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Abstract

In-context Learning (ICL) is a promising approach for adapting pre-trained Large
Language Models (LLMs) to a downstream task by providing relevant exem-
plars into a prompt. However, a recent concern is that these exemplars can con-
tain privacy-sensitive information that can be unintentionally leaked/regurgitated
through the LLM’s output. Prior work has demonstrated this privacy vulnerability
through Membership Inference Attacks. Despite this, there lacks a systematic eval-
uation of the factors that contribute to unintended privacy leakage from ICL. In this
work, we introduce ICLInf, a metric for measuring the potential privacy leakage
of ICL exemplars that is inspired by the analysis of data-dependent differential pri-
vacy (DP) and counterfactual influence. Our experimental results demonstrate that
potential privacy leakage can be exacerbated by certain factors, such as parametric
knowledge, model size, and exemplar position. Moreover, we show that ICLInf
can be used to provide a tight privacy audit for DP sample-based ICL methods
(exponential mechanism) up to € = 10.

1 Introduction

Large Language Models (LLMs) have been shown to adapt to downstream stream tasks without
fine-tuning by leveraging task-relevant exemplars into a prompt [3| [20]. This approach, known
as In-context Learning (ICL) avoids modifying the model parameters, enabling a cost-effective
alternative to fine-tuning. However, ICL raises concerns about unintentional privacy leakage of the
exemplars since LLMs willingly regurgitate prompt data [29]]. Indeed, prior work has shown that
Membership Inference Attacks (MIAs) [24] can leak privacy of ICL exemplars [10, 31], motivating
privacy-preserving solutions for ICL [11} 25} 32].

Although prior work has established that ICL is vulnerable to MIAs and differential privacy (DP)
can mitigate these vulnerabilities, there lacks a systematic evaluation of the factors that influence
unintended privacy leakage of ICL exemplars. For example, prior work observed that larger models
leak less privacy from ICL exemplars [[10]. Whereas, our results suggest a convex relationship
between model size and privacy leakage, with leakage peaking in moderately sized models (3-7B
parameters). Hence, this highlights the need for a more thorough investigation into how these factors
influence privacy leakage. Such an investigation can provide useful insights and accurate privacy
assessments that are crucial for practical deployments of LLMs equipped with ICL exemplars.
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MIAs are an effective tool for evaluating privacy leakage [24]] and have been recently applied to
ICL to evaluated privacy leakage [10}31]. However, the efficacy of this privacy evaluation relies
on the strength of the instantiated MIA attack. Our work seeks to complement MIAs by precisely
analyzing privacy leakage of ICL demonstrations rather than proposing attacks. To this end, we
propose ICLInf, a novel approach for evaluating the privacy leakage of in-context learning (ICL)
that follows the analysis of data-dependent DP [22| 23] and counterfactual influence [33]]. The main
concept is to evaluate how each exemplar in the prompt influences an LLM’s output. If the output
changes substantially when removing an exemplar from the prompt, then the potential privacy leakage
must be high. This is aligned with prior work that also utilized data-dependent DP for analyzing the
privacy leakage of context data augmented to prompts [14]].

Using ICLInf, we experimentally evaluate various factors that can exacerbate unintended privacy
leakage of ICL exemplars. Moreover, we demonstrate that ICLInf can be used for tightly auditing
DP sample-based ICL solutions.

2 Preliminaries

In-context Learning (ICL). Let x be an input query and 6 be the LLM parameters. Define py(-) to
be an output distribution of the LLM. Hence, one can generate an output y for x by sampling from
an LLM’s zero-shot output distribution pg(y|x) conditioned on the input query x.

Additionally, one can improve the output y by including n number of exemplars for the LLM to learn
the relevant input-output mapping. Let D{(x;,y;}}_, be a set of input-output exemplars. Then we

can obtain y by sampling from the few-shot output distribution pg(y|D, x) [3].

Differential Privacy (DP) [[L1, [12] is widely-accepted privacy notion that guarantees a bound on
the amount of information about a private dataset that the output of an algorithm can leak. Let
D" = D\ {(x;,y:)} be the set of exemplars where the i-th input-output exemplar is removed.

Definition 2.1 (Pure Differential Privacy (DP) [13]]). A randomized algorithm A satisfies e-DP if for
all datasets D, ¢ € [n] and all measurable sets E, it holds that

Pr[A(D) € E] < e*Pr[A(D~%) € E], and Pr[A(D~%) € E] < e¢Pr[A(D) € E]. (1)

While achieving e-DP for an algorithm provides a strong privacy guarantee, the privacy loss bound e
is not informative about the privacy loss incurred to individual input-output exemplars, which we are
interested in. So instead we use data-dependent DP which gives us a privacy loss for a specific set of
exemplars.

Definition 2.2 (Data-Dependent Differential Privacy (DP) [22]). A randomized algorithm A satisfies
¢(D)-DP if for all ¢ € [n] and measurable sets E, it holds that

Pr[A(D) € E] < e“P) Pr[A(D™?) € E], and Pr[A(D~?) € E] < e“P) Pr[A(D) € E]. (2)

3 Method

We now introduce ICLInf. The core idea is to calculate the average data-dependent privacy loss
from Equation [J] over a test set. This involves iterating through all neighboring prompts by removing
one exemplar from the prompt then calculating the log-likelihood difference for each query.

Definition 3.1 (ICL Influence). Define Dyin = {(%;, yj);‘:l to be a downstream dataset, S be a set

of ICL exemplars randomly sampled from Dyjn, and Dy, = {xj };”:1 be a set of queries. Let A be

an algorithm that maps a set of ICL exemplars S and a query x’ to a probability distribution over
possible tokens V. Then

Data-dependent DP privacy loss

ICLInf = [E [ max {max{|logPr[A(S,x") =y] —log Pr[A(S\ {(x,¥)},x') =y]}}].
SCDiin (x,y)€S " yeV
X" € Diest output probability output probability
with exemplars without i-th exemplar
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For Section[4.2] A(S, z) is the output distribution from the LLM py(S, z), but renormalized such
that only the class labels have nonzero probability. In other words, py(y|S,xz) = 0ify ¢ Y where Y’



is the downstream class labels. For Section [5, A(S, z) is the output distribution returned by a DP
algorithm. To satisfy the DP requirement of a randomized algorithm, A must be sampling-based
decoding, not greedy decoding algorithms such as argmax.

The expectation in Equation[3|can be empirically estimated by sampling a set of ICL exemplars S; of
equal size |Sj| = ngnors for each query xj with j € [m]. Then we take the average privacy loss over
the sampled exemplars and test set:

— 1 - AN 1y —
ICLInf = — ; <(x{fy1§\gsj max {log Pr[A(S;, x}) = y] — log Pr[A(S; \ {(x,¥)},x}) = y]}}) :
| )

If there is a large difference between including an exemplar or not, i.e. ICLInf is large, then we
consider this downstream dataset to have a large privacy leakage on the downstream tasks.

4 Factors That Influence ICL Privacy Leakage

For systematically assessing ICL exemplar privacy leakage risks during inference from LLMs,
we present experiments designed to answer crucial questions about various factors that can affect
ICLInf. Section[.T]describes the experimental setup, then Section 4.2] details the questions and
the corresponding experimental results to answer these questions. For the rest of the paper, we use
ICLInf and Privacy Loss interchangeably.

4.1 Experiment setup

Datasets & Models We evaluate our methodology on three text classification benchmark datasets,
AG_News[35]], DBpedia_14[34], and trec[28]]. We experiment with three causal language models
Gemma-2-9b-it[26], Llama-3.1-8B-Instruct[15]], and Qwen-2.5-7B-Instruct[27].

Hyperparameter and evaluation For classification task, we perform 4-shot In-Context Learning on
text classification task over 500 test queries. For each test query, the 4 shot examples are resampled
independently without replacement from the training set. We apply our method on the sampling
algorithm A from described in[3] where the output space is set as the label distribution by masking out
non-label tokens and taking renormalization. Detailed prompt formatting is provided in appendix [D.1]

Metrics For classification task, we report the accuracy score on the text-classification label set as
well as the data-dependent privacy loss. The privacy result is aggregated in the form of mean +
standard deviation across the test group.

4.2 Experimental Results

RQ 1: How does the parametric knowledge affect the privacy leakage of ICL exemplars?

Table 1: Accuracy (%) and data-dependent privacy loss (mean =+ std) on three datasets.

Model AG News DBpedia-14 TREC
Acc. Priv. Loss Acc. Priv.Loss Acc. Priv. Loss
Gemma-2-9b-it 7020 2134743 83.60 2291739 4840 3.684903

Llama-3.1-8B-Instruct 75.60 2~01i0.88 77.60 2-20i0.94 42.80 1-96i0.82
Qwen2.5-7B-Instruct  81.00 3.661161 88.00 3.444745 7140 3.481157

The accuracy scores from classification tasks and data-dependent privacy losses are presented in Table
[I] We observe that privacy loss varies over different models and datasets, and we hypothesize that,
when a model’s parametric knowledge fits the specific task domain well, the ICL exemplars likely
contribute more trivial marginal evidence, leading to lower ICLInf. As a data-dependent metric,
however, it does not necessarily reflect the model’s general privacy preserving guarantee, since the
influence of parametric knowledge can vary by task.

RQ 2: How does the position of the ICL exemplar affect its privacy leakage?
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Figure 1: Privacy loss over positions in few-shot prompt

Figure[I]shows a U-shape pattern of ICLInf on individual positions of removed exemplar (before
taking the max), where we observe higher loss at the first and last positions. We attribute this to the
fact that the first exemplar initiates the LLM to the downstream tasks, so likely the models relies on it
more than the second and third exemplars, which consequently have smaller influence. On the other
hand, the last exemplar has high privacy leakage due to recency bias [36]. This highlights that the
first and last exemplars require additional considerations with regards to potential privacy leakage.

RQ 3: How does the size of model affect its privacy leakage?

Privacy Loss vs Model Size
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Figure 2: Privacy loss across different sizes of Qwen model

We compare ICLInf across Qwen variants with increasing parameter count, presented in Figure 2}
The results show that the privacy loss starts low at 0.5B parameters, then peaks at around 7B. After
7B, the privacy loss decreases but then slightly rises again. We hypothesize that smaller models are
not capable enough to utilize the ICL exemplars, while larger models are more capable but have more
pre-training knowledge to rely on. Hence, increasing the model size increases model capability and
pre-training memorization, which are confounders for measuring privacy leakage of ICL exemplars.

RQ 4: How does the number of ICL exemplars affect their privacy leakage?

Privacy Loss vs. Number of Shots
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Figure 3: Privacy loss across different number of demonstrations in ICL



Figure 3| presents ICLInf across different numbers of in-context demonstrations on all three datasets.
Generally, the privacy loss decreases as the number of demonstration increases, occurring most
dramatically between 2-4 exemplars. This is due to the increased number of ICL exemplars dimin-
ishing the impact of any single exemplar on the LLM’s prediction, as shown in the mathematical
construction of ICLInf. These results suggests that increasing the number of ICL exemplars can be
an effective method for reducing the ICL privacy leakage.

RQ 5: How does the addition of calibration affect ICL privacy leakage?

Calibration vs No Calibration
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Figure 4: Privacy loss on label distribution with and without calibration

Figure @ reports ICLInf with and without calibration across the three datasets. Overall, calibration
consistently increases privacy loss for all models and datasets. Here the calibration is to rescale the
output distribution by dividing a content-free baseline, in order to reduce the influence of model’s prior
knowledge. It is reasonable that, after this process, the model depends more on in-context exemplars
and thus incurs higher privacy loss. More detailed explanation on the calibration mechanism [36]] is
provided in Appendix

RQ6: How does ICL privacy leakage differ between pretrained and instruction-tuned models?
Privacy Loss Comparison
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Figure 5: Privacy loss on pretrained models versus instruction-tuned models

Figure[5]compares ICLInf between pretrained and instruction-tuned models across the three datasets.
We observe that instruction-tuned models always exhibit higher privacy loss than their pretrained
counterparts (especially for Qwen model). This is reasonable since instruction tuning is training
models to be more responsive to user prompts, which at the same time makes models more sensitive
to contextual information, thus leading to higher privacy leakage.

5 Privacy Auditing

We demonstrate how we can use ICLInf audit a sampling-based DP ICL algorithm on synthetic text
generation inspired from [1] (details in Appendix [C.T)). To apply ICLInf in this setting, we (1) sum
the data-dependent privacy loss across inferences rather than average to account for composition of
DP; And we perform the data-dependent privacy loss calculation using Renyi Divergence, shown in
Eq. [7] Moreover, the algorithm output space is the full vocabulary distribution, rather than just the
label output distribution from classification task.



5.1 Experimental Setup

We evaluate data-dependent privacy loss in synthetic text generation by constructing batches of
one-shot prompts from AG_News that instruct example generation. In each batch, we apply a
clipping-and-aggregation procedure on the output logits to obtain an averaged distribution, which is
sampled for the next token. We create neighboring batches by systematically removing one prompt
each time and recompute the output distribution. By comparing neighboring distributions against the
original, we derive our data-dependent privacy loss.

The Qwen?2.5-7B-Instruct model was used for the privacy auditing. A total of 50 synthetic examples
was generated, each with max token length of 7' = 40. For the hyperparameters used in the DP
synthetic generation algorithm, the number of one-shot prompts in a batch was set to s=>50, and the
logit clipping bound is c=10. We tune the temperature 7 to meet the theoretical €peoretical. We report
Etheoretical and data-dependent €cpmpirical from our method. The experiment is repeated across a set of §
values, which is involved in the the RDP-DP conversion. More details about the experimental setup
can be found in Appendix

5.2 Results

The result is presented in Figure [f] We observe
an evident pattern that our data-dependent pri-

. . empirical vs theoretical privacy loss
vacy loss grows slower as theoretical privacy

100 | —@— & =5e-5

loss rises. The ratio of €.mpirical to the theoretical 6=1e5
counterpart drops from roughly 97% to 24% as 01 2 it
Etheoretical T18€8 from 1 to 100. For larger privacy -~y =x (target)

budgets the RDP optimizer settles at the min- 207
imal Rényi Divergence order (o« = 2), which 104
widens the gap between theoretical and empir-
ical e. Meanwhile, altering ¢ leads to differ-
ent o in RDP-DP conversion, as reflected in
the stage-like patterns of €empiricai. The result
implies that ICLInf provides a tighter privacy 14
bound on this ICL synthetic text generation algo-
rithm for €peoreticat < 10, offering a more com-
prehensive assessment for applied privacy loss
analysis.

Eempirical

OTS i é lb 2‘0 5‘0 l(l)O
Figure 6: Target/theoretical e(x) vs. empirical e(y)
across ¢ (s = 50, C = 10). Log-log plot (base-

6 Conclusion 10),

In this work, we introduce ICLInf, a simple

method for estimating the average privacy leak-

age of ICL exemplars during decoding. Using

ICLInf, we demonstrated how various factors such as model size, number of exemplars, and exem-
plar position, can affect the privacy leakage. Furthermore, we showed how ICLInf can effectively
privacy audit a sampling-based DP prediction algorithm for up to € = 10. We hope that ICLInf can
be used by practitioners to better understand privacy leakage of downstream data when deploying
ICL systems that utilize LLMs.
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A Related Works

Membership Inference Attacks. Analyzing the privacy risks of ICL exemplars during decoding is a
crucial, but understudied problem. Membership Inference Attacks (MIAs) are an effective way to
measure this privacy risk [24, [18, 119} 8} 5]]. In particular, there are two main works that specifically
focused on MIAs for ICL [10}31]]. In addition to proposing MIAs for ICL, they also looked into some
factors that could influence leakage of ICL exemplars. Our work seeks to compliment these two works
by reevaluating these factors, as well evaluate other unconsidered factors such as calibration and SFT
vs pre-trained, to better understand their effects on privacy leakage of ICL exemplars. Specifically,
[LO] observed that larger models leak less privacy, whereas we found that moderately sized LLMs
(3B-7B) leak the most. [31] measured membership inference for the first and last exemplar while
varying the number of exemplars, while we measured privacy leakage across all exemplars when
varying the number of exemplars. Additionally, [31] found that exemplars in the middle exhibit lower
vulnerability compared to those in the beginning and end, which aligns with our results.

Privacy Auditing Privacy auditing is a useful tool for establishing an empirical lower bound of the
privacy leakage of a DP algorithm [9, 16]. One line of work proposed privacy auditing for private
prediction based DP algorithms. Chadha et al.[6] audited private prediction mechanisms (sample-
aggregate/noisy-argmax) using Rényi-DP tests. Want et al.[30]] explored the privacy leakage in the
stochastic outputs of the DP prediction algorithm PATE via repeated test queries. Another line of work
focused on DP In-Context Learning algorithms. Choi et al.[7] inserted unique canaries into exemplars
and used targeted queries to test whether the canaries can be detected after private aggregation. Our
method ICLInf follows this line but instead relies on contextual influence of individual exemplar to
audit privacy leakage.

B Calibration

Let p.; be the model’s label distribution obtained from the same prompt template with the content
left blank (the content-free input). Define the diagonal transform

W = diag((p.s + 6)71),

with a small € > 0 for stability. Then we computes W p to obtain the calibrated distribution of p and
take argmax for prediction.

C Additional Details on Privacy Analysis for Privacy Auditing

C.1 Algorithm for auditing

We audit Algorithm 2 of [1]] (Appendix D.4), reproduced as Algorithm [T|below.

Algorithm 1 Private token generation

Input: Sensitive prompt dataset D, initial token sequence xg
Output: Token sequence x € X'*

X < Xo

Z < {logits(px) : p € D}

z <+ U(2)

x ~ softmax(z/7)

Append z to x

return x.

AN AN S d

with

0Z) = ! Z clip.(z) clip,(z); = max{—c, z; — max{z;} + ¢}
s J

z€EZ
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C.2 Properties of DP and RDP in Algorithm|l|and ICLInf

Definition C.1. (Renyi Divergence) For two probability distributions P and () defined over R, the
Renyi divergence of order o > 1 is

Da(P|Q) = — log s Kgg;)a] : 5)

We also define a short-hand notation

DY (Pl|Q) = max{Da(P[|Q), Da(Q||P)}. (©)

Theorem C.2 (zCDP of Algorithm 1} lemma 4 from [)). Let A(D, z) be Algorithm|[I|with clipping
level ¢ > 0, batch size s € N, and temperature T > 0. Then the mechanism M : D — A(D, zg)
satisfies

. 1/ ¢c\2

p-zCDP with p = 7<—) .
2\sT
Theorem C.3 (Conversion from zCDP to RDP, Def. 1 from [4] & Def. 4 from [21]]). If a mechanism
M satisfies p-zCDP, then for every order oo > 1 it satisfies (o, () )-RDP with
ela) = pa.

Theorem C.4 (Exponential Mechanism (EM) privacy [12]). The EM with sampling probability
% exp(ﬁf(D7 x)) is (¢,0)-DP with

£ = 2Af.
Theorem C.5 (DP and RDP bounds of exponential mechanism, theorem 8 from [32]). The exponen-
tial mechanism is e-DP, and («, egp(a))-RDP s.1.

cpm(a) == min(i e2, 1 log<SiHh(Oé€) — sinh ((o — 1)e) )) .

a—1 sinh(e)

Theorem C.6 (Data-dependent RDP). Fix an order a > 1. Let A(D, ) denote the output distribu-
tion of Algorithm|[l|on dataset D with initial token xo. Let A(D \ {p}, o) is the output distribution
under the remove-one neighboring batch. The data-dependent RD privacy loss of A at order « is

ea(Dia) = max D(A(D, o) | AD\ {p}, 7)), ™
Theorem C.7 (Composition [21]]). Let Ay and As satisfy (o, 1)-RDP and («, €2)-RDP on the same
dataset. Then their composition Ay o A satisfies
(a, g1+ EQ)-RDP.

Theorem C.8 (RDP — (g, d) conversion (BBGHS) [2]). Let a mechanism satisfy (o, erpp (c))-RDP
for some o > 1. Then, for any § € (0,1), it is (€, 0)-DP with

a—1 log 6 + log a
e = erpp(a) + log o & 8%

a—1
Theorem C.9 (Bounded—Unbounded translation for pure DP [[17]). If a mechanism M is e-DP under
the unbounded (add/remove) adjacency, then it is 2e-DP under the bounded (change-one) adjacency.
Conversely, e-DP under bounded implies € /2-DP under unbounded.

C.3 Privacy Calculation
C.3.1 Theoretical privacy loss on Algorithm 1]
By Theorem|[C.2and [C.3] Algorithm [I]satisfies RDP with

erpp (@) = g(i)z- 3

2\sT

By lemma 3 from [1]], Algorithm I|is the exponential mechanism with sensitivity A = -=. Then
combining Theorem [C.4] [C.5] and equation [§] we derive that the theoretical RDP privacy loss of
Algorithm[T]is bounded by

2 \2 sinh (22¢) — gin a—1)2
erpP () imin<a (i) , al 110g< h (%) h (( 1)ST)>).

2 \st sinh (f—ﬁ)
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At each token-generation step, Algorithm [T]is invoked once. Thus by the RDP composition theorem
(Theorem , the total theoretical RDP for one experiment with N, sequences and at most Ty,
new tokens per sequence satisfies

8theoretical(a) < Ngen Tmax ERDP (Oé)

C.3.2 Matching &gmeoretical () tO Etarget

Since the target ’s for testing are defined in pure DP, we employ the following two algorithms to
match eqeoretical(0) to target €. We first provide Algorithm [2]to convert RDP to Approximate DP
based on Theorem which searches over the range of orders to find optimal (*, o*).

Algorithm 2 RDP_TO_ApproxDP

1: Input: failure prob. § € (0, 1); candidate orders A C (2, 100); RDP function egpp ()
2: Output: optimal (¢*, a*) such that the mechanism is (¢*, §)-DP
3: g% ¢ +o0, aF <+ L
4: for o € Ado
s 5<—ERDp(a)—|—loga_1—IOg(S—HOga
«o oa—1
6: if ¢ < * then
7: e g
8: end if
9: end for
0:

Ju—

return (*, @*)

We apply Algorithm [2|on the RDP function &peoretical (¢) t0 0btain Eeoretical, and we tune the temper-
ature 7 with (c, s) fixed so that eqeoretical matches to the target €. We perform a binary search on 7;
at each binary step Algorithm [2]is invoked to obtain e, at current 7, and it is compared against the
Etarget t0 shrink the search interval accordingly. In practice, N = 22 is sufficient to reduce the gap
below a small tolerance. The detailed procedure is given in Algorithm 3]

Algorithm 3 Binary search over temperature 7

1: Input: target e¢a,qet; failure prob. J; candidate orders A; bounds ¢pin < tmax; iterations N; RDP
function erpp (a; 7)

2: Output: (7%, a*,e*) with (¢*,0)-DP and * = qarget
3: £ tmin, N4 tmax
4: fori =1to N do
L+ h
5: T < T
6 (¢r,7)  RDP_TO_APPROXDP (6, A, o — erpp(a; 7))
7 if er < Etarget then
8: h<« T
9: else
10: b7
11: end if

12: end for
{+h

13: 7% —5
14: (¢*,a*) < RDP_TO_APPROXDP(4, A, o — erpp(a; 7))

15: return (7%, a*, &)

C.3.3 Data-dependent privacy loss by ICLInf

We take the optimal order o* returned by Algorithm 3] For token step ¢, the per-token data-dependent
RDP is

e} (Ds0%) = max DL (A44(D, 20) || A(D\ {p}, 20))
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By composition (Theorem|[C.7)), the total data-dependent RDP is stacked over all generated tokens,

T
eh " (Do) = e (Do),
t=1

Then we convert it back to approximate DP by Theorem [C.8}

. *—1 log § + log o™
5;0%) = S (D;a*) + log = = .
E(,O{) €A ( ,Oé)+ 0og a* o — 1
Our data-dependent privacy loss is evaluated on unbounded adjacency (remove-one neighbors), while
the theoretical privacy loss is defined on bounded adjacency, thus by Theorem|[C.9] we have the final
privacy loss from ICLInf:

€empirical = 2 5(67 Oé*).

D Additional Experimental Setup

D.1 Classification Prompt Format

We report the prompt we used for classification task in Table 2] which are taken from table 5 of [36]
with slight modification. The ellipsis refers to the rest of in-context demonstrations.

D.2 Synthetic Generation Prompt Format

We provide the prompt used for synthetic example generation task in Table[3}] We follow the setup in
the original paper of algorithm T] [1] (Figure 4), where the one-shot private example and generated
example should have the same label. For clarity, we fix the label to "Sports" in our experiment.

E Additional Experimental Results

E.1 Factors Affecting ICL Privacy Leakage

RQ: How does the pattern of ICL privacy leakage change when measured on the full logits distribution
compared to the label-only distribution?

Full Logit

Ag news Dbpedia Trec
10 10 10

Ziii aall Ziii Tl Iii bl

0
Full logit loss Label loss Full logit loss Label loss Full logit loss Label loss

Privacy Loss

~N
~
~

Model
m gemma mmm llama =W qwen

Figure 7: Privacy loss measured on full logits distribution versus label-only distribution

Figure[7]compares ICLInf measured on full logits distribution versus on label distribution (default
setup) across all three datasets. In all cases, privacy loss is higher when computed over the full logits,
with more substantial difference for Qwen and Gemma models. Mathematically, adding values for
non-label tokens can typically increase the difference between output distributions, which reveals
more information about the context, thus reducing the output space can greatly improve the privacy
over keeping the entire output space.

E.2 Privacy Auditing

Etheoretical 18 Mainly determined by the clip threshold ¢, subsample size s, and temperature 7 applied
in softmax. In Algorithm [3] we vary 7 to match a desired target ¢, and we also developed similar
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Table 2: The prompts used during ICL for text classification tasks

Task

Prompt

Labels

AGNews

Classify the news articles into the cate-
gories of World, Sports, Business, and
Technology. Output only the category
name (no explanations or extra text) as
the first token.

Article: Wall St. Bears Claw Back Into
the Black NEW YORK (Reuters) - Short-
sellers, Wall Street’s dwindling band of
ultra-cynics, are seeing green again.
Answer: Business

Article: Rescuing an Old Saver If you
think you may need to help your elderly
relatives with their finances, don’t be shy
about having the money talk — soon.
Answer:

World, Sports, Business, Technology

DBPedia

Classify the documents based on whether
they are about one of Company, School,
Artist, Athlete, Politician, Transportation,
Building, Nature, Village, Animal, Plant,
Album, Film, or Book. Output only the
category name (no explanations or extra
text) as the first token.

Article: Bergan Mercy Medical Center is
a hospital located in Omaha Nebraska. It
is part of the Alegent Health System.
Answer: Company

Article: Fargo Moorhead Metro Area
Transit (popularly known as MAT or
MATBUS) is a bus company serving the
Fargo North Dakota and Moorhead Min-
nesota Metropolitan area.

Answer:

Company, School, Artist, Athlete, Politi-
cian, Transportation, Building, Nature,
Village, Animal, Plant, Album, Film,
Book

TREC

Classify the questions based on whether
their answer type is a Number, Location,
Person, Description, Entity, or Abbrevi-
ation. Output only the question type (no
explanations or extra text) as the first to-
ken.

Question: How did serfdom develop in
and then leave Russia?
Answer Type: Description

Question: When was Ozzy Osbourne
born?
Answer Type:

Number, Location, Person, Description,
Entity, Abbreviation
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Table 3: The prompts used during ICL for text generation tasks.

Task
AGNews

Prompt Labels

Given a label of news type, generate the
chosen type of news accordingly.

Sports

News Type: Sports

Text: Galaxy, Crew Play to 0-0 Tie (AP)
AP - Kevin Hartman made seven saves
for Los Angeles, and Jon Busch had two
saves for Columbus as the Galaxy and
Crew played to a 0-0 tie Saturday night.

News Type: Sports
Text: ...

versions of Algorithm 3] that search on ¢ and s respectively. The results display consistent patterns,
which are shown in Table[d] 3} [6]

Table 4: Privacy auditing results on varying temperature (s = 50, ¢ = 10)

€arget  lemperature & €empirical  Ratio
0.5 68.58 32 0.462 0.924

1 36.18 18 0910 00910

5 8.53 5 4556 0911

10 480 3 9.698 0.970
20 2.81 3 9.900 0.495
50 142 2 21.892 0.438
100 094 2 23158 0.232

Table 5: Privacy auditing on varying clip bound (s = 50, 7 = 2).

€arger  Clip threshold o €empiricar  Ratio
1 0.55 18 0916 0916

5 2.34 5 4.526 0.905

10 4.16 3 9.65 0.965
50 14.12 2 20.782 0416
100 21.20 2 20.774 0.208

Table 6: Privacy auditing on varying subset size (c = 10, 7 = 2).

€Etarget Subset size €data-dep. €empirical Ratio
5 214 5 4.598 0.920

10 121 4 6.374 0.637
50 36 2 21.118 0422
100 24 2 22066 0.221
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