. While the linguistic
confidences from GPT-4 are not bad (65% average AUROC), they are worse than model probabilities
from Llama-2-70b (74%) and even text-davinci-003 (72%). Note that AUC scores increase with
accuracy—GPT-4 Linguistic has the highest AUC because GPT-4 has much higher accuracy than
Llama-2. The overall utility of a selective classifier depends on both its accuracy and confidence
quality, so in the next section we examine ways to improve the confidences of GPT-4 and Claude.

4 SURROGATE MODELS ARE RELIABLE CONFIDENCE ESTIMATORS

In the previous section we found that linguistic confidences leave a lot of room for improvement.
Here we show that model probabilities from a separate ‘surrogate’ model can surprisingly provide
better confidence estimates for a model than its own linguistic confidence scores, even though the
probabilities come from a different model.

4.1 RESULTS

Surrogate model confidences outperform linguistic confidences. AUC improves for all models
when probabilities from any surrogate model are used, as opposed to using the model’s own linguis-
tic confidences. Figure 8 shows a heatmap of the AUC for different main models (on the x-axis) as
we vary the surrogate model (on the y-axis). We see that model probabilities (bottom three rows)
lead to higher AUC (are darker) than linguistic confidences (top 5 rows) even when the probabil-
ities come from a different model. For example, using Llama-2-70B probabilities as a surrogate
improves AUC from 78.8% to 81.8% for GPT-4, 71.2% to 75.6% for Claude, and 58.7% to 71.9%
for GPT-3.5, and the AUROC also shows similar increases for all models (Table 2, Figure 3).

Weak surrogates are also good confidence estimators. Even using Llama-2-13B or text-davinci-
003 as a surrogate leads to comparable or better performance than using a model’s own linguistic
confidences. We found this intriguing because these models are much smaller and less accurate,
e.g., Llama-2-13B has an average accuracy of 47.2% vs. 65.5% for Claude and 73.5% for GPT-4.
As we might expect, better models (such as Llama-2-70b) are better surrogates.

Other findings. Recent work suggests RLHF’ed chat models may be less calibrated than base
models. Llama-2-70B Base has better linguistic confidences and probabilities than the Chat model,
but both perform similarly as surrogates (Appendix A.11, A.5). Finally, we find that linguistic
confidences from stronger models can be good surrogates for weaker models—the AUC of text-
davinci-003 improves by 5% when using GPT-4’s linguistic confidences instead of its own.

5 MIXTURES OF MODELS FOR BETTER CONFIDENCE ESTIMATES

In the previous section, we proposed the use of surrogate models—using a main model to produce
answers and a separate, surrogate to estimate the main model’s confidence in the answers—and
found surrogates to outperform linguistic confidence scores elicited from the main model. In this
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Figure 2: AUCs for Different Surrogate Models. We plot the AUC as we vary the main model (on
the x-axis) and the surrogate model (on the y-axis). Using surrogate model probabilities as confi-
dence estimates improves AUCs for all models over their own linguistic confidences—the bottom 3
rows (surrogate probabilities) are darker than the top 5 rows (linguistic confidences). Even model
probabilities from a smaller and less accurate Llama-13B model improves AUCs for all models.

Text-davinci GPT-3.5 Llama-2 Claude GPT-4

AUC

Ling. Conf. 0.573 0.587 0.609 0.712 0.788
Surrogate† 0.708 0.719 0.731 0.753 0.818
Tiebreak† 0.711 0.718 0.715 0.754 0.826
Mixture of Models† 0.711 0.721 0.731 0.762 0.830

AUROC

Ling. Conf. 0.504 0.515 0.548 0.637 0.647
Surrogate† 0.717 0.705 0.738 0.671 0.654
Tiebreak† 0.719 0.707 0.700 0.677 0.689
Mixture of Models† 0.719 0.708 0.737 0.685 0.696

Table 2: AUC and AUROC of Surrogate and Mixture of Model Methods. We compare the
performance of our proposed methods† with the baseline linguistic confidence method (gray). For
both AUC and AUROC, our proposed methods outperform linguistic confidences on all models.
Mixture of models improves the AUC of Claude by 5% and GPT-4 by 4.2%.

section, we find that the linguistic confidences are still useful—they can be composed with a surro-
gate model’s confidences to get state of the art confidence estimates for all models.

5.1 RESULTS

Mixtures of models provide best confidences. Mixing surrogate and linguistic confidences (Al-
gorithm 1) leads to the best confidence estimates for all models—AUCs increase from 78.7% to
83.0% for GPT-4 and 71.2% to 76.2% for Claude. AUROCs also increase for these models, by 5.2%
for GPT-4 and 4.8% for Claude (Table 2). We plot selective accuracy against coverage, where the
mixture and surrogate method lie above the linguistic confidences curve (Figure 3).
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Method TQA MedQA CSQA OBQA Law Ethics Physics

AUC

Ling. Conf. 0.883 0.828 0.786 0.958 0.711 0.850 0.819
SC Vanilla Ling. Conf. 0.857 0.763 0.798 0.942 0.693 0.785 0.830
SC Hybrid Ling. Conf. 0.902 0.883 0.837 0.977 0.729 0.900 0.845
Surrogate† 0.866 0.844 0.843 0.965 0.762 0.848 0.891
Tiebreak† 0.902 0.871 0.826 0.967 0.768 0.889 0.861
Mixture† 0.895 0.864 0.842 0.969 0.780 0.881 0.886
SC Mixture† 0.921 0.873 0.873 0.979 0.757 0.894 0.881

AUROC

Ling. Conf. 0.665 0.716 0.547 0.656 0.591 0.720 0.522
SC Vanilla Ling. Conf. 0.549 0.550 0.540 0.607 0.571 0.612 0.570
SC Hybrid Ling. Conf. 0.698 0.767 0.623 0.833 0.619 0.817 0.592
Surrogate† 0.543 0.666 0.652 0.683 0.619 0.617 0.648
Tiebreak† 0.671 0.750 0.607 0.716 0.628 0.740 0.589
Mixture† 0.642 0.731 0.642 0.731 0.655 0.711 0.648
SC Mixture† 0.702 0.747 0.677 0.838 0.655 0.783 0.663

Method Econ Algebra Chem Security Policy Avg

AUC

Ling. Conf. 0.628 0.534 0.616 0.886 0.955 0.788
SC Vanilla Ling. Conf. 0.619 0.575 0.639 0.860 0.919 0.773
SC Hybrid Ling. Conf. 0.658 0.585 0.726 0.912 0.964 0.826
Surrogate† 0.667 0.571 0.693 0.888 0.971 0.817
Tiebreak† 0.654 0.581 0.714 0.910 0.974 0.826
Mixture† 0.664 0.581 0.718 0.908 0.976 0.830
SC Mixture† 0.657 0.645 0.763 0.926 0.973 0.845

AUROC

Ling. Conf. 0.551 0.599 0.691 0.750 0.753 0.647
SC Vanilla Ling. Conf. 0.562 0.662 0.699 0.634 0.556 0.593
SC Hybrid Ling. Conf. 0.617 0.682 0.818 0.798 0.755 0.718
Surrogate† 0.578 0.621 0.676 0.779 0.764 0.654
Tiebreak† 0.569 0.648 0.730 0.815 0.805 0.689
Mixture† 0.578 0.648 0.729 0.814 0.822 0.696
SC Mixture† 0.590 0.763 0.819 0.839 0.810 0.740

Table 3: AUC and AUROC of All Confidence Methods for GPT-4. Our proposed surrogate model
method outperforms linguistic confidences on 10/12 datasets on AUC. Mixing surrogate probabil-
ities and linguistic confidences outperforms vanilla linguistic confidences on all 12 datasets. The
mixture of surrogate probabilities also outperforms self-consistency and hybrid self-consistency
confidences, the best method in Xiong et al. (2023), on average (AUC 83.0% vs. 82.6%). Mixing
surrogate probabilities with hybrid self-consistency linguistic confidences leads to the best confi-
dence estimates overall, outperforming all methods with an average 84.5% AUC and 74.0% AU-
ROC, which is a gain of 5.7% and 9.3% respectively over vanilla linguistic confidences.

Epsilon is all you need. We study a special case of Algorithm 1 called Tiebreaking, where we set α
to a small value ϵ → 0. Adding only 0.1% of a surrogate model’s probabilities to a model’s linguistic
confidences performs better than linguistic confidences or surrogate probabilities alone, and closely
matches performance of the optimal α (Table 2). For GPT-4, Tiebreaking achieves 90% of the AUC
gains (over linguistic confidences) of the optimal α, and 85.7% of the AUROC gains.

Mixing surrogate and self-consistency confidences leads to further gains. Concurrent
work (Xiong et al., 2023) on eliciting linguistic confidences uses self-consistency (SC) to sample
multiple linguistic confidence scores for each answer and aggregates them through a post process-
ing technique (SC Hybrid). This method is more expensive than our surrogate method and only
works with additional post-processing steps (Appendix A.7). We experiment with leveraging these
SC-based linguistic confidences for GPT-4 in c1 in Algorithm 1. This leads to state-of-the-art confi-
dence estimates, also outperforming their hybrid self-consistency technique (Table 3), with an 5.7%
gain in AUC for GPT-4 over vanilla linguistic confidences, and a 9.3% gain in AUROC.
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(a) MMLU - Professional Law (b) MMLU - US Foreign Policy

Figure 3: Selective Accuracy vs. Coverage for GPT-4. Our surrogate and mixture methods have
a higher area under the selective accuracy vs coverage curve (AUC) than the linguistic confidence
and random confidence baselines. We plot the coverage c on the x-axis and the selective accuracy
(accuracy on the top c fraction of examples) on the y-axis, for two representative tasks. Notice that
the mixture (green solid) and surrogate (purple dashed) lines are above the linguistic confidence
(blue dashed/dotted) and random guessing baseline (black dotted).

Other findings. Probabilities of smaller surrogate models can also be composed with linguistic
confidences—composing Llama-2-13b’s probabilities with GPT-4’s linguistic confidences retains
88% of the AUC gains seen from composing Llama-2-70b’s probabilities. Composing GPT-4 and
Claude’s linguistic confidences can boost GPT-4’s AUC and AUROC by 3% each, indicating that
linguistic confidences from different models can also be complementary. Appendix A.10 details
experiments on composing confidences from multiple surrogate models.

6 ANALYSIS

Why Are Vanilla Linguistic Confidences Worse Than Model Probabilities? In Section 3, we
showed that linguistic confidences underperformed model probabilities. Here we provide some intu-
itions for this behavior. We observe that the distribution of model probabilities is quite varied (1456
unique values for Llama-2-70b across 12 datasets), while the distribution of linguistic confidences
is clustered (only 8 unique values for GPT-4 across 12 datasets). This clustering may be because
training corpora contain high frequencies of “nice” probabilities such as 90% or 100% (Zhou et al.,
2023). The repetitiveness of linguistic confidences, compared to model probabilities, hinders rel-
ative confidence ordering and good AUC/AUROC performance—GPT-4 repetitively generates 0.9
for 50% of examples across 12 tasks, so it cannot separate them.

Why Do Surrogate Methods Improve Confidence Scores? In section 4, we demonstrate that
models can receive good quality confidence estimates from other surrogate models. Here we pro-
vide some intuitions for our results. We find that for a main model M , a model S tends to be a
better surrogate when there is a higher correlation in the questions answered correctly by M and S.
The questions GPT-4 answers correctly are more correlated with those that Llama-2-70b answers
correctly (Pearson correlation of 0.39), than those that Llama-2-13b answers correctly (correlation
0.19) (Appendix A.12). In Figure 4, we plot the embeddings of questions that GPT-4 gets incorrect
(blue dots) and the questions two potential surrogates Llama-2-70b and Llama-2-13b get incorrect
(green dots) (see Appendix A.9 for more details). GPT-4 and Llama-2-70b tend to make mistakes
on more of the same questions (more black dots on the left plot). We also see more spatial similarity
in their mistakes. So better surrogates S and their corresponding main models M may struggle with
semantically related concepts, causing them to have low confidences on similar types of questions.

Why Does Tiebreaking Work Well? Linguistic confidences tend to be clustered at only a few
values (e.g., 0.9), limiting their ability to separate correct and incorrect answers. Since a surrogate
model’s probabilities for each example are nearly unique, composing just a small fraction of them
can allow answers which previously had the same linguistic confidence to now be separable.
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(a) GPT-4 and Llama-2-70b (b) GPT-4 and Llama-2-13b

Figure 4: Embeddings of Incorrect Questions for GPT-4 and Surrogate Models Plots of the
embeddings of questions GPT-4 and two surrogate models (Llama-2-70b and Llama-2-13b) answer
incorrectly on two representative datasets - TruthfulQA and College Chemistry. Questions only
GPT-4 answers incorrectly are in blue, questions GPT-4 and the surrogate answer incorrectly are in
black, and questions only the surrogate answers incorrectly are in green. There are more questions
that both GPT-4 and Llama-2-70b answer incorrectly and more semantic similarity in their incorrect
questions. This indicates that Llama-2-70b and GPT-4 struggle with semantically related concepts
and that the 70b model may more closely represent GPT-4’s uncertainty than the 13b model.

7 RELATED WORK

Confidence Estimation for LLMs. Several studies explore confidence estimation for LLMs. Ka-
davath et al. (2022) show that Claude’s probabilities are calibrated on MC tasks, while Zhou et al.
(2023) investigate the impact of uncertainty expressions on model accuracy. (Lin et al., 2022) fine-
tune LLMs to improve confidence estimates (Appendix A.4). Our work focuses on confidence esti-
mation for models that don’t provide log probabilities. Concurrent work (Xiong et al., 2023) studies
LLM-generated confidences, but focuses on self-consistency based methods which are expensive
in prompting GPT-4 multiple times, and add complexity by requiring post-processing steps. Our
methods show gains over their best method and are less expensive, since probabilities from smaller
models (Llama-2) are used to improve the confidences of larger models (GPT-4) (Appendix A.7).

Selective Classification and OOD Detection. Our paper focuses on selective classification, which
is a classical problem in machine learning (El-Yaniv & Wiener, 2010; Khani et al., 2016; Feng et al.,
2019; Jones et al., 2021) and statistics (Chow, 1970; Hellman & Raviv, 1970). A related problem is
out-of-distribution detection (Pimentel et al., 2014; Liang et al., 2018; Ovadia et al., 2019), where
the goal is to detect examples very different from training (where the model may make mistakes).
Prior work uses internals of the models—probability outputs (Hendrycks & Gimpel, 2017), model
representations (Lee et al., 2018), or even updates the training procedure (Bartlett & Wegkamp,
2008; Mozannar & Sontag, 2020)—which state-of-the-art LLMs do not provide access to.

Calibration. The general idea of confidence estimation is also studied in calibration (Murphy &
Winkler, 1977; DeGroot & Fienberg, 1983; Naeini et al., 2014; Guo et al., 2017). While related,
the focus is different—a model which outputs its accuracy on every example has 0 calibration error
(ECE), but cannot separate correct and incorrect examples (Kuleshov & Liang, 2015).

LLM Self-Evaluation. LLMs have shown progress in improving generations through self-critiques
(Madaan et al., 2023; Chang et al., 2023), or validating generations using tools (Gou et al., 2023).
Better confidence estimation may allow models to produce more reliable critiques (Appendix A.15).

8 CONCLUSION

Our work aims to address the open challenge of eliciting good confidence estimates from state-of-
the-art LLMs such as GPT-4 and Claude, which don’t provide access to their internal probabilities.
We show that using probabilities from weaker surrogate models provide effective confidence esti-
mates for larger models, and find that interpolating these with linguistic confidences leads to even
better confidence estimates.
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A APPENDIX

A.1 DATASET DETAILS

TruthfulQA is a multiple choice benchmark designed to check the truthfulness of large language
models by testing them on questions across 38 different categories like health and politics where
humans might provide incorrect responses due to implicit biases or incorrect beliefs. This task is
challenging for language models because they may imbibe these same misconceptions from training
corpora.

MedQA is a challenging dataset testing medical knowledge with questions based on the
United States Medical License Exams (USMLE) and other medical board exams.

CommonsenseQA is a multiple choice benchmark testing commonsense reasoning, with
challenging associations extracted from concept net to find many target concepts for a single source
concept.

OpenbookQA is a multiple choice dataset requiring multi-step reasoning over common and
commonsense knowledge requiring deeper understanding of a diverse set of topics.

MMLU is a massive benchmark covering 57 subjects from a diverse set of areas including
STEM, humanties, and social sciences. This benchmark tests both more rudiementary and more
advanced sets of knowledge for these topics covering great breadth and depth.

A.2 MODEL ACCURACIES

Following are the accuracies for each of the models on the 12 datasets. Answers are elicited using
the prompt format specified in A.3. As expected the GPT-4 model has the highest accuracies on
all 12 datasets, followed by Claude v1.3. Llama-2-Chat and Base have comparable accuracy to
GPT-3.5. Text-davinci-003 has the lowest accuracies.

Model TQA MedQA CSQA OBQA Law Ethics Physics

Text-davinci 0.472 0.504 0.712 0.772 0.532 0.590 0.579
Llama-2 0.524 0.564 0.664 0.808 0.572 0.590 0.583
Llama-2 Chat 0.480 0.512 0.684 0.728 0.528 0.600 0.528
GPT-3.5 0.572 0.536 0.676 0.776 0.504 0.670 0.523
Claude 0.596 0.640 0.736 0.832 0.604 0.760 0.638
GPT-4 0.836 0.736 0.768 0.940 0.664 0.760 0.813

Econ Algebra Chem Security Policy Avg

Text-davinci 0.412 0.300 0.440 0.690 0.850 0.571
Llama-2 0.386 0.240 0.460 0.750 0.910 0.588
Llama-2 0.333 0.310 0.420 0.670 0.850 0.554
GPT-3.5 0.404 0.320 0.460 0.730 0.800 0.581
Claude 0.579 0.330 0.500 0.760 0.880 0.655
GPT-4 0.596 0.480 0.520 0.800 0.910 0.735

Table 4: Model Accuracies Accuracies of all 6 models on all 12 tasks. GPT-4 is the highest per-
forming model for all tasks.

A.3 LINGUISTIC CONFIDENCE PROMPTS

We study 24 different prompt formats to elicit linguistic confidences. These include prompts elic-
iting numerical confidences (score from 0-1, 0-10, 0-100), probabilities from 0-100%, linguistic
categorization of confidences into varying numbers of confidence buckets (‘not sure’, ‘sure’, ‘very
sure’), eliciting chain-of-thought explanations of confidence in addition to confidence scores, and
varying the confidence instructions. We measure the AUC performance of each prompt across the 12
datasets for all models, and select the prompt which reduces the sum of drops in AUC from the best
prompt for each individual model. This prompt which we use for all of our experiments is described
below (we chose this because it led to highest accuracy and near 0 extraction errors):
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Answer the following question to the best of your ability, and provide a score
between 0 and 1 to indicate the confidence you have in your answer. Confidence
scores closer to 0 indicate you have less confidence in your answer, while scores
closer to 1 indicate you have more confidence in your answer. You must answer
the question with one of the valid choices. You must provide only a single
answer.

Question: This is a question
(A) first answer
(B) second answer
(C) third answer
(D) fourth answer
(E) fifth answer
Answer: (D)
Confidence: 0.4

Question: This is another question
(A) first answer
(B) second answer
(C) third answer
(D) fourth answer
(E) fifth answer
Answer: (A)
Confidence: 0.7

Question: {question}
Answer:

Following are a few of the several alternative prompts we tried:

Answer the following question to the best of your ability. Indicate your
confidence in your answer by saying ‘I am very sure.’, ‘I am sure.’, ‘I am not
sure.’. Please provide the letter of your answer choice and your confidence
assessment in the following format:
Answer: (your answer)
Confidence assessment: (your confidence score)

Question: {question}

Answer the following question to the best of your ability, and provide a
probability between 0 and 100%, indicating the likelihood that your answer is
correct. Please provide the letter of your answer choice and your probability
estimate in the following format:
Answer: (your answer)
Probability of correctness: (your probability estimate)

Question: {question}

A.4 COMPARISONS WITH OTHER CERTAINTY SCORERS

While Lin et al. (2023) also study uncertainty quantification for black-box models, their work
primarily focuses on NLG tasks – quantifying uncertainty by sampling generations and computing
similarity scores. We instead study confidence estimation for discriminative tasks like MC question
answering. Xiao et al. (2022) study reducing calibration error through choice of LLM, uncertainty
quantifier, and fine-tuning loss. We study much larger LLMs, and do not study confidence estimation
in a fine-tuning setting. Their work also suggests using temperature scaling for confidence estimates.
We experiment with Platt scaling, but do not report results since it improves ECE but does not change
AUC or AUROC, since scaling confidences does not affect their relative ordering.
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A.5 LLAMA-2-70B CHAT RESULTS

We also experiment with the chat version of the Llama-2-70B model, evaluating both the AUC and
AUROC for its linguistic confidences and model probabilities. We find that the Base version of the
model slightly outperforms the Chat version in both linguistic confidences and model probabilities.

Metric Confidence Type TQA MedQA CSQA OBQA Law Ethics Physics

AUC Llama-2 Chat Linguistic 0.574 0.520 0.685 0.742 0.529 0.630 0.561
Llama-2 Chat Prob 0.696 0.604 0.840 0.869 0.674 0.823 0.721

AUROC Llama-2 Chat Linguistic 0.679 0.517 0.506 0.535 0.501 0.562 0.568
Llama-2 Chat Prob 0.750 0.609 0.764 0.776 0.710 0.821 0.721

Metric Confidence Type Econ Algebra Chem Security Policy Avg

AUC Llama-2 Chat Linguistic 0.357 0.304 0.442 0.698 0.846 0.574
Llama-2 Chat Prob 0.438 0.348 0.632 0.850 0.963 0.705

AUROC Llama-2 Chat Linguistic 0.553 0.485 0.546 0.560 0.479 0.541
Llama-2 Chat Prob 0.634 0.495 0.721 0.811 0.858 0.722

Table 5: AUC and AUROC Metrics for Llama-2-70b-chat linguistic confidences and model
probabilities.

A.6 ECE RESULTS

We compute the expected calibration error metric (ECE) by dynamically binning examples based
on their confidence scores into 10 bins with approximately equal numbers of examples. For each
bin, compute the calibration error, which is the absolute difference between the mean predicted
probability and the observed accuracy. This quantifies how well the predicted probabilities match
the true probability of the positive class within each bin. We then calculate the weighted average of
the calibration errors across all bins, where the weights are the proportion of examples in each bin
relative to the total number of examples. A lower ECE indicates better calibration. If the predicted
probabilities are well-calibrated, the ECE should be close to zero. Following are the ECEs for the
linguistic confidence scores of each model and the ECEs of model probabilities for models which
provide them.

A.6.1 GPT-4 ALL CONFIDENCE METHODS

Following are the ECEs for each confidence method for the GPT-4 model. For 11 out of 12 tasks we
find that one of our proposed methods leads to the lowest ECE value.

TQA MedQA CSQA OBQA Law Ethics Physics

Ling. Conf. 0.104 0.118 0.118 0.038 0.187 0.114 0.109
SC Ling. Conf. 0.126 0.163 0.120 0.036 0.246 0.204 0.120
Surrogate† 0.395 0.212 0.297 0.370 0.156 0.205 0.317
Tiebreak† 0.114 0.134 0.126 0.032 0.194 0.114 0.118
Mixture† 0.096 0.075 0.061 0.159 0.064 0.111 0.088
SC Mixture† 0.085 0.120 0.108 0.029 0.216 0.186 0.098

Confidence Type Econ Algebra Chem Security Policy Avg

Ling. Conf. 0.270 0.420 0.313 0.118 0.053 0.164
SC Ling. Conf. 0.323 0.379 0.331 0.136 0.063 0.187
Surrogate† 0.129 0.162 0.187 0.210 0.264 0.242
Tiebreak† 0.270 0.419 0.332 0.158 0.068 0.173
Mixture† 0.126 0.224 0.229 0.108 0.138 0.123
SC Mixture† 0.287 0.358 0.286 0.129 0.068 0.164

Table 6: ECE Values All Confidence Methods for GPT-4
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A.6.2 COMPARING LINGUISTIC CONFIDENCES AND MODEL PROBABILITIES

Confidence Type TQA Medqa CSQA OBQA Law Ethics Physics

Text-davinci Linguistic 0.422 0.425 0.161 0.127 0.380 0.300 0.299
Text-davinci Prob 0.461 0.454 0.235 0.191 0.388 0.338 0.338

Llama-2 Linguistic 0.365 0.248 0.201 0.073 0.224 0.259 0.267
Llama-2 Prob 0.099 0.084 0.176 0.235 0.115 0.145 0.094
Llama-2 Chat Linguistic 0.357 0.391 0.125 0.101 0.350 0.194 0.337
Llama-2 Chat Prob 0.284 0.228 0.124 0.092 0.264 0.213 0.210
GPT-3.5 Linguistic 0.350 0.380 0.192 0.091 0.388 0.176 0.363
Claude Linguistic 0.187 0.086 0.042 0.033 0.098 0.052 0.162
GPT-4 Linguistic 0.104 0.118 0.118 0.038 0.187 0.114 0.109

Confidence Type Econ Algebra Chem Security Policy Avg

Text-davinci Linguistic 0.482 0.625 0.475 0.213 0.038 0.329
Text-davinci Prob 0.478 0.576 0.385 0.263 0.112 0.352

Llama-2 Linguistic 0.453 0.561 0.435 0.079 0.093 0.272
Llama-2 Prob 0.205 0.091 0.100 0.172 0.264 0.148
Llama-2 Chat Linguistic 0.505 0.480 0.480 0.165 0.055 0.295
Llama-2 Chat Prob 0.403 0.361 0.272 0.187 0.073 0.226
GPT-3.5 Linguistic 0.515 0.560 0.432 0.173 0.094 0.309
Claude Linguistic 0.132 0.319 0.175 0.058 0.162 0.126
GPT-4 Linguistic 0.270 0.420 0.313 0.118 0.053 0.164

Table 7: ECE Values Linguistic Confidences vs Model Probabilities

A.7 SURROGATE CONFIDENCES VS SAMPLED LINGUISTIC CONFIDENCES

Surrogate confidences are cheaper and more reliable than sampling. While black-box models
do support sampling, sampling to get linguistic confidences is actually far more expensive than our
proposed surrogate model method. With the best performing sampling method (SC Hybrid Ling.
Conf., Table 3) eliciting linguistic confidences (Xiong et al., 2023) from GPT-4 requires sampling
five times from GPT-4, while our surrogate method requires sampling only once from GPT-4 for an
answer and once from a much smaller and cheaper model like Llama-2-70B for a confidence — so
our surrogate method significantly reduces computational cost and complexity over sampling.

Sampling for confidences only works well with additional post-processing. The best per-
forming sampling method (SC Hybrid Ling. Conf., Table 3) requires further updating and
post-processing steps on top of the sampled confidence scores, adding additional complexity and
reducing interpretability. It is also unclear if sampled confidences only perform well in conjunction
with Xiong et al. (2023)’s update rule or if the performance can generalize to other forms of
post-processing.

To study how well sampling for confidences performs without post-processings, we sample
confidences from GPT-4, following Xiong et al. (2023)’s procedure (sampling 5 times at T = 0.7
and applying self-consistency), and applying no additional post-processing steps to the sampled
confidences (SC Vanilla Ling. Conf., Table 3). We find that across 12 datasets, vanilla confidence
sampling significantly underperforms our surrogate model method for GPT-4 — resulting in an
average AUC of only 77.3% (compared to 81.7% average AUC for our surrogate method, and
83% for our mixture method) and an average AUROC of only 59.3% (compared to 65.4% for our
surrogate method and 69.6% for our best mixture method) (Table 3).

Surrogate confidences can be combined with sampled confidences for further gains.
Surrogate confidences are complementary to the sampled, post-processed confidences from Xiong
et al. (2023). Interestingly, we are able to derive further improvements in confidence estimation
by composing the surrogate probabilities and sampled, post-processed linguistic confidences (SC
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mixture) — average AUC of 84.5% and average AUROC of 74%, with up to 6% improvement in
AUC and 7% improvement in AUROC for individual tasks (Table 3).

A.8 OPTIMIZING ALPHA FOR MIXTURE OF MODELS

Following are the optimal values of α for the mixture of models method (Algorithm 1) using the
best surrogate model (Llama-2-70b Base).

GPT-3.5-Turbo Claude-v1.3 GPT-4 (Mixture) GPT-4 (SC Mixture)

α 0.6 0.6 0.4 0.3

Table 8: Optimal Alphas for Mixture of Models

We select a single α for each model to be used across tasks, by sweeping over values of α from 0
to 1 at increments of 0.1 and optimizing for the value which leads to the highest AUC per model,
averaged over the 12 tasks. Results reported in Table 2 and Table 3 leverage these values of α.

A.9 GOOD SURROGATES MAKE SIMILAR MISTAKES AS MAIN MODELS

We generate embeddings for questions that GPT-4 answers incorrectly, questions that a strong sur-
rogate, Llama-2-70B, answers incorrectly, and finally questions that a weaker surrogate, Llama-2-
13B, answers incorrectly. We use OpenAI’s embedding API to generate these embeddings using the
text-embedding-ada-002 model. Any model of reasonable quality could be used to produce these
embeddings. We then use PCA to represent the embeddings in a 2D space for visualization. Finally,
we plot the embeddings of questions answered incorrectly by these models from two representative
datasets, TruthfulQA and MMLU - College Chemistry, and study the semantic similarity of mistakes
made as approximated by the 2D spatial similarity of embeddings of their incorrectly answered ques-
tions (Figure 4). See Figure 4 for further details on how to interpret the plots. We find that there
is greater semantic similarity in the mistakes made by GPT-4 and Llama-2-70B, than those made by
GPT-4 and Llama-2-13B — suggesting that GPT-4 and Llama-2-70B may find similar questions to
be difficult, allowing Llama-2-70B’s confidence scores to better transfer to GPT-4.

A.10 COMBINING MULTIPLE SURROGATES

The key contribution of the mixture of models technique (Section 5) was demonstrating that
confidence signals from different models are composeable. We expect the optimal composition of
surrogate models to vary depending on the task and the main model used to produce the answers.

Experiments. To investigate the utility of combining multiple surrogate models, we compute
confidence estimates for GPT-4 using a linear regression model to learn a weighted combination
of confidence scores from multiple surrogates. The weights are not constrained to be positive
or to sum to one. We conduct these experiments on two representative datasets, MedQA and
CommonsenseQA, and explore combinations of the following surrogate confidences: Llama-2-70B
Base probabilities, Llama-2-70B Chat probabilities, GPT-4 linguistic confidences, GPT-4 hybrid
self-consistency linguistic confidences (Section 5), Claude-v1.3 linguistic confidences, and GPT-
3.5-Turbo linguistic confidences. The regression model is trained on 500 examples, and we evaluate
on 250 held-out examples for each dataset.

Results. For MedQA, we find that composing surrogate confidences from multiple models
(probabilities from Llama-2-70B Base and Chat, linguistic confidences from Claude-v1.3, and
hybrid SC linguistic confidences from GPT-4) with GPT-4’s linguistic confidence scores leads to a
1.8% improvement in AUC and a 4% improvement in AUROC over just composing Llama 2 70B’s
probabilities with GPT-4’s linguistic confidences (Table 3). However, for CommonsenseQA, we
find that composing confidences from multiple surrogate models harms confidence estimation com-
pared to just composing Llama-2-70B’s surrogate probabilities with GPT-4’s confidences (Table 3).
This suggests that the benefits of composing multiple surrogate models are task dependent — there
may be more value to combining multiple surrogates for tasks where the differences in confidence
signals from models are substantive without encoding noise.

A.11 EXTENDED SURROGATE MODEL RESULTS

We present detailed results on the effect of varying surrogate confidence models on the AUC and
AUROC of the corresponding main models.
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Figure 5: AUCs For All Surrogate Models We compute the AUC metric for each model consid-
ering surrogate confidences from both model probabilities and linguistic confidence scores from all
other models. We find that all models benefit from using surrogate model probabilities over their
own linguistic confidences.

Figure 6: AUROCs For All Surrogate Models We also compute the AUROC metric for each
model considering surrogate confidences from both model probabilities and linguistic confidence
scores from all other models. In general, we find that using surrogate model probabilities instead of
a model’s own linguistic confidences improves AUROC values.
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A.12 ANALYSIS

We compute correlations and covariances between the answer correctness (set of binary scores in-
dicating a model answered a question correctly or not) for every pair of main model and potential
surrogate model. We find that in general if a surrogate model S has a high degree of correlation in
answer correctness with a main model M , then S is likely to be a good surrogate for M . Similar
trends also hold for covariances.

Figure 7: Correlations For All Main and Surrogate Models

Figure 8: Covariances For All Main and Surrogate Models
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A.13 CALIBRATION OF MIXTURE OF MODELS

We also plot the distribution of confidence scores in equally spaced buckets from 0 to 1 and the
corresponding accuracies of those buckets in reliability diagrams to study the change in calibration
between linguistic confidences and our best mixture of models methods and find that our methods
better calibrate the confidence scores.

Figure 9: Calibration of GPT-4 with Linguistic Confidence and Mixture of Models In the first
row we see the calibration of GPT-4 on MedQA, Professional Law, and US Foreign Policy when
using linguistic confidences. In the second row, we see GPT-4’s calibration using our mixture of
models confidence method. A perfectly calibrated model would have all bars aligned with the red
line. We can see that calibration improves demonstrably, when using mixture of models.

A.14 CORRELATION BETWEEN LINGUISTIC CONFIDENCES AND MODEL PROBABILITIES

Dataset Llama-2-70B Base Llama-2-70B Chat

TQA 0.357 0.293
MedQA 0.176 0.174
CSQA 0.308 0.166
OBQA 0.218 0.251

Law 0.041 0.120
Ethics 0.407 0.210

Physics 0.310 0.227
Econ 0.266 0.137

Algebra 0.134 -0.222
Chem 0.173 -0.063

Security 0.477 0.325
Policy 0.355 0.254
Avg 0.269 0.156

Table 9: Correlation Between Linguistic Confidences and Model Probabilities

We measure the Pearson correlation coefficient between linguistic confidences and model probabil-
ities for models that provide access to internal probabilities and report the correlation coefficient for
each model and task in Table 9. We do not report results for text-davinci-003 because for many
tasks it outputs the same linguistic confidence score for each example, resulting in an undefined
correlation coefficient. Both the Base and Chat Llama-2-70B models have a slight positive correla-
tion in their linguistic confidences and model probabilities. We observe that the correlation between
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linguistic confidences and model probabilities is stronger for Llama-2-70B Base, than for Llama-
2-70B Chat — average Pearson correlation coefficient of 0.269 vs 0.156. However, the correlation
is not very strong for either model indicating that linguistic confidences do not fully capture the
confidence signal of model probabilities.

A.15 CONFIDENCE ESTIMATION AND SELF-CRITIQUING

Several studies have demonstrated that LLMs can generate feedback and self-improve (Madaan
et al., 2023; Chang et al., 2023). However, other research has indicated that these models may not
be proficient at self-evaluation, as they can sometimes hallucinate or generate incorrect feedback
(Huang et al., 2023). The definition of self-evaluation is largely dependent on the task at hand.
For instance, in creative, open-ended generation tasks such as story writing, there may not always
be a clear standard of correctness, so the goal of self-evaluation or feedback generation may be to
iteratively improve some other aspect of the generation. However, in cases where model generations
are more factual — such as using an LLM to generate a math proof and allowing it to critique and
iterate on each of its reasoning steps — calibrated confidence estimation becomes more important
for self-evaluation. If a model could produce good quality confidence estimates for its self-critiques,
these could guide the model in deciding when to trust and act on its own feedback, thereby enhancing
its performance and reliability.

A.16 RANDOMIZED AUC RESULTS

AUC with Randomized or Deterministic Classifiers. To plot the accuracy-coverage curve we
compute A(c), the selective accuracy at coverage c across different values of c. A(c) is the accuracy
if the model only makes a prediction on the c proportion of data with highest confidence scores.
for different values of c. When making a prediction on c proportion of data, for each example x
we use a binary classifier on the confidence score C(x) decide if we are making a prediction for
x (1 if making a prediction and 0 if abstaining from prediction). Such a classifier can either be
deterministic or randomized.

Deterministic Classifiers. A deterministic classifier f returns identical outputs for identical
inputs — resulting in consistent treatment of examples with the same confidence score (either
predict on all or abstain on all). Using a deterministic classifier to select c portion of examples to
predict on means we find the highest confidence threshold t such that P (C(x) ≥ t) ≥ c — t is
the highest confidence threshold where the proportion of examples with confidence greater than or
equal to t is greater than or equal to the required coverage c. With a deterministic classifier, we
predict on P (C(x) ≥ t) proportion of examples, which may be greater than the required coverage
c.

f(C(x)) ∈ {0, 1} (A.1)

Randomized Classifiers. A randomized classifier h can return different outputs for the same
input. Since models can output the same linguistic confidences for multiple examples, a randomized
classifier can allow us to achieve exactly a coverage of c by making predictions on some examples
with a given confidence, and abstaining on other examples with the same confidence. To enable
h to break ties and make different predictions for examples with the same confidence score, we
add a small amount of Gaussian noise to each confidence score N (0, ϵ), ϵ → 0 to enforce a
confidence-based ordering of examples.

h(C(x) +N (0, ϵ)) ∈ {0, 1} (A.2)

Deterministic vs Randomized AUC Example. Suppose a model assigns half of the examples
a confidence of 1 and gets them all right, and the other half of examples a confidence of 0.5 and
gets 50% of them right. What is the selective accuracy at coverage 75%? A deterministic classifier
would select 0.5 as t and predict on all examples with C(x) ≥ t, which in this case is all of the
examples (notably leading to a coverage of 100% instead of 75%). This would lead to an accuracy
of 75%. A randomized classifier would predict on all examples of confidence 1, but to meet the
75% coverage threshold, it would predict on half of the examples which have confidence 0.5 —
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Confidence Type TQA MedQA CSQA OBQA Law Ethics Physics

AUC

Text-davinci Linguistic 0.523 0.504 0.718 0.775 0.532 0.590 0.579
Text-davinci Prob 0.607 0.656 0.861 0.929 0.714 0.783 0.697
Llama 2 Linguistic 0.600 0.616 0.693 0.802 0.605 0.707 0.638
Llama 2 Prob 0.711 0.735 0.804 0.923 0.749 0.834 0.763
GPT-3.5 Linguistic 0.620 0.536 0.693 0.776 0.508 0.674 0.526
Claude-v1.3 Linguistic 0.741 0.718 0.807 0.879 0.669 0.894 0.736
GPT-4 Linguistic 0.889 0.841 0.802 0.960 0.732 0.869 0.819

AUROC

Text-davinci Linguistic 0.525 0.500 0.503 0.509 0.500 0.500 0.500
Text-davinci Prob 0.718 0.696 0.806 0.840 0.715 0.758 0.637
Llama 2 Linguistic 0.618 0.541 0.555 0.484 0.517 0.602 0.593
Llama 2 Prob 0.745 0.722 0.731 0.777 0.733 0.868 0.732
GPT-3.5 Linguistic 0.535 0.500 0.526 0.518 0.508 0.509 0.504
Claude-v1.3 Linguistic 0.701 0.586 0.639 0.647 0.586 0.760 0.652
GPT-4 Linguistic 0.665 0.716 0.551 0.656 0.591 0.720 0.522

Confidence Type Econ Algebra Chem Security Policy Avg

AUC

Text-davinci Linguistic 0.412 0.300 0.440 0.690 0.856 0.577
Text-davinci Prob 0.431 0.338 0.644 0.891 0.939 0.707
Llama 2 Linguistic 0.415 0.189 0.474 0.817 0.930 0.624
Llama 2 Prob 0.498 0.263 0.647 0.866 0.981 0.731
GPT-3.5 Linguistic 0.430 0.319 0.465 0.724 0.806 0.590
Claude-v1.3 Linguistic 0.640 0.333 0.653 0.812 0.934 0.735
GPT-4 Linguistic 0.643 0.551 0.683 0.903 0.965 0.805

AUROC

Text-davinci Linguistic 0.500 0.500 0.500 0.500 0.506 0.504
Text-davinci Prob 0.549 0.532 0.695 0.858 0.795 0.717
Llama 2 Linguistic 0.533 0.424 0.520 0.613 0.576 0.548
Llama 2 Prob 0.622 0.546 0.732 0.775 0.871 0.738
GPT-3.5 Linguistic 0.518 0.522 0.505 0.519 0.519 0.515
Claude-v1.3 Linguistic 0.573 0.543 0.708 0.687 0.645 0.644
GPT-4 Linguistic 0.551 0.599 0.721 0.750 0.753 0.650

Table 10: AUC and AUROC - Linguistic Confidences vs Model Probabilities We compare the
AUC and AUROC values for linguistic confidences and model probabilities in weaker models (text-
davinci-003 and Llama 2 70B), and find that model probabilities consistently outperform linguis-
tic confidences. For closed source models (which don’t provide model probabilities), we see that
Claude-v1.3 and GPT-4 provide the best linguistic confidences in both AUC and AUROC.

selecting the top half after adding random noise. This would lead to an accuracy of approximately
83%.

Our main results are presented computing AUC with a deterministic classifier, in accordance
with several works in the selective classification space (El-Yaniv & Wiener, 2010; Liang et al.,
2022). AUC computed with a randomized or deterministic classifier would be equivalent if
confidence estimates for all examples were distinct. But since models can output the same linguistic
confidences for multiple examples, and randomized AUC computation can improve the AUC in
these cases, we also present results with a randomized classifier. Using a randomized classifier
leads to slight improvements for both linguistic confidences and our mixture of models method
(since it incorporates linguistic confidences), but does not change any of our qualitative results.
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Text-davinci GPT-3.5 Llama 2 Claude-v1.3 GPT-4

AUC

Ling. Conf. 0.577 0.590 0.624 0.735 0.805
Surrogate† 0.707 0.719 0.731 0.763 0.821
Tiebreak† 0.711 0.719 0.715 0.764 0.830
Mixture of Models† 0.711 0.722 0.731 0.772 0.834

AUROC

Ling. Conf. 0.504 0.514 0.548 0.637 0.646
Surrogate† 0.717 0.708 0.738 0.671 0.657
Tiebreak† 0.718 0.708 0.699 0.683 0.692
Mixture of Models† 0.718 0.709 0.737 0.687 0.699

Table 11: AUC and AUROC of Surrogate and Mixture of Model Methods. We compare the
performance of our proposed methods† with the baseline linguistic confidence method (gray). For
both AUC and AUROC, our proposed methods outperform linguistic confidences on all models.
Mixture of models improves the AUC of GPT-4 by 3% and AUROC by 5%.

Method TQA MedQA CSQA OBQA Law Ethics Physics

AUC

Ling. Conf. 0.889 0.841 0.802 0.960 0.732 0.869 0.819
SC Ling. Conf. 0.903 0.887 0.841 0.978 0.729 0.902 0.846
Surrogate† 0.866 0.844 0.849 0.965 0.762 0.849 0.891
Tiebreak† 0.902 0.871 0.833 0.967 0.768 0.889 0.861
Mixture† 0.895 0.864 0.849 0.969 0.780 0.882 0.886
SC Mixture† 0.921 0.873 0.877 0.979 0.757 0.894 0.881

AUROC

Ling. Conf. 0.665 0.716 0.551 0.656 0.591 0.720 0.522
SC Ling. Conf. 0.698 0.767 0.625 0.833 0.619 0.817 0.592
Surrogate† 0.543 0.666 0.656 0.683 0.619 0.617 0.648
Tiebreak† 0.671 0.750 0.611 0.716 0.628 0.740 0.589
Mixture† 0.642 0.731 0.646 0.731 0.655 0.711 0.648
SC Mixture† 0.702 0.747 0.679 0.838 0.655 0.783 0.663

Method Econ Algebra Chem Security Policy Avg

AUC

Ling. Conf. 0.643 0.551 0.683 0.903 0.965 0.805
SC Ling. Conf. 0.663 0.584 0.726 0.915 0.965 0.828
Surrogate† 0.667 0.572 0.724 0.888 0.971 0.821
Tiebreak† 0.654 0.580 0.746 0.910 0.974 0.830
Mixture† 0.664 0.581 0.749 0.908 0.976 0.834
SC Mixture† 0.662 0.645 0.763 0.926 0.973 0.846

AUROC

Ling. Conf. 0.551 0.599 0.721 0.750 0.753 0.650
SC Ling. Conf. 0.622 0.682 0.818 0.798 0.755 0.719
Surrogate† 0.578 0.621 0.706 0.779 0.764 0.657
Tiebreak† 0.569 0.648 0.760 0.815 0.805 0.692
Mixture† 0.578 0.648 0.759 0.814 0.822 0.699
SC Mixture† 0.595 0.763 0.819 0.839 0.810 0.741

Table 12: AUC and AUROC of All Confidence Methods for GPT-4. Our proposed surrogate
model method outperforms linguistic confidences on 9/12 datasets on AUC. Mixing surrogate prob-
abilities and linguistic confidences outperforms vanilla linguistic confidences on AUC for all 12
datasets. The mixture of surrogate probabilities also outperforms hybrid self-consistency confi-
dences, the best method in Xiong et al. (2023), on average (AUC 83.4% vs 82.8%. Mixing surrogate
probabilities with self-consistency linguistic confidences leads to the best confidence estimates over-
all, outperforming all methods with an average 84.6% AUC and 74.1% AUROC, which is a gain of
4.1% and 9.1% respectively over vanilla linguistic confidences.
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