
Automatic Multi-Label Prompting:
Simple and Interpretable Few-Shot Classification

Anonymous ACL submission

Abstract

Prompt-based learning (i.e., prompting) is an001
emerging paradigm for exploiting knowledge002
learned by a pretrained language model. In003
this paper, we propose Automatic Multi-Label004
Prompting (AMuLaP), a simple yet effective005
method to automatically select label mappings006
for few-shot text classification with prompt-007
ing. Our method exploits one-to-many la-008
bel mappings and a statistics-based algorithm009
to select label mappings given a prompt tem-010
plate. Our experiments demonstrate that AMu-011
LaP achieves competitive performance on the012
GLUE benchmark without human effort or ex-013
ternal resource.1014

1 Introduction015

Since the release of GPT-3 (Brown et al., 2020),016

several studies have focused on exploiting pre-017

trained language models with only a few training018

examples (Brown et al., 2020; Gao et al., 2021;019

Shin et al., 2020). These works demonstrate the020

potential of using natural language prompts to en-021

courage the model to recall similar patterns in its022

training corpus and thus make accurate predic-023

tions. This setting of few-shot learning is closer024

to how humans learn to solve a task, often without025

many examples as in a traditional deep learning026

paradigm. The use of prompts can strengthen the027

explicit connection between input and output, help-028

ing the model exploit the knowledge learned from029

pretraining in a better way. Furthermore, recent030

works (Schick and Schütze, 2021a,b; Gao et al.,031

2021) show that prompts can also help the model032

generalize better in fine-tuning.033

Prompt-based learning (i.e., prompting) aims to034

use a template to convert the original input into035

a prompt-based input with some unfilled masked036

tokens, and then use the pretrained language model037

to fill these masked tokens, and finally the tokens038

1We will make all code publicly available upon acceptance.

filled into these slots are mapped to the correspond- 039

ing labels as the final output. In prompting, the 040

design of prompts often plays an important role. 041

Many attempts have been made in this emerging 042

direction of prompt engineering (Shin et al., 2020; 043

Gao et al., 2021). Meanwhile, finding a good map- 044

ping from the original task labels to tokens (i.e., 045

label engineering) is also critical to few-shot per- 046

formance, as found in Schick et al. (2020); Gao 047

et al. (2021). However, manually assigning the 048

label mapping requires human expertise with trial 049

and error. One may argue that the same effort can 050

be used to label more supervised data for a con- 051

ventional deep learning pipeline. Thus, an efficient 052

automatic label mapping method is desirable. 053

In this paper, we aim to design a method that 054

can automatically find a good label mapping to 055

save human effort from label engineering. We 056

propose Automatic Multi-Label Prompting (AMu- 057

LaP), a simple yet effective method to tackle the 058

label selection problem for few-shot classification. 059

AMuLaP is a parameter-free statistical technique 060

that can identify the label patterns from a few-shot 061

training set given a prompt template. AMuLaP 062

exploits multiple labels to suppress the noise and 063

inherently extend the training set for prompt-based 064

fine-tuning. Compared with a hand-crafted label 065

mapping and previous works on automatic label 066

mapping (Schick et al., 2020; Gao et al., 2021), 067

AMuLaP achieves competitive performance de- 068

spite being simpler and does not require access 069

to the weights of the backbone model, or an ex- 070

ternal text-infilling model. We conduct extensive 071

experiments and demonstrate the effectiveness of 072

our method under multiple settings. Moreover, we 073

attempt to scale AMuLaP with different sizes of the 074

training set and find AMuLaP to work surprisingly 075

well even with one or two shots. To understand 076

the few-shot performance on different datasets, we 077

investigate the relation between accuracy and inter- 078

class token distribution divergence, shedding light 079

1

on the explainability of few-shot text classification.080

2 Related Work081

Discrete Prompts The release of GPT-3 (Brown082

et al., 2020) has led to interest in prompting, a new083

way to leverage pretrained language models (PLM).084

Brown et al. (2020) proposes an intuitive in-context085

learning paradigm by concatenating a few input and086

output examples and feeding them to the language087

model and let the model autoregressively generate088

answers for new examples. Recent works (Petroni089

et al., 2019; Davison et al., 2019; Jiang et al., 2020)090

design prompts to probe the factual and common-091

sense knowledge encoded within a PLM. Recent092

works (Schick and Schütze, 2021a,b; Gao et al.,093

2021) demonstrate that even smaller PLMs have094

similar few-shot learning capacity. Le Scao and095

Rush (2021) analyzes the effect of prompting and096

concludes that a single prompt may be worth 100097

training examples in fine-tuning.098

Instead of manually designing prompts099

(i.e., prompt engineering), some recent stud-100

ies also explore automatic prompt generation.101

PETAL (Schick et al., 2020) augments Pattern102

Exploiting Training (PET, Schick and Schütze,103

2021a,b) with automatically identified label words;104

Gao et al. (2021) searches the vocabulary for label105

words by fine-tuning the model on the candidates106

generated by a text-infilling model and using an107

external generation model for data augmentation108

of prompt templates; AutoPrompt (Shin et al.,109

2020) uses a gradient-based search to determine110

both prompts and label words. However, these111

methods require parameter updates with gradient112

descent, which is infeasible without access to113

the model weights (e.g., GPT-3). PET and its114

variants also require a large unlabeled set and115

need to be fine-tuned multiple times. AutoPrompt116

uses discretization techniques to approximately117

map a continuous vector back to tokens in the118

vocabulary (i.e., “vocablization”). These searched119

prompts and labels are often uninterpretable by120

humans. Guo et al. (2021) introduces Q-Learning121

to optimize the soft prompt. Different from these122

prior studies, our proposed AMuLaP is a simple123

and interpretable method for few-shot prompting124

that can work well with and without access to125

model weights.126

Continuous Prompts In parallel with text-based127

discrete prompts, there is also a line of work fo-128

cused on tuning only a fraction of parameters of an129

LM with the help of continuous prompts (i.e., soft 130

prompts). Zhong et al. (2021) and Qin and Eisner 131

(2021) propose continuous prompts for knowledge 132

probing by tuning some trainable vectors in the 133

input sequence while fixing the rest of the input. 134

Li and Liang (2021) applies a similar method for 135

natural language generation and achieves compara- 136

ble performance to fine-tuning while updating only 137

0.1% of model parameters. Lester et al. (2021) re- 138

veals that prompt tuning is more competitive when 139

scaled up and can achieve identical performance to 140

conventional fine-tuning when the model is large 141

enough. Notably, different from discrete prompt- 142

ing, these works often use all training data to update 143

model weights. Different from these works, AMu- 144

LaP is a discrete prompting method that has better 145

interpretability and works well in the few-shot set- 146

ting. 147

3 Prompting for Few-Shot Classification 148

We follow the setup in LM-BFF (Gao et al., 2021) 149

for few-shot text classification. Given a pretrained 150

language model L, a task D and its defined label 151

space Y , we have n training examples per class 152

for the training set Dtrain . As pointed out in Perez 153

et al. (2021), using the full development set may be 154

misleading to claim a few-shot setting. Thus, we 155

use a few-shot development set with the same size 156

as the training set (i.e., |Dtrain | = |Ddev |), to be 157

consistent with Gao et al. (2021) and constitute a 158

“true few-shot” setting (Perez et al., 2021). 159

For an input example x (a single sentence or 160

a sentence pair), we first use a task-specific tem- 161

plate T to convert it to x′, a token sequence with 162

a [MASK] token. We then map the original label 163

space to a set of selected words from the vocabu- 164

lary, denoted asM : Y → V ′. Some examples of 165

T andM are shown in Table 1. Note that since we 166

focus on automatically finding the label mapping 167

M, we use the manual templates T from Gao et al. 168

(2021) throughout this paper. Since L is trained to 169

complete the [MASK] token in an input sequence, 170

we can directly make zero-shot prediction of the 171

probability of class y ∈ Y by the masked language 172

modeling: 173

p (y|x) = p
(
[MASK] =M (y) | x′

)
. (1) 174

Alternately, one can further fine-tune L with su- 175

pervised pairs {x′,M (y)} to achieve even better 176

performance. 177

2

Task Template Class Manual (2021) Selected Labels by AMuLaP

MNLI <S1> ? [MASK] , <S2>
entailment Yes Yes, Indeed, Also, Currently
neutral Maybe Historically, Suddenly, Apparently, And
contradiction No No, However, Instead, Unfortunately

SST-2 <S1> It was [MASK] . positive great great, perfect, fun, brilliant
negative terrible terrible, awful, disappointing, not

QNLI <S1> ? [MASK] , <S2>
entailment Yes Yes, Historically, Overall, Indeed
not_entailment No Well, First, However, Unfortunately

RTE <S1> ? [MASK] , <S2>
entailment Yes Yes, Today, Specifically, Additionally
not_entailment No However, Ironically, Also, Indeed

MRPC <S1> [MASK] , <S2>
equivalent Yes </s>, Currently, Additionally, Today
not_equivalent No However, Meanwhile, Overall, Finally

QQP <S1> [MASK] , <S2>
equivalent Yes Or, So, Specifically, Actually
not_equivalent No Also, And, Finally, Well

CoLA <S1> This is [MASK] . grammatical correct why, true, her, amazing
not_grammatical incorrect it, ridiculous, interesting, sad

Table 1: The manual and automatically selected labels by AMuLaP. The templates used for prompting are from
Gao et al. (2021).

4 Automatic Multi-Label Prompting178

4.1 Exploiting Multiple Labels179

Selecting one label word can be insufficient for180

some complicated tasks, as mentioned in Schick181

et al. (2020). We also argue that selecting only one182

label (especially automatically) may bring noise.183

This can be resolved by introducing multiple la-184

bel words. Schick et al. (2020) use multiple label185

combinations for PET (Schick and Schütze, 2021a)186

and ensemble them afterwards. We instead use187

a straightforward sum to consider multiple label188

words when making predictions. This design has189

a similar advantage of exploiting multiple labels190

without training and ensembling multiple models.191

Instead of a one-to-one mapping from the origi-192

nal label space Y to V , we map each y ∈ Y to its193

label word set S(y). We denote the mapping as194

M′ : Y → S(y). For class y ∈ Y , the predicted195

probability is calculated as:196

p (y|x) =
∑

v∈S(y)

p
(
[MASK] = v | x′

)
(2)197

Then, we can simply make predictions by selecting198

the label with the largest likelihood.199

Similarly, if we need to fine-tune L with super-200

vised pairs, instead of optimizing the cross-entropy201

loss between the gold label and a single token,202

we optimize the loss between the sum of the out-203

put probabilities of S(y) and the gold label with a204

cross-entropy loss: 205

l = −
∑

x∈Dtrain

∑
y∈Y

[1 [y = ŷ] · log p (y|x)] (3) 206

where ŷ is the ground truth label for the input x 207

and p (y|x) is defined in Equation 2. 208

4.2 Automatic Label Selection 209

Finding a good label mappingM is non-trivial, es- 210

pecially whenM′ maps an original label to a set of 211

label words instead of one. Selecting a good label 212

mapping often requires significant human effort, 213

including domain knowledge and trial-and-error. 214

Previously, Schick and Schütze (2021a,b) both use 215

hand-crafted label mappings while Schick et al. 216

(2020) explores automatic label mapping searching 217

but it still requires manual pre-filtering and signif- 218

icantly underperforms the manual mapping. Gao 219

et al. (2021) exploits a large pretrained text infill- 220

ing model (T5, Raffel et al., 2020) to fill in the 221

label words and then determine the final mapping 222

by fine-tuning on all of them and selecting the best 223

one with Ddev . We introduce a new selection algo- 224

rithm for label mapping that achieves competitive 225

results compared to previous efforts. 226

We aim to achieve two goals: (1) Selecting the 227

most likely label mapping based on the training 228

set. For example, in a sentiment classification task, 229

we would like to see positive words in the label set 230

of the “positive” class while negative words in the 231

label set of the “negative” class. A simple solution 232

is to select the k most likely tokens predicted for 233

3

the [MASK] token in the training examples of each234

class y. However, in practice, we would find com-235

mon words in more than one label set. For example,236

if we simply take the 10 most likely tokens for the237

SST-2 dataset (Socher et al., 2013), we would find238

“good” in both positive and negative label sets, al-239

though it is ranked second place in the positive set240

and ninth in the negative set. Thus, we want to241

make sure that (2) Each token only belongs to at242

most one label set where it has the highest prob-243

ability. To ensure this, we have to iterate over the244

vocabulary and check that for every token. Then,245

we can truncate the candidate sets of each class and246

select the k most likely tokens from each set. The247

time complexity of this algorithm is O(k · |V| · |Y|).248

Formally, we selectM(y) : Y → S(y) by the249

following steps:250

1. For each yi ∈ Y , we iterate through all train-251

ing samples xj ∈ Dtrain whose ground truth252

label ŷj = yi. We use L to predict the token253

probability of the [MASK] token and take the254

average of the predicted probabilities of the n255

examples to be zi.256

2. Initialize an empty mapping M̃ : Y → S̃(y).257

3. For each v ∈ V where V is the vocabulary of258

the model L, we retrieve v’s probability value259

zvi from zi of each class.260

4. We assign v to the most likely candidate to-261

ken set of the m-th class S(ym) where m =262

argmaxi z
v
i .263

5. For i ∈ |Y|, we choose the top-k tokens from264

S̃(yi) with the largest probability zvi and ob-265

tain the truncated mappingM : Y → S(y).266

5 Experiments267

5.1 Experimental Setting268

Datasets We evaluate seven classification tasks269

of the GLUE benchmark (Wang et al., 2019).270

Specifically, we test on Microsoft Research Para-271

phrase Matching (MRPC) (Dolan and Brockett,272

2005), Quora Question Pairs (QQP)2 for Para-273

phrase Similarity Matching; Stanford Sentiment274

Treebank (SST-2) (Socher et al., 2013) for Sen-275

timent Classification; Multi-Genre Natural Lan-276

guage Inference Matched (MNLI-m), Multi-Genre277

2https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

Natural Language Inference Mismatched (MNLI- 278

mm) (Williams et al., 2018), Question Natural Lan- 279

guage Inference (QNLI) (Rajpurkar et al., 2016) 280

and Recognizing Textual Entailment (RTE) (Wang 281

et al., 2019) for the Natural Language Inference 282

(NLI) task; The Corpus of Linguistic Acceptability 283

(CoLA) (Warstadt et al., 2019) for Linguistic Ac- 284

ceptability. We use the manual templates in Gao 285

et al. (2021), as listed in Table 1. The metrics for 286

each dataset are indicated in Table 2. 287

Baselines We compare our method to various 288

baselines: 289

• Majority: always predict the majority class 290

in the test set. 291

• GPT-3-style in-context learning (Brown 292

et al., 2020): present a few examples to the 293

language model and make it directly predict 294

the next token as the prediction. 295

• Manual prompts: we use the human- 296

designed prompts in Gao et al. (2021). 297

• PETAL-CE (Schick et al., 2020): the variant 298

of PETAL using the cross-entropy metric. 299

• PETAL-LR (Schick et al., 2020): the variant 300

of PETAL using the likelihood ratio metric. 301

• AutoL-T5 (Gao et al., 2021): the automatic 302

label searching method with an external text- 303

infilling model, T5-3B (Raffel et al., 2020). 304

Task Setup We closely follow the setup in Gao 305

et al. (2021). We sample n training examples and 306

n development examples per class. We set k = 16 307

throughout all experiments. We use RoBERTa- 308

large (Liu et al., 2019) as the backbone LM L. For 309

each reported result, we measure average perfor- 310

mance across 5 different randomly sampled Dtrain 311

and Ddev splits. Following Gao et al. (2021), the 312

original development split of each dataset is used 313

as the test set in our experiments. We also report 314

the standard deviation for each result. To fairly 315

compare with different baselines, we consider the 316

following three settings: 317

• Setting 1: We only use Dtrain alone for both 318

label selection and tuning k. The parameters 319

of L are not updated. Ddev is not used. This 320

setting is for fair comparison with In-context 321

learning. 322

4

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

MNLI MNLI-mm SST-2 QNLI RTE MRPC QQP CoLA Avg.
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Matt.)

Baselines

Majority 32.7 33.0 50.9 49.5 52.7 81.2 0.0 0.0 37.5
Manual Label 0-shot (2021) 50.8 51.7 83.6 50.8 51.3 61.9 49.7 2.0 50.2
Full Fine-tuning 89.8 89.5 95.0 93.3 80.9 91.4 81.7 62.6 85.5

Setting 1: Dtrain only; No parameter update.

In-context learning (2020) 52.0 (0.7) 53.4 (0.6) 84.8 (1.3) 53.8 (0.4) 60.4 (1.4) 45.7 (6.0) 36.1 (5.2) -1.5 (2.4) 48.1
AMuLaP (ours) 50.8 (2.1) 52.3 (1.8) 86.9 (1.6) 53.1 (2.8) 58.9 (7.9) 56.3 (5.0) 60.2 (2.7) 2.3 (1.4) 52.6

Setting 2: Dtrain + Ddev ; No parameter update.

PETAL-CE (2020) 48.8 (2.6) 49.7 (2.3) 75.6 (7.2) 49.5 (0.0) 63.5 (3.3) 28.9 (39.6) 59.2 (0.0) 1.3 (3.0) 47.1
PETAL-LR (2020) 38.6 (2.0) 38.4 (2.1) 85.3 (3.3) 53.3 (3.6) 54.7 (6.4) 28.0 (38.5) 55.6 (2.8) 1.5 (3.4) 44.4
AutoL-T5 (2021) 41.6 (5.4) 42.3 (6.2) 84.3 (3.3) 57.9 (3.9) 61.9 (7.5) 67.7 (7.9) 55.5 (5.0) 1.2 (4.8) 51.6
AMuLaP (ours) 50.8 (2.1) 52.2 (1.9) 87.0 (1.5) 53.5 (2.3) 59.1 (7.4) 56.7 (5.7) 61.5 (1.7) 2.6 (1.8) 52.9
T5 + AMuLaP (ours) 52.9 (3.0) 54.2 (2.7) 90.1 (0.4) 57.9 (2.6) 59.9 (5.2) 66.0 (3.0) 59.4 (2.3) 2.7 (5.7) 55.4

Setting 3: Dtrain + Ddev ; Prompt-based fine-tuning.

Fine-tuning 45.8 (6.4) 47.8 (6.8) 81.4 (3.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3) 33.9 (14.3) 57.6
Manual Label FT (2021) 68.3 (2.3) 70.5 (1.9) 92.7 (0.9) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3) 9.3 (7.3) 64.3
PETAL-CE FT (2020) 57.5 (3.2) 57.7 (2.6) 92.6 (1.0) 50.5 (0.0) 68.6 (6.5) 32.1 (42.5) 66.7 (3.2) 3.8 (8.4) 53.7
PETAL-LR FT (2020) 64.0 (6.5) 65.9 (6.4) 92.9 (1.7) 65.5 (6.8) 63.3 (7.7) 77.7 (3.9) 65.7 (4.2) 11.9 (7.5) 63.4
AutoL-T5 FT (2021) 64.8 (4.7) 67.3 (4.3) 93.5 (0.5) 69.8 (3.0) 67.4 (3.9) 76.2 (4.8) 66.4 (4.5) 23.2 (17.1) 66.1
AMuLaP FT (ours) 70.6 (2.7) 72.5 (2.4) 93.2 (0.7) 65.1 (5.9) 65.9 (6.3) 79.3 (4.0) 69.1 (2.5) 18.3 (9.4) 66.8
T5 + AMuLaP FT (ours) 68.5 (2.2) 71.1 (2.3) 93.4 (1.0) 69.6 (1.1) 69.4 (4.0) 75.5 (5.6) 66.4 (3.0) 14.2 (14.0) 66.0

Table 2: Experimental results under three settings with RoBERTa-large as L. For few-shot settings, n is set to 16
per class. We report the average of 5 runs along with their standard deviation in the parentheses.

• Setting 2: We use Dtrain for label selection323

and an additional Ddev for k tuning. The pa-324

rameters of L are not updated. This setting325

is for fair comparison with AutoL (Gao et al.,326

2021) and PETAL (Schick et al., 2020).327

• Setting 3: We use Dtrain and Ddev in the328

same way as Setting 2 but fine-tune the param-329

eters of the language model L. This setting330

is for fair comparison with conventional fine-331

tuning, prompt-based fine-tuning with man-332

ual prompts, AutoL (Gao et al., 2021) and333

PETAL (Schick et al., 2020).334

Implementation Details We implement AMu-335

LaP based on Hugging Face Transformers (Wolf336

et al., 2020). When selecting k, if there are mul-337

tiple k with identical performance (which hap-338

pens occasionally given there are only 16 exam-339

ples for each class in Ddev), we always choose the340

largest k. For Settings 1 and 2, we search k over341

{1, 2, 4, . . . , 1024}. Note that for settings that do342

not update the parameters of L, search over k is343

fast, as we only need to run the model once and344

cache the distribution of the [MASK] token. For345

prompt-based fine-tuning (Setting 3), where we346

fine-tune the model L, we search k in a smaller347

space {1, 2, 4, 8, 16} due to the increased compu-348

tational overhead. Following (Gao et al., 2021),349

we grid search the learning rate from {1e-5, 2e-5, 350

5e-5} and batch size from {2, 4, 8}. 351

5.2 Experimental Results 352

We demonstrate experimental results under three 353

settings in Table 2. Under Setting 1, AMuLaP 354

outperforms GPT-3-style in-context learning by 355

4.5 in terms of the average score and outperforms 356

zero-shot inference with manually designed labels 357

by 2.4. Under Setting 2, compared to variants of 358

PETAL (Schick et al., 2020), AMuLaP has an ad- 359

vantage of 5.8 and 8.5 in terms of the average score 360

over CE and LR, respectively. Notably, AMuLaP 361

even outperforms AutoL-T5 by 1.3 without using 362

any external model or data. Additionally, we at- 363

tempt to replace the predicted token distribution 364

of AMuLaP with the validation score of T5-filled 365

labels (Gao et al., 2021).3 With the help of an exter- 366

nal model T5, AMuLaP outperforms AutoL-T5 by 367

a considerable margin of 3.8 in terms of the average 368

score, verifying the versatility of our multi-label 369

mechanism and label selection algorithm. Under 370

Setting 3, AMuLaP FT outperforms all baselines 371

including AutoL-T5. However, we do not observe 372

significant improvements when combining AMu- 373

LaP with T5. Generally speaking, methods with pa- 374

3The validation scores of T5-found labels are obtained on
Ddev , as described in Gao et al. (2021). No external data used.

5

Class PETAL-CE (Schick et al., 2020) PETAL-LR (Schick et al., 2020)

positive
amazing, great, brilliant, perfect, fun, superb, fearless, acclaimed, addictive, visionary,
wonderful, beautiful, fantastic, awesome, not immersive, irresistible, timely, unforgettable, gripping

negative
not, awful, fun, funny, terrible, annoying, insulting, meaningless, lame, shitty,
great, amazing, hilarious, awesome, good humiliating, childish, stupid, embarrassing, irritating

Class AutoL-T5 (Gao et al., 2021) AMuLaP (ours)

positive
exquisite, perfection, effective, fabulous, intense great, perfect, fun, brilliant, amazing,
inspiring, spectacular, sublime, astounding, thrilling good, wonderful, beautiful, excellent, fantastic

negative
embarrassing, boring, frustrating, ridiculous, awkward terrible, awful, disappointing, not, horrible,
silly, nothing, disgusting, ugly, confusing obvious, funny, inevitable, bad, boring

Table 3: Most likely label mapping for the SST-2 dataset obtained by PETAL (Schick et al., 2020), AutoL-T5 (Gao
et al., 2021) and our AMuLaP. Suitable labels annotated by the human annotator are underlined.

MNLI MNLI-mm SST-2 QNLI RTE MRPC QQP CoLA Avg.
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Matt.)

Setting 2: Dtrain + Ddev ; No parameter update.

AMuLaP 50.8 (2.1) 52.2 (1.9) 87.0 (1.5) 53.5 (2.3) 59.1 (7.4) 56.7 (5.7) 61.5 (1.7) 2.6 (1.8) 52.9
w/o dedup. 45.4 (2.7) 46.5 (2.5) 87.9 (1.0) 53.8 (3.0) 54.6 (6.0) 66.7 (12.3) 57.2 (2.1) 2.5 (4.2) 51.8
k = 1 46.5 (2.7) 48.4 (2.6) 68.8 (12.0) 51.9 (1.6) 58.8 (12.7) 55.0 (4.8) 59.2 (0.0) 5.6 (2.1) 49.3

Setting 3: Dtrain + Ddev ; Prompt-based fine-tuning.

AMuLaP FT 70.6 (2.7) 72.5 (2.4) 93.2 (0.7) 65.1 (5.9) 65.9 (6.3) 79.3 (4.0) 69.1 (2.5) 18.3 (9.4) 66.8
w/o dedup. 56.9 (5.4) 58.2 (5.2) 92.8 (0.9) 50.6 (0.4) 57.1 (10.8) 79.2 (3.6) 55.0 (26.0) 5.6 (7.1) 56.9
k = 1 67.7 (4.1) 69.8 (3.8) 92.6 (1.0) 65.9 (5.2) 63.1 (8.0) 80.2 (3.8) 66.7 (3.2) 19.3 (15.5) 65.7
randomM 58.8 (6.2) 61.1 (6.2) 92.1 (2.1) 62.1 (7.1) 57.0 (11.2) 74.7 (9.2) 60.8 (5.8) 31.0 (13.9) 62.2
randomM (k = 1) 52.6 (7.8) 55.4 (8.3) 89.0 (4.9) 65.2 (4.5) 55.2 (6.2) 73.4 (10.6) 60.7 (3.7) 17.3 (14.7) 58.6

Table 4: Experimental results for the ablation study. We report the average of 5 runs along with their standard
deviation in the parentheses.

rameter update (Setting 3) have better performance375

than those that do not require access to parameters.376

On all tasks except CoLA, AMuLaP outperforms377

direct fine-tuning, suggesting that prompting is a378

promising method for exploiting large pretrained379

LMs.380

6 Analysis381

6.1 Case Study382

As shown in Table 3, we list the 10 most likely383

label mappings output by PETAL (Schick et al.,384

2020), AutoL-T5 (Gao et al., 2021) and AMuLaP385

for the SST-2 dataset, respectively. We shuffle the386

labels from each model and ask a human annotator387

to annotate whether they are suitable mappings.388

PETAL-CE suffers from incorrect mappings for389

“negative” while PETAL-LR occasionally outputs390

vague labels. AMuLaP achieves interpretability391

that is competitive to automatic labels obtained by392

T5, an external large text-infilling model, measured393

by the human agreement ratio. Although AMuLaP394

outputs three labels that are rated not suitable by395

the human annotator, it should be noted that all396

three tokens are ranked low in the candidate set. 397

Thus, introducing top-k truncation can resolve the 398

problem. Additionally, we would like to highlight 399

that AMuLaP mainly collects common words while 400

other methods prefer rare words. This may explain 401

why AMuLaP works well, especially for the non- 402

finetuning settings. 403

6.2 Ablation Study 404

As shown in Table 4, we evaluate the effect of each 405

design choice on the GLUE benchmark. For both 406

non-finetuning and prompt-based fine-tuning set- 407

tings, our deduplication algorithm can effectively 408

improve the overall performance by 1.1 and 9.9 409

in terms of the GLUE average score, respectively. 410

Notably, deduplication is especially important for 411

prompt-based fine-tuning since if the same label 412

maps to two classes, optimization would be diffi- 413

cult due to the contradiction of supervision signals. 414

Also, our multi-label strategy is shown to be effec- 415

tive at improving the average GLUE scores by 3.6 416

and 1.1 for non-finetuning and fine-tuning settings, 417

respectively. Moreover, a random label mapping 418

6

1 2 4 8 16 32 64 128 256
Shots per class (n)

40

50

60

70

80
MNLI

1 2 4 8 16 32 64 128 256
Shots per class (n)

40

50

60

70

80

MNLI-mm

1 2 4 8 16 32 64 128 256
Shots per class (n)

50

60

70

80

90

SST-2

Fine-tuning
AMuLaP (no FT)
AMuLaP FT

1 2 4 8 16 32 64 128 256
Shots per class (n)

50

60

70

80

90
MRPC

Figure 1: Comparison of AMuLaP, AMuLaP FT and fine-tuning on MNLI, SST and MRPC with different n for
the training set and the development set.

3 4 5
JS Divergence (×10^-6)

20

30

40

50

60

70

80

90

Pe
rfo

rm
an

ce

SST-2

MRPC

RTEQNLI

CoLA

QQP

r=0.52

AMuLaP FT

3 4 5
JS Divergence (×10^-6)

0

20

40

60

80
SST-2

MRPC RTE
QNLI

CoLA

QQP

r=0.54

AMuLaP (no FT)

Figure 2: Correlation between inter-class JS divergence
and performance for two-class tasks.

leads to lower performance than a label mapping419

selected based on the training set except for CoLA.420

An interesting observation is that the random map-421

ping even outperforms all label selection methods422

in Table 2 (both manual and automatic) and is close423

to the fine-tuning baseline. We will discuss this424

more in Section 6.4.425

6.3 Scaling Few-Shot Learning426

Le Scao and Rush (2021) explore the scaling law of427

PET (Schick and Schütze, 2021a) when using more428

examples for training. Similarly, in this section, we429

aim to test how AMuLaP scales to different train-430

ing set sizes n. Figure 1 illustrates how standard431

fine-tuning and our AMuLaP with non-finetuning432

and fine-tuning compare as n increases. For MNLI433

and SST-2 task, AMuLaP outperforms standard434

fine-tuning when we use no more than 16 train-435

ing examples for non-finetuning and fine-tuning436

setting. When using more than 16 training exam-437

ples, AMuLaP under fine-tuning setting still out-438

performs standard fine-tuning. For an easier task439

like SST-2, although only 32 training examples440

are used, the performance of our AMuLaP with 441

non-finetuning and fine-tuning is close to satura- 442

tion and can be comparable to standard fine-tuning 443

on the entire dataset. For a harder task like MNLI, 444

although the performance of AMuLaP under non- 445

finetuning setting gradually becomes saturated as 446

n increases, AMuLaP under fine-tuning settings 447

continues to improve as n increases and continues 448

to outperform the standard fine-tuning. For MRPC, 449

although the performance of our AMuLaP and stan- 450

dard fine-tuning fluctuate as n increases, in general, 451

AMuLaP with fine-tuning can still achieve com- 452

parable performance to standard fine-tuning. In 453

addition, the results demonstrate the effectiveness 454

of AMuLaP especially for extreme few-shot set- 455

tings. With only one example, AMuLaP achieves 456

decent performance while standard fine-tuning is 457

close to random. 458

6.4 Understanding Few-Shot Performance 459

As shown in Table 1, AMuLaP seems to be able 460

to find good labels for some datasets while fail- 461

ing on others. Intuitively, this phenomenon should 462

correspond to classification performance. To quan- 463

titatively understand the relation between the qual- 464

ity of found labels and the final performance, 465

we design a meta-experiment. For every two- 466

class dataset (all GLUE datasets except three-class 467

MNLI), we calculate the JS divergence between 468

the average predicted token probabilities z0 and 469

z1. This metric measures how different the lan- 470

guage model L considers the examples from two 471

classes. This can be regarded as the “confidence” 472

of L to distinguish between the two classes. If the 473

model can easily distinguish examples from one 474

class with the other, we would expect the diver- 475

gence to be large, and vice versa. 476

We illustrate the relation between inter-class JS 477

divergence and the performance of AMuLaP on 478

7

each dataset in Figure 2. The correlation coeffi-479

cients r between the two variables are 0.52 and480

0.54 (0.14 and 0.19 if ignoring CoLA) for AMu-481

LaP with and without prompt-based fine-tuning,482

respectively. This observation suggests that the per-483

formance can degrade if the model cannot distin-484

guish examples of different classes and thus fail to485

find suitable labels. As we analyze, AMuLaP fails486

on CoLA since the backbone model (RoBERTa) is487

trained on corpora that contain noisy and possibly488

ungrammatical text (e.g., OpenWebText) (Liu et al.,489

2019). Thus, it is naturally tolerant to grammati-490

cal errors that are key to distinguishing between491

the two classes in CoLA, the dataset for linguis-492

tic acceptability. As shown in Table 4, a random493

mapping can outperform all automatic and manual494

mappings by a large margin. This finding reveals495

that some tasks may be naturally unsuitable for496

prompting, which warrants further investigation.497

7 Discussion498

Why Does AMuLaP Work? Schick et al.499

(2020) argues that one single label sometimes can-500

not represent all examples in a class, and thus mul-501

tiple labels are needed. However, we find this ex-502

planation insufficient for understanding the mecha-503

nism behind the improved performance with mul-504

tiple labels. Under a few-shot setting, the limited505

number of training examples n and complex train-506

ing procedure of the backbone model L can often507

bring noise to both automatic label selection and508

inference. One example is the meaningless </s>509

(end-of-sequence marker) label found by AMuLaP,510

as shown in Table 1. This is due to the format511

processing in the pretraining of L. Allowing mul-512

tiple labels can resolve mishaps like this and thus513

improve the final performance.514

Moreover, when selecting multiple labels in fine-515

tuning, it is equivalent to training on an augmented516

training set, as multiple labels increase the overall517

size of the supervision pairs (x, ŷ). To verify this518

guess, we test the fine-tuning performance of a ran-519

dom mapping with different labels selected. We520

find that for random mapping, more labels (i.e., a521

larger k) often leads to better performance. This522

suggests our guess may be correct. However, we do523

not observe significant improvement when continu-524

ing increasing k with labels selected by AMuLaP.525

As we analyze, increasing k harms the overall qual-526

ity of selected labels and thus overrides the benefit527

of a larger k. In general, we do not observe a528

clear law for choosing the best k for AMuLaP. As 529

mentioned before, k can influence both the overall 530

quality of labels (in both ways) and the training 531

procedure (for fine-tuning). Thus, for the optimal 532

performance, we find it essential to search k with a 533

development set. 534

Limitations and Future Directions In this pa- 535

per, we only focus on the selection of the label 536

mapping with a fixed prompt template. There is 537

more to explore when considering the prompt tem- 538

plate at the same time. Similar to our paper, pre- 539

vious works (Schick et al., 2020; Gao et al., 2021) 540

separately search for a prompt template T and the 541

label mappingM. However, these two variables 542

are closely related and greedily search for the best 543

template T then the best mapping under T may be 544

suboptimal. Jointly searching for T andM could 545

be a promising direction for future research. 546

More broadly, we would like to point out some 547

limitation and contradictions within current few- 548

shot prompting techniques. There is a natural con- 549

tradiction between performance and access to the 550

model weights. Brown et al. (2020) highlights 551

few-shot prompting as a way to mitigate their de- 552

cision to not release the model weights. However, 553

as shown in our Table 2, with the same backbone 554

model L, GPT-3-style in-context learning and other 555

methods that do not access the model weights gen- 556

erally underperform those with access to the model 557

weights by a large margin. Also, in-context learn- 558

ing cannot handle more training examples due to 559

the maximum length limit of the model while AMu- 560

LaP without fine-tuning gets saturated quickly, as 561

shown in Figure 1. 562

In addition, complicated prompting techniques 563

are not practically useful for real-world scenarios. 564

For most techniques, the required effort for finding 565

good templates and label mappings, and sometimes 566

training models outweighs the cost of simply la- 567

beling more training examples. As shown in Fig- 568

ure 2, 64 examples per class are enough to bring 569

the performance of standard fine-tuning to the same 570

level of prompting. Although recent works on au- 571

tomatic selection of prompts and label mappings 572

are making meaningful contribution to the practica- 573

bility of few-shot learning, we believe more work 574

should be done to simplify the learning procedure 575

and eliminate human effort while achieving good 576

performance. 577

8

References578

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie579
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind580
Neelakantan, Pranav Shyam, Girish Sastry, Amanda581
Askell, Sandhini Agarwal, Ariel Herbert-Voss,582
Gretchen Krueger, Tom Henighan, Rewon Child,583
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,584
Clemens Winter, Christopher Hesse, Mark Chen,585
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin586
Chess, Jack Clark, Christopher Berner, Sam Mc-587
Candlish, Alec Radford, Ilya Sutskever, and Dario588
Amodei. 2020. Language models are few-shot learn-589
ers. In NeurIPS.590

Joe Davison, Joshua Feldman, and Alexander M. Rush.591
2019. Commonsense knowledge mining from pre-592
trained models. In EMNLP-IJCNLP, pages 1173–593
1178. Association for Computational Linguistics.594

William B. Dolan and Chris Brockett. 2005. Automati-595
cally constructing a corpus of sentential paraphrases.596
In IWP@IJCNLP.597

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.598
Making pre-trained language models better few-shot599
learners. In ACL-IJCNLP. Association for Compu-600
tational Linguistics.601

Han Guo, Bowen Tan, Zhengzhong Liu, Eric P Xing,602
and Zhiting Hu. 2021. Text generation with efficient603
(soft) q-learning. arXiv preprint arXiv:2106.07704.604

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham605
Neubig. 2020. How can we know what language606
models know. Trans. Assoc. Comput. Linguistics,607
8:423–438.608

Teven Le Scao and Alexander M. Rush. 2021. How609
many data points is a prompt worth? In NAACL-610
HLT, pages 2627–2636. Association for Computa-611
tional Linguistics.612

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.613
The power of scale for parameter-efficient prompt614
tuning. arXiv preprint arXiv:2104.08691.615

Xiang Lisa Li and Percy Liang. 2021. Prefix-616
tuning: Optimizing continuous prompts for genera-617
tion. arXiv preprint arXiv:2101.00190.618

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-619
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,620
Luke Zettlemoyer, and Veselin Stoyanov. 2019.621
Roberta: A robustly optimized BERT pretraining ap-622
proach. arXiv preprint arXiv:1907.11692.623

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.624
True few-shot learning with language models. arXiv625
preprint arXiv:2105.11447.626

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,627
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,628
and Alexander H. Miller. 2019. Language models629
as knowledge bases? In EMNLP-IJCNLP, pages630
2463–2473. Association for Computational Linguis-631
tics.632

Guanghui Qin and Jason Eisner. 2021. Learning how 633
to ask: Querying lms with mixtures of soft prompts. 634
In NAACL-HLT, pages 5203–5212. Association for 635
Computational Linguistics. 636

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 637
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 638
Wei Li, and Peter J. Liu. 2020. Exploring the limits 639
of transfer learning with a unified text-to-text trans- 640
former. J. Mach. Learn. Res., 21:140:1–140:67. 641

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 642
Percy Liang. 2016. Squad: 100, 000+ questions for 643
machine comprehension of text. In EMNLP. 644

Timo Schick, Helmut Schmid, and Hinrich Schütze. 645
2020. Automatically identifying words that can 646
serve as labels for few-shot text classification. In 647
COLING, pages 5569–5578. International Commit- 648
tee on Computational Linguistics. 649

Timo Schick and Hinrich Schütze. 2021a. Exploiting 650
cloze-questions for few-shot text classification and 651
natural language inference. In EACL, pages 255– 652
269. Association for Computational Linguistics. 653

Timo Schick and Hinrich Schütze. 2021b. It’s not 654
just size that matters: Small language models are 655
also few-shot learners. In NAACL-HLT, pages 2339– 656
2352. Association for Computational Linguistics. 657

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, 658
Eric Wallace, and Sameer Singh. 2020. Autoprompt: 659
Eliciting knowledge from language models with au- 660
tomatically generated prompts. In EMNLP, pages 661
4222–4235. Association for Computational Linguis- 662
tics. 663

Richard Socher, Alex Perelygin, Jean Wu, Jason 664
Chuang, Christopher D. Manning, Andrew Y. Ng, 665
and Christopher Potts. 2013. Recursive deep mod- 666
els for semantic compositionality over a sentiment 667
treebank. In EMNLP. 668

Alex Wang, Amanpreet Singh, Julian Michael, Felix 669
Hill, Omer Levy, and Samuel R. Bowman. 2019. 670
GLUE: A multi-task benchmark and analysis plat- 671
form for natural language understanding. In ICLR. 672

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 673
man. 2019. Neural network acceptability judgments. 674
TACL. 675

Adina Williams, Nikita Nangia, and Samuel R. Bow- 676
man. 2018. A broad-coverage challenge corpus 677
for sentence understanding through inference. In 678
NAACL-HLT. 679

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 680
Chaumond, Clement Delangue, Anthony Moi, Pier- 681
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 682
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 683
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 684
Teven Le Scao, Sylvain Gugger, Mariama Drame, 685
Quentin Lhoest, and Alexander M. Rush. 2020. 686

9

Transformers: State-of-the-art natural language pro-687
cessing. In EMNLP (Demos), pages 38–45. Associ-688
ation for Computational Linguistics.689

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.690
Factual probing is [MASK]: learning vs. learning to691
recall. In NAACL-HLT, pages 5017–5033. Associa-692
tion for Computational Linguistics.693

10

