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Abstract

Prompt-based learning (i.e., prompting) is an
emerging paradigm for exploiting knowledge
learned by a pretrained language model. In
this paper, we propose Automatic Multi-Label
Prompting (AMuLaP), a simple yet effective
method to automatically select label mappings
for few-shot text classification with prompt-
ing. Our method exploits one-to-many la-
bel mappings and a statistics-based algorithm
to select label mappings given a prompt tem-
plate. Our experiments demonstrate that AMu-
LaP achieves competitive performance on the
GLUE benchmark without human effort or ex-
ternal resource. !

1 Introduction

Since the release of GPT-3 (Brown et al., 2020),
several studies have focused on exploiting pre-
trained language models with only a few training
examples (Brown et al., 2020; Gao et al., 2021;
Shin et al., 2020). These works demonstrate the
potential of using natural language prompts to en-
courage the model to recall similar patterns in its
training corpus and thus make accurate predic-
tions. This setting of few-shot learning is closer
to how humans learn to solve a task, often without
many examples as in a traditional deep learning
paradigm. The use of prompts can strengthen the
explicit connection between input and output, help-
ing the model exploit the knowledge learned from
pretraining in a better way. Furthermore, recent
works (Schick and Schiitze, 2021a,b; Gao et al.,
2021) show that prompts can also help the model
generalize better in fine-tuning.

Prompt-based learning (i.e., prompting) aims to
use a template to convert the original input into
a prompt-based input with some unfilled masked
tokens, and then use the pretrained language model
to fill these masked tokens, and finally the tokens
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filled into these slots are mapped to the correspond-
ing labels as the final output. In prompting, the
design of prompts often plays an important role.
Many attempts have been made in this emerging
direction of prompt engineering (Shin et al., 2020;
Gao et al., 2021). Meanwhile, finding a good map-
ping from the original task labels to tokens (i.e.,
label engineering) is also critical to few-shot per-
formance, as found in Schick et al. (2020); Gao
et al. (2021). However, manually assigning the
label mapping requires human expertise with trial
and error. One may argue that the same effort can
be used to label more supervised data for a con-
ventional deep learning pipeline. Thus, an efficient
automatic label mapping method is desirable.

In this paper, we aim to design a method that
can automatically find a good label mapping to
save human effort from label engineering. We
propose Automatic Multi-Label Prompting (AMu-
LaP), a simple yet effective method to tackle the
label selection problem for few-shot classification.
AMuLaP is a parameter-free statistical technique
that can identify the label patterns from a few-shot
training set given a prompt template. AMuLaP
exploits multiple labels to suppress the noise and
inherently extend the training set for prompt-based
fine-tuning. Compared with a hand-crafted label
mapping and previous works on automatic label
mapping (Schick et al., 2020; Gao et al., 2021),
AMuLaP achieves competitive performance de-
spite being simpler and does not require access
to the weights of the backbone model, or an ex-
ternal text-infilling model. We conduct extensive
experiments and demonstrate the effectiveness of
our method under multiple settings. Moreover, we
attempt to scale AMuLaP with different sizes of the
training set and find AMuLaP to work surprisingly
well even with one or two shots. To understand
the few-shot performance on different datasets, we
investigate the relation between accuracy and inter-
class token distribution divergence, shedding light



on the explainability of few-shot text classification.

2 Related Work

Discrete Prompts The release of GPT-3 (Brown
et al., 2020) has led to interest in prompting, a new
way to leverage pretrained language models (PLM).
Brown et al. (2020) proposes an intuitive in-context
learning paradigm by concatenating a few input and
output examples and feeding them to the language
model and let the model autoregressively generate
answers for new examples. Recent works (Petroni
etal., 2019; Davison et al., 2019; Jiang et al., 2020)
design prompts to probe the factual and common-
sense knowledge encoded within a PLM. Recent
works (Schick and Schiitze, 2021a,b; Gao et al.,
2021) demonstrate that even smaller PLMs have
similar few-shot learning capacity. Le Scao and
Rush (2021) analyzes the effect of prompting and
concludes that a single prompt may be worth 100
training examples in fine-tuning.

Instead of manually designing prompts
(i.e., prompt engineering), some recent stud-
ies also explore automatic prompt generation.
PETAL (Schick et al., 2020) augments Pattern
Exploiting Training (PET, Schick and Schiitze,
2021a,b) with automatically identified label words;
Gao et al. (2021) searches the vocabulary for label
words by fine-tuning the model on the candidates
generated by a text-infilling model and using an
external generation model for data augmentation
of prompt templates; AutoPrompt (Shin et al.,
2020) uses a gradient-based search to determine
both prompts and label words. However, these
methods require parameter updates with gradient
descent, which is infeasible without access to
the model weights (e.g., GPT-3). PET and its
variants also require a large unlabeled set and
need to be fine-tuned multiple times. AutoPrompt
uses discretization techniques to approximately
map a continuous vector back to tokens in the
vocabulary (i.e., “vocablization”). These searched
prompts and labels are often uninterpretable by
humans. Guo et al. (2021) introduces Q-Learning
to optimize the soft prompt. Different from these
prior studies, our proposed AMuLaP is a simple
and interpretable method for few-shot prompting
that can work well with and without access to
model weights.

Continuous Prompts In parallel with text-based
discrete prompts, there is also a line of work fo-
cused on tuning only a fraction of parameters of an

LM with the help of continuous prompts (i.e., soft
prompts). Zhong et al. (2021) and Qin and Eisner
(2021) propose continuous prompts for knowledge
probing by tuning some trainable vectors in the
input sequence while fixing the rest of the input.
Li and Liang (2021) applies a similar method for
natural language generation and achieves compara-
ble performance to fine-tuning while updating only
0.1% of model parameters. Lester et al. (2021) re-
veals that prompt tuning is more competitive when
scaled up and can achieve identical performance to
conventional fine-tuning when the model is large
enough. Notably, different from discrete prompt-
ing, these works often use all training data to update
model weights. Different from these works, AMu-
LaP is a discrete prompting method that has better
interpretability and works well in the few-shot set-
ting.

3 Prompting for Few-Shot Classification

We follow the setup in LM-BFF (Gao et al., 2021)
for few-shot text classification. Given a pretrained
language model £, a task D and its defined label
space ), we have n training examples per class
for the training set Dy,in,. As pointed out in Perez
et al. (2021), using the full development set may be
misleading to claim a few-shot setting. Thus, we
use a few-shot development set with the same size
as the training set (i.e., |Dyain| = |Ddev]), to be
consistent with Gao et al. (2021) and constitute a
“true few-shot” setting (Perez et al., 2021).

For an input example x (a single sentence or
a sentence pair), we first use a task-specific tem-
plate 7 to convert it to 2, a token sequence with
a [MASK] token. We then map the original label
space to a set of selected words from the vocabu-
lary, denoted as M : ) — V. Some examples of
T and M are shown in Table 1. Note that since we
focus on automatically finding the label mapping
M, we use the manual templates 7 from Gao et al.
(2021) throughout this paper. Since L is trained to
complete the [MASK] token in an input sequence,
we can directly make zero-shot prediction of the
probability of class y € Y by the masked language
modeling:

p(ylz) =p(MASK] = M (y) [2)). (1)
Alternately, one can further fine-tune £ with su-

pervised pairs {2/, M (y)} to achieve even better
performance.



Task Template Class Manual (2021) Selected Labels by AMuLaP
entailment Yes Yes, Indeed, Also, Currently
MNLI  <S;>? [MASK] ,<S2> neutral Maybe Historically, Suddenly, Apparently, And
contradiction No No, However, Instead, Unfortunately
3 . positive great great, perfect, fun, brilliant
SST-2  <Si>Itwas [MASK] . negative terrible terrible, awful, disappointing, not
N entailment Yes Yes, Historically, Overall, Indeed
QNLI <S1>7 [MASK] , <52> not_entailment No Well, First, However, Unfortunately
N entailment Yes Yes, Today, Specifically, Additionally
RTE <S81> 7 [MASK] , <52> not_entailment No However, Ironically, Also, Indeed
equivalent Yes </ s>, Currently, Additionally, Today
MRPC  <51> [MASK] , <S2> not_equivalent No However, Meanwhile, Overall, Finally
equivalent Yes Or, So, Specifically, Actually
QQP  <Si> [MASK], <S> | 5" iivalent  No Also, And, Finally, Well
.. grammatical correct why, true, her, amazing
CoLA <S> Thisis [MASK] . not_grammatical incorrect it, ridiculous, interesting, sad

Table 1: The manual and automatically selected labels by AMuLaP. The templates used for prompting are from

Gao et al. (2021).

4 Automatic Multi-Label Prompting

4.1 Exploiting Multiple Labels

Selecting one label word can be insufficient for
some complicated tasks, as mentioned in Schick
et al. (2020). We also argue that selecting only one
label (especially automatically) may bring noise.
This can be resolved by introducing multiple la-
bel words. Schick et al. (2020) use multiple label
combinations for PET (Schick and Schiitze, 2021a)
and ensemble them afterwards. We instead use
a straightforward sum to consider multiple label
words when making predictions. This design has
a similar advantage of exploiting multiple labels
without training and ensembling multiple models.

Instead of a one-to-one mapping from the origi-
nal label space ) to V, we map each y € )Y toits
label word set S(y). We denote the mapping as
M"Y — S(y). For class y € Y, the predicted
probability is calculated as:

plyle)= > p(iMask] =v|2/) ()

vES(Y)

Then, we can simply make predictions by selecting
the label with the largest likelihood.

Similarly, if we need to fine-tune £ with super-
vised pairs, instead of optimizing the cross-entropy
loss between the gold label and a single token,
we optimize the loss between the sum of the out-
put probabilities of S(y) and the gold label with a

cross-entropy loss:

I=— > > [Lly=14] logpylz)] 3

EGDtmm yEy

where g is the ground truth label for the input x
and p (y|x) is defined in Equation 2.

4.2 Automatic Label Selection

Finding a good label mapping M is non-trivial, es-
pecially when M’ maps an original label to a set of
label words instead of one. Selecting a good label
mapping often requires significant human effort,
including domain knowledge and trial-and-error.
Previously, Schick and Schiitze (2021a,b) both use
hand-crafted label mappings while Schick et al.
(2020) explores automatic label mapping searching
but it still requires manual pre-filtering and signif-
icantly underperforms the manual mapping. Gao
et al. (2021) exploits a large pretrained text infill-
ing model (T5, Raffel et al., 2020) to fill in the
label words and then determine the final mapping
by fine-tuning on all of them and selecting the best
one with Dg.,. We introduce a new selection algo-
rithm for label mapping that achieves competitive
results compared to previous efforts.

We aim to achieve two goals: (1) Selecting the
most likely label mapping based on the training
set. For example, in a sentiment classification task,
we would like to see positive words in the label set
of the “positive” class while negative words in the
label set of the “negative” class. A simple solution
is to select the k£ most likely tokens predicted for



the [MASK] token in the training examples of each
class y. However, in practice, we would find com-
mon words in more than one label set. For example,
if we simply take the 10 most likely tokens for the
SST-2 dataset (Socher et al., 2013), we would find
“good” in both positive and negative label sets, al-
though it is ranked second place in the positive set
and ninth in the negative set. Thus, we want to
make sure that (2) Each token only belongs to at
most one label set where it has the highest prob-
ability. To ensure this, we have to iterate over the
vocabulary and check that for every token. Then,
we can truncate the candidate sets of each class and
select the k& most likely tokens from each set. The
time complexity of this algorithm is O(k - |V|-|V]).

Formally, we select M(y) : Y — S(y) by the
following steps:

1. For each y; € ), we iterate through all train-
ing samples x; € Dyyqin, Whose ground truth
label ; = y;. We use L to predict the token
probability of the [MASK] token and take the
average of the predicted probabilities of the n
examples to be z;.

2. Initialize an empty mapping M : Y — S(y).

3. For each v € V where V is the vocabulary of
the model £, we retrieve v’s probability value
z7 from z; of each class.

4. We assign v to the most likely candidate to-
ken set of the m-th class S(y,,,) where m =
argmax; z; .

5. For i € ||, we choose the top-k tokens from
S(y;) with the largest probability z¥ and ob-
tain the truncated mapping M : Y — S(y).

5 Experiments

5.1 Experimental Setting

Datasets We evaluate seven classification tasks
of the GLUE benchmark (Wang et al., 2019).
Specifically, we test on Microsoft Research Para-
phrase Matching (MRPC) (Dolan and Brockett,
2005), Quora Question Pairs (QQP)? for Para-
phrase Similarity Matching; Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013) for Sen-
timent Classification; Multi-Genre Natural Lan-
guage Inference Matched (MNLI-m), Multi-Genre

https://www.quora.com/q/quoradata/
First-Quora—-Dataset—-Release—Question—-Pairs

Natural Language Inference Mismatched (MNLI-
mm) (Williams et al., 2018), Question Natural Lan-
guage Inference (QNLI) (Rajpurkar et al., 2016)
and Recognizing Textual Entailment (RTE) (Wang
et al., 2019) for the Natural Language Inference
(NLI) task; The Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019) for Linguistic Ac-
ceptability. We use the manual templates in Gao
et al. (2021), as listed in Table 1. The metrics for
each dataset are indicated in Table 2.

Baselines We compare our method to various
baselines:

* Majority: always predict the majority class
in the test set.

* GPT-3-style in-context learning (Brown
et al., 2020): present a few examples to the
language model and make it directly predict
the next token as the prediction.

* Manual prompts: we use the human-
designed prompts in Gao et al. (2021).

* PETAL-CE (Schick et al., 2020): the variant
of PETAL using the cross-entropy metric.

* PETAL-LR (Schick et al., 2020): the variant
of PETAL using the likelihood ratio metric.

e AutoL-T5 (Gao et al., 2021): the automatic
label searching method with an external text-
infilling model, T5-3B (Raffel et al., 2020).

Task Setup We closely follow the setup in Gao
et al. (2021). We sample n training examples and
n development examples per class. We set k = 16
throughout all experiments. We use RoBERTa-
large (Liu et al., 2019) as the backbone LM L. For
each reported result, we measure average perfor-
mance across 5 different randomly sampled Dy,
and D, splits. Following Gao et al. (2021), the
original development split of each dataset is used
as the test set in our experiments. We also report
the standard deviation for each result. To fairly
compare with different baselines, we consider the
following three settings:

* Setting 1: We only use Dy, alone for both
label selection and tuning k. The parameters
of L are not updated. D4, is not used. This
setting is for fair comparison with In-context
learning.


https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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MNLI  MNLI-mm SST-2 QNLI RTE MRPC QQp CoLA Avg.
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Matt.)

Baselines
Majority 32.7 33.0 50.9 49.5 52.7 81.2 0.0 0.0 37.5
Manual Label 0-shot (2021) 50.8 51.7 83.6 50.8 51.3 61.9 49.7 2.0 50.2
Full Fine-tuning 89.8 89.5 95.0 93.3 80.9 91.4 81.7 62.6 85.5
Setting 1: Dyyqin, only; No parameter update.
In-context learning (2020) 52.0(0.7) 534(0.6) 84.8(1.3) 53.8(04) 604 (1.4) 457(6.00 36.1(52) -1.5(24) | 48.1
AMuLaP (ours) 50.8(2.1) 523(1.8) 869(1.6) 53.1(2.8) 589(79) 563(5.00 60227 23(1.4) 52.6
Setting 2: Diyoin + D gey; No parameter update.
PETAL-CE (2020) 48.8(2.6) 49.7(23) 75.6(7.2) 49.5(0.0) 63.5(3.3) 28.9(39.6) 59.2(0.0) 1.3(3.0) | 47.1
PETAL-LR (2020) 38.6(2.0) 384(2.1) 853(3.3) 533(3.6) 54.7(6.4) 28.0(38.5) 55.6(2.8) 1.534) | 444
AutoL-T5 (2021) 41.6 (54) 423(6.2) 84.3(3.3) 57939 61.9(7.5) 67.7(79) 555(5.0) 1.2 (4.8) 51.6
AMuLaP (ours) 50.8(2.1) 522(1.9) 87.0(1.5) 53.5(23) 59.1(74) 56.7(57) 61.5(1.7) 2.6(1.8) 52.9
TS + AMuLaP (ours) 5293.0)0 5422.7) 90.1(04) 5792.6) 599(5.2) 660@3.00 59423 27(.7) 554
Setting 3: Dyyoin + Dgey; Prompt-based fine-tuning.
Fine-tuning 458(6.4) 47.8(6.8) 81.4(3.8) 60.2(6.5 544(3.9) 76.6(2.5 60.7((43) 33.9(14.3) | 57.6
Manual Label FT (2021) 68.3(2.3) 70.5(1.9) 92.7(09) 645(4.2) 69.1(3.6) 745(53) 655(53) 93(7.3) 64.3
PETAL-CE FT (2020) 575@3.2) 57.712.6) 92.6(1.0) 50.5(0.0) 68.6(6.5) 32.1(42.5) 66.7(3.2) 3.8(8.4) 53.7
PETAL-LR FT (2020) 64.0(6.5) 659(6.4) 929(1.7) 655(6.8) 633(7.7) 77739 65742 11.9(75) | 634
AutoL-T5 FT (2021) 64.8(4.7) 67.3(43) 935(0.5 6983.00 674(3.9) 762(4.8) 66445 232(17.1) ]| 66.1
AMuLaP FT (ours) 70.6 2.7) 7252.4) 93.2(0.7) 651(59) 659(6.3) 793(4.00 69.1(25 18.3(9.4) | 66.8
TS + AMuLaP FT (ours) 68.5(22) 71.1(23) 93.4(1.0) 69.6(1.1) 69.4(4.0) 755(5.6) 66.4(3.0)0 14.2(14.0) | 66.0

Table 2: Experimental results under three settings with RoBERTa-large as £. For few-shot settings, n is set to 16
per class. We report the average of 5 runs along with their standard deviation in the parentheses.

¢ Setting 2: We use Dy, for label selection
and an additional D, for k tuning. The pa-
rameters of £ are not updated. This setting
is for fair comparison with AutoL (Gao et al.,
2021) and PETAL (Schick et al., 2020).

* Setting 3: We use Dyyyin, and Dy, in the
same way as Setting 2 but fine-tune the param-
eters of the language model £. This setting
is for fair comparison with conventional fine-
tuning, prompt-based fine-tuning with man-
ual prompts, AutoL (Gao et al., 2021) and
PETAL (Schick et al., 2020).

Implementation Details We implement AMu-
LaP based on Hugging Face Transformers (Wolf
et al., 2020). When selecting k, if there are mul-
tiple k£ with identical performance (which hap-
pens occasionally given there are only 16 exam-
ples for each class in Dy, ), we always choose the
largest k. For Settings 1 and 2, we search k over
{1,2,4,...,1024}. Note that for settings that do
not update the parameters of £, search over k is
fast, as we only need to run the model once and
cache the distribution of the [MASK] token. For
prompt-based fine-tuning (Setting 3), where we
fine-tune the model £, we search k in a smaller
space {1,2,4,8,16} due to the increased compu-
tational overhead. Following (Gao et al., 2021),

we grid search the learning rate from {1e-5, 2e-5,
5e-5} and batch size from {2, 4, 8}.

5.2 Experimental Results

We demonstrate experimental results under three
settings in Table 2. Under Setting 1, AMuLaP
outperforms GPT-3-style in-context learning by
4.5 in terms of the average score and outperforms
zero-shot inference with manually designed labels
by 2.4. Under Setting 2, compared to variants of
PETAL (Schick et al., 2020), AMulLaP has an ad-
vantage of 5.8 and 8.5 in terms of the average score
over CE and LR, respectively. Notably, AMuLaP
even outperforms AutoL-T5 by 1.3 without using
any external model or data. Additionally, we at-
tempt to replace the predicted token distribution
of AMuLaP with the validation score of T5-filled
labels (Gao et al., 2021).> With the help of an exter-
nal model TS5, AMuLaP outperforms AutoL-T5 by
a considerable margin of 3.8 in terms of the average
score, verifying the versatility of our multi-label
mechanism and label selection algorithm. Under
Setting 3, AMuLaP FT outperforms all baselines
including AutoL-T5. However, we do not observe
significant improvements when combining AMu-
LaP with TS. Generally speaking, methods with pa-

3The validation scores of T5-found labels are obtained on
D gev, as described in Gao et al. (2021). No external data used.



Class

PETAL-CE (Schick et al., 2020)

PETAL-LR (Schick et al., 2020)

amazing, great, brilliant, perfect, fun,

superb, fearless, acclaimed, addictive, visionary,

ositive N - - . . . . .
p wonderful, beautiful, fantastic, awesome, not immersive, irresistible, timely, unforgettable, gripping
negat ive not, awful, fun, funny, terrible, annoying, insulting, meaningless, lame, shitty,
g great, amazing, hilarious, awesome, good humiliating, childish, stupid, embarrassing, irritating
Class AutoL-T5 (Gao et al., 2021) AMulLaP (ours)
L exquisite, perfection, effective, fabulous, intense great, perfect, fun, brilliant, amazing,
positive - — —_— . . o1 . .
inspiring, spectacular, sublime, astounding, thrilling good, wonderful, beautiful, excellent, fantastic
, embarrassing, boring, frustrating, ridiculous, awkward  terrible, awful, disappointing, not, horrible,
negative iy of st =} e

silly, nothing, disgusting, ugly, confusing

obvious, funny, inevitable, bad, boring

Table 3: Most likely label mapping for the SST-2 dataset obtained by PETAL (Schick et al., 2020), AutoL-T5 (Gao
et al., 2021) and our AMuLaP. Suitable labels annotated by the human annotator are underlined.

MNLI  MNLI-mm SST-2 QNLI RTE MRPC QQr CoLA Avg.
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Matt.)

Setting 2: Dyrain, + D ey No parameter update.

AMuLaP 50.8 (2.1) 52.2(1.9) 87.0(1.5) 53.5(2.3) 59.1(74) 56.7(5.7) 61.5(1.7) 2.6 (1.8) | 52.9
w/o dedup. 454(2.7) 46.5(2.5) 87.9(1.0) 53.8(3.0) 54.6(6.00 66.7(12.3) 57.2(2.1) 2542 | 518
k=1 46.5(2.7) 48.4(2.6) 68.8(12.0)0 519(1.6) 588(12.7) 55.0(4.8) 59.2(0.0) 5.6(2.1) | 493

Setting 3: Divain, + D ey Prompt-based fine-tuning.

AMuLaP FT 70.6 2.7) 72.5(2.4) 93.2(0.7) 65.1(59) 659(6.3) 793400 69.1(25) 18.3(9.4) | 66.8
w/o dedup. 56.9(54) 58.2(5.2) 92.8(0.9) 50.6(0.4) 57.1(10.8) 79.2(3.6) 550(26.0) 56(7.1) | 569
k=1 67.7(4.1)  69.8 (3.8) 92.6(1.0) 659(52) 63.1(8.00 802(3.8) 66.7(3.2) 19.3(15.5) | 65.7
random M 58.8(6.2) 61.1(6.2) 92.1(2.1) 62.1(7.1) 57.0(11.2) 747(9.2) 60.8(5.8) 31.0(13.9) | 62.2
random M (k =1) | 52.6 (7.8) 55.4(8.3) 89.0(4.9) 652(4.5) 552(6.2) 73.4(10.6) 60.7(3.7) 17.3(14.7) | 58.6

Table 4: Experimental results for the ablation study. We report the average of 5 runs along with their standard

deviation in the parentheses.

rameter update (Setting 3) have better performance

than those that do not require access to parameters.

On all tasks except CoLA, AMuLaP outperforms
direct fine-tuning, suggesting that prompting is a
promising method for exploiting large pretrained
LMs.

6 Analysis

6.1 Case Study

As shown in Table 3, we list the 10 most likely
label mappings output by PETAL (Schick et al.,
2020), AutoL-T5 (Gao et al., 2021) and AMulLaP
for the SST-2 dataset, respectively. We shuffle the
labels from each model and ask a human annotator
to annotate whether they are suitable mappings.
PETAL-CE suffers from incorrect mappings for
“negative” while PETAL-LR occasionally outputs
vague labels. AMuLaP achieves interpretability
that is competitive to automatic labels obtained by
T5, an external large text-infilling model, measured
by the human agreement ratio. Although AMuLaP
outputs three labels that are rated not suitable by
the human annotator, it should be noted that all

three tokens are ranked low in the candidate set.
Thus, introducing top-k truncation can resolve the
problem. Additionally, we would like to highlight
that AMuLaP mainly collects common words while
other methods prefer rare words. This may explain
why AMuLaP works well, especially for the non-
finetuning settings.

6.2 Ablation Study

As shown in Table 4, we evaluate the effect of each
design choice on the GLUE benchmark. For both
non-finetuning and prompt-based fine-tuning set-
tings, our deduplication algorithm can effectively
improve the overall performance by 1.1 and 9.9
in terms of the GLUE average score, respectively.
Notably, deduplication is especially important for
prompt-based fine-tuning since if the same label
maps to two classes, optimization would be diffi-
cult due to the contradiction of supervision signals.
Also, our multi-label strategy is shown to be effec-
tive at improving the average GLUE scores by 3.6
and 1.1 for non-finetuning and fine-tuning settings,
respectively. Moreover, a random label mapping
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Figure 1: Comparison of AMuLaP, AMuLaP FT and fine-tuning on MNLI, SST and MRPC with different n for

the training set and the development set.
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Figure 2: Correlation between inter-class JS divergence
and performance for two-class tasks.

leads to lower performance than a label mapping
selected based on the training set except for CoLA.
An interesting observation is that the random map-
ping even outperforms all label selection methods
in Table 2 (both manual and automatic) and is close
to the fine-tuning baseline. We will discuss this
more in Section 6.4.

6.3 Scaling Few-Shot Learning

Le Scao and Rush (2021) explore the scaling law of
PET (Schick and Schiitze, 2021a) when using more
examples for training. Similarly, in this section, we
aim to test how AMuLaP scales to different train-
ing set sizes n. Figure 1 illustrates how standard
fine-tuning and our AMuLaP with non-finetuning
and fine-tuning compare as n increases. For MNLI
and SST-2 task, AMuLaP outperforms standard
fine-tuning when we use no more than 16 train-
ing examples for non-finetuning and fine-tuning
setting. When using more than 16 training exam-
ples, AMuLaP under fine-tuning setting still out-
performs standard fine-tuning. For an easier task
like SST-2, although only 32 training examples

are used, the performance of our AMuLaP with
non-finetuning and fine-tuning is close to satura-
tion and can be comparable to standard fine-tuning
on the entire dataset. For a harder task like MNLI,
although the performance of AMuLaP under non-
finetuning setting gradually becomes saturated as
n increases, AMuLaP under fine-tuning settings
continues to improve as n increases and continues
to outperform the standard fine-tuning. For MRPC,
although the performance of our AMuLaP and stan-
dard fine-tuning fluctuate as n increases, in general,
AMuLaP with fine-tuning can still achieve com-
parable performance to standard fine-tuning. In
addition, the results demonstrate the effectiveness
of AMuLaP especially for extreme few-shot set-
tings. With only one example, AMuLaP achieves
decent performance while standard fine-tuning is
close to random.

6.4 Understanding Few-Shot Performance

As shown in Table 1, AMulLaP seems to be able
to find good labels for some datasets while fail-
ing on others. Intuitively, this phenomenon should
correspond to classification performance. To quan-
titatively understand the relation between the qual-
ity of found labels and the final performance,
we design a meta-experiment. For every two-
class dataset (all GLUE datasets except three-class
MNLI), we calculate the JS divergence between
the average predicted token probabilities zy and
z1. This metric measures how different the lan-
guage model £ considers the examples from two
classes. This can be regarded as the “confidence’
of L to distinguish between the two classes. If the
model can easily distinguish examples from one
class with the other, we would expect the diver-
gence to be large, and vice versa.

We illustrate the relation between inter-class JS
divergence and the performance of AMuLaP on

)



each dataset in Figure 2. The correlation coeffi-
cients r between the two variables are 0.52 and
0.54 (0.14 and 0.19 if ignoring CoLA) for AMu-
LaP with and without prompt-based fine-tuning,
respectively. This observation suggests that the per-
formance can degrade if the model cannot distin-
guish examples of different classes and thus fail to
find suitable labels. As we analyze, AMuLaP fails
on CoLLA since the backbone model (RoBERT3) is
trained on corpora that contain noisy and possibly
ungrammatical text (e.g., OpenWebText) (Liu et al.,
2019). Thus, it is naturally tolerant to grammati-
cal errors that are key to distinguishing between
the two classes in CoL A, the dataset for linguis-
tic acceptability. As shown in Table 4, a random
mapping can outperform all automatic and manual
mappings by a large margin. This finding reveals
that some tasks may be naturally unsuitable for
prompting, which warrants further investigation.

7 Discussion

Why Does AMulLaP Work? Schick et al.
(2020) argues that one single label sometimes can-
not represent all examples in a class, and thus mul-
tiple labels are needed. However, we find this ex-
planation insufficient for understanding the mecha-
nism behind the improved performance with mul-
tiple labels. Under a few-shot setting, the limited
number of training examples n and complex train-
ing procedure of the backbone model £ can often
bring noise to both automatic label selection and
inference. One example is the meaningless </ s>
(end-of-sequence marker) label found by AMuLaP,
as shown in Table 1. This is due to the format
processing in the pretraining of £. Allowing mul-
tiple labels can resolve mishaps like this and thus
improve the final performance.

Moreover, when selecting multiple labels in fine-
tuning, it is equivalent to training on an augmented
training set, as multiple labels increase the overall
size of the supervision pairs (z, ¢). To verify this
guess, we test the fine-tuning performance of a ran-
dom mapping with different labels selected. We
find that for random mapping, more labels (i.e., a
larger k) often leads to better performance. This
suggests our guess may be correct. However, we do
not observe significant improvement when continu-
ing increasing k£ with labels selected by AMuLaP.
As we analyze, increasing k harms the overall qual-
ity of selected labels and thus overrides the benefit
of a larger k. In general, we do not observe a

clear law for choosing the best k£ for AMuLaP. As
mentioned before, k can influence both the overall
quality of labels (in both ways) and the training
procedure (for fine-tuning). Thus, for the optimal
performance, we find it essential to search k with a
development set.

Limitations and Future Directions In this pa-
per, we only focus on the selection of the label
mapping with a fixed prompt template. There is
more to explore when considering the prompt tem-
plate at the same time. Similar to our paper, pre-
vious works (Schick et al., 2020; Gao et al., 2021)
separately search for a prompt template 7 and the
label mapping M. However, these two variables
are closely related and greedily search for the best
template 7 then the best mapping under 7 may be
suboptimal. Jointly searching for 7 and M could
be a promising direction for future research.

More broadly, we would like to point out some
limitation and contradictions within current few-
shot prompting techniques. There is a natural con-
tradiction between performance and access to the
model weights. Brown et al. (2020) highlights
few-shot prompting as a way to mitigate their de-
cision to not release the model weights. However,
as shown in our Table 2, with the same backbone
model £, GPT-3-style in-context learning and other
methods that do not access the model weights gen-
erally underperform those with access to the model
weights by a large margin. Also, in-context learn-
ing cannot handle more training examples due to
the maximum length limit of the model while AMu-
LaP without fine-tuning gets saturated quickly, as
shown in Figure 1.

In addition, complicated prompting techniques
are not practically useful for real-world scenarios.
For most techniques, the required effort for finding
good templates and label mappings, and sometimes
training models outweighs the cost of simply la-
beling more training examples. As shown in Fig-
ure 2, 64 examples per class are enough to bring
the performance of standard fine-tuning to the same
level of prompting. Although recent works on au-
tomatic selection of prompts and label mappings
are making meaningful contribution to the practica-
bility of few-shot learning, we believe more work
should be done to simplify the learning procedure
and eliminate human effort while achieving good
performance.
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