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Abstract

The performance of In-context Learning (ICL)
is highly sensitive to the selected demonstra-
tions. Existing approaches to demonstration se-
lection optimize different objectives, yielding
inconsistent results. To address this, we pro-
pose a unified metric—affinity and diversity—that
leverages ICL model’s internal representations.
Our experiments show that both affinity and
diversity strongly correlate with test accuracies,
indicating their effectiveness for demonstration
selection. Moreover, we show that our pro-
posed metrics align well with various previous
works to unify the inconsistency.

1 Introduction

Language Models (LMs) show In-Context
Learning (ICL) ability (Dong et al., 2024), learning
to solve tasks without updating model parameters
by processing a query along with demonstrations of
input-label pairs. The performance of ICL is highly
sensitive to the quality of demonstrations (Liu et al.,
2021), and previous work has proposed several
strategies for selecting better demonstrations.

One prominent approach is to select demonstra-
tions based on their similarity to queries. Here,
the similarity is computed by models indepen-
dent of the ICL-executed LMs, e.g., off-the-shelf
document retrievers (Rubin et al., 2022), such as
BM25 (Robertson and Zaragoza, 2009), fine-tuned
document retrievers (Luo et al., 2024), and encoder-
based pretrained LMs (Chen et al., 2024). While
these previous methods have improved ICL perfor-
mance, we find that they capture different aspects
of demonstration quality and do not converge on
a consensus measure (Fig. 5, Left). Developing a
unified metric that integrates various metrics leads
to a deeper understanding of demonstration quality
and further enhances ICL performance.

Therefore, in this paper, we propose a novel ap-
proach that leverages the ICL model’s internal rep-
resentations to unify previous selection methods.
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Figure 1: The Affinity and Diversity of the demonstra-
tions in TREC, SST5, TEE on k£ = 16. The colors of the
circles refer to the accuracy of the classification tasks.
The line and background color refer to the decision
boundary to predict labels by affinity and diversity. The
larger the affinity and diversity, the higher the accuracy
tends to be.

We first identify a self-attention head that is crit-
ical for ICL, and on the subspace defined by the
Wg W of this attention head, we define two new
metrics: (i) affinity between a query and demon-
strations and (ii) diversity among demonstrations.
Our experiments show that proposed metrics corre-
late with existing demonstration selection methods
(Fig.5, Left) and are useful for identifying better
demonstrations (Fig. 1).

Our contributions are:

* We propose internal representation-based
affinity and diversity as a better joint metric on
ICL for demonstration selection (§4.2), which
unifies the previous selection methods (§5.2).

* We empirically show that previous demon-
stration selection methods focus on different
aspects of selected demonstrations, showing
that they are not always positively correlated
with other selection methods (§5.3).
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Figure 2: The correlation coefficient between affinity
and accuracy

2 Background

2.1 In-context Learning

Given k input-label pairs (demonstrations) and a
query for a classification task, the demonstrations
and query are concatenated in natural language
form and fed to LMs (e.g., for £ = 2, “Good
movies. Label: Positive. That’s too cruel. Label:
Negative. I like it. Label: 7). Here, “: ” serves as a
forerunner token to concatenate inputs and labels,
and trigger the prediction of the label tokens. The
LMs return a probability distribution over the next
tokens, and ICL selects the token with the highest
probability as the final prediction.

2.2 Induction Circuit

An induction circuit is an abstraction of some at-
tention heads to lead the inference of ICL (Elhage
et al., 2021), which consists of several interacting
attention heads across different layers: (i) previous
token heads, which copy information from previ-
ous tokens to the current token, and (ii) induction
heads, which attend to tokens based on context and
boost the probability of predicting token [B] when
[A][B]...[A"] is provided as input. In this paper,
we find the most effective induction head, and de-
fine the affinity-diversity metrics on the Wg Wk
mappings of this head.

2.3 Demonstration Selection Methods

There are two main approaches for retrieving
demonstrations. One is to use off-the-shelf retriev-
ers, such as BM25 (Robertson and Zaragoza, 2009)
or BGE M3 (Chen et al., 2024). Off-the-shelf re-
trievers approaches may be sub-optimal since they
are not finetuned for specific tasks. Another ap-
proach is to train retrievers, e.g., using encoder-
based LMs, based on supervision signals from ICL
models. To optimize such retrievers, various loss
functions (e.g., List-wise Ranking Loss (Li et al.,
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Figure 3: The coefficient of determination between di-
versity and accuracy

2023) and InfoNCE Loss (Rubin et al., 2022)) and
training strategies (e.g., iterative training or con-
trastive training) are employed. Note that while
learning-based methods learn signals from ICL
models during training, they solely rely on the
trained retriever during ICL. However, in §5.3, we
show that there is no consistent correlation between
these previous approaches, leading to disagreement
in the selected demonstrations across different ob-
jectives and optimization methods, that should be
unified for consistent demonstration selection.

3 Proposed Metrics: Affinity, Diversity

Since induction circuits play a crucial role in ICL,
we hypothesize that induction circuits can also be
used to assess the quality of demonstrations. We
first identify induction heads (§3.1) and then com-
pute affinity and diversity in their subspace (§3.2).

3.1 Step 1: Extract Internal Representation

To identify induction heads, we follow Cho et al.
(2025): for each attention head h at layer [, we
compute s(h), the sum of attention scores from the
last token of the query to all the correct label tokens
(i.e., tokens that match the ground-truth label of
the query) in the demonstrations, and identify “the
best induction head” as the head h at layer [ with
the highest s(h).

We then extract the label token representations
{dl(;{)el}llc . of each demonstration ¢ and the last
token’s rezﬁresentation d of the query from the best
induction head k. In detail, given a token index
7 and the hidden state hg- of j-th token from the
previous layer of h after the layer normalization,
we extract the inner representation of j-th token as

follows: . o
dj = Wiy T Wikhl, )]

where Wc’j and WI’% are the query projection and
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Figure 4: Left: The tendency of diversity to accuracy on k = 16. Right: The tendency of affinity to accuracy on

k = 16.

key projection of attention head h.

3.2 Step 2: Compute Affinity and Diversity
3.2.1 Affinity

We define affinity as the mean of the cosine simi-
larity between all the label token representations
and the query representation as follows:

Aff [dq, {df;{)el};} = % Ek cos [%ﬂfﬁla}
1=1
(2)

3.2.2 Diversity

We define diversity as the variance (the trace of the
covariance matrix) across the label token represen-
tations of all demonstrations as follows:

Div |:{dl(gael}f1:| = %tr

Here, D represents the covariance operator.

D [df;')bel}] 3)

i€[l,k

4 Experiments

We demonstrate that affinity and diversity serve as
effective metrics for demonstration selection.

4.1 Experimental Settings

Model. We conduct experiments on Llama 3
8B (Al@Meta, 2024). The model parameters are
loaded from HuggingFace.

Dataset. For all experiments, we use 10 clas-
sification datasets. For details of the dataset,
please refer to Appendix A.1. We use £k =
2,4,8,12,16, and input sequences are built by li-

brary StalCC (Cho and Inoue, 2025).

Evaluation. For each test instance, we randomly
sample k£ demonstrations, run ICL, and record the
prediction. Next, we sort all instances based on
their affinity or diversity values and group them

into bins of 30 instances each. For each bin, we
calculate the average affinity or diversity, and also
the accuracy. These averages and accuracies are
then used to compute the correlation between the
proposed metrics and accuracy. For affinity, we use
Spearman’s rank correlation coefficient. For diver-
sity, we apply Ridge regression with a Laplacian
kernel to capture non-linear relationships, with the
R? coefficient as the measure of goodness-of-fit.

4.2 Main Results: Affinity and Diversity
Measure the Effectiveness of
Demonstrations

The Spearman’s rank correlation coefficient for
affinity and R? coefficient for diversity are shown
in Fig. 2 and Fig. 3. These indicate that affinity
shows a positive correlation across various tasks,
and diversity achieves a high R? coefficient in
nearly all tasks. Fig. 4 (Left) and Fig. 4 (Right) pro-
vide examples of diversity/affinity-accuracy scatter
plots, which further support these trends.

5 Analysis

Next, we show that affinity and diversity strongly
correlate with the scores from previous demonstra-
tion selection methods, addressing the inconsis-
tency issue in the previous work (§5.2). We also
show that the scores from previous demonstration
selection methods disagree with each other (§5.3).
Moreover, the demonstrations selected by previous
work practically improve affinity, but not diversity.
These observations suggest that it is required a new
demonstration selection method based on affinity
and diversity (§5.4).

5.1 Experimental Setup

We use three previous methods to compare affinity
and diversity, BM25 and BGE-M3 for training-
free methods, and EPR for training methods. For
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Figure 5: Left: The Spearman’s rank correlation coefficient of the similarity scores, affinity, diversity, and accuracy
of kK = 16 on SST2. Middle: The affinity of selected demonstrations by each selection method on k£ = 2. Right:
The diversity of selected demonstrations by each selection method on &k = 2.

details of the previous methods, please refer to
Appendix A.2. Other settings are the same as §4.1.

5.2 Affinity and Diversity Correlate with the
Score of Previous Methods

We measure the similarity scores from the previ-
ous methods using the same prompts described in
§4.1 and compute the Spearman’s rank correlation
among these similarity scores, accuracy, affinity,
and diversity. The results of k£ = 16 on SST2 are
shown in Fig. 5 (Left), where both affinity and di-
versity show a positive correlation with the similar-
ity scores and accuracy. This indicates that affinity
and diversity consistently measure the effectiveness
of the demonstrations in terms of accuracy.

5.3 Previous Methods are Not Always
Positively Correlated with Each Other

Meanwhile, no consistent positive correlation is
observed among the similarity scores from previous
selection methods. Even worse, in some cases,
negative correlations (e.g., EPR and BM25) are
observed, suggesting that they may not consistently
produce optimal results. EPR shows a positive
correlation with BGE, likely due to their reliance
on a BERT-based encoder.

5.4 Better Selection of Demonstrations
Improves Affinity and Diversity

In this section, we evaluate the previous demon-
stration selection methods on the proposed affinity
and diversity, and show that affinity and diversity
are improved by the previous methods. We build
prompts with the same query as §4.1 select demon-
strations by previous methods and input them into
an LM to measure the accuracy, affinity, and diver-
sity.

The results are shown in Fig. 5 (Middle) for
the affinity and accuracy, where better accuracy
co-occurrence with greater affinity, while, when
no improvement is observed in the affinity, then
no accuracy can be observed in the accuracy, on
some of the scenarios. Moreover, the results of
diversity are shown in Fig. 5 (Left), with a less
significant co-occurrence between better accuracy
and greater diversity. We infer that the reason is:
existing methods select demonstrations based on
their similarity to the query, without a focus on the
diversity, showing a possibility towards better se-
lection methods based on the joint metric of affinity
and diversity. Due to space limitations and com-
putational resources, we leave the demonstration
selection method as future work.

6 Conclusion

In summary, we propose affinity and diversity to
evaluate demonstration selections in the ICL sce-
nario. Our experiments show that affinity and di-
versity consistently measure the effectiveness of
the demonstration well, raising the possibility of
better demonstration selection methods.

7 Limitations

Due to computability limitations, we are not able to
compare the performance of affinity and diversity
with the learning-based retriever for diversity or
order of demonstrations.
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A Experimental Details

A.1 Datasets

We build ICL-formed test inputs from 10 classifi-
cation tasks datasets: GLUE-SST2 (SST2) (Socher
et al., 2013), Rotten tomatoes (Rott.T) (Pang and
Lee, 2005), Finacial Phrasebank (Fina.P) (Malo
et al., 2014), Stanford Sentiment Treebank
(SST5) (Socher et al., 2013), TREC (TREC) (Li
and Roth, 2002; Hovy et al., 2001), AGNews (AG-
News) (Zhang et al., 2015), Subjective (Subjec-
tive) (Conneau and Kiela, 2018), Tweet Eval Emo-
tion (TEE) (Mohammad et al., 2018), Tweet Eval
Hate (TEH) (Basile et al., 2019), Hate Speech 18
(HS18) (de Gibert et al., 2018).

A.2  Previous methods
We conduct experiments to compare affinity and

diversity using previous methods:

* BM25: selecting the demonstrations with the
similarity score to query, by an expanded TF-
IDF (BM25).

* BGE M3: selecting the demonstrations with
the most cosine similarity between the encod-
ing vectors of the demonstrations and query,
by BGE M3. The model parameters are
loaded from HuggingFace.

 Efficient Prompt Retrieval (EPR) (Rubin
et al., 2022): selecting the same way as BGE
M3, by the dense encoder trained to retrieve a
better demonstration with each ICL datasets.

B Other datasets experiment results

The results of most experiments in the main text on
other datasets are shown in Fig. 6, 7, 8, 9, 10.

C Statements

C.1 License for Artifacts

Models Llama 3 8B is under its specific license.

Datasets We list the open-source license for the
datasets used in this paper as follows:

* CC-by4.0: Tweet eval emotions, Tweet eval
hate

* CC-BY-NC-SA-3.0: Financial phrasebank
* CC-BY-SA-3.0: Hate speech 18

* BSD: TREC, Subjective

e Unknown: GLUE-SST2, Rotten tomatoes,
Stanford sentiment treebank, AGNews
C.2 Statistics For Data
We list the number of examples of datasets used in
this paper as follows Table 1.
C.3 AI Agent Usage

Al Agents are only used for writing improving and
grammar checking in this paper.



Table 1: Raw dataset split size for each sub-dataset.
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Figure 6: The Affinity and Diversity of the demonstrations. Colors refer to the accuracy of all classification tasks on

k = 16.
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Figure 10: The Spearman’s rank correlation coefficient of the similarity scores, affinity, diversity, and accuracy of
k=16
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