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ABSTRACT
An important characteristic of cyber-physical systems is their capa-
bility to respond, in-time, to events from their physical environment.
However, to the best of our knowledge there exists no benchmark
for assessing and comparing the interrupt handling performance
of different software stacks. Hence, we present a flexible evalua-
tion method for measuring the interrupt latency and throughput
on ARMv8-A based platforms. We define and validate seven test-
cases that stress individual parts of the overall process and combine
them to three benchmark functions that provoke the minimal and
maximal interrupt latency, and maximal interrupt throughput.

DATA AVAILABILITY STATEMENT
A snapshot of the exact version of the prototyping platform toki [12]
that was used to conduct the presented measurements is available
on Zenodo [13]. The snapshot also contains the captured, raw STM
trace data and scripts to produce the presented figures. The latest
version of toki can be obtained from [10].

1 INTRODUCTION
Cyber-physical systems (CPSs) are characterized by the fact that a
computer system works together with a physical environment, or
rather controls it. A specific characteristic of such control systems
is their necessity to provide short and predictable reaction times on
events in the physical world, to guarantee a good control quality
[14]. Both properties are likewise essential for modern systems,
such as tele-operated-driving [27], and classic systems, such as the
control of internal combustion engines [11].

An important aspect of the achievable reaction time is the inter-
rupt handling performance in both dimensions the interrupt han-
dling latency and throughput capabilities of a system. Especially
the effect of the utilized software stack has not yet been compre-
hensively assessed. Such a systematic evaluation would, however,
facilitate the development and selection of CPS software stacks for
particularly latency-sensitive or throughput-hungry use-cases.

Previous studies in this field mainly conducted measurements
with the help of external measurement devices [16, 19, 22, 26],
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which requires an in-depth understanding of the hardware to ob-
tain precise measurements [22]. This expert knowledge, however,
is reserved for the system on chip (SoC) and processor intellectual
property (IP) vendors. Hence, we see the need for a measurement
method that allows to accurately measure and properly stress the
interrupt handling process of today’s SoCs without expert knowl-
edge. Accordingly, we present a flexible interrupt performance
measurement method that can be applied to ARMv8-A IP-core
based platforms that provide a physical trace-port. As we see an
increasing market share of ARM based systems [20] and their wide
adoption in automotive CPSs [9, 25, 28] we strongly believe that
our method helps in analyzing a multitude of relevant systems.

We specify three benchmark functions based on the assessment
of ten combinations out of seven distinctive test-cases. Whereby
each test case was chosen to stress a dedicated part of the ARM
interrupt handling process. The effectiveness of the test-cases and
benchmark functions is demonstrated on a Xilinx ZCU102 evalua-
tion board [30] with two different software stacks.

In summary, we contribute (i) a precise method to measure the
interrupt performance of complex ARM based SoCs without expert
knowledge, and (ii) a set of benchmark functions that provokes
the best and worst interrupt latency and maximal throughput on a
given ARMv8-A hardware and software combination.

The rest of this paper is structured as follows: Section 2 de-
scribes the interrupt handling process on ARMv8-A platforms with
a Generic Interrupt Controller (GIC) version 2, Section 3 presents
the measurement setup and procedure of the envisioned evaluation
method, Section 4 discusses the proposed test-cases and bench-
marks along with the measurement results, Section 5 gives an
overview on related work, and Section 6 concludes the paper.

2 INTERRUPT HANDLING PROCEDURE ON
ARMv8-A PLATFORMS

Müller and Paul [21] define an interrupt as an event that causes a
change in the execution flow of a program sequence other than a
branch instruction. Its handling process starts with the activation
through a stimulus and ends with the completion of the interrupt
service routine (ISR), which is called in consequence and processes
the stimulus. Until the ISR is executed several steps are undergone
in hardware to cope for example with simultaneously arriving in-
terrupt requests (IRQs) and masking of certain requests. In the
following, we explain this process for ARMv8-A platforms, as spec-
ified in the GIC architecture specification version 2 [3]. In Section 4
this information is used to design suitable test cases.
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Figure 1: Repeatedly, per CPU interface executed selection
and signaling process of the Generic Interrupt Controller
(GIC) for handling triggered interrupt requests (IRQs).

The GIC architecture specification differentiates among four
types of interrupts: peripheral, software-generated, virtual, and
maintenance interrupts. In the course of this paper we focus solely
on measuring interrupts triggered by external stimuli, the periph-
eral interrupts. They can be configured as edge-triggered or level-
sensitive. This means that the corresponding interrupt is recognized
either once on a rising edge in the input event signal, or continu-
ously as long as the signal has a certain strength.

The GIC supervises the overall interrupt routing and manage-
ment process up to the point that the ISR is called. Figure 1 shows
the GIC architecture and the signaling path for the selected mea-
surement hardware, the Xilinx UltraScale+ MPSoC (ZynqMP). The
GIC manages all incoming event signals of the system and consists
out of a central Distributor and a CPU interface per processor core.
The Distributor manages the trigger-type of each interrupt, orga-
nizes their prioritization, and forwards requests to the responsible
CPU interface. The CPU interfaces perform the priority masking
and preemption handling for their associated core.

The timeline of the various steps in the interrupt handling pro-
cess are illustrated in Fig. 2. The handling process of a certain IRQ
begins with the arrival of an event signal at the Distributor (step 1).
In case the signal matches the configured trigger type, the actual
handling process is triggered through the recognition of a new IRQ
(step 2), which eventually leads to the execution of the ISR (step 9).

After being recognized (step 2), the Distributor may select and
forward the IRQ to the responsible CPU interface according to
the process depicted in the upper half of Fig. 1. This selection
process (step 3) is executed repeatedly and potentially in parallel
for each CPU interface. When the next highest priority pending
interrupt (HPPI) is identified the Distributor forwards the request
to the currently inspected CPU interface (step 4). The CPU interface
filters incoming requests according its configuration and the process
shown in the lower half of Fig. 1. As a result the CPU interface may
signal a pending IRQ to its associated core (step 5).
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Figure 2: Overall steps of the interrupt handling process on
ARMv8 platforms with a Generic Interrupt Controller (GIC)
version 2 and an ARMv8-A architecture profile core.

Subsequent to the signaling of a new IRQ, on an ARMv8-A ar-
chitecture [6], the core acknowledges the signaled IRQ by reading
its id (step 6), which marks the IRQ as active within the GIC (step
7). Meanwhile, the processing core jumps to the vector table entry
indicated by the id of the current IRQ (step 8), which leads to the
execution of the ISR (step 9). Individual software stacks might add
additional steps before the ISR finally starts.

Besides the regular interrupt requests described above, the GIC
architecture version 2 (GICv2) also supports the prioritized and
more secure fast interrupt requests (FIQs), however, these lay out
of the focus of this paper. Furthermore, it shall be noted that the
regular interrupt processing path was not affected by the latest
updates to the GIC architecture (i.e., version 3 and 4). Hence, we
strongly believe that the presented benchmark functions would be
still valid for the updated architectures.

3 PROPOSED EVALUATION METHOD
With respect to the interrupt performance of a hardware/software
combination two properties are most relevant: the IRQ latency and
throughput. Considering the process shown in Fig. 2, we define the
IRQ latency as the time between a signaled event (step 1) and the
call to the corresponding ISR (step 9). As throughput we understand
the number of completed ISRs per time unit.

3.1 Measurement Setup
Our measurements utilize a Xilinx ZCU102 [30], with the toki pro-
totyping platform [10, 12], and an ARM DSTREAM [5] hardware
trace. We have chosen the ZynqMP, as it features an in-built pro-
grammable logic (PL) and versatile tracing capabilities. Figure 3
illustrates the chosen hardware setup. The ZynqMP is divided into
the PL and processing system (PS). The PS provides two proces-
sor clusters, the application processing unit (APU) with four ARM
Cortex-A53 cores and the real-time processing unit (RPU) with
two ARM Cortex-R5 cores. Both clusters have their own interrupt
handling infrastructure, but we focus on the APU’s only.

The ARM CoreSight [4] tracing capabilities of the ZynqMP allow
to record events, such as taken branches, external interrupts, and
software events on a common timeline defined by system-wide
timestamps. The system trace macrocell (STM) and embedded trace
macrocells (ETMs) record the various events in hardware, without
altering the behavior of the executed code, neither in a temporal
nor semantic sense. Only software driven events require a register
write operation and thus marginally influence the timing of the
executed code. CoreSight is part of all newer ARM processor IPs
and can be utilized as soon as the used hardware features a physical
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Figure 3: Chosen measurement setup, with four PL2PS in-
terrupts generated by the programmable logic (PL) accord-
ing to the configuration signaled by the processing sys-
tem (PS) via its extended multiplexed I/O interface (EMIO).
The generated interrupts, executed instructions, and global
timestamps are recorded through the system trace macro-
cell (STM) and embedded trace macrocell (ETM). The cap-
tured trace is read via an ARM DSTREAM unit.

JTAG- and trace-port. The latter is typically available on evaluation
boards used for prototyping professional applications.

In addition to the in-built hardware features, we deploy a custom
interrupt generation block into the PL. The block allows to simulta-
neously stimulate APU interrupts, following a generation pattern
defined by a logical-high and -low phase, and trace them in the STM.
This could also be realized with an external field-programmable
gate array (FPGA) or a signal generator, to support additional plat-
forms. The pin multiplexing configuration of the target platform
only has to ensure that triggered input lines are also connected to
a STM hardware event channel.

3.2 Measurement Procedure
Based on the measurement setup, we propose two measurement pro-
cedures, one per measurement type (i.e., latency and throughput),
utilizing two different configurations of the interrupt generation
block. Both procedures use APU core 0 to take measurements and
the other cores as stimulation sources, where needed.

We conduct our measurements on two software stacks: (i) a bare-
metal, and (ii) a FreeRTOS based system. Both software stacks are
provided by the toki build- and test-platform [10, 12], and utilize a
driver library provided by Xilinx [32]. This library already features
an interrupt dispatching routine that multiplexes the processor
exception associated with regular interrupts on the target.

The bare-metal stack is an unoptimized piece of code that fea-
tures neither a scheduler, nor a timer tick. It could clearly be opti-
mized, however, it is unclear how much a fully optimized assembler
version of the stack would impact the presented results.

Thanks to its Yocto [33] based build-system, toki can easily be
executed to include Linux based software stacks and with that the
presented test setup. Completely different software stacks and hard-
ware platforms can be evaluated with the given setup, when they

provide (i) a libc function interface, and (ii) drivers for interacting
with the caches, STM trace, and GIC on that platform.

Throughput. In case of a throughput evaluation, we configure the
interrupt generation block to continuously signal the PL2PS inter-
rupts for 9.75 s and then wait for another 250 ms on a rotating basis.
We call each repetition of this pattern a stimulation phase. Core 0 is
configured to handle the signaled private peripheral interrupt (PPI)
on a level-sensitive basis and the corresponding ISR does nothing
despite emitting a STM software event, i.e., executing a 8 bit store
instruction. Hence, the time spent in each ISR and with that the
possible reduction of the maximum throughput is negligible.

For each throughput measurement we capture a 120 s trace and
evaluate the contained stimulation phases. The throughput (µ) in
each stimulation phase (i ∈ [0, 19]) is obtained from the traced
measurement samples by counting the ISR generated STM-software-
events between the rising-edge STM-hardware-event of the (i)th
and (i+1)th stimulation phase and dividing it with the length of one
logical-high-phase. The set of throughput values considered for the
evaluation in Section 4 is then given by M = { µ(i) | i ∈ [0, 19] }.

Latency. The latency evaluation is conducted with an alternating
scheme of a 1 ms PL2PS interrupt trigger and a 4 ms pause. The in-
terrupt generation block is configured accordingly. Again we refer
to each repetition of this scheme as a stimulation phase. In contrary
to the throughput measurement, however, core 0 is configured to
handle the signaled PPI on a rising-edge basis. Thus, every stimula-
tion phase provokes only one interrupt. The corresponding ISR is
the same as for the throughput measurements.

The results for the latency measurements are obtained by evalu-
ating 30 s trace captures. The interrupt latency ∆tlatency(i) induced
by each stimulation phase i ∈ [0, 2399] is given by ∆tlatency = B−A,
with A representing the point in time where the interrupt was stim-
ulated and B the point where the corresponding ISR was started.
Both points can be obtained from the captured trace. A is given
by the timestamp of the STM hardware event associated with the
rising-edge of the PL2PS interrupt signal. B, on the other hand, has
to be determined and defined for every analyzed software stack
individually. In the course of this paper we utilize the timestamp of
a STM event generated within the interrupt handler of our bench-
mark application that runs on top of the evaluated software stacks.

Similar to the throughput values, the set of latency values con-
sidered in Section 4 is given by X = { ∆tlatency(i) | i ∈ [0, 2399] }.

3.3 Precision and Limitations
In our measurement setup, we configure the PL, trace port, and
timestamp generation clock to oscillate at 250 MHz. Hence, two con-
secutive timestamp ticks lay 4 ns apart from each other. Since each
sampled event in the ETM and STM is assigned a timestamp, our
measurement precision corresponds exactly to the system times-
tamp resolution, i.e., 4 ns. This is an order of magnitude smaller than
the interrupt latency measured in a previous study for the same
hardware platform [29] and a quarter of the measured minimal
interrupt latency of an ARM real-time core [22].

Even though state of the art oscilloscopes provide a sampling
rate of up to 20 GSa/s [15], which corresponds to a measuring pre-
cision of 0.05 ns, the actual precision in case of interrupt latency
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measurements might be considerably lower. The reason for this is
that the oscilloscope can only measure external signals of a pro-
cessor. Thus, in-depth knowledge of the internal structure of the
hardware and executed instructions during a measurement is re-
quired to utilize the full precision of the oscilloscope. This makes
it less suited for the evaluation of different hardware platforms
and software stacks. The CoreSight based measurement setup, on
the other hand, supports a flexible placement of the measurement
points within and outside of the processor and does not require
any expert knowledge about the hardware or software.

Besides the measurement precision and flexibility, we also need
to ensure that the presented measurement setup is sane and trig-
gered interrupts can actually be recognized by the processor. Ac-
cording to the ZynqMP technical reference manual [31, p. 312], a
signal pulse that shall trigger a PL2PS interrupt needs to be at least
40 ns wide to guarantee that it is recognized as such. Hence, the pre-
sented stimulation scenarios for the two measurement procedures
ensure that all triggered interrupts can be recognized.

The disadvantage of the presented measurement approach, how-
ever, is that it is only applicable for ARM based platforms with
a dedicated JTAG- and trace-port. Given ARM’s 40% share of the
semiconductor market for IP designs [20] and the wide availability
of suitable evaluation boards, we believe this is an acceptable draw-
back. An additional limitation is that valid measurements can only
be obtained for the interrupt with the highest priority among the
active ones, but this applies to any kind of measurement setup.

4 CONSTRUCTING A BENCHMARK
In order to create a benchmark for comparing the interrupt latency
and throughput across platforms and software stacks, we have
designed seven test-cases specifically tailored to stress the ARMv8-
A interrupt handling process. To judge their suitability for an overall
benchmark, we measure their performance with the two software
stacks described in Section 3.2 on top of the ZynqMP discussed in
Section 3.1. By comparing the impact of each test-case with respect
to the baseline performance of the two systems, we compose three
benchmarks out of the test-cases and show their suitability by
applying them to the same system configurations.

4.1 Evaluated Test-Cases
Given the interrupt handling process in Section 2, we conclude that
the time spent in the process can be influenced by: the core, caches,
memory, and GIC. We have designed seven test-cases that aim to
reveal the influence of different configuration settings related to
the aforementioned components onto the temporal behavior of the
interrupt handling process. However, we do exclude the core from
our considerations by only measuring interrupts with the highest
priority and not computationally loading the measured core. The
measurements for all test-cases follow the scheme presented in
Section 3.2, unless indicated otherwise. Depending on the goal of
each test-case they are either applied only for latency measurements
or both latency and throughput measurements. The proposed test-
cases and their targeted components are summarized in Table 1, and
Figs. 4 and 5 present the results of our measurements. The presented
results are based on 848–6000 measurement samples per latency
measurement and 11–12 samples per throughput measurement.

The remainder of this section elaborates on the intended influence
of the listed test-cases on the interrupt handling process.

T1: Baseline. T1 is intended to provide a reference point to compare
the other test-cases to and rate their impact. Hence, T1 assess the
interrupt latency and throughput of a system in the most isolated
way, with only one core and interrupt enabled and caches disabled.
Hence, T1 only enables the extended multiplexed I/O interface
(EMIO) pin driven interrupt and routes it to core 0. As ISR the
default handler, described in Section 3.2, is used. T1 is evaluated for
its latency and throughput performance.

T2: Caches enabled. T2 equals T1, with the exception that all opera-
tions are executed with enabled caches. This test is conducted for
both latency and throughput measurements.

T3: Caches invalidated. T3 is also based on T1, but the ISR addition-
ally invalidates the data and instruction caches. Due to the fact that
this is not feasible in throughput measurements, as new interrupts
would arrive independently of the cache invalidation process, we
conduct only latency measurements with T3.

T4: Enabled interrupts. T4 aims at stressing the GIC with the highest
possible number of enabled interrupts, as the interrupt selection
and signaling process suggests that more checks have to be done
the more interrupts are enabled/pending. Hence, T4 enables the
maximum number of interrupts supported by the ZynqMP, except
those required for conducting the measurements. All interrupts are
routed to and handled by core 0. The measured PL-to-PS interrupt is
assigned to the highest priority and all other interrupts to the lowest
priority. Core 0 installs an empty ISR that immediately returns after
clearing the IRQ in the GIC for all interrupts, except the measured
PL-to-PS interrupt, which uses the same ISR as T1.

As this test aims at stressing the GIC to reduce its performance,
we only evaluate it with respect to the interrupt latency. To be able
to identify trends, we evaluated this test-case with 1, 36, 72, 108,
144, and 180 stressing interrupts. However, due to the marginal
differences between the results of the different T4 variants and
space constraints we only show the results of T4-180, T4 with 180
stressing interrupts, which provoked the highest latency.

T5: Order of priorities. T5 utilizes the same setup as T4 and is also
applied to latency measurements only. However, in contrast to T4,
T5 only utilizes as much interrupts as there are priorities, i.e., 15.
The measured interrupt remains at priority 0 and the priorities of
the other 14 are assigned in an ascending order (i.e., 14 to 1). This
design intends to provoke a maximal number of HPPI updates.

T6: Parallel interrupt handling. To test the influence of parallelly
handled interrupts on the interrupt handling process, T6 enables up
to 4 cores and configures all of them to handle the EMIO pin 0 inter-
rupt. The interrupt is configured as level-sensitive with the highest
priority. The PL ensures that this interrupt is signaled continuously
and simultaneously as soon as the test is enabled. The ISRs on all
cores generate a STM event, which are evaluated for throughput
measurements. In case of latency measurements, however, only
those STM events produced by core 0 are considered.

We evaluated T6 with 2, 3, and 4 enabled cores. The results
showed a clear trend that the more enabled cores the higher the
observed latency and the lower the achieved throughput. Due to
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Table 1: Properties of the evaluated test-cases and benchmarks used to compare the interrupt latency (L) and throughput (T).

Description
Targeted

Component
Measurements Enabled

Interrupts
Cache
Config

Enabled
Cores

Benchmarks
L T Lmin Lmax Tmax

T1: Baseline — X X 1 Disabled 1

T2: Caches enabled Cache X X 1 Enabled 1 X X
T3: Caches invalidated Cache X 1 Invalidated 1

T4: Enabled interrupts GIC X 2–181 Disabled 2 X
T5: Order of priorities GIC X 15 Disabled 2
T6: Parallel interrupt handling GIC X X 1 Disabled 2, 3, 4 X X

T7: Random memory accesses Memory X 1 Disabled 4
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Figure 4: Latency measured with T1–T7 (a) and B-Lmin and B-Lmax (b-c). Figure a) uses a symlog scale with a linear threshold
of 2 496ns, Fig. b) uses a symlog scale with a linear threshold of 240ns, and Fig. c) uses a linear scale.
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Figure 5: Throughput measured with T1, T2, T6, and B-Tmax.
Figure a) compares the median of all measurements on a
linear scale and Fig. b) illustrates the measured throughput
ranges on a symlog scale with a linear threshold of 1Hz, nor-
malized to a 500kHz range around the highlighted median.

space constraints we thus only show the results for T6-4, with 4
enabled cores, in case of the latency considerations and T6-2 in
case of the throughput measurements.

T7: Random memory accesses. As pointed out earlier, the shared
memory and interconnecting buses of multi-core processors rep-
resent a major source of unforeseen delays. Accordingly, T7 is
designed to delay memory accesses by overloading the intercon-
necting bus and memory interface. For this purpose all 4 cores
are running random, concurrent memory accesses in form of con-
stants that are written to random locations in a 96 MB large array.
In parallel core 0 executes the standard latency test. Throughput
evaluations are not considered with this test-case, as it targets to
delay the interrupt handling process.

4.2 Proposed Benchmarks
Analyzing the measured interrupt performances under the differ-
ent test-cases, shown in Figs. 4 and 5, we conclude that first of all
different setups and software stacks indeed considerably influence
the interrupt handling performance. All three targeted components,
provoke a considerable effect on the interrupt latency and through-
put. Particularly noticeable are the differences between the test-
cases with enabled (T2, T3) and disabled caches (T1, T4–T7), for
both the observed latency and throughput, as well as the effects of
stressing the GIC on the measured latency (T4–T6).

Of special interest is that the FreeRTOS based stack achieved a
smaller minimum latency and a narrower variation range of the la-
tency and throughput, compared to the bare-metal stack. Examples
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are for instance T2 and T6-4 for latency measurements, and T6-2
for throughput measurements. After measuring and reviewing the
tests for each critical test-case multiple times without finding any
anomalies, we assume that some low-level hardware effects, for
instance in the pipeline or shared interconnects, might cause the ob-
served behavior. Further insight into the situation could be gained
by (i) implementing a fully optimized, assembly-only bare-metal
stack, or (ii) analyzing the actual hardware effects with a cycle-
accurate simulation in ARM’s Cycle Model Studio [7]. However,
both approaches are out of the scope of this paper.

T2 produces by far the shortest interrupt latency of 232 ns on
average with only a few outliers. Hence, we propose to utilize T2
as benchmark for the minimal achievable latency (B-Lmin).

To obtain a suitable benchmark for the maximal latency, we ana-
lyzed all combination out of the test-cases T4-36, T4-144, T6-3, and
T7. Except for the combination out of T6 and T7, all tested combi-
nations showed a similar performance with only slight differences.
An exception to that forms the interrupt latency performance of the
combination out of T4-144 and T6 on FreeRTOS, which is consid-
erably more confined than all other observed ranges. The highest
latency is achieved with a combination out of T4-36 and T6, how-
ever, the combination of T4-36, T6, and T7 is close. Accordingly, we
propose to use the combination out of T4-36 and T6 to benchmark
the achievable maximal interrupt latency (B-Lmax).

For the maximal throughput benchmark (B-Tmax) we evaluated
all four variants of the T6 test-case with enabled caches (T2). In-
terestingly, the enabled caches seem to mitigate the effect of more
enabled cores, as all combinations showed a similar throughput.
However, the combination out of T6-2 and T2 still performed best.
Even though the maximal achieved throughput of the combined test-
cases lags a little behind that of T2 alone in case of the bare-metal
software stack, it outperforms T2 by far in case of the FreeRTOS
based stack. Hence, we propose the combination out of T6-2 and
T2 to benchmark the maximal throughput of a system.

5 RELATEDWORK
In principle, there exist two patented interrupt latency measure-
ment approaches that are used in literature. First, measurements
based on an external measurement device, such as an oscilloscope
[16]. And second, measurements based on storing timestamps when
an interrupt is asserted and when the interrupt handling routine is
completed [17], like we do with our measurements.

Liu et al. [18] measured the interrupt latency of five Linux vari-
ations on an Intel PXA270 processor, which features an ARM in-
struction set. They used a counter based measurement method and
focused on the effect of different computational loads. Since their
stimulation is limited to a single periodic interrupt, we argue that
their approach is not able to stress the interrupt distribution process
and that they rather analyzed the responsiveness of the scheduler
to aperiodic events than the deviation of the interrupt latency.

The wide majority of studies, however, focused on interrupt
performance measurements with external measurement devices
[19, 22, 26], or combined it with the timestamp approach [24].
Macauley [19] compared different 80×86 processors with each other
and NXP Semiconductors [22] determined an exact latency for their
i.MX RT1050 processor. All other aforementioned studies focused

on comparing different software stacks with respect to various
computational loads. None of the mentioned studies analyzed the
throughput, or stressed the interrupt distribution process.

Aichouch et al. [2] claim to have measured the event latency of
LITMUSˆRT vs. a KVM/Qemu virtualized environment on an Intel
based computer. However, it stays unclear how they performed the
measurements and where they got the timing information from.

Previous studies of the achievable interrupt throughput focused
on the analysis of the achievable network packet transmission/re-
ception or storage input/output operations per second when con-
sidering different interrupt coalescing and balancing strategies
[1, 8, 23], but do not analyze the interrupt throughput in isolation
with respect to different software stacks.

6 CONCLUSION AND OUTLOOK
We presented a flexible evaluation method based on the ARM Core-
Sight technology [4], which enables the assessment of various soft-
ware stacks on top of commodity ARMv8-A platforms with respect
to their interrupt handling performance. Utilizing the evaluation
method, we crafted seven specifically tailored test-cases that were
shown to stress the ARM interrupt handling process. Out of these
test-cases we deduced three benchmark functions, tailored to pro-
voke the minimal (B-Lmin) and maximal (B-Lmax) interrupt latency,
and the maximal throughput (B-Tmax), of a given software stack.
We validated the test-cases and benchmark functions by compar-
ing two software stacks (a simple bare-metal and FreeRTOS based
environment) and measuring them on top of a Xilinx ZCU102 [30].

Our measurements showed that different software stacks do
have a considerable impact on the interrupt handling performance
of a hardware platform. Hence, we hope to draw some attention on
the importance of a good software design for CPS, with respect to
interrupt processing and the need of a more profound analysis on
how interrupt handling processes can be made more predictable
with respect to the achievable latency and throughput.
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