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DSLR: Diversity Enhancement and Structure Learning for
Rehearsal-based Graph Continual Learning

Anonymous Author(s)∗

ABSTRACT
We investigate the replay buffer in rehearsal-based approaches for
graph continual learning (GCL) methods. Existing rehearsal-based
GCL methods select the most representative nodes for each class
and store them in a replay buffer for later use in training subsequent
tasks. However, we discovered that considering only the class repre-
sentativeness of each replayed node makes the replayed nodes to be
concentrated around the center of each class, incurring a potential
risk of overfitting to nodes residing in those regions, which ag-
gravates catastrophic forgetting. Moreover, as the rehearsal-based
approach heavily relies on a few replayed nodes to retain knowl-
edge obtained from previous tasks, involving the replayed nodes
that have irrelevant neighbors in the model training may have a sig-
nificant detrimental impact onmodel performance. In this paper, we
propose a GCL model named Diversity enhancement and Structure
Learning for Rehearsal-based graph continual learning (DSLR).
Specifically, we devise a coverage-based diversity (CD) approach to
consider both the class representativeness and the diversity within
each class of the replayed nodes. Moreover, we adopt graph struc-
ture learning (GSL) to ensure that the replayed nodes are connected
to truly informative neighbors. Extensive experimental results
demonstrate the effectiveness and efficiency of DSLR. Our source
code is available at https://anonymous.4open.science/r/DSLR-F525.

1 INTRODUCTION
Training a new model for every large stream of new data is not only
time-consuming but also cost-intensive. Hence, continual learning
[17, 19, 20, 25, 26, 31, 32, 34] has become crucial in addressing this
challenge. Continual learning emphasizes efficient learning from
newly introduced data without retraining the model on the entire
dataset, enabling the preservation of previously acquired knowl-
edge. However, there is a risk of forgetting the previously acquired
knowledge when the model is trained on new data, resulting in
the performance decline. This phenomenon is referred to as cat-
astrophic forgetting, and the ultimate goal of continual learning
models is to mitigate catastrophic forgetting.

Continual learning approaches are broadly categorized into the
regularization-based approach [10, 12, 15, 26, 30], architectural ap-
proach [32], and rehearsal-based approach [17, 23, 26, 27, 34]. The
rehearsal-based approach, which will be investigated in this paper,
involves storing a small amount of data from the current task for
later use when training subsequent tasks. This collection of data
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Figure 1: T-SNE visualization of node embeddings belonging
to class 1 and 2 along with the replayed nodes for each class
selected using (a) MF and (b) CD in Citeseer dataset.

is referred to as the replay buffer. The rehearsal-based approach is
widely recognized as the most effective for addressing continual
learning among other approaches for continual learning [2].

One of the state-of-the-art rehearsal-based approaches for graph
continual learning (GCL), named ER-GNN [34], selects the most rep-
resentative nodes for each class and stores them in a replay buffer
for later use in training subsequent tasks. Specifically, ER-GNN pro-
posed the mean feature (MF) approach, which computes the average
of the node features in each class, and store nodes that are close to
the average of each class in the replay buffer. However, while this
approach considers the class representativeness of each replayed
node, we argue that the diversity of the replayed nodes within each
class is overlooked. Fig. 1 (a) shows nodes belonging to two different
classes in Citeseer dataset, along with the replayed nodes for each
class obtained using MF. We observe that the replayed nodes for
each class are mainly concentrated around the center of each class
in the embedding space, incurring a potential risk of overfitting to
nodes residing in those regions, which aggravates catastrophic for-
getting. As a simple remedy for considering both the class represen-
tativeness and the diversity within each class of the replayed nodes,
we devise a coverage-based diversity (CD) approach for selecting
nodes to be replayed. By doing so, the replayed nodes can be evenly
distributed across the embedding space of each class (See Fig. 1 (b)),
indicating that overfitting to specific regions can be alleviated.

However, we observed that emphasizing the diversity aspect
using CD can lead to another issue: some replayed nodes (i.e., those
near the decision boundary as shown in Fig. 1 (b)) would be in-
evitably connected tomany nodes from different classes. Concretely,
Table 1 shows that using CD instead of MF leads to a lower ho-
mophily ratio1 of the replayed nodes for each class. This in turn re-
sults in a low homophily ratio of the replayed nodes, which is harm-
ful for training Graph Neural Networks (GNNs) whose performance
is known to degrade on graphs with a low homophily ratio [5, 33]
(See Fig. 2 where the replayed nodes with a lower homophily incurs

1Homophily ratio is a measure that indicates the proportion of neighbors connected
to a specific node belonging to the same class.
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Table 1: Homophily ratio
of the replayed nodes us-
ing MF & CD in Citeseer
dataset.

MF CD
Class 1 0.68 ± 0.43 0.57 ± 0.45
Class 2 0.91 ± 0.24 0.92 ± 0.22
Class 3 0.82 ± 0.28 0.76 ± 0.40
Class 4 0.88 ± 0.26 0.82 ± 0.36
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Figure 2: Forgetting over
various homophily ratios
of the replayed nodes in
Citeseer dataset.

the model to more severely forget2 previously acquired knowl-
edge3). On the other hand, it is important to note that the increase
in the forgetting performance begins to slow down beyond a certain
point, and the variance begins to increase. This indicates that sim-
ply increasing the homophily ratio of the replay buffer deteriorates
the model robustness, and thus is not an effective remedy.

In the light of these issues regarding the replay buffer of rehearsal-
based approaches for GCL,we propose aGCLmodel namedDiversity
enhancement and Structure Learning for Rehearsal-based graph
continual learning (DSLR), that consists of two major components:
Component 1 – Selecting the replayed nodes aiming at considering
both the class representativeness and the diversity within each class,
and Component 2 – Reformulating the graph structure aiming en-
couraging the replayed nodes to be connected to truly informative
neighbors. Note that we define truly informative neighbors as those
that not only belong to the same class with the target node (i.e., ho-
mophily), but also share similar structure (i.e., structural proximity).

More precisely, we devise a coverage-based diversity (CD) ap-
proach for selecting nodes to be replayed (Component 1). The main
idea of CD is to select diverse nodes while considering the class
representativeness, ensuring that the replayed nodes effectively
represent the entire embedding space of their own classes, which
helps alleviate catastrophic forgetting. On the other hand, as the
rehearsal-based approach heavily relies on a few replayed nodes
to retain knowledge obtained from previous tasks, involving the
replayed nodes that have irrelevant neighbors in the model train-
ing may have a significant detrimental impact on model perfor-
mance. To address this issue, we adopt graph structure learning
(GSL) [3, 33, 35] to reformulate the graph structure in a way that
allows the replayed nodes to be connected to truly informative
neighbors, so that high-quality information can be propagated into
the replayed nodes through message passing (Component 2). The
main idea of GSL is to add informative neighbors to the replayed
nodes, and selectively delete edges between replayed nodes and
their neighbors, both of which contribute to enhancing the effective-
ness of the replay buffer. More precisely, we train a link predictor
using both the class labels and the graph structure to capture the
homophily and structural proximity, respectively, which helps us
discover truly informative neighbors of the replayed nodes. Last
but not least, we devise an efficient candidate selection method to
improve the scalability of the graph structure learning.

Our contributions are summarized as follows:

2Forgetting in continual learning refers to the extent to which the accuracy of a
particular task decreases after completing all tasks, e.g., if the accuracy of Task 1 was
90% and dropped to 50% after completing all tasks, the forgetting of Task 1 is 40%.
3Please refer to Appendix A for the detailed experimental setup.

(1) We emphasize the consideration of diversity when selecting the
replayed nodes, a factor that has been overlooked in existing
methods, to ensure that replayed nodes can effectively represent
the entire data of their respective class.

(2) We present a novel discovery that emphasizes the substantial
influence of the quality of neighbors surrounding the replayed
nodes on the overall model performance. To this end, we adopt
the graph structure learning to ensure that the replayed nodes
are connected to truly informative neighbors.

(3) Extensive experiments show that DSLR outperforms state-of-
the-art GCL methods, even with a small replay buffer size.

2 RELATED WORKS
We provide a concise overview of related work in this section. A
complete discussion is in Appendix B.

Graph Neural Networks. GNNs aggregate information from
neighboring nodes, enabling them to capture both the structure and
features of a graph, including more intricate graph patterns. One
popular GNN model is Graph Convolutional Networks (GCN) [11],
which introduces semi-supervised learning on graph-structured
data using a convolutional neural network. GCN employs spectral
graph convolution to update node representations based on their
neighbors. Another approach, Graph Attention Networks (GAT)
[24], employs attention mechanisms to assign varying weights to
neighbors based on their importance.

Graph Structure Learning. Real-world graphs contain incom-
plete structure. To alleviate the effect of noise, recent studies have
focused on enriching the structure of the graph. The objective of
these studies is to mitigate the noise in the graph and improve the
performance of graph representation learning by utilizing refined
data. GAUG [33] leverages edge predictors to effectively encode
class-homophilic structure, thereby enhancing intra-class edges
and suppressing inter-class edges within a given graph structure.
IDGL [4] jointly and iteratively learns the graph structure and
embeddings optimized for enhancing the performance of the down-
stream task. The application of structure learning in these methods
improves the performance of downstream tasks by refining the in-
complete or noisy structure of the graph, taking into consideration
the inherent characteristics of real-world graphs.

Continual Learning. Continual learning is a methodology in
which a model learns from a continuous stream of datasets while
retaining knowledge from previous tasks. However, as the model
progresses through tasks, it often experiences a decline in perfor-
mance due to forgetting the knowledge acquired from past tasks.
This phenomenon is referred to as catastrophic forgetting. The
primary objective of continual learning is to minimize catastrophic
forgetting, and there are three main approaches employed in con-
tinual learning methods: 1) Rehearsal-based approach aims to select
and store data from previous tasks for later use in training subse-
quent tasks. In the context of GCL, the selected nodes are referred
to as replayed nodes, and the set of the replayed nodes is called re-
play buffer. The primary objective of the rehearsal-based approach
is to carefully select the optimal replayed nodes that prevent the
model from forgetting knowledge acquired in previous tasks. 2) Ar-
chitectural approach involves modifying the model’s architecture
based on the task. If the model’s capacity is deemed insufficient to
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effectively learn new knowledge, the architecture is expanded to
accommodate the additional requirements. 3) Regularization-based
approach aims to regularize the model’s parameters in order to
minimize catastrophic forgetting while learning new tasks. This
approach focuses on preserving parameters that were crucial for
learning previous tasks, while allowing the remaining parameters
to adapt and learn new knowledge.

3 PRELIMINARIES
Graph Neural Networks. A graph is represented as G = (𝐴,𝑋 ),
where 𝐴 ∈ R𝑛×𝑛 is the adjacency matrix and 𝑋 ∈ R |𝑉 |×𝑑 is the
feature matrix with 𝑑 as the number of features. 𝑉 = {𝑣𝑖 }𝑛𝑖=1 is
the set of nodes, and |𝑉 | = 𝑛. In this paper, we use GAT [24]
as the backbone whose aggregation scheme is defined as: ℎ (𝑙 )

𝑖
=

𝜎 (∑𝑗∈N(𝑖 ) 𝛼𝑖 𝑗𝑊
(𝑙 )ℎ (𝑙−1)

𝑗
), where 𝛼𝑖 𝑗 is the attention score for the

first-order neighbors of node 𝑣𝑖 ,ℎ𝑙𝑖 is the 𝑙-th layer representation of
node 𝑣𝑖 ,N(𝑖) is the neighboring nodes of node 𝑣𝑖 , 𝜎 is an activation
function, and𝑊 (𝑙 ) is a trainable weight matrix at the 𝑙-th layer. We
use the cross-entropy loss for the node classification task defined
as follows:

LD (𝜃 ;𝐴,𝑋 ) =
1
|D |

∑︁
𝑣𝑖 ∈D

𝑙 (softmax(ℎ𝐿𝑖 ), 𝑦𝑖 ) . (1)

where D is the set of labeled nodes, ℎ𝐿
𝑖
is the final representation

of node 𝑣𝑖4, and 𝑦𝑖 is the label of node 𝑣𝑖 .

Continual Learning Setting. We use T = {𝑇1,𝑇2, · · · ,𝑇𝑀 } to
denote the set of tasks, where𝑀 is the number of tasks. Then, the
set of graphs in𝑀 tasks is defined as follows:

G =
{
G1, G2, ..., G𝑀

}
, where G𝑡 = G𝑡−1 + ΔG𝑡 , (2)

where G𝑡 = (𝐴𝑡 , 𝑋 𝑡 ) is the attributed graph given in Task 𝑇𝑖 , and
ΔG𝑡 = (Δ𝐴𝑡 ,Δ𝑋 𝑡 ) is the change of the node attributes and the
graph structure in Task 𝑇𝑡 . The purpose of graph continual learn-
ing is to train models (GNN𝜃 1 ,GNN𝜃 2 , ...,GNN𝜃𝑀 ) from stream-
ing data where 𝜃𝑡 is the parameter of the GNN model in Task 𝑇𝑡 .
In this work, we focus on the node classification task under the
class-incremental setting [6], where unseen classes are continually
introduced as the task progresses.

4 PROPOSED METHOD
In this section, we describe our proposed method, DSLR, in detail.
Fig. 3 presents the overall architecture of DSLR.

4.1 Coverage-based Diversity for Replay Buffer
Recall that in Fig. 1 (a) we observed that the replayed nodes of an
existing replay technique, i.e., mean feature (MF), are concentrated
around the center of each class in the embedding space, incurring
a potential risk of overfitting to nodes residing in those regions,
which aggravates catastrophic forgetting. To address this issue, we
propose a coverage-based diversity (CD) approach that considers
both the class representativeness and the diversity within each class
of the replayed nodes. The main idea of CD is to utilize distance-
based criteria to define the coverage for each node.

4For simplicity, we denote ℎ𝐿
𝑖
as ℎ𝑖 from here.

Buffer Selection. The coverage of node 𝑣𝑖 , i.e., C(𝑣𝑖 ), refers to
the set of nodes belonging to the same class as node 𝑣𝑖 while being
located within a certain distance in the embedding space from node
𝑣𝑖 . Given node 𝑣𝑖 and its embedding ℎ𝑖 = GNN(𝑣𝑖 ), the coverage
of node 𝑣𝑖 is formally defined as follows:
C(𝑣𝑖 ) =

{
𝑣 𝑗 | 𝑑𝑖𝑠𝑡 (ℎ𝑖 , ℎ 𝑗 ) < 𝑑, 𝑦𝑖 = 𝑦 𝑗

}
, where𝑑 = 𝑟 · 𝐸 (𝑣𝑖 ), (3)

where 𝑑𝑖𝑠𝑡 (ℎ𝑖 , ℎ 𝑗 ) is the Euclidean distance between the embedding
of nodes 𝑣𝑖 and 𝑣 𝑗 , 𝐸 (𝑣𝑖 ) denotes the average of the sum of the
pairwise distances between the embedding of training nodes that
belong to the same class with node 𝑣𝑖 , and 𝑟 is a hyperparameter.

The objective of CD is to select 𝑒𝑙 nodes to be replayed in a
manner that maximizes the number of nodes included in the union
of their coverage as follows:

B𝐶𝑙 = argmax{𝑣𝑏1 ,· · ·,𝑣𝑏𝑒𝑙 |𝑣𝑏1 ,· · ·,𝑣𝑏𝑒𝑙 ∈𝑡𝑟𝑎𝑖𝑛𝐶𝑙 }
���𝐶𝑜𝑣𝑒𝑟 ({𝑣𝑏1 , · · ·, 𝑣𝑏𝑒𝑙 })��� , (4)

where 𝐶𝑜𝑣𝑒𝑟 ({𝑣1, · · ·, 𝑣𝑛 }) = C(𝑣1 ) ∪ · · · ∪ C(𝑣𝑛 ) . (5)

where B𝐶𝑙 is the set of replayed nodes of class𝐶𝑙 , where |B𝐶𝑙 | = 𝑒𝑙 ,
𝑡𝑟𝑎𝑖𝑛𝐶𝑙 is the training nodes of class𝐶𝑙 , and

���𝐶𝑜𝑣𝑒𝑟 ({𝑣𝑏1 , · · ·, 𝑣𝑏𝑒𝑙 })���
refers to the cardinality of 𝐶𝑜𝑣𝑒𝑟 ({𝑣𝑏1 , · · ·, 𝑣𝑏𝑒𝑙 }). We employ a
greedy algorithm to solve Equation 4, given its NP-hard complexity.
The detailed algorithm is described in Appendix H, and Table 5
illustrates its competitive training speed through scalability analy-
sis. Through CD, we select 𝑒𝑙 replayed nodes for each class 𝐶𝑙 and
store them in the replay buffer, B, for training subsequent tasks.
𝑒𝑙 is assigned proportionally to the number of nodes belonging to
each class in the training set, i.e., for 𝑒𝑙 of class 𝐶𝑙 at task 𝑇𝑡 , we

set 𝑒𝑙 =
��𝑡𝑟𝑎𝑖𝑛𝐶𝑙 ��∑𝑡−1

𝑡=1
∑
𝐶𝑘 ∈C𝑇𝑡

|𝑡𝑟𝑎𝑖𝑛𝐶𝑘 |
· |B|, where C𝑇𝑡 denotes the set of

classes in task 𝑇𝑡 . It is important to note that by ensuring that the
coverage covers the maximum number of nodes, we not only con-
sider the class representativeness, but also the diversity within
each class of the replayed nodes. Eventually, we expect the selected
𝑒𝑙 replayed nodes through the aforementioned process to compre-
hensively represent the entire data distribution of class𝐶𝑙 . In Fig. 1
(b), we show that the nodes selected based on CD are indeed evenly
distributed across the embedding space, preventing overfitting to
specific regions, which helps alleviate catastrophic forgetting.

4.2 Structure Learning for Replay Buffer
Now that we have selected the replayed nodes by using CD, it is cru-
cial to ensure that the replayed nodes are connected to informative
neighbors so that high-quality information can be aggregated. This
is especially important as the rehearsal-based approach heavily re-
lies on a few replayed nodes, implying that involving the replayed
nodes that have irrelevant neighbors in the model training may
have a significant detrimental impact on model performance. To
address this issue, we adopt graph structure learning (GSL) [35] to
reformulate the graph structure in a way that allows the replayed
nodes to be connected to truly informative neighbors, so that high-
quality information can be propagated into the replayed nodes
through message passing. More precisely, we train a link prediction
module (Section 4.2.1), and use it to compute the link prediction
score for each edge between a replayed node and candidates to be
connected. Based on the scores, we decide whether to add or delete
the edges (Section 4.2.2).

3
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Figure 3: Overall architecture of DSLR. Upper boxes illustrate the comprehensive process of GCL using DSLR. After node
classification, replayed nodes are selected (lower left box) and their structure is refined as new nodes are introduced (lower
right box). The refined graph is then utilized for subsequent downstream tasks.

4.2.1 Training Link Prediction Module. Given the a graph
in each task 𝑇𝑡 , we train a GNN-based link prediction module.
The main goal of the link prediction module is to discover truly
informative neighbors of the replayed nodes, i.e., those that not only
belong to the same class (i.e., homophily), but also share similar
structure (i.e., structural proximity), so that they can be later used to
refine the graph structure. To this end, we employ two loss functions
to train the link prediction module, i.e., 1) link prediction loss and
2) node classification loss. The link prediction loss, which aims to
capture the structural proximity, trains the link prediction module
that predicts whether an edge exists between two given nodes.
Specifically, we use a GNN-based link predictor, LP𝜙𝑡 , to obtain
a node embedding 𝑧𝑖 for each node 𝑣𝑖 , and compute the cosine
similarity, i.e., 𝑆𝑖𝑚𝑖 𝑗 =

𝑧𝑖 ·𝑧 𝑗
∥𝑧𝑖 ∥ ·∥𝑧 𝑗 ∥ , and use it to compute the link

prediction score 𝑆𝑖 𝑗 between node 𝑣𝑖 and node 𝑣 𝑗 , i.e., 𝑆𝑖 𝑗 =
𝑆𝑖𝑚𝑖 𝑗+1

2 .
For task 𝑇𝑡 , we construct a training set D𝑙𝑖𝑛𝑘

𝑡 that contain positive
and negative edges sampled at each epoch to compute the link
prediction loss L𝑙𝑖𝑛𝑘 as follows:

L𝑙𝑖𝑛𝑘 = −(
∑︁

𝑒𝑖 𝑗 ∈D𝑙𝑖𝑛𝑘𝑡

(𝐴𝑡𝑖 𝑗 log(𝑆𝑖 𝑗 ) + (1 − 𝐴𝑡𝑖 𝑗 ) log(1 − 𝑆𝑖 𝑗 ) ) . (6)

In addition to the unsupervised link prediction loss in Equation 6,
we also include the node classification loss, which aims to cap-
ture the homophily aspect. It utilizes the class label information of
training nodes, and is defined as follows:

L𝑛𝑜𝑑𝑒 = 𝛽LD𝑡 𝑡𝑟 (𝜃
𝑡 ;𝐴𝑡 , 𝑋 𝑡 ) + (1 − 𝛽 )LB (𝜃𝑡 ;𝐴𝑡 , 𝑋 𝑡 ), (7)

where LD𝑡 𝑡𝑟 and LB denote the cross-entropy loss defined in
Equation 1 for D𝑡

𝑡𝑟 and B, respectively, and D𝑡
𝑡𝑟 and B are the

set of the training nodes in the current task𝑇𝑡 and the replay buffer
B stored until task 𝑇𝑡−1, respectively. It is important to note that
adding the node classification loss yields a higher homophily ratio
of the replayed nodes than when only the link prediction loss is
considered as will be demonstrated in Figure 9 in our experiments.

The final loss function for the link prediction module, L𝐿𝑃 , with
hyperparameter 𝜆 to balance two losses is defined as follows:

L𝐿𝑃 = 𝜆L𝑙𝑖𝑛𝑘 + (1 − 𝜆)L𝑛𝑜𝑑𝑒 . (8)

In summary, the link prediction module aims to add/delete nodes
with similar/dissimilar embeddings obtained by a GNN-based en-
coder, implying that it considers not only the class information
(i.e., homophily) through L𝑛𝑜𝑑𝑒 , but also the graph structural in-
formation (i.e., structural proximity) through L𝑙𝑖𝑛𝑘 , which helps
us discover truly informative neighbors of the replayed nodes.

4.2.2 Structure Inference. Having trained the link prediction
module, we conduct structure inference to refine the structure of
the replayed nodes using the trained link prediction module. The
inference stage is divided into two phases, i.e., 1) edge addition and
2) edge deletion.

For edge addition, the trained link prediction module is utilized
to compute the link prediction scores between each replayed node
and all other nodes. We connect each replayed node with 𝑁 nodes
based on the score, where 𝑁 is a hyperparameter, as follows:

�̃�𝑏𝑖 𝑗 =

{
1, if 𝑣𝑗 ∈ K𝑏𝑖 ∪ N(𝑣𝑏𝑖 )
0, otherwise

(9)

whereK𝑏𝑖 denotes the set of 𝑁 nodes among all nodes in the graph,
whose link prediction scores with a replayed node 𝑣𝑏𝑖 is the high-
est, i.e., K𝑏𝑖 = {argmax(𝑁 )𝑣𝑗 𝑆𝑏𝑖 𝑗 }. Note that although connecting
nodes whose scores exceed a certain threshold is another option,
we observed that this method leads to a significant number of edges
being connected to a replayed node, which empirically results in
an unsatisfactory performance.

For edge deletion, the candidate edges to be deleted are those that
are originally connected to the replayed nodes.We remove the edges
whose link prediction scores do not surpass a certain threshold.
More formally, the structure information between a replayed node
𝑣𝑏𝑖 and its neighbor 𝑣 𝑗 ∈ N (𝑣𝑏𝑖 ) is updated as follows:

�̃�𝑏𝑖 𝑗 =

{
1, if 𝑆𝑏𝑖 𝑗 > 𝜏

0, otherwise
, (10)
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where 𝜏 is a hyperparameter indicating the threshold of the score.
Finally, through the above process of structure inference, we

update the adjacency matrix 𝐴𝑡 for task 𝑇𝑡 to �̃�𝑡 .

4.2.3 Discussion: Improving Scalability of Structure Infer-
ence. Despite the effectiveness of the structure inference process
described above, selecting 𝑁 nodes among all nodes in the graph
as candidates to be connected to a replayed node requires the com-
putation of O(|𝑉 𝑡 | · |B|), which is highly inefficient, where 𝑉 𝑡 is
the set of nodes in Task 𝑇𝑡 . Therefore, to reduce the computational
burden and make the model practical, for each replayed node, we
only consider its top-𝐾 closest nodes in the embedding space as the
candidates to be connected to it, so that the computational burden
can be reduced to O(𝐾 · |B|), where 𝐾 ≪ |𝑉 𝑡 |. Specifically, the
candidate set P𝑏𝑖 for a replayed node 𝑣𝑏𝑖 includes its top-𝐾 closest
nodes in the embedding space, which is formally defined as follows:

P𝑏𝑖 = {𝑣𝑝1 , · · ·, 𝑣𝑝𝐾 } = {argmin(𝐾 )𝑣𝑝𝑗
𝑑𝑖𝑠𝑡 (ℎ𝑏𝑖 , ℎ𝑝 𝑗 ) }, (11)

where ℎ𝑏𝑖 and ℎ𝑝 𝑗 are the embedding of node 𝑣𝑏𝑖 and node 𝑣𝑝 𝑗
obtained from GNN𝜃𝑡−1 of task 𝑇𝑡−1, respectively, and |P𝑏𝑖 | = 𝐾 .
Then, we use the link prediction module LP𝜙𝑡 of task 𝑇𝑡 to find 𝑁
nodes with the highest link prediction scores among the nodes in
the candidate set P𝑏𝑖 . Note that although we greatly reduce the
number of candidate nodes to be connected to a replayed node, we
expect the performance to be retained, since the replayed nodes are
already selected in amanner that the coverage of each replayed node
is maximized. This indicates that considering only a few nearby
nodes as candidates to be connected allows the model to retain
knowledge across the entire embedding space of all classes. In fact,
we even expect that the above method of selecting a few candidates
could outperform the case of using the entire set of nodes, since the
candidates cannot contain nodes in the current task in which new
classes are introduced5. This naturally prevents the replayed nodes
from being connected to the current task’s nodes, whose labels
differ from the replayed nodes, which in turn allows the replayed
nodes to maintain the homophily compared with using the entire
set of nodes in every task. For detailed analysis, please refer to
Section 5.2.

4.3 Downstream task: Node Classification
With the refined adjacency matrix �̃�𝑡 derived from the graph struc-
ture learning process, we proceed with the downstream task, which
is node classification. For task 𝑇𝑡 , the training set consists of the
training nodes from the current task, D𝑡

𝑡𝑟 , and the replay buffer,
B, stored until task 𝑇𝑡−1. The node classification loss is defined as
follows:

L𝑐𝑙𝑠 = 𝛽LD𝑡 𝑡𝑟 (𝜃
𝑡 ; �̃�𝑡 , 𝑋 𝑡 ) + (1 − 𝛽 )LB (𝜃𝑡 ; �̃�𝑡 , 𝑋 𝑡 ), (12)

where 𝛽 is a hyperparameter that balances the loss of the current
task and the loss from the replay buffer, which is equivalent to 𝛽 in
Equation 7, and LD𝑖 𝑡𝑟 and LB denote the cross entropy loss for
D𝑖

𝑡𝑟 and B, respectively. A large 𝛽 makes the model focus on the
current task, while a small 𝛽 directs the model’s attention toward
the replay buffer to minimize catastrophic forgetting. The algorithm
for a specific task of DSLR is summarized in Algorithm 1.

5This is because the candidates are selected when training the previous task 𝑇𝑡−1 ,
and the structure inference is conducted in the current task𝑇𝑡 whose classes do not
overlap with those in𝑇𝑡−1 .

Algorithm 1: Framework of DSLR at task 𝑇𝑡
Input: Given task𝑇𝑡 , G𝑡 = (𝐴𝑡 , 𝑋 𝑡 ) : Graph, GNN𝜃𝑡 : GNN for

node classification parameterized by 𝜃𝑡 , LP𝜙𝑡 : GNN for link
prediction parameterized by 𝜙𝑡 , B: replay buffer.

Output: GNN𝜃𝑡 which can mitigate catastrophic forgetting of
previous tasks, B: updated replay buffer, P: candidate set
for each replayed node.

1 if 𝑡 ≠ 1 then
2 Initialize 𝜃𝑡 = 𝜃𝑡−1, Randomly initialize 𝜙𝑡

/* Train link prediction module */

3 Evaluate L𝑙𝑖𝑛𝑘 and L𝑛𝑜𝑑𝑒 // Eq. 6 and 7

4 Evaluate L𝐿𝑃 = 𝜆L𝑙𝑖𝑛𝑘 + (1 − 𝜆)L𝑛𝑜𝑑𝑒 // Eq. 8

5 Update parameters : 𝜙𝑡 = argmin𝜙𝑡 (L𝐿𝑃 )
/* Structure inference */

6 for 𝑣𝑏𝑖 in B do
7 Add edges & Delete edges // Eq. 9 and 10

8 end
9 else
10 Randomly initialize 𝜃𝑡

11 end
/* Node classification (Downstream task) */

12 Evaluate loss L𝑐𝑙𝑠 // Eq 12

13 Update parameters : 𝜃𝑡 = argmin𝜃𝑡 (L𝑐𝑙𝑠 )
/* Buffer selection */

14 for𝐶𝑙 in C𝑇𝑡 do
15 B𝐶𝑙 ← Select 𝑒𝑙 replayed nodes for class𝐶𝑙 // Eq. 4

16 B = B ∪ B𝐶𝑙
17 end

/* Selecting candidates to be connected to replayed nodes */

18 for 𝑣𝑏𝑖 in B do
19 Designate candidate set P𝑏𝑖 // Eq. 11

20 end

5 EXPERIMENTS
Datasets. To evaluate DSLR, we use four datasets containing 3
citation networks, namely Cora [21], Citeseer [21], OGB-arxiv [9],
and a co-purchase network, Amazon Computer [22]. The detailed
description of the datasets is provided in Appendix C.

Baselines. We compareDSLRwith recent state-of-the-art methods
including rehearsal-based GCL methods. For more detail regarding
the baselines, please refer to Appendix D.

Evaluation protocol. We use two metrics that are commonly
used in continual learning research [15, 16, 20, 34]: 1) PM (Per-
formance Mean) = 1

𝑇

∑𝑇
𝑖=1𝐴𝑇,𝑖 , and 2) FM (Forgetting Mean) =

1
𝑇−1

∑𝑇−1
𝑖=1 𝐴𝑇,𝑖 −𝐴𝑖,𝑖 . 𝑇 represents the total number of tasks, and

𝐴𝑖, 𝑗 denotes the accuracy of task 𝑗 after the completion of task 𝑖 .
PM is the average of the performance of each task after learning all
the tasks6, and FM is computed by taking average of decline in per-
formances of a certain task7. For PM, higher values indicate better
performance, while for FM, lower values indicate better perfor-
mance. Please refer to Appendix E and F for more detail regarding
experimental settings and implementaion details, respectively.

6Given three tasks, we predict task 1, task 2, and task 3 after the model learns all three
tasks, and take the average of the three accuracies.
7For instance, forgetting of task 1 is the sum of the decrease in performance of task 1
after completing task 2 and task 3.
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Table 2: Model performance in terms of PM and FM. The buffer size is approximately 5% of the number of training nodes.

Datasets Cora Citeseer Amazon Computer OGB-arxiv

Methods
Metrics PM ↑ FM ↓ PM ↑ FM ↓ PM ↑ FM ↓ PM ↑ FM ↓

LWF 61.00 ± 4.47 25.73 ± 9.26 50.38 ± 2.02 21.37 ± 4.33 30.28 ± 1.11 80.71 ± 1.68 24.18 ± 2.69 48.56 ± 8.07
EWC 70.56 ± 3.13 31.90 ± 4.38 60.98 ± 3.45 21.56 ± 4.39 49.63 ± 4.27 49.62 ± 5.73 45.71 ± 6.50 30.91 ± 2.73
GEM 65.44 ± 5.16 32.97 ± 3.94 60.14 ± 1.72 21.89 ± 2.82 40.74 ± 3.03 42.19 ± 4.52 40.58 ± 4.26 29.28 ± 7.56
MAS 72.10 ± 5.25 17.21 ± 5.35 60.62 ± 3.32 23.44 ± 3.73 63.37 ± 1.80 23.17 ± 8.18 39.29 ± 2.91 30.36 ± 3.74

ContinualGNN 72.21 ± 1.83 33.84 ± 2.74 60.58 ± 0.86 34.89 ± 1.50 76.12 ± 0.75 29.33 ± 1.03 48.91 ± 4.15 52.83 ± 1.09
TWP 71.87 ± 8.45 25.77 ± 4.38 61.80 ± 1.31 24.76 ± 3.93 71.28 ± 3.26 26.55 ± 3.28 39.20 ± 5.92 25.65 ± 4.26

ER-GNN 78.68 ± 2.10 21.16 ± 3.52 65.49 ± 1.00 30.04 ± 1.19 77.20 ± 2.11 22.00 ± 2.13 37.19 ± 2.50 37.26 ± 1.55
RCLG 70.77 ± 4.74 15.71 ± 4.01 66.60 ± 3.33 22.67 ± 5.49 51.91 ± 6.57 16.71 ± 9.74 50.04 ± 6.44 41.00 ± 8.16

DSLR 81.59 ± 1.65 14.59 ± 2.61 69.54 ± 0.74 18.21 ± 0.96 80.08 ± 0.98 14.18 ± 3.15 51.46 ± 1.50 22.21 ± 3.82
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Figure 4: Performance of rehearsal-based approaches over
various sizes of replay buffer.

5.1 Experimental Results
5.1.1 Overall Results. The experimental results on four datasets
are summarized in Table 2. We make the following key observa-
tions: (1) In general, DSLR exhibits superior performance in terms
of both PM and FM over all baselines, including recent GCL models
utilizing rehearsal-based approaches. Furthermore, DSLR demon-
strates relatively low variance across the 10 runs, indicating its
ability to consistently perform well in various scenarios. (2) Recent
rehearsal-based approaches such as ContinualGNN and ER-GNN
outperform other baselines in terms of PM. However, in terms of
FM, their performance is not consistently superior to other base-
lines, i.e., FM of ContinualGNN and ER-GNN is shown to be only
slightly better or even worse compared with other baselines. This
indicates that they fall short of retaining knowledge acquired in
each task. This aligns with our expectation that the replayed nodes
tend to cluster in certain regions of the embedding space of each
class when the diversity aspect is overlooked, resulting in a lower
performance on test nodes that fall outside of those regions. In
contrast, DSLR addresses this issue by considering the diversity of
the replayed nodes, leading to a superior FM. (3)We demonstrate
the memory efficiency of DSLR. Fig. 4 illustrates the performance
of different models that proposed their own replay buffer selection
methods as the buffer size varies. Here, buffer size denotes the ratio
of the number of replayed nodes to the total size of the train dataset.
It is noteworthy that ContinualGNN and ER-GNN experience a
significant decrease in PM and a sharp increase in FM as the buffer
size decreases, while the performance change in DSLR is moder-
ate. This indicates that DSLR can achieve comparable performance
with a much smaller buffer size compared with other baselines,
demonstrating its practicality as it is crucial to use less memory in
rehearsal-based GCL methods.

5.1.2 Effectiveness of Coverage-based Diversity for Replay
Buffer. Here, we conduct experiments to validate the effectiveness
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Figure 5: Effect of considering diversity of replayed nodes.

of our proposed coverage-based diversity (CD) approach used to
select nodes to be replayed (Fig. 5 and Table 3). We use two datasets
from two distinct domains, i.e., Cora (citation network) and Ama-
zon Computer (co-purchase network), as well as a large dataset,
OGB-arxiv8.

In Fig. 5, we observe that DSLR outperforms ER-GNN in both
PM and FM regardless of the buffer size used. Note that for fair
comparisons, we compare the performance of ER-GNN, which em-
ploys the mean feature (MF) approach, with DSLR, but without
incorporating structure learning. This approach eliminates any
advantages stemming from the structure learning component of
DSLR. One notable point is that when the buffer size increases from
1% to 3% (i.e., small to mid-size), the increase in PM of DSLR is
more significant than that of ER-GNN, and the decrease in FM of
DSLR is also more highlighted compared to that of ER-GNN. This
demonstrates that considering diversity through our proposed CD
approach is more data-efficient than the MF approach adopted by
ER-GNN. We conjecture that since ER-GNN selects nodes that are
close to the average features of nodes in each class, similar nodes
are continuously selected even when the buffer size increases. Con-
versely, as DSLR considers diversity through CD, a larger buffer
size leads to the inclusion of more diverse and informative nodes
by covering a wide representation space, thereby enriching the
information contained within the replay buffer and effectively rep-
resenting the whole class. Moreover, as the buffer size increases
beyond 3%, the performance gap tends to decrease. This is because a
larger buffer size diminishes the discriminative power of the replay
buffer. However, as it is crucial to use a minimal buffer size in the
rehearsal-based GCL, we argue that DSLR is practical in reality.

Next, in Table 3, we report the average diversity of the replayed
nodes (i.e., Buff. Div.) and that of test nodes that are correctly
predicted (i.e., Corr. Div.) over different classes. More precisely,

8Results on some datasets are presented in Appendix G.
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Table 3: Comparisons of diversity of replayed nodes (‘Buff.
Div.’) and correctly predicted nodes (‘Corr. Div.’).

Datasets Cora Amazon OGB-arxiv

Method Buff. Div. Corr. Div. Buff. Div. Corr. Div. Buff. Div. Corr. Div.

ER-GNN 0.55 0.62 0.59 0.58 0.77 0.74
DSLR w/o SL 1.46 0.97 1.31 0.82 1.58 1.09
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Figure 6: Effect of structure learning for replayed nodes.

‘Buff. Div.’ for class 𝐶𝑙 is calculated as
E𝑣𝑏𝑚 ,𝑣𝑏𝑛

∈B𝐶𝑙
[𝑑𝑖𝑠𝑡 (ℎ𝑏𝑚 ,ℎ𝑏𝑛 ) ]

E𝑣𝑖 ,𝑣𝑗 ∈𝑡𝑟𝑎𝑖𝑛𝐶𝑙
[𝑑𝑖𝑠𝑡 (ℎ𝑖 ,ℎ 𝑗 ) ] ,

i.e., the ratio of the sum of all pair distances between replayed nodes
of class𝐶𝑙 to that between training nodes of class𝐶𝑙 . In other words,
a high ‘Buff. Div.’ implies that the distance between replayed nodes
is relatively far, indicating that the buffer is diverse. Moreover, ‘Corr.

Div.’ for class 𝐶𝑙 is calculated as
E𝑣𝑖 ∈𝑐𝑜𝑟𝑟𝐶𝑙

[𝑑𝑖𝑠𝑡 (ℎ𝑖 ,𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑙 ) ]
E𝑣𝑗 ∈𝑡𝑒𝑠𝑡𝐶𝑙

[𝑑𝑖𝑠𝑡 (ℎ 𝑗 ,𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑙 ) ]
, i.e.,

the ratio of the sum of distances between the correctly predicted
nodes of class 𝐶𝑙 and the center of class 𝐶𝑙 to that between the
test nodes of class 𝐶𝑙 and the center of class 𝐶𝑙 . In other words,
a high ‘Corr. Div.’ implies that the correctly predicted nodes are
relatively evenly distributed from the class center, indicating that
the model does not make predictions biased to certain regions. In
Table 3, we observe that DSLR shows higher ‘Buff. Div.’ and ‘Corr.
Div.’ compared with ER-GNN across all datasets. This aligns with
our earlier discussion that the MF approach of ER-GNN tends to
concentrate the replayed nodes around the class center, which in
turn allows ER-GNN to only perform well on nodes located near
the class center. In contrast, DSLR is capable of making accurate
predictions regardless of the location of test nodes in the embedding
space, which helps avoid overfitting to certain regions, thereby
alleviating catastrophic forgetting. It is important to note that these
results are obtained without employing structure learning, and thus
highlight the effectiveness of our proposed CD approach.

5.1.3 Effectiveness of Structure Learning. Here, we demon-
strate the effectiveness of structure learning in DSLR through vari-
ous experiments (Fig. 6 and Fig. 7).

In Fig. 6, we observe that the structure learning component
of DSLR consistently improves the performance of DSLR, and
the performance gap between them becomes larger as the buffer
size decreases. This indicates that our proposed structure learning
component not only benefits the performance but also improves
memory efficiency. Specifically, as shown in Fig. 6 (a), DSLR using
only 1% of the buffer size performs on par with DSLR without
structure learning that uses 4% of buffer size.

In Fig. 7, we report how PM and FM vary according to the degree
of structure learning9. We observe that as structure learning is
applied to a greater number of replayed nodes (i.e., increasing SL

9The label “SL ratio” represents the percentage of replayed nodes to which structure
learning was applied, while “# top 𝑁 ” indicates that only the top N nodes with the
highest scores among the candidates were connected to the replayed nodes.
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(a) PM on Cora
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# top N

(b) FM on Cora

Figure 7: Impact of structure learning for replayed nodes.

(a) PM↑ (b) FM↓

(%) (%) (sec)

(c) Time taken for 
structure inference

Figure 8: Effectiveness and time efficiency of structure infer-
ence only for candidates.

ratio), PM generally increases while FM decreases. This clearly
demonstrates that applying structure learning to replayed nodes
enhances the model performance. However, increasing 𝑁 , that is,
connecting the replayed nodes with more nodes does not always
yield a better performance, implying that the value of 𝑁 should be
carefully found.

5.2 Further Analysis
5.2.1 Effectiveness of Selecting Candidates. Recall that to im-
prove the scalability of the structure inference stage described in
Section 4.2.2, we do not consider the entire set of nodes as the
candidates to be connected to the replayed nodes. Instead, we select
a few nodes that are close to each replayed node in the embedding
space as candidates for structure inference (as described in Section
4.2.3). Fig. 8 illustrates the PM, FM, and the total inference time (in
seconds) during structure inference when considering the entire
set of nodes (i.e., ‘Entire’) and when following our proposed candi-
date selection approach (i.e., ‘Candidate’). In Fig. 8 (c), we observe
that utilizing candidates for structure inference requires less time
consumption compared with considering the entire set of nodes.
Although the difference is subtle for relatively smaller datasets such
as Cora and Amazon, notably lower inference time is observed for
a large OGB-arxiv dataset when only considering candidates. This
corroborates our argument that performing structure inference
only for a few candidates is efficient. Moreover, in Fig. 8 (a) and (b),
we observe that our proposed candidate selection method even out-
performs the case of using the entire set of nodes as candidates. In
summary, our proposed candidate selection method is both efficient
and effective, demonstrating the practicality of DSLR.

5.2.2 Ablation Study. To comprehensively evaluate the impact
of considering diversity when selecting nodes to be replayed, and
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Table 4: Ablation study on each component of DSLR.

Row Component Cora Amazon OGB-arxiv
CD Structure Learning PM FM PM FM PM FM

(1) ✗ ✗ 78.68 21.16 77.20 22.00 37.19 37.26
(2) ✓ ✗ 79.82 20.03 79.63 16.82 48.48 26.15
(3) ✗ ✓ 80.42 18.14 78.82 18.25 46.38 28.09
(4)-1 ✓ ✓ (L𝑙𝑖𝑛𝑘 ) 80.60 16.86 79.99 16.76 45.41 31.91
(4)-2 ✓ ✓ (L𝑛𝑜𝑑𝑒 ) 79.92 18.85 77.03 20.36 47.84 26.5
(4)-3 ✓ ✓ (L𝑙𝑖𝑛𝑘 ,L𝑛𝑜𝑑𝑒 ) 81.59 14.59 80.08 14.18 51.46 22.21
(5) ✓ Homophily ratio ↑ 80.98 19.74 73.63 24.16 43.84 34.69
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Figure 9: Homophily ratio of replayed nodes under variants
of structure learning.

applying structure learning to the replayed nodes, we conduct an
ablation study in Table 4. Note that Row (1) is equivalent to ER-
GNN that adopts the MF approach for selecting replayed nodes,
and Row (4)-3 is DSLR. We observe that adding either the CD com-
ponent (Row (2)) or the structure learning component (Row (3)) is
beneficial, while adding them both (Row (4)-3) performs the best.
Moreover, to corroborate our argument that simply increasing the
homophily ratio of the replay buffer is not effective (as shown in
Fig. 2), and to advocate our proposed structure learning component,
we deliberately added edges to replayed nodes in a way that the
homophily ratio increases (Row (5)). We indeed observe that sim-
ply increasing the homophily ratio of the replay buffer performs
poorly, especially in the large OGB-arxiv dataset. This indicates
the importance of connecting replayed nodes to truly informative
neighbors, which directly contributes to the performance of the
continual learning.

Recall that L𝑛𝑜𝑑𝑒 is included in the link prediction loss shown
in Eq. 6 aiming at capturing the homophily aspect of the replayed
nodes. In Fig. 9, we report the average homophily ratio of the re-
played over all classes in three datasets.We observe that considering
bothL𝑙𝑖𝑛𝑘 andL𝑛𝑜𝑑𝑒 results in a higher homophily ratio compared
with the case of using onlyL𝑙𝑖𝑛𝑘 (i.e., 𝜆 = 1 in Eq. (8)), verifying that
L𝑛𝑜𝑑𝑒 helps increase the homophily ratio of the replayed nodes.
Moreover, it is important to note that although simply increasing
the homophily ratio (i.e., Homophily ratio ↑) yields the highest ho-
mophily ratio as expected, it results in a poor performance (See Row
(5) in Table 4), verifying again that simply increasing the homophily
ratio of the replay buffer is not an effective way to discovering truly
informative neighbors.

5.2.3 Scalability Analysis. We compare the average training
time per task of DSLR with recent GCL models in Table 5. For the
baseline models, we measure the time based on the provided official
code. We observe that DSLR is highly efficient achieving up to 109
times faster training time compared with one of the state-of-the-art
baselines, i.e., RCLG. Although ER-GNN is slightly more efficient
than DSLR, considering the strong performance of DSLR from
previous experiments, we argue that DSLR is a practical model that
is both effective and efficient, which can also be efficiently trained
on a large OGB-arxiv dataset.

Table 5: Training time (in minutes) of recent GCL baselines.

Datasets TWP ContinualGNN ER-GNN RCLG DSLR

Cora 0.16 (x1.79) 0.33 (x3.69) 0.08 (x0.85) 9.90 (x109.99) 0.09 (x1.00)
Amazon 0.81 (x1.33) 3.76 (x6.19) 0.44 (x0.73) 21.85 (x35.82) 0.61 (x1.00)
OGB-arxiv 2.40 (x1.35) 18.56 (x10.42) 1.26 (x0.71) 49.91 (x28.04) 1.78 (x1.00)

(a) Cora dataset

(b) Amazon dataset

(c) OGB-arxiv dataset

Figure 10: Hyperparameter sensitivity analysis in Cora.

5.2.4 Hyperparameter sensitivity analysis. In this section, we
provide a more in-depth analysis of the hyperparameters (𝜏 and
𝑟 ) that significantly impact the performance of DSLR. More pre-
cisely, 𝜏 determines the threshold during structure inference, while
𝑟 determines the radius of coverage used in CD.

Fig. 10 illustrates how the model performance (i.e., PM, FM)
changes while varying 𝜏 and 𝑟 . The experiments are conducted for
values around the optimal value that we identified. We observe
that as for 𝜏 , edges with less informative neighbors may not be
adequately removed from the replayed node if it is too small. On the
other hand, if 𝜏 is too large, edges with truly informative neighbors
might get removed. This indicate that 𝜏 can have a negative impact
on the model performance if it becomes too small or too large at the
extremes. Once an appropriate 𝜏 is determined, stability is observed
around its vicinity. Similarly, if 𝑟 is too small, even if there are many
nodes of the same class around of a particular node, it might not
be selected as a replayed node. Conversely, if 𝑟 is too large, nodes
too far away could be included, undermining the consideration of
diversity. Likewise, stability of the model performance is confirmed
unless at extreme values. In short, DSLR outperforms baselines in
most cases, once again demonstrating the superiority of our model.

We also present an analysis of another crucial hyperparameter
𝑁 , which determines the number of neighbors connected through
inference in Fig. 7 and Fig. 14 in Appendix.

6 CONCLUSION
In this paper, we propose a rehersal-based GCL model, called DSLR,
that considers not only the class representativeness but also diver-
sity within each class when selecting replayed nodes. We devise
the coverage-based diversity (CD) approach to mitigate overfitting
to specific regions in the embedding space, which helps avoid cata-
strophic forgetting. Additionally, we adopt graph structure learning
to reformulate the graph structure in a way that allows the re-
played nodes to be connected to truly informative neighbors, so
that high-quality information can be propagated into the replayed
nodes through message passing. DSLR demonstrates promising
performance with a significantly smaller buffer size compared with
baselines, demonstrating its practicality as it is crucial to use less
memory in rehearsal-based GCL methods.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DSLR: Diversity Enhancement and Structure Learning for Rehearsal-based Graph Continual Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and

Tinne Tuytelaars. 2018. Memory aware synapses: Learning what (not) to forget.
In Proceedings of the European conference on computer vision (ECCV). 139–154.

[2] Antonio Carta, Andrea Cossu, Federico Errica, and Davide Bacciu. 2021. Cat-
astrophic forgetting in deep graph networks: an introductory benchmark for
graph classification. arXiv preprint arXiv:2103.11750 (2021).

[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 34. 3438–3445.

[4] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative deep graph learning
for graph neural networks: Better and robust node embeddings. Advances in
neural information processing systems 33 (2020), 19314–19326.

[5] Yoonhyuk Choi, Jiho Choi, Taewook Ko, Hyungho Byun, and Chong-Kwon
Kim. 2022. Finding Heterophilic Neighbors via Confidence-based Subgraph
Matching for Semi-supervised Node Classification. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management. 283–
292.

[6] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. 2021. A continual learning
survey: Defying forgetting in classification tasks. IEEE transactions on pattern
analysis and machine intelligence 44, 7 (2021), 3366–3385.

[7] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. SLAPS: Self-
supervision improves structure learning for graph neural networks. Advances in
Neural Information Processing Systems 34 (2021), 22667–22681.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[10] Ching-Yi Hung, Cheng-Hao Tu, Cheng-EnWu, Chien-Hung Chen, Yi-Ming Chan,
and Chu-Song Chen. 2019. Compacting, picking and growing for unforgetting
continual learning. Advances in Neural Information Processing Systems 32 (2019).

[11] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[12] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[13] Lilly Kumari, Shengjie Wang, Tianyi Zhou, and Jeff Bilmes. [n. d.]. Retrospective
Adversarial Replay for Continual Learning. In Advances in Neural Information
Processing Systems.

[14] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE transac-
tions on pattern analysis and machine intelligence 40, 12 (2017), 2935–2947.

[15] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 8653–8661.

[16] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for
continual learning. Advances in neural information processing systems 30 (2017).

[17] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang.
2021. Representational continuity for unsupervised continual learning. In Inter-
national Conference on Learning Representations.

[18] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. 2018. Piggyback: Adapting a
single network to multiple tasks by learning to mask weights. In Proceedings of
the European Conference on Computer Vision (ECCV). 67–82.

[19] Arun Mallya and Svetlana Lazebnik. 2018. Packnet: Adding multiple tasks to
a single network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 7765–7773.

[20] Appan Rakaraddi, Lam Siew Kei, Mahardhika Pratama, and Marcus De Carvalho.
2022. Reinforced Continual Learning for Graphs. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 1666–1674.

[21] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[22] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[23] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. 2017. Continual
learning with deep generative replay. Advances in neural information processing
systems 30 (2017).

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[25] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. 2022. Lifelong
graph learning. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 13719–13728.
[26] JunshanWang, Guojie Song, Yi Wu, and LiangWang. 2020. Streaming graph neu-

ral networks via continual learning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1515–1524.

[27] Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. 2022. Streaming
Graph Neural Networks with Generative Replay. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1878–1888.

[28] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[29] Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. 2022. Node-
former: A scalable graph structure learning transformer for node classification.
Advances in Neural Information Processing Systems 35 (2022), 27387–27401.

[30] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. 2019. Scalable
and order-robust continual learning with additive parameter decomposition.
arXiv preprint arXiv:1902.09432 (2019).

[31] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. 2021. On-
line coreset selection for rehearsal-based continual learning. arXiv preprint
arXiv:2106.01085 (2021).

[32] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. 2017. Lifelong
learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547
(2017).

[33] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil
Shah. 2021. Data augmentation for graph neural networks. In Proceedings of the
aaai conference on artificial intelligence, Vol. 35. 11015–11023.

[34] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in graph
neural networks with experience replay. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4714–4722.

[35] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu,
Carl Yang, and Shu Wu. 2021. A survey on graph structure learning: Progress
and opportunities. arXiv e-prints (2021), arXiv–2103.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A EXPERIMENTAL SETUP OF FIG. 2.
For simplicity of explanation, we only describe how the results for
class𝐶𝑙 is obtained. To perform evaluations on class𝐶𝑙 for which 𝑒𝑙
replayed nodes need to be sampled, we first sort the nodes belonging
to class 𝐶𝑙 based on their homophily ratio. Then, we sequentially
split them into ⌈|𝑡𝑟𝑎𝑖𝑛𝐶𝑙 |/𝑒𝑙 ⌉ sets from the set with the smallest
homophily ratio to the set with the largest homophily ratio. For
example, if the total number of training nodes in class𝐶1 is 100 and
𝑒1 is 20, the 100 nodes are sorted based on the homophily ratio, and
they are split into 5 sets of 20 nodes each. For all other classes apart
from class 𝐶𝑙 , we randomly sample nodes to be replayed. That is,
we use the 𝑒𝑙 nodes in the first set from class 𝐶𝑙 , and the randomly
sampled nodes from other classes as replayed nodes. Then, we
report the forgetting performance, where the homophily ratio in
𝑥-axis is the average homophily ratio of the 𝑒𝑙 nodes in the first set
from class 𝐶𝑙 . We present the results in several intervals based on
the average homophily ratio in each set, and report the averages
and variances of forgetting based on the homophily ratio.

B COMPLETE RELATEDWORKS
B.1 Graph Neural Networks
Various real-world data can be effectively represented in the form of
graphs, encompassing domains such as social networks, molecules,
and user-item interactions. As a result, research on graph neural
networks (GNNs) is currently a topic of active study, which have
found applications in various tasks, including node classification
and link prediction. GNNs aggregate information from neighboring
nodes, enabling them to capture both the structure and features of
a graph, including more intricate graph patterns. One popular GNN
model is Graph Convolutional Networks (GCN) [11], which intro-
duces semi-supervised learning on graph-structured data using a
convolutional neural network. GCN employs spectral graph con-
volution to update node representations based on their neighbors.
However, GCN is a transductive model that relies on the adjacency
matrix for training, requiring to retrain when the graph changes
(e.g., with the addition of new nodes or edges) to perform tasks
such as node classification. To address this limitation, GraphSAGE
[8] is proposed as an inductive graph neural network model. Graph-
SAGE trains an aggregator function that aggregates features from
neighboring nodes, allowing it to handle unseen graphs. Another
approach, Graph Attention Networks (GAT) [24], employs atten-
tion mechanisms to assign varying weights to neighbors based on
their importance. GAT offers the advantage of efficiently extracting
only the necessary information from neighbors, distinguishing it
from other methods.

B.2 Graph Structure Learning
Real-world graphs contain incomplete structure. To alleviate the
effect of noise, recent studies have focused on enriching the struc-
ture of the graph. The objective of these studies is to mitigate the
noise in the graph and improve the performance of graph repre-
sentation learning by utilizing purified data. GAUG [33] leverages
edge predictors to effectively encode class-homophilic structure,
thereby enhancing intra-class edges and suppressing inter-class
edges within a given graph structure. IDGL [4] jointly and itera-
tively learning the graph structure and embeddings optimized for

enhancing the performance of the downstream task. SLAPS [7] uti-
lizes self-supervision to learn structural information from unlabeled
data by predicting missing edges in a graph, and NodeFormer [29]
applies the transformer architecture for scalable structure learning.
The application of structure learning in these methods improves the
performance of downstream tasks by purifying the incomplete or
noisy structure of the graph, taking into consideration the inherent
characteristics of real-world graphs.

B.3 Continual Learning
Continual learning, also known as lifelong learning, is a method-
ology where a model learns from a continuous stream of datasets
while retaining knowledge from previous tasks. However, as the
model progresses through tasks, it often experiences a decline in
performance due to forgetting the knowledge acquired from past
tasks. This phenomenon is referred to as catastrophic forgetting.
The primary objective of continual learning is to minimize cata-
strophic forgetting, and there are three main approaches employed
in continual learning methods: the rehearsal-based approach, ar-
chitectural approach, and regularization-based approach.

Rehearsal-based approach aims to select and store important
data that effectively represents the entire class from past tasks,
using this data in subsequent tasks. This selected data is referred
to as replayed nodes, and the set of the replayed nodes is called re-
play buffer. The primary objective of the rehearsal-based approach
is to carefully select the optimal replayed nodes that prevent the
model from forgetting knowledge acquired in previous tasks. Sev-
eral strategies have been proposed for replay buffer selection. OCS
[31] considered factors such as minibatch similarity, sample diver-
sity, and coreset affinity in order to construct an effective replay
buffer. Similarly, RAR [13] perturbed the replay buffer to make it
similar to the current task data, thereby creating a robust decision
boundary. Additionally, deep generative models have been utilized
to generate the replay buffer, addressing memory constraints [23].
ER-GNN [34] proposes three buffer selection strategies, namely
Mean of Feature, Coverage Maximization, and Influence Maximiza-
tion. Note that the CoverageMaximization (CM) approach proposed
in ER-GNN also aims to maximize the coverage of the embedding
space of each class. Specifically, CM selects nodes in each class ac-
cording to the number of nodes from other classes in the same task
within a fixed distance. However, as the coverage for each node in
CM is computed without considering the coverage of other nodes,
we argue that the selected replayed nodes through CM are still at a
risk of being concentrated in specific regions, which leads to a poor
performance as shown in Table 6. On the other hand, since our
proposed coverage-based diversity (CD) approach selects replayed
nodes in a manner that maximizes the number of nodes included in
the union of their coverage, the coverage of each node is computed
considering the coverage of other nodes. Hence, unlike CM, CD
always ensures that the selected replayed nodes are relatively more
even spread in the embedding space.

Table 6: Comparison of CM (ER-GNN) and CD (DSLR).

Datasets Cora Amazon Computer OGB-arxiv

Methods
Metrics PM ↑ FM ↓ PM ↑ FM ↓ PM ↑ FM ↓

CM (ER-GNN) 78.13 ± 2.82 20.03 ± 3.95 78.93 ± 1.54 20.72 ± 1.88 46.84 ± 2.22 32.64 ± 3.47
CD (DSLR) 79.82 ± 2.70 20.03 ± 3.21 79.63 ± 2.49 16.82 ± 2.14 48.48 ± 3.25 26.15 ± 2.84
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Table 7: Statistics of evaluation datasets.

Dataset # Nodes # Edges # Features # Classes per task # Tasks
Cora 2,708 5,429 1,433 2 3

Citeseer 3,312 4,732 3,703 2 3
Amazon Computer 13,752 245,778 767 2 4

OGB-arxiv 169,343 1,166,243 128 3 5

Architectural approach involves modifying the model’s ar-
chitecture based on the task. If the model’s capacity is deemed
insufficient to effectively learn new knowledge, the architecture is
expanded to accommodate the additional requirements. DEN [32]
expands the capacity of the model selectively by duplicating com-
ponents only when the loss exceeds a certain threshold. CPG [10]
combines the architectural approach with the regularization ap-
proach. Similarly, CPG expands the model’s weights if the accuracy
target is not met. GCL [20] utilizes a reinforcement learning agent
to guide the learning process and make decisions regarding the
addition or deletion of hidden layer features within the network’s
architecture.

Regularization-based approach aims to regularize themodel’s
parameters in order to minimize catastrophic forgetting while learn-
ing new tasks. This approach focuses on preserving important
weights that were crucial for learning previous tasks, while allow-
ing the remaining weights to adapt and learn new knowledge. One
popular method in the regularization approach is EWC [12], which
regularizes the changes in parameters that were learned in previous
tasks. Another approach, Piggyback [18], achieves regularization
by learning a binary mask that selectively affects the weights. By
fixing the underlying network, Piggyback uses weight masking
to enable the learning of multiple filters. Similarly, PackNet [19]
utilizes binary masks to restrict changes in parameters that were
deemed important in previous tasks, while allowing for flexibility
in learning new tasks.

C DATASET DETAILS
We use four datasets to comprehensively evaluate the performance
of DSLR, whose details are provided in this section. Detailed statis-
tics of the datasets can be found in Table 7.

• Cora [21] is a static network that contains 2,708 documents,
5,429 links denoting the citations among the documents, and
1,433 features. The labels represent research fields. In our contin-
ual learning setting, the first 6 classes are selected and grouped
into 3 tasks (2 classes per task).

• Citeseer [21] is a well known citation network containing 3,312
documents and 4,732 links and includes 6 classes. Similar to
Cora, 6 classes are grouped into 3 tasks in our setting.

• Amazon Computer [22] is a co-purchase graph, where nodes
represent products, edges denotes a co-purchase between two
products, node features are bag-of-words encoded product re-
views, and class labels indicate product category. In our setting,
the dataset is divided into four tasks, excluding the two classes
with the fewest number of nodes, resulting in 8 classes in total.
• OGB-arxiv [9] is a directed graph, representing the citation

network between all Computer Science (CS) arXiv papers in-
dexed by MAG [28]. Nodes denote arXiv papers, while directed
edges denote citations from one paper to another. In our set-
ting, to address the imbalance between classes, 15 largest classes

covering more than 80% of the entire dataset are selected and
grouped into 5 tasks (3 classes per task).

D DETAILED DESCRIPTION OF BASELINES
• LWF [14] utilizes a combination of distillation and rehearsal

techniques. The model distills the knowledge from the original
model to a new model while training on the target task.

• EWC [12] uses a regularization term based on Fisher Infor-
mation Matrtix that measures the sensitivity of the network’s
parameters to changes in the data. This term penalizes updates
to the parameters that would cause significant changes in the
parameters that were important for previous tasks.

• GEM [16] computes the gradients for the new task while stor-
ing the gradients of the previous tasks. It also uses memory
projection to ensure that the gradients computed for the new
task do not disrupt the performance on the previous tasks.

• MAS [1] updates the network’s parameters while also updat-
ing and preserving the synaptic importance values. The model
achieves this by utilizing a regularization term in the loss func-
tion, which penalizes large changes to the important synapses.

• ContinualGNN [26] incorporates new graph snapshots and
updates the GNN accordingly, allowing the model to adapt
to the evolving graph. It utilizes a graph distillation loss as a
regularization term to retain learned knowledge from previous
graphs while minimizing the impact of new graph updates.

• TWP [15] captures the topology information of graphs and de-
tect the parameters that are crucial to the task/topology-related
objective. It maintains the stability of crucial parameters aiming
at preserving knowldge from previous tasks, while learning a
new task.

• ER-GNN [34] is the state-of-the-art rehearsal based graph con-
tinual learning model. It samples the nodes that are the closest
to the average feature vector, or the nodes that maximize the
coverage of attribute/embedding space, or the nodes that have
maximum influence.

• RCLG10 [20] utilizes Reinforced Learning based Controller,
which identifies the optimal numbers of hidden layer features
to be added or deleted in the child network. The optimal actions
are used to evolve the child network to train the model at each
task.

We do not include SGNN-GR [27] as a baseline in our paper since the
official source code is unavailable, which limits a fair comparison
with other methods.

E DETAILED EXPERIMENTAL SETTING
In this paper, we follow a widely used experimental setting of GCL
[15, 34] that transforms the benchmark dataset into an evolving
graph, implementing practical continual learning in the real-world.
For instance, when creating an evolving graph with three tasks
from six classes of the Cora dataset, in the first task, only nodes
from classes 1 and 2 are considered. Information about nodes from
other classes or interclass edges connected to them are excluded,
and only intraclass edges for class 1, intraclass edges for class 2, and
interclass edges between classes 1 and 2 are used. After completing
node classification for task 1, task 2 begins, introducing classes 3

10In the original paper, it was referred to as GCL, however, in this paper, to avoid
confusion with Graph Continual Learning(GCL), it is named RCLG.
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and 4. Again, nodes from classes 5 or 6 and any interclass edges
associated with them are excluded. In node classification of task
2, we opt for a class-incremental setting where classes 1, 2, 3, and
4 are classified together, which is more practical and challenging
compared to the task-incremental setting.

Table 8: Hyperparameters of DSLR for each dataset.

Dataset 𝛽 𝜆 𝑁 𝐾 𝜏 𝑟 Buffer size Learning rate
Cora 0.1 0.5 5 50 0.8 0.3 100 0.005

Citeseer 0.1 0.5 5 50 0.8 0.25 100 0.005
Amazon Computer 0.1 0.5 5 50 0.8 0.2 200 0.005

OGB-arxiv 0.05 0.5 5 50 0.8 0.15 3,000 0.005

F IMPLEMENTATION DETAILS
Unless the replay buffer size is explicitly mentioned as in Figure 4,
5 and 6, the replay buffer size set to 100 for Cora and Citeseer,
200 for Amazon, 3,000 for OGB-arxiv dataset. This corresponds
to approximately 5% of the trainset for each dataset. We report
the average and standard deviation after running with 10 random
seeds. DSLR utilizes several hyperparameters, i.e., 𝛽 , 𝜆, 𝑁 , 𝐾 , 𝜏 ,
𝑟 , memory size for the replay buffer, and learning rate. We find
the optimal hyperparameters for each baseline model through grid
search. We tune them in certain ranges as follows: 𝛽 in {0.01, 0.05,
0.1, 0.2, 0.3}, 𝜆 in {0, 0.25, 0.5, 0.75, 1}, 𝑁 in {1, 2, 3, 4, 5}, 𝐾 in {25, 50,
75, 100}, 𝜏 in {0.75, 0.8, 0.85, 0.9, 0.95}, 𝑟 in {0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5}, and learning rate in {0.0005, 0.001, 0.005, 0.01}.
Table 8 shows specifications of detailed hyperparameters we used
to present experimental result.
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Figure 11: Performance of rehearsal-based approaches over
various replay buffer sizes.

G FURTHER ANALYSIS
G.1 Comparison with rehearsal-based baselines

on OGB-arxiv
We compare the performance of reheasal-based GCL baselines and
DSLR on OGB-arxiv dataset in Fig. 11. Here, the buffer size refers
to the proportion of the replayed nodes to the number of total train
nodes. Similar to other datasets, we observe that DSLR outperforms
other recent baselines in both PM and FM for all buffer sizes. No-
tably, as the buffer size decreases, the performance gap between
DSLR and other baselines widens, indicating that DSLR is memory
efficient, which is a primary goal of the rehearsal-based approach.

G.2 Effect of considering diversity of replayed
nodes on OGB-arxiv

We demonstrate the effectiveness of our proposed replay buffer
selection method, i.e., coverage-based diversity (CD), on OGB-arxiv
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Figure 12: Effect of considering diversity of replayed nodes.

dataset. Fig. 12 illustrates the performance comparison between
DSLR and ER-GNN, a state-of-the-art model that adopts the mean
feature method for selecting nodes to be replayed. To clearly demon-
strate the effect of considering the diversity of replayed nodes, we
report the performance of DSLR without structure learning. Consis-
tently across all buffer sizes, DSLR without structure learning out-
performs ER-GNN in terms of PM and FM. This demonstrates that
considering diversity proves to be more effective in preserving past
knowledge with a small set of replayed nodes.
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Figure 13: Effect of structure learning for replayed nodes.

G.3 Effect of structure learning for replayed
nodes on OGB-arxiv and Amazon

We demonstrate the effectiveness of our proposed graph structure
learning. Fig. 13 compares the performance of the fully-fledged
DSLR with that of DSLR without structure learning. We observe
that DSLR with structure learning achieves similar performance
comparedwithDSLRwithout structure learning evenwith a smaller
replay buffer size. For instance, by examining Fig. 13 (a), it can be ob-
served that when using structure learning, even with buffer sizes of
1% or 2%, DSLR can achieve a similar PM of DSLR without structure
learning utilizing a buffer size of 3%. Similarly, Fig. 13 (b) demon-
strates that the FM achieved by DSLR without structure learning
using 2% buffer size can be attained with just 1% buffer size by
employing structure learning. In other words, by connecting truly
informative neighbors and ensuring that replayed nodes effectively
represent the information of their respective classes, graph struc-
ture learning helps achieve a competitive performance with a much
smaller replay buffer size. It is worth emphasizing once again that
this highlights that DSLR is memory-efficient, which is a primary
goal of the rehearsal-based approach.

To provide a clearer assessment of the effectiveness of structure
learning, we further examine the performance variations based on
the extent of structure learning applied. Fig. 14 illustrates the PM
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Table 9: Homophily ratio of the replay buffer with/without structure learning (SL) in DSLR.

Datasets Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12

Cora without SL 0.92 0.92 0.83 0.87 - - - - - - - -
Cora with SL 0.97 (+0.05) 0.97 (+0.05) 0.95 (+0.12) 0.95 (+0.08) - - - - - - - -

Amazon without SL 0.80 0.84 0.95 0.68 0.83 0.59 - - - - - -
Amazon with SL 0.84 (+0.04) 0.98 (+0.14) 0.97 (+0.02) 0.75 (+0.07) 0.86 (+0.03) 0.63 (+0.04) - - - - - -

OGB-arxiv without SL 0.98 0.97 0.94 0.83 0.84 0.98 0.81 0.88 0.67 0.87 0.63 0.96
OGB-arxiv with SL 0.97 (-0.01) 0.97 (+0.00) 0.93 (-0.01) 0.93 (+0.10) 0.90 (+0.06) 0.99 (+0.01) 0.86 (+0.05) 0.88 (+0.00) 0.72 (+0.05) 0.91 (+0.04) 0.64 (+0.01) 0.97 (+0.01)
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Figure 14: Impact of structure learning for replayed nodes.

and FM metrics with respect to the degree of structure learning
on OGB-arxiv and Amazon datasets. The “SL ratio (%)” represents
the percentage of replayed nodes to which structure learning is
applied, and “# top-𝑁 ” indicates that the 𝑁 candidates with the
highest scores are connected to the replayed nodes. We observe that
applying the structure learning for more replayed nodes, meaning
a higher “SL ratio,” yields a clear improvements in terms of both
PM and FM. On the other hand, when connecting more candidates
to replayed nodes, i.e., increasing 𝑁 , the effect on PM and FM is
somewhat ambiguous. Nevertheless, the performance across vari-
ous𝑁 values is not sensitive, and we can observe that it consistently
outperforms baselines. Finding the optimal 𝑁 based on data distri-
bution could be a potential direction for future research.

Lastly, we verify that structure learning effectively increases the
homophily ratio of nodes within each replay buffer, resulting in
a positive impact on PM and FM. Table 9 presents the homophily
ratio of replayed nodes for each class before and after applying
structure learning on various datasets. As discussed earlier, we ob-
serve that the homophily ratio of replayed nodes increases after
undergoing structure learning (See Table 9), resulting in an im-
proved performance in both PM and FM metrics as shown in Fig. 6,
and Fig. 13.

Figure 15: Performance with varying hyperparameters.

G.4 Further Analysis for Hyperparameters on
OGB-arxiv and Amazon

In Fig. 15, we provide a more in-depth analysis of the hyperparame-
ters that significantly impact our model, namely 𝜏 and 𝑟 . Specifically,
𝜏 determines the threshold during structure inference, while 𝑟 de-
termines the radius of coverage. Fig. 15 illustrates how the model
performance (i.e., PM, FM) changes with varying 𝜏 and 𝑟 values.
The experiments are conducted for values around the optimal value
that we found through grid search. If 𝜏 is too small, edges with
less informative neighbors may not be adequately removed from
the replayed node, while if 𝜏 is too large, edges with truly informa-
tive neighbors might get removed. This indicate that 𝜏 can have
a negative impact on performance if it becomes too small or too
large at the extremes. Once an appropriate 𝜏 is determined, sta-
bility is observed around its vicinity. Similarly, if the value of 𝑟 is
too small, even if there are many nodes of the same class around
of a particular node, it might not be selected as a replayed node.
Conversely, if the value of 𝑟 is too large, nodes too far away could
be included, undermining the consideration of diversity. With 𝑟
as well, stability of the model performance is confirmed unless at
extreme values. In short, DSLR outperforms baselines in most cases,
once again demonstrating its superiority. Note that the analysis of
another crucial hyperparameter 𝑁 , which determines the number
of neighbors connected through inference, is presented in Fig. 7
and 14.

H PSEUDOCODE
Algorithm 2 shows the pseudocode of CD.
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Algorithm 2: Pseudocode of CD for class 𝐶𝑙 ∈ C𝑇𝑘
Input: Graph at task𝑇𝑡 : G𝑡 = (𝐴𝑡 , 𝑋 𝑡 ) , GNN for node

classification parameterized by 𝜃𝑡 , training set of class𝐶𝑙 :
𝑡𝑟𝑎𝑖𝑛𝐶𝑙 , empty replay buffer for class𝐶𝑙 : B𝐶𝑙 .

Output: updated replay buffer : B𝐶𝑙
1 Compute embedding of 𝑡𝑟𝑎𝑖𝑛𝐶𝑙 through𝐺𝑁𝑁𝜃𝑡

/* Compute the coverage of each node */

2 for 𝑣𝑖 in 𝑡𝑟𝑎𝑖𝑛𝐶𝑙 do
3 𝑑 = 𝑟 · 𝐸 (𝑣𝑖 )
4 C(𝑣𝑖 ) =

{
𝑣𝑗 | 𝑑𝑖𝑠𝑡 (ℎ𝑖 , ℎ 𝑗 ) < 𝑑, 𝑦𝑖 = 𝑦 𝑗

}
5 end

/* Compute buffer size for class 𝐶𝑙 */

6 𝑒𝑙 =

���𝑡𝑟𝑎𝑖𝑛𝐶𝑙 ���∑𝑡−1
𝑡=1

∑
𝐶𝑗 ∈C𝑇𝑡

|𝑡𝑟𝑎𝑖𝑛𝐶𝑗 |
· | B |

7 𝑐𝑜𝑢𝑛𝑡 = 0
8 𝑐𝑜𝑣𝑒𝑟 = { }
9 S = 𝑡𝑟𝑎𝑖𝑛𝐶𝑙

/* Update B𝐶𝑙 using CD approach */

10 while 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑒𝑙 do
11 𝑣𝑏𝑖 = argmax𝑣𝑗 ∈S (

��𝑐𝑜𝑣𝑒𝑟 ∪ C(𝑣𝑗 ) ��)
12 𝑐𝑜𝑣𝑒𝑟 = 𝑐𝑜𝑣𝑒𝑟 ∪ C(𝑣𝑏𝑖 ) ∪ 𝑣𝑏𝑖
13 S = S − C(𝑣𝑏𝑖 )
14 B𝐶𝑙 = B𝐶𝑙 ∪ 𝑣𝑏𝑖
15 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
16 end
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