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Figure 1: We present Comp4D: compositional 4D scene generation from text input. Our model can render
realistic images from generated 4D assets at various viewpoints and different timestamps.

Abstract

Recent advancements in diffusion models for 2D and 3D content creation have sparked a
surge of interest in generating 4D content. However, the scarcity of 3D scene datasets
constrains current methodologies to primarily object-centric generation. To overcome this
limitation, we present Comp4D, a novel framework for compositional 4D scene genera-
tion. Unlike conventional methods that generate a singular 4D representation of the entire
scene, Comp4D innovatively employs a decompose-then-recompose strategy, constructing
each 4D component within the scene separately. The framework first decomposes a tex-
tual input prompt into multiple object components and delineates their moving trajectories.
After initializing the static 3D objects, we construct the compositional 4D scene by ac-
curately positioning these objects along their designated paths. To refine the scene and
motion, our method proposes a novel compositional score distillation technique involving
trajectory-guided and object-centric sampling, utilizing pre-trained diffusion models across
text-to-image, text-to-video, and text-to-3D domains for optimization. Extensive exper-
iments demonstrate our superior 4D content creation capability compared to prior arts,
showcasing superior visual quality, motion fidelity, and enhanced object interactions.

1 Introduction

Recent advances in text-to-image diffusion models Saharia et al. (2022); Nichol et al. (2021); Ramesh et al.
(2022); Rombach et al. (2022) have revolutionized generative AI, simplifying digital content creation. Tradi-
tional pipelines, often cumbersome and reliant on domain expertise, are being replaced by these generative
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Figure 2: Compared with previous object-centric 4D generation pipelines, our Compositional 4D Generation
(Comp4D) framework proposes decompose-then-recompose strategy, fulfilling larger-scale movements and
more realistic object interactions.

models that bring complex ideas to life from simple text prompts. This innovation extends to the domain
of 3D content creation, where score distillation techniques Poole et al. (2022); Xu et al. (2022); Wang et al.
(2023a); Shi et al. (2023b); Wang et al. (2023b); Liu et al. (2023) leverage 2D diffusion models to generate 3D
content. Meanwhile, image diffusion models have also made significant strides in video generation, prompt-
ing further exploration into adapting these models for 4D content creation. The 4D synthesis works often
rely on partial or joint supervision signals from text prompts Ling et al. (2023); Singer et al. (2023); Zheng
et al. (2023); Yin et al. (2023); Bahmani et al. (2023), images Yin et al. (2023); Ren et al. (2023); Zhao et al.
(2023); Liang et al. (2024), 3D models Yin et al. (2023); Zheng et al. (2023), or monocular videos Yin et al.
(2023); Jiang et al. (2023); Ren et al. (2023), to guide the generation process.

Despite notable advancements, current 4D content creation predominantly focuses on object-centric genera-
tion. This limitation is mainly attributed to the scarcity of comprehensive scene-level dynamic 3D datasets.
MVDream Shi et al. (2023b) and Zero-123 Liu et al. (2023); Shi et al. (2023a) trained on Objaverse Deitke
et al. (2023b) are widely adopted in 4D content creation pipelines Ling et al. (2023); Singer et al. (2023);
Zheng et al. (2023); Yin et al. (2023); Ren et al. (2023); Zhao et al. (2023); Jiang et al. (2023); Bahmani et al.
(2023), which provide direct supervision on the multi-view renderings with geometry awareness. Compared
to 2D diffusion models, these 3D-aware diffusion models greatly improve the 3D geometry quality Liu et al.
(2023); Shi et al. (2023b). However, their focus on object-centric generation persists, attributed to the re-
liance on the training data Deitke et al. (2023b;a), which is comprised mostly of synthetic objects positioned
at the world origin. Notably, in these datasets, the object’s global movement consistently synchronizes with
the camera, exhibiting only local deformation. However, in a complex 4D scene with multiple objects, we
expect to observe not only individual local deformations but also inter-object global displacement.

As illustrated in Fig. 2, to address the aforementioned challenges, we propose Comp4D, the first text-
to-4D scene generation work that extends the previous boundaries in object-centric 4D generation to the
demanding task of 4D scene construction. To overcome the prevalent object-centric constraint, our approach
disentangles the compositional 4D scene generation into two stages: scene decomposition for constructing
individual static 3D assets, and scene re-composition with motion modeling. The motion modeling is further
factorized into global displacements and local deformations. We manually or utilize a Large Language
Model (LLM) to delineate the movement trajectories of each object to guide global displacements. This
alleviates the computational load on deformation modules by narrowing their focus on local deformations.
Formulating each object as disjoint 3D Gaussians, we introduce a novel compositional score distillation
sampling mechanism in the re-composition stage. We selectively render the whole scene or partial objects
for motion optimization. This strategy acts as a powerful augmentation to enhance the motion fidelity of
each object, especially in scenarios where object occlusion becomes prevalent as objects move.

The generation of our 4D scene is conducted through the following steps. Given an input text description,
we first leverage an LLM to decompose the scene by extracting entities and determining their attributes,
such as scale. Following this, static 3D objects are individually constructed using pre-trained 3D-aware
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diffusion models. Meanwhile, we manually or take advantage of the LLM to design kinematics-based
trajectory functions to guide object global displacement. Subsequently, we re-compose the 4D scene with
comprehensive motion learning. Each object’s deformation field is optimized via a novel compositional score
distillation mechanism, with objects moving along the pre-defined trajectories.

Our key contributions can be summarized as follows:

• We introduce Comp4D, the first framework that achieves Compositional 4D scene generation con-
ditioned on text. By formulating 4D scene generation as the construction of individual 4D objects
and their interactions, we overcome the object-centric constraint in previous methods.

• We propose to factorize the object motions into global displacements and local deformations. The
global displacement, implemented via kinematics-based trajectories, offloads the burden on 4D rep-
resentation and enables it to concentrate solely on local deformations.

• Comp4D re-composes the scene with a novel compositional score distillation sampling mechanism, in-
corporating trajectory-guided and object-centric optimization. This design enables flexible switching
between whole-scene and partial-objects renderings, facilitating stable optimization of object motion
even in the presence of entity occlusions.

• Extensive experiments compared to existing baselines demonstrate the superiority of our model in
compositional 4D scene generation in terms of visual quality, motion realism, and object interaction.

2 Related Works

2.1 4D Content Creation

Text-guided diffusion models have significantly advanced image and video generation. However, the scarcity
of large-scale annotated 3D datasets constrains progress in 3D generative learning. To address this limita-
tion, the score distillation sampling (SDS) Poole et al. (2022) is proposed for optimization-based text-to-3D
generation. Presently, some researchers have extended SDS to dynamic 4D scene generation. MAV3D Singer
et al. (2023) is a pioneering work generating dynamic 4D scenes from text prompts. It uses NeRFs with
HexPlane features for 4D representation. 4DFY Bahmani et al. (2023) leverages a NeRF-based representa-
tion with a multi-resolution feature grid, combining supervision signals from images, videos, and 3D-aware
diffusion models for text-to-4D synthesis. Consistent4D Jiang et al. (2023) tackles the task of video-to-4D
generation with the help of RIFE Huang et al. (2022) and a 2D super-resolution module. With the advances
in 3D Gaussians, AYG Ling et al. (2023) proposes generating 4D scenes using dynamic 3D Gaussians, dis-
entangling the 4D representation into static 3D Gaussian Splatting and a deformation field for modeling
dynamics. 4DGen Yin et al. (2023) introduces a driving video to ground 4D content creation from text or
image, providing added controllability in motion generation through reconstruction loss alongside score dis-
tillation. DreamGaussian4D Ren et al. (2023) adopts mesh texture refining through video diffusion models
to improve texture quality. However, existing works in 4D content creation focus on object-centric genera-
tion due to the underlying constraints of the 3D-aware diffusion model. In contrast, this work is the first
attempt to tackle the challenging compositional 4D scene generation task by decomposing the scene into
object components.

2.2 4D Scene Representation

Building 4D scene representation allows for rendering novel views of objects under rigid and non-rigid
motions. Recently, 3D Gaussian Splatting (3D-GS) Kerbl et al. (2023) has shown advantages in both
effectiveness and efficiency for 4D representation, leading to multiple directions to model temporal dynamics.
Katsumata et al. Katsumata et al. (2023) and 4DGS Wu et al. (2023a) define scales, positions, and rotations
as functions of time while leaving other time-invariant properties of the static 3D Gaussians unchanged.
Another direction involves directly extending 3D Gaussians to 4D with temporal slicing Yang et al. (2023b);
Duan et al. (2024). There are also works leveraging a separate function to model the dynamic distribution
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of attributes’ deformation for 3D Gaussians Lin et al. (2023); Li et al. (2023b). In this work, we adopt 3D
Gaussians for our 3D content representation and use an additional Multi-layer Perceptron (MLP) to deform
each set of 3D Gaussians. This disentangled 4D representation allows us to construct the static scene first
and then focus on modeling the object’s deformation.

2.3 Grounding and Reasoning from Large Language Models

LLMs have emerged as a natural tool for performing reasoning tasks and enabling implementation in the
real world Li et al. (2022); Lu et al. (2023); Ichter et al. (2022); Rajani et al. (2019). A popular approach
to improving the reasoning capabilities of LLMs is to fine-tune models on domain-specific tasks Yang et al.
(2023a). Moreover, recent studies have explored techniques for incorporating multimodal information, such
as images and videos, to enhance contextual understanding and improve the robustness of language models,
paving the way for more effective applications in various domains Seff et al. (2023); Tikayat Ray et al. (2023).
Specifically, LLMs have recently been used for generating trajectories in robotics applications. For instance,
in Kwon et al. (2023); Bucker et al. (2023), dense trajectories were generated for a manipulator by an LLM
in a zero-shot manner. The demonstration confirms the potential of LLMs to act as trajectory generators.
In this work, LLMs are used to help generate trajectories of objects for 4D scene construction.

3 Method

In this section, we illustrate the components of our proposed method in detail (Fig. 3). We start by intro-
ducing some preliminaries (Sec. 3.1) on 3D Gaussians and score distillation sampling. Then we introduce our
decompose-then-recompose strategy and compositional 4D scene representation (Sec. 3.2). We later illus-
trate the compositional score distillation involving multiple diffusion models (Sec. 3.3). Finally, we discuss
how we leverage LLMs for scene decomposition including scale assignment and trajectory design (Sec. 3.4).

3.1 Preliminaries

3D Gaussian Splatting 3D Gaussian Splatting (3D-GS) Kerbl et al. (2023) parameterizes a 3D scene
as a set of 3D Gaussians. Each Gaussian is defined with a center position µ, covariance Σ, opacity α, and
color c modeled by spherical harmonics. Unlike implicit representation methods such as NeRF Mildenhall
et al. (2021), which renders images based on volumetric rendering, 3D-GS renders images through a tile-
based rasterization operation and achieves real-time rendering speed. Starting from a set of points randomly
initialized in the unit sphere, each point is designated a 3D Gaussian, which can be queried as follows:

G(x) = e− 1
2 (x−µ)T Σ−1(x−µ), (1)

where x is an arbitrary position in the 3D scene. During the rendering process, the 3D Gaussians G(x)
are first transformed to 2D Gaussians G

′(x) on the image plane. Then a tile-based rasterizer is designed to
efficiently sort the 2D Gaussians and employ α-blending:

C(r) =
∑
i∈N

ciσi

i−1∏
j=1

(1 − σj), σi = αiG
′(r), (2)

where r is the queried pixel position, N denotes the number of sorted 2D Gaussians associated with the
queried pixel, ci and αi denote the color and opacity of the i-th Gaussian. In our experiments, we empirically
simplify the color of Gaussians to diffuse color for the sake of efficient training.

Score Distillation Sampling Current methodologies for text-to-3D or 4D generation typically involve
iterative optimization of a scene representation with supervisory signals from pre-trained diffusion mod-
els Poole et al. (2022); Wang et al. (2023b). Initially, rendering of the 3D or 4D scene is acquired in the
form of an image or sequence of images. Random noise is added to the rendered images, and a pre-trained
diffusion model is employed to de-noise the images. The estimated gradient from this process is utilized
to update the 3D or 4D representations. Specifically, employing a 3D representation parameterized by θ
and a rendering method g, the rendered images are generated as x = g(θ). To align the rendered image x
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Figure 3: An overview of our proposed Comp4D method. Given an input text description, we first perform
scene decomposition and obtain multiple individual 3D components. We also design the object trajectories
which guide the global displacements of objects in compositional 4D scene. Thanks to the 4D representation
based on 3D Gaussians, at each training iteration, we propose a compositional score distillation that switches
between object-centric rendering and trajectory-guided scene rendering flexibly.

with samples obtained from the diffusion model ϕ, the diffusion model employs a score function ϵ̂ϕ(xt; y, t)
to predict a noise map ϵ̂, given the noise level t, noisy input xt and text embeddings y. By evaluating the
difference between the Gaussian noise ϵ added to the rendered images x and the predicted noise ϵ̂, this score
function updates the parameter θ with gradient formulated as:

∇θLSDS(ϕ, x = g(θ)) = w(t)(ϵ̂ϕ(xt; y, t) − ϵ)∂x

∂θ
, (3)

where w(t) is a weighting function. Using SDS for 4D generation requires coordinated guidance to achieve
realistic outcomes in terms of appearance, 3D structure, and motion Bahmani et al. (2023). This often
involves the utilization of hybrid SDS, which combines both image-based and video-based diffusion mod-
els Ling et al. (2023). For our compositional 4D scene generation task, we develop a compositional SDS
technique that is applied to a varying number of assets in the scene.

3.2 Compositional 4D Representation

We develop a decompose-then-recompose strategy to build compositional 4D scenes. Given a text description,
we first decompose the description into multiple assets that make up the scene. Each asset is assigned a
scale and a moving trajectory, either manually or through LLM models. The 4D scene is then constructed
by recomposing these individual objects. In Fig. 3, we use two objects for illustration. Our framework is
easily applicable to more objects.

For each object, we utilize a set of static 3D Gaussians along with an MLP-based deformation network. The
MLP network takes in (x, y, z, t) coordinates as input and outputs the 3D deformation of point locations.
Following previous works Tancik et al. (2020); Mildenhall et al. (2021), the input coordinates are processed
with positional encoding as a 32-dimensional vector to enable high-frequency feature learning. This architec-
ture design supports decoupled learning of the static attributes of an object (e.g. geometry and texture) and
the local motion information. We start our training stage by optimizing the static 3D Gaussian attributes.
Once they converge, we introduce the deformation field and freeze partial 3D Gaussian attributes (i.e. covari-
ance, opacity, and color) to stabilize the training process. However, naively optimizing the deformation field
leads to unpleasant results. This is primarily because the MLP modulates each point location individually,
ignoring the overall rigidity of the object. Similar to AYG Ling et al. (2023), we adopt rigidity constraints
to ensure that the deformation of each Gaussian is consistent with its k-nearest neighbors,

Lrigidity(x) = 1
k

k∑
i=1

||∆x − ∆xNNi
||. (4)
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Moreover, to avoid flickering motion, we introduce additional regularization loss components that penalize
sudden changes in the acceleration of each 3D Gaussian,

Lacc(x, t) = ||∆x,t + ∆x,t+2 − 2∆x,t+1||. (5)

For the whole scene optimization, thanks to the explicit nature of 3D Gaussians, at rendering time, we can
selectively render a single object or multiple objects, and perform compositional SDS. This enables direct
and better supervision over the motion learning of each object as well as their interactions. Meanwhile,
since the objects are separately represented as 3D Gaussians, we need explicit constraints to prevent the
objects from intersecting with each other. If the objects have overlapping parts, the rendered image will show
collapsed shapes, resulting in unstable gradients from score distillation. To this end, we draw inspiration
from CG3D Vilesov et al. (2023) to incorporate a physics-based contact loss that avoids the collision of
multiple objects. For one object, we ensure the contact angle θj for each 3D Gaussian with mean µj to be
acute:

θj = (c − µi) · (µj − µi),
Lcontact = −θj [θj < 0],

(6)

where µi refers to the mean of the Gaussian in other objects that is closest to µj , and c denotes the center
of the current object.

3.3 4D Scene Optimization via Compositional Score Distillation

We start the 4D scene generation by constructing each static 3D component. In the subsequent whole
scene optimization, we propose compositional SDS, which involves trajectory-guided scene optimization and
object-centric motion learning. We illustrate these parts in detail in the following sections.

Static 3D Object Construction To ensure both photo-realism of texture and consistent geometry, we
draw inspiration from Magic123 Qian et al. (2023) and 4DFY Bahmani et al. (2023) to incorporate the joint
distillations of an image diffusion Rombach et al. (2022) and a 3D-aware diffusion model Shi et al. (2023b).
Specifically, we adopt the weighted combination of two sets of score distillation losses. Given a batch of
rendered image x and text embeddings y, the loss function is formulated as follows,

Lstatic(x, y) = ω1(ϵsd(xt1; y, t1) − ϵ1) + ω2(ϵmv(xt2; y, t2) − ϵ2) (7)

where ω1 and ω2 are coefficients for the score distillation loss of Stable Diffusion Rombach et al. (2022) and MV-
Dream Shi et al. (2023b).

Trajectory-Guided Scene Optimization After the initial construction of static 3D assets, we focus on the
object’s motion learning. At the scene level, the object’s motion can be decomposed into global displacement and
local deformation. The global displacement, represented by the moving trajectory, can be designed manually or by
LLMs. We sample uniformly from the trajectory function, F (·), and obtain the object locations at arbitrary timesteps
ti. Objects are rotated accordingly such that their canonical orientation faces toward the next location along the
trajectory −→

Ri = (F (ti+1)−F (ti)). Thanks to MVDream Shi et al. (2023b), which generates objects in their canonical
orientation, our static stage produces objects facing the same direction (e.g. −→

R0 = (1, 0, 0)), ensuring that our rotation
strategy will produce objects moving towards their head direction. Given normalized head direction A =

−→
R0

||
−→
R0||

and

B =
−→̄
Ri−→̄
Ri

, the axis of rotation v is obtained as v = A × B. The angle of rotation θ is determined by cos(θ) = A · B.
We then obtain the skew-symmetric matrix K as follows,

K =

[ 0 −vz vy

vz 0 −vx

−vy vx 0

]
, (8)

which is then used in Rodrigues’ rotation formula to obtain the final rotation matrix R,

R = I + (sin θ)K + (1 − cos θ)K2. (9)

Thanks to the predefined trajectory, our framework supports distilling objects with long-range motion and multi-
concept interactions, which is difficult to achieve using previous baselines.
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Figure 4: The pipeline for scene decomposition and trajectory design with LLMs. First, a scene description is
provided by a human user as a prompt to an LLM which yields the object components as well as the relative
object scales. Subsequently, the LLM is prompted with environmental constraints to return a trajectory
function, which takes timestep as an input and returns the corresponding object’s 3D positions. After the
collection of a set of positions, collision checking is performed manually to truncate the trajectory if the
collision occurs. Optionally, premature collisions can be mitigated by re-querying the LLMs for an improved
trajectory function.

Besides global displacement, we utilize a deformation MLP for each set of 3D Gaussian for local motion learning.
To better learn the deformation field, we leverage a text-to-video diffusion model zer (2023) to formulate the score
distillation loss. Similar to distilling a static 3D object via an image diffusion model, score distillation via a video
diffusion model ensures that the renderings at consecutive frames form a natural video aligned with the text prompt.
As observed in previous works Bahmani et al. (2023); Ling et al. (2023), image diffusion models usually generate
a more realistic appearance compared to video diffusion models. Therefore, we jointly distill the score from image
diffusion on individual frames to ensure texture quality. The loss function can be formulated as follows,

Ltraj(x, y) = ωimg(ϵsd(xt1; y, t1) − ϵ1) + ωvid(ϵvid(xt2; y, t2) − ϵ2), (10)
where x is the generated image sequence of the whole scene and y is the text prompt. ωimg and ωvid are coefficients
for the score distillation loss from image- and video-based diffusion models.

Object-Centric Motion Learning Thanks to our compositional design, our framework supports arbitrary
rendering combinations among the objects. This means that at each training iteration, we have the flexibility to
render and optimize the whole scene or partial objects. This provides us with great freedom in rendering the scene
with diverse appearances. Such diversity provides rich augmentations that are essential for the stable optimization
of score distillation loss. Otherwise, the occlusion of multiple objects in the same scene will make score distillation
loss ineffective in ensuring reasonable motion in occluded regions. For the single-object motion learning, the text
prompt is modified by removing inactive entities to avoid disturbing learning the deformation of the current object.
Following the whole scene optimization, we supervise the object-centric motion learning with joint score distillation
losses (Eq. 10).

3.4 LLM Guided Scene Decomposition and Trajectory Design

We take advantage of LLMs for the scene decomposition and trajectory design. It reduces the workload on the 4D
representation and enables the distillation models to focus on producing realistic local deformations. We illustrate
the overall pipeline for scene decomposition and object trajectory generation in Fig. 4.

Scene Decomposition Given a text description, we first prompt an LLM to decompose the scene into multiple
components and give a distinct description of each component. These descriptions serve as text prompts in object-
centric motion learning. Since most 3D-aware diffusion models are trained on synthetic 3D objects that are normalized
to unit scale, the resulting objects are generally of similar scales. Therefore, determining the appropriate scale of each
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asset becomes crucial for a realistic and reasonable composition of the scene. Recent studies Li et al. (2023a); Bubeck
et al. (2023) show that ChatGPT-4 demonstrates remarkable ability in reasoning with commonsense knowledge.
Therefore, we directly prompt the LLM to make reasonable assumptions of the relative scale of the objects and we
adaptively resize our static 3D assets to corresponding scales.

Trajectory Design Through Kinematics Templates We further leverage the reasoning capability of
ChatGPT-4 to select physics-based formulas to govern the displacement of objects. To streamline and ease the
task, we instruct the model to assume that one reference object is always positioned at the camera origin and solely
design the trajectory of relative displacement between the objects in the coordinate system relative to the reference
object. The trajectory follows kinematrics-based equations such as uniform linear motion and parabolic motions.
Furthermore, ChatGPT-4 adeptly determines a sensible initial location and velocity for the moving object, ensuring
that the generated trajectory aligns with the scene description. While we take advantage of LLM to obtain trajecto-
ries, our compositional 4D scene generation framework is general and it allows human involvements to further refine
or use self-designed trajectories based on customized needs.

Optional Trajectory Refinement via Collision Checking Despite curated prompt engineering, we ob-
serve that the trajectories proposed by ChatGPT-4 can be imperfect occasionally. The design trajectories may
contain unexpected collisions where objects overlap with each other. Therefore, we introduce an optional trajectory
refinement step as a workaround with collision checking. We uniformly sample points along the trajectory which
serve as the objects’ centers at corresponding timestamps. At this point, we use rectangular cuboids to simulate the
objects. We rotate the objects such that the canonical orientation of the object faces the next location sampled from
the trajectory. After obtaining the object placement at each timestamp, we utilize Eq. 6 to determine if there exist
collisions. We then truncate the trajectory at the first collision to avoid the intersection of objects during rendering.
If the truncated trajectory is too short to perform reasonable object motion, we can re-generate the trajectory by
prompting ChatGPT-4 again.

4 Experiments

4.1 Implementation Details

Given a text prompt, we utilize an LLM (ChatGPT-4) or manual input to decompose the scene into multiple
components, assigning scales and designing motion trajectories for each asset. Some LLM prompting examples are
shown in Appendix. For asset generation, inspired by approaches like Magic123 Qian et al. (2023) and 4DFY Bahmani
et al. (2023), we first create static 3D objects using joint score distillation from MVDream Shi et al. (2023b) and
Stable Diffusion 2.1 Rombach et al. (2022). These objects are then converted into point clouds to initialize 3D
Gaussians. By default, each object is represented with 60,000 Gaussian points. In the compositional optimization
stage, we randomly assign training iterations to adopt single-object rendering (with a probability of 0.2) or whole-scene
rendering (with a probability of 0.8). In each iteration, we render 16 frames via uniformly sampled timesteps. We
use the frozen video diffusion model, Zeroscope zer (2023) and Stable Diffusion 2.1 Rombach et al. (2022) to provide
SDS supervision. We compare with two open-source baseline text-to-4D generation methods, 4DFY Bahmani et al.
(2023) and Animate124 Zhao et al. (2023). More experimentation details are provided in the Appendix.

4.2 Main Results

Quantitative Comparison We evaluate our method against baseline approaches using 20 text prompts de-
scribing diverse compositional scenes with 2-4 assets. First, we carry out a user study involving 30 participants from
diverse backgrounds. Participants evaluated rendered videos of compositional 4D scenes based on four key properties,
following the practice in Bahmani et al. (2023): 3D Geometry Consistency (3DC), Appearance Quality (AQ), Motion
Fidelity (MF), and Text Alignment (TA). For each method, we demonstrate four views (0◦,90◦,180◦, 270◦) videos for
preference selection. We report the percentage of user preferences overall and for each property. Also, in the absence
of ground truth for unsupervised text-to-4D scene generation, we employed non-reference quality-assessment models
for images and videos. Q-Align Wu et al. (2023b) is a recently proposed large multi-modal model fine-tuned from
mPLUG-Owl2 Ye et al. (2023) using in-the-wild image and video quality assessment datasets. It provides quality
assessment functionality for images and videos in terms of aesthetics and quality, and it has achieved state-of-the-art
performance in alignment with human ratings on existing quality assessment benchmarks. The output scores are
in the range of 1 (worst) to 5 (best). We report the average scores on four views (0◦,90◦,180◦, 270◦) videos of our
test samples. The evaluation results are shown in Tab. 1. It can be observed that our method outperforms existing
methods in all metrics by a large margin.
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Figure 5: Comparison with previous object-centric 4D generation pipelines. Our Comp4D framework gen-
erates compositional 4D scenes involving multiple objects with more realistic motion and object interactions.
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Table 1: Quantitative comparison between our method and other baselines with human preference, QAlign
metrics, and rendering efficiency. The human study includes 3D geometry consistency(3DC), appearance
quality(AQ), motion fidelity(MF), text alignment(TA), and overall score. QAlign metrics include quality
and aesthetic evaluations on both rendered images and videos.

Human Preference↑ QAlign Metrics↑ Efficiency↑
Method 3DC AQ MF TA Overall Img-quality Img-aesthetic Vid-quality Vid-aesthetic Rendering FPS
4DFY Bahmani et al. (2023) 32% 28% 24% 35% 30% 2.031 1.767 2.465 1.973 4
Animate124 Zhao et al. (2023) 24% 26% 20% 26% 24% 1.434 1.484 1.948 1.654 4
Ours 44% 46% 56% 39% 46% 2.931 2.190 3.367 2.461 70

Table 2: Cumulative success rate of LLM-generated trajectory in different settings, i.e. number of objects
(two, three, and four) and trajectory types (straight and curved).

Succeed at: 1st trial 2nd-3rd trial 4th-6th trial avg # of trials
2-object-straight 100% - - 1.0
2-object-curved 80% 100% - 1.3
3-object-straight 70% 90% 100% 1.6
3-object-curved 40% 70% 100% 2.5
4-object-straight 30% 70% 100% 3.2
4-object-curved 20% 40% 100% 4.4

Qualitative Comparison In Fig. 5, we provide a detailed visualization of generated scenes with multiple assets
at different timesteps from various views. With the same text prompt, we compare our method with 4DFY Bahmani
et al. (2023) and Animate124 Zhao et al. (2023). For these prior works, we show the scenes from one view at
timestamps of 0, 0.2, and 1s. For our method, we show two views with uniformly sampled timestamps from 0 to
1s. As shown in the image, our framework excels in generating lifelike single objects with expansive motions while
enhancing fidelity in object interactions. As indicated by the yellow contours in Fig. 5, we can observe the distinct
flapping of butterfly wings, the changes in body shape as the frog jumps, and variations in body contours as the corgi
runs. The three-object sample of two fish swimming around a rock shows large global displacements. Comparatively,
the object motion in baseline methods is minimal. Going through the timeline, we can find that the objects move
according to the pre-generated trajectory and display more frequent and realistic interactions. As illustrated in the
yellow circles in the first two examples, the butterfly settles on the petal, and the frog stretches out its legs on the
lotus leaf. In comparison, baseline methods tend to generate objects staying at the origin, with texture flickering to
simulate the movement of the objects.

Resolution and Speed 4DFY Bahmani et al. (2023) conducts the video score distillation stage at a resolution
of 160 × 288. Similarly, Animate124 Zhao et al. (2023) performs score distillation at a resolution of 80 × 144 due
to NeRF’s expensive rendering cost. Contrarily, our method can render video at a resolution of 320 × 576 during
score distillation which aligns with the training resolution of video diffusion zer (2023) and facilitates superior motion
generation. At inference time, thanks to the efficient Gaussian representation, our 4D scene representation renders
at 70 FPS at 320 × 576. In comparison, 4DFY and Animate124 render at around 4 FPS.

Robustness of LLM model in trajectory design Our framework incorporates collision checking, trajectory
truncation, and re-generation, to enhance the robustness of the generating trajectory by LLM. We evaluate the success
rate of trajectory generation using an LLM model on 10 two-object scenes, 10 three-object scenes, and 10 four-object
scenes. For each scene, ChatGPT-4 is prompted to generate one straight and one curved path. A trajectory is deemed
successful if it avoids collisions. The cumulative success rate for each case w.r.t. the number of trials is shown in
Tab. 2. For simpler scenarios with two objects moving along straight paths, the framework achieves a 100% success
rate on the first trial. For more complex cases, such as three objects with curved trajectories, the success rate is 40%
on the first trial, requiring an average of 2.5 trials to generate valid paths. In the most challenging scenario involving
four objects with curved paths, an average of 4.4 trials is needed for successful trajectory generation. Overall, the LLM
demonstrates strong performance in generating collision-free trajectories, even for complex multi-object scenarios. At
this point, we emphasize that our method is flexible and can seamlessly incorporate human involvement during the
initial trajectory design stage, ensuring success even for challenging prompts where the LLM may fall short.
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Table 3: Ablation studies on our proposed components. We employ QAlign metrics including quality and
aesthetic evaluations on both rendered images and videos.

Settings QAlign-Img-quality↑ QAlign-Img-aesthetic↑ QAlign-Vid-quality↑ QAlign-Vid-aesthetic↑
w/o Single 1.8252 1.6455 2.4082 1.9062
w/o Joint 1.9893 1.8789 2.4102 1.9512
w/o Image 1.8613 1.7715 2.3926 1.9014
Fewer GS 1.9131 1.8301 2.7285 2.0039
Full 2.4785 1.9004 2.9023 2.1621

(a) w/o Single (b) w/o Joint (c) w/o Image (d) Fewer Gaussians (e) Full Model

Figure 6: Ablation studies on the proposed components. The first row shows the front view. The second
row shows the side view. Note that (a)-(d) are conducted using fewer number of Gaussians.

4.3 Ablation Studies

We evaluate the effectiveness of all the proposed components in Fig. 6 and Tab. 3. To save computation costs, we
utilize 3D Gaussians containing 20,000 points to represent each object during the ablation study. In Fig. 6(a), “w/o
Single” refers to the variant without object-centric rendering. We observe the worst object geometry possibly due to
the occlusions occurring in the optimization process. “w/o Joint” in Fig. 6(b) denotes that we only perform object-
centric rendering without rendering two objects altogether in the same scene. The final results exhibit decreased
motion and reduced interactions. In Fig. 6(c), we remove the SDS loss from image diffusion and only distill with
video diffusion. Consequently, we observe that objects appear to have poor textures compared to (d) where image
diffusion SDS loss is included. In Fig. 6(d), the model training and losses are kept the same as the full model (e),
except that the number of 3D Gaussians we generate in the static stage is fewer. As shown in the figure, using fewer
Gaussians results in less detailed texture and less realistic geometry. In summary, our full model (e) delivers the best
results both quantitatively and qualitatively.

5 Limitations and Future Work

Despite the exciting results produced by Comp4D, our framework still has some limitations. First, we are leveraging
the zero-shot ability of ChatGPT-4, which can be further improved if the language model is fine-tuned to generate
a more precise trajectory and more complex motion. Although the LLM model performs well in trajectory design
in relatively simple scenes with several objects, we observe it tends to fail with more objects due to the potential
collisions. In such circumstances, our framework requires human involvement for the trajectory design. Second, the
generated motions are currently limited by the capabilities of video diffusion models. Future work will focus on
extending the motion duration and complexity to support more practical and diverse 4D content creation.

6 Conclusion

In this work, we present Comp4D, a novel framework for generating compositional 4D scenes from text input. With
the help of ChatGPT-4, we decompose scene generation into the creation of individual objects as well as their
interactions. Given a compositional scene description, we first leverage GPT-4 to generate object prompts for the
independent creation of 3D objects. Subsequently, it is tasked to design the trajectory for the moving objects. This
predefined trajectory then guides the compositional score distillation process, which optimizes a composable 4D
representation comprising deformable 3D Gaussians for each object. Our experiments demonstrate that Comp4D
significantly surpasses existing text-to-4d generation methods in terms of visual quality, motion fidelity, and object
interactions.
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A Additional Implementation Details

Similar to Magic123 Qian et al. (2023) and 4DFY Bahmani et al. (2023), we first generate the static 3D objects via
NeRF representation using joint score distillation from MVDream Shi et al. (2023b) and Stable Diffusion 2.1 Rombach
et al. (2022). After obtaining the static objects, we convert them to point clouds which are consecutively used to ini-
tialize 3D Gaussians. Our full model utilizes point clouds containing 60,000 colored points. We preprocess 60 nearest
neighbors for each 3D Gaussian in order to speed up the calculation of Lrigidity. In the dynamic optimization stage,
we randomly assign training iterations to adopt single-object rendering (with a probability of 0.2) or compositional
rendering (with a probability of 0.8). We train for 3,000 iterations in the dynamic stage with a learning rate of 1e-4
for the deformation MLP. In each iteration, we render 16 frames via uniformly sampled timesteps. We use the frozen
video diffusion model, Zeroscope zer (2023), in our experiments. To improve the 2D appearance, we also randomly
sample 4 frames out of 16 rendered frames for image score distillation, where the Stable Diffusion 2.1 Rombach et al.
(2022) is used as the image diffusion model. In our experiments, we compare with two open-source baseline text-to-4D
generation methods, 4DFY Bahmani et al. (2023) and Animate124 Zhao et al. (2023).

Our overall loss function can be summarized as follows,

L = LSDS-static + LSDS-dynamic + Lreg, (11)

where Lreg refers to regularizations:

Lreg = Lcontact + ω1Lacc + ω2Lrigidity. (12)

ω1 and ω2 are weighting coefficients, set to 1e − 4 and 1e3, respectively. For MVDream Shi et al. (2023b), we
use negative prompt as their default configuration, “ugly, bad anatomy, blurry, pixelated obscure, unnatural colors,
poor lighting, dull, and unclear, cropped, lowres, low quality, artifacts, duplicate, morbid, mutilated, poorly drawn
face, deformed, dehydrated, bad proportions”. For Zeroscope zer (2023), we use negative prompts that avoid static
generations, “static, low motion, static statue, not moving, no motion, text, watermark, copyright, blurry, nsfw”.

B Baselines Implementations

For baseline methods 4DFY Bahmani et al. (2023) and Animate124 Zhao et al. (2023), we use the codebase released
by the authors. For 4DFY Bahmani et al. (2023), since it is a text-to-4D generation method, we use the same scene
text description when generating 4D results. For Animate124 Zhao et al. (2023), due to its image-to-4D nature, we
use the static assets produced by our method to obtain the initial image for Animate124. Specifically, we place the
static assets at the t = 0 position in the trajectory and render a static image that does not contain occlusions. Then,
we follow the workflow of Animate124 first to perform textual inversion and then the following static and dynamic
stages.

C Automatic scene decomposition with the LLM model

In our framework, we take advantage of an LLM model (ChatGPT-4) to automatically decompose the scene into
multiple assets, and design their moving trajectories. We visualize this procedure in Fig. 7 and Fig. 8, where we
provide a conversation between a human user and ChatGPT-4 to accomplish this task. The output of ChatGPT
includes a function that delineates the moving trajectory of the object. We also visualize the trajectory in Fig. 9.
Note that in the circumstances where the scene is too complex for ChatGPT to handle, our framework supports
human involvement to manually decompose the scene and design the trajectories.

D Additional Visualizations

We provide more results and comparisons in the video.
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Consider the scene: “A fluffy corgi jumps over a crackling campfire.” Provide the descriptions for 

each object in the sentence with the adjective associated with it. Infer from the prompt which 

object is moving and which is static. Provide your output in this form: adjective + object (moving 

or static). 

There are two objects in the sentence. Here are the two objects in the scene with their associated 

adjectives: 

1. A fluffy corgi (moving) 

2. Crackling campfire (static) 

 
Now, based on the object information you provided and assuming the static object is always 

located at the world origin, first, make reasonable assumptions of the object scales in 3D. Make 

sure both objects are not too large or too small and fit in the [0, 1] range. Pick a reasonable starting 

location and velocity for the moving object. 

Let's assume the following reasonable 3D scales, starting location, and velocity for the objects: 

Object Scales in 3D: 

1. Fluffy Corgi (moving): 

o Scale: [0.6, 0.3, 0.2] 

o (Represents the approximate dimensions of the corgi: length, width, and height.) 

2. Crackling Campfire (static): 

o Scale: [0.5, 0.3, 0.05] 

o (Represents the approximate dimensions of the campfire: diameter and height.) 

Starting Location and Velocity for the Moving Object (Corgi): 

• Starting Location: [-1.0, 0.0, 0.05] 

o (The corgi starts on the ground some distance away from the campfire along the x-axis, at 

ground level.) 

• Velocity: [3,5, 0.0, 3.0] 

o (The corgi moves straight forward along the x-axis while jumping upwards along the z-axis.) 

These assumptions position the corgi so that it is jumping over the campfire, with the velocity 

directing its motion forward and upward. The scales ensure that both objects fit within the [0, 1] 

range and are reasonably proportioned relative to each other. 

Using the objects and their scales, initial positions, and velocity, use physics-based formulas to 

represent the 3D locations of the moving object for a duration of 1 second. In addition, ensure the 

following: 1. If the moving object collides with the static object placed at the origin during the 1 

second, return the timestep where collision occurs. 2. The moving object trajectory should be 

limited to a range of [-2, 2] through scaling, but not clipping. Give me a python function named 

`generate_coordinates` that takes timestep as input and outputs 3D coordinates of the moving 

object as np.array and the object scales as a list. Use x-y plane as horizontal and use z axis as the 

vertical axis. 

Figure 7: Automatic scene decomposition and trajectory design with ChatGPT-4 (part 1). We provide an
example of the conversation between a human user and ChatGPT-4 for scene decomposition and trajectory
design. Given a text description, "A fluffy corgi jumps over a crackling campfire", the human user first
prompts the ChatGPT-4 to extract the component objects from the description, followed by scale assignment
over the component objects. Then, the human user prompts the ChatGPT-4 to give initial positions,
velocities, and moving trajectories of the objects.
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Here's a Python function named `generate_coordinates` that implements the described behavior: 

 

This function generates the 3D coordinates of the corgi at a given timestep, considering its initial 

position, velocity, and the possibility of collision with the static object (campfire). It also ensures 

that the corgi's trajectory remains within the specified range of [-2, 2] through scaling. 

Figure 8: Automatic scene decomposition and trajectory design with ChatGPT-4 (part 2).
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Thanks, I obtained the following trajectory visualization for the objects based on your response: 

 

Figure 9: Automatic scene decomposition and trajectory design with ChatGPT-4.
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