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Abstract

Multimodal Large Language Models (MLLMs) have recently achieved remarkable performance
in various multimodal benchmarks. However, general benchmarks often do not reveal the
specific aspects of their visual perception limits due to the lack of controllability. In this
work, we quantitatively study the perception of small visual objects in several widely-used
MLLMs and reveal a pervasive limitation in answering questions about small objects in
images. We then conduct a controlled study of MLLMs’ perception, using text reading
as a surrogate for their general perception ability, to understand how object quality, size,
distractors, and location independently affect the perception of small objects in MLLMs.
Through this controlled study, we find that lower object quality, smaller object size and
the presence of visual distractors can both independently reduce MLLMs’ ability to answer
visual questions. More surprisingly, even local perturbations of an object by a few pixels
can cause a drastic decline in the ability of MLLMs to perceive it. Our study provides a
better understanding of the perceptual limitations of MLLMs and contributes new evaluation
protocols for analyzing, enhancing perception of future MLLMs.

1 Introduction

The development of Multimodal Large Language Models (MLLMs) (OpenAl, 2023; Team et al., 2023;
Liu et al., 2023b; Dai et al., 2023) has significantly broadened the capabilities of Large Language Models
(LLMs) (OpenAl, 2023; Touvron et al., 2023), enabling them to navigate and interpret the visual domain.
Leveraging pre-trained visual encoders like CLIP-ViT (Dosovitskiy et al., 2020; Radford et al., 2021), MLLMs
have extended the powerful textual understanding of LLMs to multimodal scenarios, such as visual question
answering (Li et al., 2023a), visual conversations (Liu et al., 2023b), non-verbal reasoning (Ahrabian et al.,
2024), and multimodal in-context learning (Alayrac et al., 2022; Zhao et al., 2023). To serve as multimodal
agents (Yang et al., 2023; Hong et al., 2023) and accomplish complex embodied tasks (Driess et al., 2023;
Mu et al., 2023), MLLMs need to recognize and interpret visual information with different quality, size, and
location, including large central objects and small peripheral pieces of text.

Despite the remarkable advancements of current MLLMs, accurately identifying small objects within images
seems to remain a challenge. As Fig. 1 shows, the widely-used GPT-4V (OpenAl, 2023) struggles to discern
specific details like small textual descriptions. Prior research suggests that increasing the resolution of input
images can generally enhance the response accuracy towards the question (Bai et al., 2023; Yu et al., 2023a).
Furthermore, some works (Zhang et al., 2023; Wu & Xie, 2023; Shao et al., 2024) have introduced methods
for image cropping and visual searching to aid MLLMs in recognizing finer details. However, the extent of
this limitation and the underlying factors contributing to it have not been systematically studied.

To bridge this gap, we quantitatively study MLLMs’ perceptual sensitivity to relative object sizes and identify
various visual factors that contribute to this sensitivity. We first conduct a comprehensive experiment with
seven widely-used MLLMs on two common visual question-answering datasets, GQA (Hudson & Manning,
2019) and TextVQA (Singh et al., 2019), and observe a significant performance drop with a decrease in object
sizes in both benchmarks, a trend that persists in all MLLMs. We then conduct an extensive controlled
experiment to study the independent effect of four visual factors that can contribute to a limitation in
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Figure 1: Failure cases of GPT-4V OpenAl (2023) in perceiving small objects when serving as web agents.
Our research studies this perceptual limitation in several recent MLLMs.

perceiving small objects, namely, object quality, object size, object distractors, and object location.
Our controlled experiments answer the following questions:

e Do widely-used MLLMs have a bias against perceiving smaller visual objects? (Section 3)

« Does object quality (sharpness) and size (number of pixels it occupies) independently impact a widely-used
MLLM’s ability to see/read it? (Sections 4.2 and 4.3)

e How does the existence of similar objects in the image impact the ability of widely-used MLLM’s to
see/read a specific target object? (Section 4.4)

o How does changing the location of an object in the image impact widely-used MLLM’s ability to see/read
it? (Section 4.5)

o Can slightly moving an object (a few pixels vertically or horizontally) impact widely-used MLLM’s ability
to see/read it? (Section 4.5)

The significance of our findings is threefold. First, our results suggest that MLLMs should be used with
caution, especially when the task relies on accurately identifying small visual details. Second, our findings
provide novel insights for developing more reliable MLLMs, especially when dealing with data of lower quality,
objects of smaller size, various distractors, and specific object positions. Third, we provide a new evaluation
protocol for studying future MLLMs. This protocol can be applied, for example, to measure the robustness
of an MLLM in response to different positions by showing the difference between maximum and minimum
performance across different object locations.

2 Related Works

Multimodal Large Language Model. MLLMs like GPT-4V (OpenAl, 2023) and Gemini-pro-vision (Team
et al., 2023) demonstrate a strong capability for visual understanding. MLLMs typically have three primary
components: a vision encoder, a bridge module, and an LLM backbone (Yu et al., 2023a). (1) Vision
Encoder: Commonly, MLLMSs utilize CLIP-ViT (Radford et al., 2021) as the vision encoder, which divides
the input image into patches and feeds them into Transformer blocks sequentially in a raster-scan order. (2)
Bridge Module: The resulting visual features from the vision encoder are then either linearly projected (Liu
et al., 2023b) or condensed into a fixed-sized representation (Li et al., 2023a) to align with the textual
representation space. (3) LLM Backbone: The transformed visual features are then prepended to the text
embedding within the LLM. We consider seven widely-used MLLMs in this work. Both BLIP-2 (Li et al.,
2023a) and InstructBLIP (Dai et al., 2023) utilize the Q-Former as a bridge module, while InstructBLIP
integrates instructions into the Q-Former for an instruction-awarding visual feature. LLaVA-1.5 (Lin et al.,
2023a) projects the visual feature from ViT into the LLM space with an MLP layer. Qwen-VL-Chat (Bai
et al., 2023) chooses a larger vision encoder ViT-bigG and a one-layer cross-attention module to perceive visual
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Figure 2: The performances of multiple popular MLLMs on GQA and TextVQA show a clear positive
correlation with relative size of target objects. The accuracy is computed with inclusion match. *A small
part of questions is skipped due to safety policy of APIs. TTrained on the dataset.

features. Fuyu-8B (Bavishi et al., 2023) uniquely removes the external vision encoder, directly incorporating
pixel information into the language decoder. The training of MLLMs typically undergoes an initial pre-training
on extensive image-text datasets such as LAION (Schuhmann et al., 2022), followed by specialized multimodal
instruction tuning (Liu et al., 2023b). Enhancements in MLLMs have been pursued through various means,
including increasing image resolution (Yu et al., 2023a), scaling data and model size (Wang et al., 2023),
extending to multilingual context (Hu et al., 2023), and introducing interleaved data formats (Lin et al.,
2023b).

Robustness Analysis to MLLMs. The capabilities of MLLMs have been evaluated using general
benchmarks like the traditional VQA benchmark VQAv2 (Antol et al., 2015) and GQA (Hudson & Manning,
2019), alongside newer benchmarks such as MM-Bench (Liu et al., 2023c) and MMMU (Yue et al., 2023).
Some works have shown that MLLMs suffer from object hallucination (Li et al., 2023b; Yu et al., 2023b) and
a lack of robustness in processing visual details (Zhang et al., 2023). The MMVP benchmark (Tong et al.,
2024) further highlights these visual shortcomings, particularly emphasizing the discrepancy between the
embedding spaces of CLIP and the vision-only self-supervised space of DINOv2. The V* algorithm (Wu &
Xie, 2023) offers an innovative approach with its LLM-guided visual search method, specifically targeting the
focus on visual details. Our paper builds upon these insights, quantitatively exploring MLLMs’ performance
in handling visual details.

3 Can MLLMs Perceive Small Objects?

Recent study Zhang et al. (2023) suggests that MLLMs face challenges in perceiving small visual details
compared to larger ones. Inspired by this research, we conduct an extensive quantitative experiment to study
the sensitivity to size of recent widely-used MLLMs on two standard VQA benchmarks. We evaluate the
seven representative models on two prominent visual question-answering datasets, GQA Hudson & Manning
(2019) for real-world objects reasoning and TextVQA Singh et al. (2019) for reading and comprehending
texts presented in the real-world image. Both datasets offer the advantage of bounding box annotations,
pinpointing areas of interest within images. For GQA, we aggregate bounding boxes encompassing all related
objects. For TextVQA, we focus on the bounding box with the highest textual similarity to the ground-truth
answer. To facilitate a nuanced assessment, we categorize these datasets into quintiles based on the relative
size of the target area. The accuracy is measured via inclusion match (Liu et al., 2023d) (see Section C for
exact match results).
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Our findings, depicted in Fig. 2, demonstrate a consistent issue across all models: a marked decline in
processing accuracy for smaller visual elements. Such a trend is most notable in BLIP-2, whose performance
gap across different quantiles is 16.71% and 21.83% on GQA and TextVQA, respectively. In addition, the
two leading closed-source API models, GPT-4V and Gemini-pro-vision, have a 7.32% and 6.39% performance
gap on GQA and 9.05% and 3.31% on TextVQA, respectively, also exhibiting performance gaps.

But what are potential visual factors that can contribute to the difficulty of perceiving small objects? The
most immediate factor is of course quality, since smaller objects are typically sampled at a lower inherent
resolution. However, it could be possible that the size of the object, independent from its quality, might
have an affect on the MLLMSs’ ability to perceive it. Another less obvious factor is the number of potential
distractors, since the smaller an object is relative to the total image size, the more room there is for distractors
to appear. Finally, small objects also have more room to move around on the image, compared to a larger
object that is limited to the central locations on the image. It is challenging to predict how each of these
visual factors independently affect the perception of MLLMs, and thereby their ability to perceive small
objects. In the remainder of this work, our goal is to conduct controlled intervention experiments to shed
light on the independent effect of the aforementioned visual factors on MLLMSs’ perception.

4 What Factors Affect MLLMs’ Perception of Small Objects?

We seek to study the independent effect of the following four visual factors on the perception of MLLMs:
object quality, object size, object distractors, and object location. While these identified factors are by no
means exhaustive, they aim to illuminate some of the fundamental perceptual limitations of current MLLMs,
thereby informing both practical applications and future enhancements of these models. In our experiments,
we focus exclusively on the text-reading ability of MLLMs, as a surrogate for their general perception ability
on small objects. This decision is driven by the idea that text reading involves recognizing diverse
shapes and their spatial relationships, providing a clear and definitive framework for assessment
of perception. Compared to other visual tasks like identifying object colors or types, text recognition offers
reduced ambiguity in evaluation. To facilitate controlled comparisons, we use synthetic digital texts, rendered
in the widely used Arial sans-serif font, and overlaid on plain white backgrounds. Note that black-on-white
digital text widely appears in web-scraped datasets used to pretrain MLLMs, and is therefore
a realistic (in-domain) setting. We repeat all our experiments with more color and font variations
in Section F, and we confirm similar trends when repeating the full study on FashionMNIST in Section G,
where we replace the digits with 10,000 FashionMNIST objects and pose the task as a multiple-choice
recognition problem to probe whether the observed sensitivities persist beyond text.

Object Quality. We define quality as the original sampling rate of an object (in pixels per inch, or
pixels per vector graphic range), that is, the original resolution of an object in a given image. To vary object
quality, we adopt a downsample-upsample strategy on an original high-resolution image of the object, which
is illustrated in the upper part of Fig. 3. Starting from an original 300-pixel by 300-pixel raster image of a
vector graphic digit (Dorig), we reduce its quality six times by down-sampling that raster image to 50 pixels
by 50 pixels (Dgown). Then we upsample the Do six times, and the resulting Dgown,_vp reaches the same
image size with D4, but a six times lower sampling rate. Note that image upsampling does not inherently
change the sampling rate of the object despite the increase in pixel values. In this paper, we use the terms
‘sampling rate’ and ‘quality’ interchangeably.

Object Size. The object size is defined as the number of pixels that belong to an object in the input image
to MLLMs. Note that we can modify the object size while keeping its quality constant by upsampling the
object to the desired size. To this end, we adopt a crop-upsample strategy, as is illustrated in Fig. 3 (lower).
Given a 300-pixel by 300-pixel raster image of a digit (of a particular quality due to the original sampling
rate), we crop the Do,y at the center to 100 pixels by 100 pixels (De¢rop). Then we upsample the Dy, three
times, resulting Dcrop up With the same sampling rate and image pixel size with D,,;4, while having a three
times larger object size.

Object Distractors. Object distractors are objects that belong to the same distribution as a target object
of interest (e.g., other numbers when the object of interest is a particular number in the image).
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Object Location. Current MLLMs share the same manner for image processing, where a complete image is
divided into numerous patches, which are subsequently transformed into individual image tokens. Formally,
the input image x € R¥*WX*C with spatial dimensions (H, W) and C color channels is first reshaped into
2D patches x;, € RN*P QXC, and the resulting N image patches are mapped to N token embedding as the
input of the Transformer architectures. Given the architecture, an input object could be cut by image patch
boundaries and divided into different image patches. In light of this, we investigate two complementary
location-related factors: the global location on the image and the local patch boundary cut on the target
object.
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Figure 3: An illustration of the Downsample-Upsample (upper) and Crop-Upsample (lower) procedure
described in Section 4.2 and 4.3. The upper process reduces object quality 6 times while keeping the same
size and position. The lower increases object size three times while keeping the object quality.
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Figure 4: The effect of changing text sampling rate (quality) on model’s performance of reading texts while
keeping the size of the text. It is noticeable that from the sampling rate of 8 (marked as red), the image
starts to become fully recognizable as ‘5934549,

4.1 Experimental Setup

Text Reading Objective. During the evaluation, the accuracy of the MLLMs’ responses is assessed against
the actual text in the images using Gestalt Pattern Matching (GPM) (Ratcliff et al., 1988). This metric is a
widely used smooth metric for OCR task assessments. The sampling rate is defined in terms of the font size
used during text creation, which correlates with the vertical pixel count of the text characters.

Evaluated Models. Due to the prohibitive cost of running granular experiments on commercial MLLMs,
we will consider the five open-source models as representative examples of current MLLMs: BLIP2 (Li
et al., 2023a), InstructBLIP (Dai et al., 2023), LLaVA-1.5 (Liu et al., 2023a), Qwen-VL-Chat (Bai et al.,
2023) and Fuyu-8B (Bavishi et al., 2023). The architectures of five models are introduced in Section 2.
Notably, BLIP-2 has not been explicitly trained on OCR-oriented tasks, relying instead on image-text
pairs with text annotations within the images. InstructBLIP and LLaVA-1.5 have undergone training on
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several OCR-oriented tasks, including OCR-VQA (Mishra et al., 2019) and TextCaps (Sidorov et al., 2020).
Qwen-VL-Chat, having been trained on a substantial 25M OCR-oriented dataset, demonstrates enhanced
OCR capabilities, and is thus referred to as an OCR-enhanced-MLLM in our analysis. The training specifics
for Fuyu-8B are not publicly disclosed, but based on its performance, we presume its OCR training to be
similar to that of Qwen-VL.

4.2 Quality Sensitivity Study

Our goal in this section is to study the ability of MLLMs in reading small text of varying quality (sampling
rates). We adopt the Downsample-Upsample strategy which is described in Fig. 3 and construct a dataset
with a sampling rate from 2 to 20 in increments of 2, examples are shown at the bottom of Fig. 4. Our
experimental tasks involve reading 3, 5, and 7 digits, signifying three tiers of task complexity, placed at the
center of an image. Each tier includes 500 random numbers to read. We prompt MLLMs with the question
“What is the number on the image?”.

MLLMSs’ response to object quality is threshold-dependent. As shown in Fig. 4, we observed a
significant improvement in the MLLMs’ performance as the sampling rate increased from 4 to 8. However,
after this point, the performance stabilized with increasing sampling rate, indicating a threshold-dependent
trend in the MLLMs’ ability to read text of varying qualities.

The threshold is universal and aligns well with human perception. Remarkably, the threshold of a
sampling rate of 8 is consistently observed across all MLLM models, irrespective of their text recognition
capabilities and the varying levels of task complexity. This threshold seems to be consistent with human
perceptual ability, as it becomes hard to read text below this threshold for our own eyes. These findings
suggest that the MLLMSs’ response to image quality is more influenced by the intrinsic properties of the images
rather than the internal differences among the MLLMs. Considering this threshold-dependent performance
improvement, the continuous improvement in performance within image size observed in Fig. 2 cannot be
solely attributed to image quality improvements. In the following sections, we conduct further experiments
to investigate other factors that can affect the perception of small objects by MLLMs.

4.3 Size Sensitivity Study

In the preceding section, we observed that the sampling rate of text does not significantly challenge MLLMs
after a certain threshold. This leads us to inquire about the impact of object size on MLLMs’ performance
with a fixed sampling rate (quality). To explore this, we follow the Crop-Upsample strategy described
in Fig. 3. Specifically, for Dy, we place an 8-font size text in the center of the image, then in Derop up
the original text is enlarged 1 to 5.5 times, with a step of 0.5, illustrated at the bottom of Fig. 5. The tasks
include recognizing 500 random numbers with 3, 5, and 7 digits following Section 4.2. We prompt MLLMs
with the question “What is the number on the image?”.
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Figure 5: The effect of changing text size on model’s performance while keeping the sampling rate of the text.
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Figure 6: The effect of changing the number of distractors on MLLMs’ text reading.

At a fixed object quality, most MLLMs perform better at recognizing larger objects. As shown
in Fig. 5, except for the OCR~enhanced model Qwen-VL-Chat, the performance of MLLMs improves with
the increase of object size while maintaining a constant quality (sampling rate). Notably, the performance
trajectory of Fuyu-8B exhibits a significant enhancement in the early stages of size increase. In contrast, BLIP-
2 and InstructBLIP show a more gradual improvement in performance with increasing object size. LLaVA-1.5,
however, demonstrates a relatively stable performance across varying sizes, indicating a lesser sensitivity to
changes in object size. Furthermore, we observe that for tasks with greater complexity (recognizing more
digits), the increase in object size has a larger impact on the models’ accuracy. This phenomenon may be
attributed to two reasons. First, larger object sizes occupy more image patches. These patches translate
into transformer tokens, which, during the self-attention mechanisms of the transformer architecture, allow
for a more extensive fusion of information. Second, the majority of MLLM image-text matching data for
pre-training, only present textual descriptions for the main visual components in the image which are often
larger, diminishing their capability of perceiving smaller objects. The second reason is supported by the fact
that the OCR-enhanced model Qwen-VL-Chat, which is trained on large-scale synthetic data with 41 English
fonts and 11 Chinese fonts, maintains its accuracy when processing smaller objects.

4.4 Distractor Sensitivity Study

Small objects in an image, in addition to the inherent effect of their size we observed in the previous section,
can also affect MLLMs’ perception by allowing for the presence of more distractors in the image. Our goal
in this section is to study the effect of distractors on MLLMs’ perception of small objects. To that end,
we place the answer text (number) at the center of the image, then we introduce k distractor numbers,
positioning them at random locations throughout the image. The answer digit text is assigned to the variable
‘a’, while the distractor numbers are assigned to ‘b’ and subsequent letters (‘¢’, ‘d’, ...). We vary the number
of distractors from 0 to 9, and prompt MLLMs with "What is the number assigned to variable ‘a’ in the
tmage?". We experiment with text font sizes 8 and 12 without resampling to gain 2 tiers of task difficulty,
each tier including 100 random numbers (3 digits) to read, and the random position of distractors for each
number is varied 5 times.



Under review as submission to TMLR

Increasing the number of distractors makes perception harder for MLLMs. As shown in Fig. 6,
the increase in the number of distractors consistently decreases MLLMs’ performance regardless of their
overall performance. Specifically, the OCR-enhanced MLLM Qwen-VL-Chat reaches a perfect score across
varying distractor numbers on font size 12, while facing a 10-point performance drop during the increase of
distractor numbers on font size 8. Among the other models, Fuyu-8B, InstructBLIP, and BLIP-2 present
heightened sensitivity to the additional distractors while LLaVA keeps a relatively minor performance drop.
It is worth noting that although Fuyu-8B has superior performance over LLaVA-1.5 in Fig. 5, it appears to
lack robustness when facing distractors.

4.5 Location Sensitivity Study

Another factor that can significantly vary for small objects is their location in the image, which can in turn
affect MLLMs’ perception. We study two complementary location-related factors in this section: the global
location on the image and the local patch boundary cut on the target object (described in detail at the start
of Section 4).

Table 1: The input image patch number and patch size of the MLLMSs considered in our experiment. *Fuyu-8B
has a fixed patch size of 30x 30 but does not have a fixed patch number. We set it to 10x10 in our experiment.

Model Ni?:l:)};r P;itzceh Resolution
BLIP-2 16x16 14x14 224 %224
InstructBLIP 16x16 14x14 224 %224
LLaVA-1.5 24 x 24 14x14 336x336
Qwen-VL-Chat 32x32 14x14 448 %448
Fuyu-8B 10x10*  30x30  300x300*
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Figure 7: The effect of text (number) location in the image on MLLMs’ ability to read the text correctly,
with and without distractors (bottom and top, respectively). Higher values in lighter colors.

4.5.1 Global location

Table 1 outlines the patch sizes and counts of the MLLMs evaluated in our study. To augment patch
capacities, we merge every four adjacent 14 x 14 image patches from models like BLIP-2, InstructBLIP,
LLaVA-1.5, and Qwen-VL-Chat into a single 28 x 28 patch. Texts are centrally placed within each merged
patch, maintaining a consistent sampling rate of 8. In this experiment, following the setting of Section 4.4,
we examine MLLMs’ text recognition and localization performance under variations in distractor presence
and global text positioning. For assessing MLLMs’ capabilities, we introduce scenarios with zero and k&
distractors—zero distractors that evaluate pure text recognition ability across different image locations and k
distractors that require localizing the target text. Specifically, the OCR~enhanced Qwen-VL-Chat model is
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Figure 8: The performance of MLLMs in text recognition tasks demonstrates notable variability when textual
content is vertically (left) and horizontally (right) cut by image patch boundaries. Gray area indicates that
the target texts are cut by a patch boundary. We provide two local illustrations below showing that a text is
shifted between two adjacent image patches. Due to space constraints, we only present the middle part of the
entire shifting (range ratio from 0.25 to 0.75), the complete plots are presented in the Fig. 9.

tested with nine distractors, while all other models with one distractor. We include 100 random numbers (3
digits) placed all through the image patches. We prompt MLLMs with the question "What is the number
assigned to variable ‘a’ in the image?" during evaluation.

MLLMs exhibit inconsistent text recognition and localization performance across different
global locations. In Fig. 7, we observe that the majority of models, except LLava-1.5, encounter challenges
in recognizing or localizing text on the right side of an image. Moreover, BLIP2 and InstructBLIP also
experience difficulties with text on the left side. Notably, the OCR-~enhanced model Qwen-VL-Chat, despite
obtaining a near-perfect score in most locations, demonstrates a significant performance disparity of 58 points
across different locations. Also, Fuyu-8B experiences a sharp decrease in its performance in the first row.
This observation suggests that MLLMs are susceptible to positional bias when processing images. While
including more training datasets can lead to much better overall performance, performance drops on certain
image regions still exist.

4.5.2 Local Patch Boundary Cut

We construct a dataset where the generated digital text gradually crosses an image boundary. For vertical
patch boundary cut, the digit text is anchored at a predetermined vertical location, while being horizontally
moved across the full span of the image. For horizontal cuts, the digit text is fixed at a specific horizontal
position and moved vertically. An illustrative example of vertical cut is shown at the bottom of Fig. 8. We
determine the number of reading digits depending on the maximum digit capacity for a single image patch,
specifically setting at six digits for Fuyu-8B and three digits for the remaining models. We include 100
random numbers for each experiment. We prompt MLLMs with "What is the number on the image?" during
evaluation.

Model’s performance is lower when target objects remain undivided by patch boundaries. For
image patch boundary vertical cutting, as observed in Fig. 8 (left), a common trend among all models is the
performance decline at the center of the patch, where texts remain undivided by patch boundaries(white
parts). Notably, although presenting a near-perfect score, Qwen-VL-Chat still presents an around 10 percent
gap between different patch boundary cuts. The only model that does not show this trend is Fuyu-8B - we
assume this is due to its enlarged patch size, making the performance inside an image patch more robust.
This phenomenon indicates that contrary to intuitions, texts divided across multiple patches may be more
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effectively recognized by MLLMs. Therefore, even with the same size and quality, small objects seem to be
more recognizable by MLLMs when they are divided into different image patches.

Horizontal cuts hurt the performance more than vertical cuts. Fig. 8 (right) demonstrates the
performance of the five models when the target text is horizontally cut by a patch boundary. Consistent
with vertical cuts, in LLaVA-1.5, we observe a notable performance peak at the boundary cuts. However, the
remaining models do not show such a trend. We hypothesize two factors contributing to this observation.
First, at the horizontal cut, all characters presented are divided into two separate parts, while the vertical cut
divides at most only one character into different patches. This effect potentially diminishes the completeness of
shape information. Second, for the horizontal cut, the two resulting image tokens are positioned further apart
after the image is translated into sequence input of transformers; for the vertical cut, the two corresponding
image patches remain continuous.

5 Discussion

Table 2: Intervals of number of pixel values (# Pixels) within the bounding box after the input images
are unified to size 224x224 on 5 data quantiles of GQA and TextVQA tested in Section 3, and the average
number of object/textual distractors (# D) in two datasets.

Data GQA TextVQA
Quantile | # Pixels | # D | # Pixels | #D
1 [100, 1409] 19.2 | [26, 80] 14.9
2 [1409, 5043] 18.1 | [80, 143] 13.8
3 [5045, 11967] | 17.4 | [143, 296 13.1
4 [11971, 24571] | 16.7 | [296, 697) 11.7
5 [24588, 50176] | 14.6 | [698, 50176] | 7.6

5.1 Contributing Factors to Small-Object Performance

To better understand to what extent each factor affects the performance in Fig. 2, we compute the range
of the number of pixels within each quantile after the input images are unified to 224x244. For models
with higher resolutions, the number of pixels of the input images increases proportionally. We also compute
the average number of textual distractors by the number of OCR tokens in each quantile of TextVQA. The
statistics are presented in Table 2.

In TextVQA, the resolution of the first three quantiles is notably limited. The dataset has an average text
length of 8.77 characters. Considering that a text string comprising nine characters approximately covers 200
pixels under a sampling rate of 8, a large portion of images within the first three quantiles of the TextVQA
fall below the observed sampling rate threshold, which provides evidence for their low performance. However,
the impact of object quality is much less significant when it reaches a threshold (Fig. 4), suggesting that the
increased accuracy of the rest of TextVQA and nearly the entire GQA cannot be attributed to improvements
in image quality. In addition, Fig. 6 indicates that the effects of distractors are most significant when the
number increases to five and the trend is gradually stabilized beyond this point. This might suggest that
distractor numbers are not the main cause of the overall trend and that object size plays a more critical role
in it. We report on further analysis in the Appendix Section D.

5.2 Origins of Positional Bias

The different positional bias observed from Section 4.5 may stem from the bias from textual training data,
predominantly from left to right and at the image centers, potentially under-representing text on the right
side and the margin of images. However, the notable performance decline observed in the first row of Fuyu-8B
does not correspond to this data set bias hypothesis. We assume that this unique performance disparity in
Fuyu-8B may be attributable to its singular decoder-based transformer architecture. We will explore this
phenomenon further in the Appendix Section L.

10
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6 Conclusion

In this paper, we exposed notable limitations of current MLLMSs in perceiving small visual concepts, and
explored four visual factors contribute to them: object quality, size, distractors, and location. We extensively
explored each of the factors by conducting controlled intervention studies, concluding that 1) object quality
does not pose an additional obstacle for MLLMs after a certain threshold; 2) most MLLMs fall short in
perceiving small objects, even with enough object quality; 3) MLLMs’ perception ability is prone to the
existence of distractors, and changes significantly based on the object’s both global and local locations in
the image. In addition, our study also provides a new evaluation protocol for automatic benchmarking of
MLLMSs’ perception and their blind-spots, which are crucial in real world applications.
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A Implementation Details

We use python 3.10.6, transformers 4.29.1 and torch 2.1.2 for all the experiments. Our environment consists
of an Intel(R) Gold 5317 CPU @ 3.00GHz with 48 cores and 756 GB of RAM, and we utilize NVIDIA RTX
A6000 GPUs for our experiments. We use the huggingface implementations of all studied MLLMs with the
recommended hyper-parameters according to the respective papers. For GPT-4V, we use the official public
APT as available at the time of submission.

B Complete result of patch boundary cut.

Fig. 9 shows the complete result of horizontal (upper) and vertical (lower) cuts, the overall trend stays the
same.
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Figure 9: Complete result of vertical and horizontal cut.

C Result from GQA and TextVQA on different matching strategies.

In addition to inclusion matching, in Fig. 10, we use exact string matching to compute the accuracy. The
most notable difference is that some models’ performance diminishes, as their output do not follow the dataset

14
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Figure 10: The performances of 7 MLLMs on GQA and TextVQA quantiles by object relative size. The
models’ predictions are computed with exact matching. The overall trend stays the same despite some
variances in performance. *A small part of the dataset is skipped due to safety policy of API models. TThe
model has been reported to be trained on the dataset.

format strictly. Despite the above, the overall trend that most of the models have difficulty perceiving smaller
details stays the same.

D Further analysis on the role of object distractors.

Table 2 presents the number of distractors in each group of TextVQA and GQA, from which it’s also clear
that the number of distractors decreases when the object’s relative size gets larger. Hence, it is unclear which
factor plays the most important role in Fig. 2. To this end, we divide the GQA and TextVQA into five
quantiles by the number of object/OCR token distractors, the result of both metrics is presented in Section D.
From the plot, we observe that object distractors in GQA seem to affect the MLLM’s performance, while in
TextVQA, we do not observe a clear correlation between number of distractors and performance.

E Why does Fuyu-8B have a noticeable low performance in its first row?

In Fig. 7, we notice a sharp decrease in Fuyu-8B’s performance score within the first row. We assume this
unexpected phenomenon is related to its unique pure transformer decoder architecture. To this end, we choose
several images and present the attention map of Fuyu-8B, providing observations for further investigation.
In Fig. 13, we provide the attention map for each of the 36 layers of Fuyu-8B. The input image is the synthetic
image we construct in the location study in Section 4.5, where a single ‘a=665" is placed in an image patch’s
center. The position of the patch is: 0, 4, 9, 19, 49, 99, in the raster scan order of the original image (with
10 x 10 image tokens), the input position can also be seen from the yellow attention outlier in Layer 1. The
attention map is computed for the next token after promoting Fuyu-8B with ‘Question: What is the number
in the image? Short answer:’ and we track the attention of the next token with respect to each image patch.
From the attention map, we can tell that ranging from approximately 13-27 layers, for the image whose text
is placed in iy, position, there are consistently high attention values in the first k& tokens, where k =4 if i <9
otherwise k£ = 9. Such a result could be linked to the low performance observed in the first row since the
high attention among those layers stays consistent within the tokens in the first row. For the deeper reason
behind the phenomenon, we leave them as open future works.
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Figure 12: MLLMs’ performance on TextVQA
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Figure 11: MLLMs’ performance on TextVQA
and GQA quantiles divided by number of distrac-
tors, accuracy is computed using exact matching.
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F Color&Font augmentation.

We repeat all of our experiments with randomly selected colors and font-styles. The colors used in the
experiments are:

black, navy, dark green, maroon, dark violet,
crimson, chocolate, dark orange, teal, indigo

The font styles used in the experiments are:

Arial, Courier New, Impact, Palatino Linotype, Trebuchet MS,
Comic Sans MS, Georgia, Lucida Console, Times New Roman, Verdana

G Experiment on FashionMNIST

To provide some evidence that our discovered sensitivities can generalize to perception of other objects, we
repeat all our experiments with the FashionMNIST dataset in Fig. 15. We formulate the task as a multiple
choice question, where the MLLM is asked to pick the correct class of the object in the image (the class names
are the official labels and provided in the text-prompt to the MLLMs; we measure the model’s accuracy
using 10,000 objects from the testing set of FashionMNIST placed on a white background, the setup of all
experiments are the same as in the paper). We observe that while the absolute performance of all MLLMs
change, their sensitivities to quality, size, object global/local location, and distractors are still present. A few
notable points:

e BLIP family shows much better absolute performance than other MLLMs on FashionMNIST, we
hypothesis that this is because they are trained on much larger multimodal datasets (e.g., LLaVA-1.5
is only trained on about 1M multimodal instruction tuning dataset, while BLIP2 is trained on 129M
dataset for multimodal alignment).

o While all sensitivities that we observed in text-reading are similarly observed in FashionMNIST, their
exact trends can be slightly different.

e An issue with any synthetic object manipulation is that it causes a certain degree of inevitable
distribution shift, since the models are not trained on such data. Most notably, we see that Fuyu is
almost completely unable to understand the assignment of FashionMNIST objects to letters, resulting
in near chance performance in presence of distractors. In contrast, out text-reading benchmark
does not suffer from distribution shift because all MLLMs have been trained on scanned documents
containing black text on white background, hence our choice in the main paper.
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Figure 14: All experiments repeated with color and font-style augmentations (random choice of color and
font), as is described in Section F.
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Figure 15: All experiments repeated on FashionMNIST, as is described in Section G.
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