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Abstract
The performance of In-context Learning (ICL)001
is highly sensitive to the selected demonstra-002
tions. Existing approaches to demonstration se-003
lection optimize different objectives, yielding004
inconsistent results. To address this, we pro-005
pose a unified metric–affinity and diversity–that006
leverages ICL model’s internal representations.007
Our experiments show that both affinity and008
diversity strongly correlate with test accuracies,009
indicating their effectiveness for demonstration010
selection. Moreover, we show that our pro-011
posed metrics align well with various previous012
works to unify the inconsistency.013

1 Introduction014

Language Models (LMs) show In-Context015

Learning (ICL) ability (Dong et al., 2024), learning016

to solve tasks without updating model parameters017

by processing a query along with demonstrations of018

input-label pairs. The performance of ICL is highly019

sensitive to the quality of demonstrations (Liu et al.,020

2021), and previous work has proposed several021

strategies for selecting better demonstrations.022

One prominent approach is to select demonstra-023

tions based on their similarity to queries. Here,024

the similarity is computed by models indepen-025

dent of the ICL-executed LMs, e.g., off-the-shelf026

document retrievers (Rubin et al., 2022), such as027

BM25 (Robertson and Zaragoza, 2009), fine-tuned028

document retrievers (Luo et al., 2024), and encoder-029

based pretrained LMs (Chen et al., 2024). While030

these previous methods have improved ICL perfor-031

mance, we find that they capture different aspects032

of demonstration quality and do not converge on033

a consensus measure (Fig. 5, Left). Developing a034

unified metric that integrates various metrics leads035

to a deeper understanding of demonstration quality036

and further enhances ICL performance.037

Therefore, in this paper, we propose a novel ap-038

proach that leverages the ICL model’s internal rep-039

resentations to unify previous selection methods.040
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Figure 1: The Affinity and Diversity of the demonstra-
tions in TREC, SST5, TEE on k = 16. The colors of the
circles refer to the accuracy of the classification tasks.
The line and background color refer to the decision
boundary to predict labels by affinity and diversity. The
larger the affinity and diversity, the higher the accuracy
tends to be.

We first identify a self-attention head that is crit- 041

ical for ICL, and on the subspace defined by the 042

W⊤
QWK of this attention head, we define two new 043

metrics: (i) affinity between a query and demon- 044

strations and (ii) diversity among demonstrations. 045

Our experiments show that proposed metrics corre- 046

late with existing demonstration selection methods 047

(Fig.5, Left) and are useful for identifying better 048

demonstrations (Fig. 1). 049

Our contributions are: 050

• We propose internal representation-based 051

affinity and diversity as a better joint metric on 052

ICL for demonstration selection (§4.2), which 053

unifies the previous selection methods (§5.2). 054

• We empirically show that previous demon- 055

stration selection methods focus on different 056

aspects of selected demonstrations, showing 057

that they are not always positively correlated 058

with other selection methods (§5.3). 059
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Figure 2: The correlation coefficient between affinity
and accuracy

2 Background060

2.1 In-context Learning061

Given k input-label pairs (demonstrations) and a062

query for a classification task, the demonstrations063

and query are concatenated in natural language064

form and fed to LMs (e.g., for k = 2, “Good065

movies. Label: Positive. That’s too cruel. Label:066

Negative. I like it. Label: ”). Here, “: ” serves as a067

forerunner token to concatenate inputs and labels,068

and trigger the prediction of the label tokens. The069

LMs return a probability distribution over the next070

tokens, and ICL selects the token with the highest071

probability as the final prediction.072

2.2 Induction Circuit073

An induction circuit is an abstraction of some at-074

tention heads to lead the inference of ICL (Elhage075

et al., 2021), which consists of several interacting076

attention heads across different layers: (i) previous077

token heads, which copy information from previ-078

ous tokens to the current token, and (ii) induction079

heads, which attend to tokens based on context and080

boost the probability of predicting token [B] when081

[A][B]...[A′] is provided as input. In this paper,082

we find the most effective induction head, and de-083

fine the affinity-diversity metrics on the W⊤
QWK084

mappings of this head.085

2.3 Demonstration Selection Methods086

There are two main approaches for retrieving087

demonstrations. One is to use off-the-shelf retriev-088

ers, such as BM25 (Robertson and Zaragoza, 2009)089

or BGE M3 (Chen et al., 2024). Off-the-shelf re-090

trievers approaches may be sub-optimal since they091

are not finetuned for specific tasks. Another ap-092

proach is to train retrievers, e.g., using encoder-093

based LMs, based on supervision signals from ICL094

models. To optimize such retrievers, various loss095

functions (e.g., List-wise Ranking Loss (Li et al.,096
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Figure 3: The coefficient of determination between di-
versity and accuracy

2023) and InfoNCE Loss (Rubin et al., 2022)) and 097

training strategies (e.g., iterative training or con- 098

trastive training) are employed. Note that while 099

learning-based methods learn signals from ICL 100

models during training, they solely rely on the 101

trained retriever during ICL. However, in §5.3, we 102

show that there is no consistent correlation between 103

these previous approaches, leading to disagreement 104

in the selected demonstrations across different ob- 105

jectives and optimization methods, that should be 106

unified for consistent demonstration selection. 107

3 Proposed Metrics: Affinity, Diversity 108

Since induction circuits play a crucial role in ICL, 109

we hypothesize that induction circuits can also be 110

used to assess the quality of demonstrations. We 111

first identify induction heads (§3.1) and then com- 112

pute affinity and diversity in their subspace (§3.2). 113

3.1 Step 1: Extract Internal Representation 114

To identify induction heads, we follow Cho et al. 115

(2025): for each attention head h at layer l, we 116

compute s(h), the sum of attention scores from the 117

last token of the query to all the correct label tokens 118

(i.e., tokens that match the ground-truth label of 119

the query) in the demonstrations, and identify “the 120

best induction head” as the head ĥ at layer l̂ with 121

the highest s(ĥ). 122

We then extract the label token representations 123{
d
(i)
label

}k

i=1
of each demonstration i and the last 124

token’s representation dq of the query from the best 125

induction head ĥ. In detail, given a token index 126

j and the hidden state hl̂
j of j-th token from the 127

previous layer of ĥ after the layer normalization, 128

we extract the inner representation of j-th token as 129

follows: 130

dj = W ĥ,⊤
Q W ĥ

Khl̂
j , (1) 131

where W ĥ
Q and W ĥ

K are the query projection and 132
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Figure 4: Left: The tendency of diversity to accuracy on k = 16. Right: The tendency of affinity to accuracy on
k = 16.

key projection of attention head ĥ.133

3.2 Step 2: Compute Affinity and Diversity134

3.2.1 Affinity135

We define affinity as the mean of the cosine simi-136

larity between all the label token representations137

and the query representation as follows:138

Aff

[
dq,

{
d
(i)
label

}k

i=1

]
=

1

k

k∑
i=1

cos
[
dq,d

(i)
label

]
(2)139

3.2.2 Diversity140

We define diversity as the variance (the trace of the141

covariance matrix) across the label token represen-142

tations of all demonstrations as follows:143

Div

[{
d
(i)
label

}k

i=1

]
=

1

k
tr

[
D

i∈[1,k]

[
d
(i)
label

]]
(3)144

Here, D represents the covariance operator.145

4 Experiments146

We demonstrate that affinity and diversity serve as147

effective metrics for demonstration selection.148

4.1 Experimental Settings149

Model. We conduct experiments on Llama 3150

8B (AI@Meta, 2024). The model parameters are151

loaded from HuggingFace.152

Dataset. For all experiments, we use 10 clas-153

sification datasets. For details of the dataset,154

please refer to Appendix A.1. We use k =155

2, 4, 8, 12, 16, and input sequences are built by li-156

brary StaICC (Cho and Inoue, 2025).157

Evaluation. For each test instance, we randomly158

sample k demonstrations, run ICL, and record the159

prediction. Next, we sort all instances based on160

their affinity or diversity values and group them161

into bins of 30 instances each. For each bin, we 162

calculate the average affinity or diversity, and also 163

the accuracy. These averages and accuracies are 164

then used to compute the correlation between the 165

proposed metrics and accuracy. For affinity, we use 166

Spearman’s rank correlation coefficient. For diver- 167

sity, we apply Ridge regression with a Laplacian 168

kernel to capture non-linear relationships, with the 169

R2 coefficient as the measure of goodness-of-fit. 170

4.2 Main Results: Affinity and Diversity 171

Measure the Effectiveness of 172

Demonstrations 173

The Spearman’s rank correlation coefficient for 174

affinity and R2 coefficient for diversity are shown 175

in Fig. 2 and Fig. 3. These indicate that affinity 176

shows a positive correlation across various tasks, 177

and diversity achieves a high R2 coefficient in 178

nearly all tasks. Fig. 4 (Left) and Fig. 4 (Right) pro- 179

vide examples of diversity/affinity-accuracy scatter 180

plots, which further support these trends. 181

5 Analysis 182

Next, we show that affinity and diversity strongly 183

correlate with the scores from previous demonstra- 184

tion selection methods, addressing the inconsis- 185

tency issue in the previous work (§5.2). We also 186

show that the scores from previous demonstration 187

selection methods disagree with each other (§5.3). 188

Moreover, the demonstrations selected by previous 189

work practically improve affinity, but not diversity. 190

These observations suggest that it is required a new 191

demonstration selection method based on affinity 192

and diversity (§5.4). 193

5.1 Experimental Setup 194

We use three previous methods to compare affinity 195

and diversity, BM25 and BGE-M3 for training- 196

free methods, and EPR for training methods. For 197
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Figure 5: Left: The Spearman’s rank correlation coefficient of the similarity scores, affinity, diversity, and accuracy
of k = 16 on SST2. Middle: The affinity of selected demonstrations by each selection method on k = 2. Right:
The diversity of selected demonstrations by each selection method on k = 2.

details of the previous methods, please refer to198

Appendix A.2. Other settings are the same as §4.1.199

5.2 Affinity and Diversity Correlate with the200

Score of Previous Methods201

We measure the similarity scores from the previ-202

ous methods using the same prompts described in203

§4.1 and compute the Spearman’s rank correlation204

among these similarity scores, accuracy, affinity,205

and diversity. The results of k = 16 on SST2 are206

shown in Fig. 5 (Left), where both affinity and di-207

versity show a positive correlation with the similar-208

ity scores and accuracy. This indicates that affinity209

and diversity consistently measure the effectiveness210

of the demonstrations in terms of accuracy.211

5.3 Previous Methods are Not Always212

Positively Correlated with Each Other213

Meanwhile, no consistent positive correlation is214

observed among the similarity scores from previous215

selection methods. Even worse, in some cases,216

negative correlations (e.g., EPR and BM25) are217

observed, suggesting that they may not consistently218

produce optimal results. EPR shows a positive219

correlation with BGE, likely due to their reliance220

on a BERT-based encoder.221

5.4 Better Selection of Demonstrations222

Improves Affinity and Diversity223

In this section, we evaluate the previous demon-224

stration selection methods on the proposed affinity225

and diversity, and show that affinity and diversity226

are improved by the previous methods. We build227

prompts with the same query as §4.1 select demon-228

strations by previous methods and input them into229

an LM to measure the accuracy, affinity, and diver-230

sity.231

The results are shown in Fig. 5 (Middle) for 232

the affinity and accuracy, where better accuracy 233

co-occurrence with greater affinity, while, when 234

no improvement is observed in the affinity, then 235

no accuracy can be observed in the accuracy, on 236

some of the scenarios. Moreover, the results of 237

diversity are shown in Fig. 5 (Left), with a less 238

significant co-occurrence between better accuracy 239

and greater diversity. We infer that the reason is: 240

existing methods select demonstrations based on 241

their similarity to the query, without a focus on the 242

diversity, showing a possibility towards better se- 243

lection methods based on the joint metric of affinity 244

and diversity. Due to space limitations and com- 245

putational resources, we leave the demonstration 246

selection method as future work. 247

6 Conclusion 248

In summary, we propose affinity and diversity to 249

evaluate demonstration selections in the ICL sce- 250

nario. Our experiments show that affinity and di- 251

versity consistently measure the effectiveness of 252

the demonstration well, raising the possibility of 253

better demonstration selection methods. 254

7 Limitations 255

Due to computability limitations, we are not able to 256

compare the performance of affinity and diversity 257

with the learning-based retriever for diversity or 258

order of demonstrations. 259
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A Experimental Details354

A.1 Datasets355

We build ICL-formed test inputs from 10 classifi-356

cation tasks datasets: GLUE-SST2 (SST2) (Socher357

et al., 2013), Rotten tomatoes (Rott.T) (Pang and358

Lee, 2005), Finacial Phrasebank (Fina.P) (Malo359

et al., 2014), Stanford Sentiment Treebank360

(SST5) (Socher et al., 2013), TREC (TREC) (Li361

and Roth, 2002; Hovy et al., 2001), AGNews (AG-362

News) (Zhang et al., 2015), Subjective (Subjec-363

tive) (Conneau and Kiela, 2018), Tweet Eval Emo-364

tion (TEE) (Mohammad et al., 2018), Tweet Eval365

Hate (TEH) (Basile et al., 2019), Hate Speech 18366

(HS18) (de Gibert et al., 2018).367

A.2 Previous methods368

We conduct experiments to compare affinity and369

diversity using previous methods:370

• BM25: selecting the demonstrations with the371

similarity score to query, by an expanded TF-372

IDF (BM25).373

• BGE M3: selecting the demonstrations with374

the most cosine similarity between the encod-375

ing vectors of the demonstrations and query,376

by BGE M3. The model parameters are377

loaded from HuggingFace.378

• Efficient Prompt Retrieval (EPR) (Rubin379

et al., 2022): selecting the same way as BGE380

M3, by the dense encoder trained to retrieve a381

better demonstration with each ICL datasets.382

B Other datasets experiment results383

The results of most experiments in the main text on384

other datasets are shown in Fig. 6, 7, 8, 9, 10.385

C Statements386

C.1 License for Artifacts387

Models Llama 3 8B is under its specific license.388

Datasets We list the open-source license for the389

datasets used in this paper as follows:390

• CC-by4.0: Tweet eval emotions, Tweet eval391

hate392

• CC-BY-NC-SA-3.0: Financial phrasebank393

• CC-BY-SA-3.0: Hate speech 18394

• BSD: TREC, Subjective395

• Unknown: GLUE-SST2, Rotten tomatoes, 396

Stanford sentiment treebank, AGNews 397

C.2 Statistics For Data 398

We list the number of examples of datasets used in 399

this paper as follows Table 1. 400

C.3 AI Agent Usage 401

AI Agents are only used for writing improving and 402

grammar checking in this paper. 403
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Table 1: Raw dataset split size for each sub-dataset.

SST2 Rott.T Fina.P SST5 TREC AGNews Subj. TEE TEH HS18

Demonstration Set 4096 4096 512 4096 4096 4096 4096 4096 3192 4096
Test Set 512 512 512 512 512 512 512 512 512 512
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Figure 6: The Affinity and Diversity of the demonstrations. Colors refer to the accuracy of all classification tasks on
k = 16.
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Figure 9: Right: The affinity of selected demonstrations by each selection method on k = 2. Right: The diversity
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Figure 10: The Spearman’s rank correlation coefficient of the similarity scores, affinity, diversity, and accuracy of
k = 16
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