
Improving Retrieval-augmented Text-to-SQL with AST-based Ranking and
Schema Pruning

Anonymous ACL submission

Abstract
We focus on Text-to-SQL semantic parsing001
from the perspective of Large Language Mod-002
els. Motivated by challenges related to the size003
of commercial database schemata and the de-004
ployability of business intelligence solutions,005
we propose an approach that dynamically re-006
trieves input database information and uses ab-007
stract syntax trees to select few-shot examples008
for in-context learning.009

Furthermore, we investigate the extent to which010
an in-parallel semantic parser can be lever-011
aged for generating approximated versions of012
the expected SQL queries, to support our re-013
trieval. We take this approach to the extreme—014
we adapt a model consisting of less than 500M015
parameters, to act as an extremely efficient ap-016
proximator, enhancing it with the ability to pro-017
cess schemata in a parallelised manner. We018
apply our approach to monolingual and cross-019
lingual benchmarks for semantic parsing, show-020
ing improvements over state-of-the-art base-021
lines. Comprehensive experiments highlight022
the contribution of modules involved in this023
retrieval-augmented generation setting, reveal-024
ing interesting directions for future work.025

1 Introduction026

Text-to-SQL semantic parsing aims at translating027

natural language questions into SQL, to facilitate028

querying relational databases by non-experts (Zelle029

and Mooney, 1996). Given their accessibility bene-030

fits, Text-to-SQL applications have become popular031

recently, with many corporations developing Busi-032

ness Intelligence platforms.033

The success of Large Language Models (LLMs)034

in generalising across diverse Natural Language035

Processing tasks (Ye et al., 2023; OpenAI et al.,036

2024) has fuelled works that looked at how these037

multi-billion parameter models can be best em-038

ployed for Text-to-SQL (Liu et al., 2023; Pourreza039

and Rafiei, 2023). Recent works in this space have040

focused on the in-context learning ability of LLMs,041

demonstrating that significant improvements can be 042

achieved by selecting suitable (question, SQL) ex- 043

ample pairs (Nan et al., 2023; Gao et al., 2023; Guo 044

et al., 2024; Sun et al., 2024). In spite of its under- 045

lying benefits, conventional solutions for example 046

selection are usually limited to retrieving examples 047

based solely on the similarity of questions (Nan 048

et al., 2023; An et al., 2023; Guo et al., 2024). 049

Other approaches resort to a preliminary round of 050

parsing which approximates expected SQL queries, 051

and directly use these approximations in few-shot 052

prompting (Sun et al., 2024), or to subsequently 053

select (question, SQL) pairs by comparing the ap- 054

proximated query to queries within candidate exam- 055

ples (Gao et al., 2023). The approach proposed by 056

Gao et al. transforms SQL queries into SQL skele- 057

tons (Li et al., 2023a) and then filters examples by 058

considering overlap token ratio as the similarity 059

between two skeletons. While incorporating SQL 060

skeleton similarity improves over conventional ex- 061

ample selection for Text-to-SQL (Gao et al., 2023), 062

it can result in structural information loss as ex- 063

emplified in Table 1, where two dissimilar SQL 064

queries are treated as identical. In this paper, we 065

propose a novel approach that selects examples 066

using similarity of normalised SQL Abstract Syn- 067

tax Trees (ASTs). We argue that considering the 068

similarity of such hierarchical structures can sig- 069

nificantly enhance LLMs’ performance for Text-to- 070

SQL parsing. 071

Apart from example selection, we refine 072

database context input to LLMs by dynamically 073

pruning schemata and selecting values. From the 074

perspective of LLMs, existing studies achieve im- 075

provements by including the full database schema 076

in the prompt and additionally hinting the impor- 077

tance of particular schema elements or values (Pour- 078

reza and Rafiei, 2023; Sun et al., 2024). In this pa- 079

per, we show that the performance can be boosted 080

with schemata of reduced size. 081

Inspired by Gao et al. that compute an approxi- 082

1

mated query for a given input question, we further083

explore how combinations of a sparse retriever with084

such an in-parallel semantic parser (we would re-085

fer to it as approximator) can be used to retrieve086

relevant database context input to LLMs. For ef-087

ficiency, we adapt the semantic parser (a decoder-088

free model with < 500M parameters) proposed by089

Vougiouklis et al. to process schemata in a paral-090

lelised manner. Using this efficient approximator,091

our schema pruning strategy selects a relevant sub-092

schema in order to simplify the task for LLMs093

and reduce the relevant computational workload.094

Furthermore, it enables LLM-based Text-to-SQL095

solutions to handle longer schemata (usually asso-096

ciated with commercial use-cases) exceeding their097

context window size.098

We apply our approach on monolingual (SPIDER,099

SPIDER-DK, SPIDER-REAL and SPIDER-SYN) and100

cross-lingual (CSPIDER) benchmarks of different101

generalisation challenges. We evaluate the appli-102

cability of our framework across both closed- and103

open-source LLMs. Our framework, comprising104

only a single round of prompting, achieves state-of-105

the-art performance, outperforming other baselines106

which may comprise complex prompting and mul-107

tiple iterations, when LLMs of equal capacity are108

involved. Through comprehensive experiments, we109

highlight strengths and limitations. Our contribu-110

tions can be summarised as follows:111

• We propose a novel approach for selecting112

(question, SQL) examples using similarity of113

normalised SQL ASTs.114

• We take efficient approximation to the ex-115

treme, presenting a schema-parallelisable116

adaptation of the fastest semantic parser to117

date.118

• We introduce a framework for dynamically119

selecting schema elements and database val-120

ues, offering substantial execution accuracy121

improvements over prior works while signifi-122

cantly reducing the computational workload123

of LLMs.124

• We shed light on the benefits of database value125

selection and its symbiotic relation to schema126

pruning for Text-to-SQL LLM prompting.127

2 Preliminaries128

Let q be the sequence of tokens of a natural lan-129

guage question for database D with tables t =130

SQL1

SELECT T2.name, T2.capacity FROM
concert AS T1 JOIN stadium AS T2 ON
T1.stadium_id = T2.stadium_id WHERE
T1.year >= 2014

Skeleton: select _ from _ where _

SQL2

SELECT name FROM highschooler WHERE
grade = 10

Skeleton: select _ from _ where _

Table 1: Two SQL queries with identical SQL skeletons.

t1, t2, . . . , tT and columns c = c11, c
1
2, . . . , c

i
j , . . . , 131

cTCT
, where cij is the j-th column of table ti and 132

Ci ∈ N is the total number of columns in table 133

ti. Furthermore, let vD =
{
vc11 , vc12 , . . . , vcTCT

}
134

be the set of all values associated with the database 135

D s.t. vc11 , . . . , vcTCT

are the DB value sets associ- 136

ated with respective columns c11, . . . , c
T
CT
∈ c. The 137

goal of Text-to-SQL semantic parsing is to predict 138

the SQL query s given the (q,D) combination, as 139

follows: 140

s = argmax
s

p (s | q,D) (1) 141

For in-context learning, we seek to select per- 142

tinent input context including few-shot examples, 143

schema, and database values to simplify the task 144

for LLMs. 145

3 Example Selection using Abstract 146

Syntax Trees 147

Our goal is to identify the most suitable set of 148

X⋆ = {(q⋆
1, s

⋆
1) , . . . , (q

⋆
e, s

⋆
e)} question-SQL pairs 149

from an index of examples, X, s.t. X⋆ ⊆ X, for 150

maximising the probability of an LLM to predict 151

the correct SQL given (q,D): 152

X⋆ = argmax
X

p (s|q,D,X) (2) 153

From the perspective of ranking, we consider 154

the relevance score between a candidate example 155

(qj , sj) ∈ X and the input (q,D). Vanilla semantic 156

search is usually based solely on question embed- 157

dings, whereas the structure of SQL queries for 158

similar questions is subject to target databases and 159

can thus differ significantly. 160

To incorporate database context for selecting ex- 161

amples, we propose to re-rank examples retrieved 162

by question embeddings based on normalised SQL 163

ASTs. Inspired by Gao et al., our framework 164

utilises a preliminary model to compute an approx- 165

imated SQL query s′, structurally similar to the 166

2

ground truth, given (q,D) s.t. s′ ∼ s. Examples167

are then re-ranked by scoreAST (s
′, sj) for each can-168

didate sj .169

AST represents the hierarchical structure of code170

in a tree form and can be applied to evaluation met-171

rics for code generation (Tran et al., 2019; Ren172

et al., 2020). The fact that SQL queries sharing173

identical abstract meanings may not align with the174

same syntactic structure poses a challenge for mea-175

suring similarity through AST differencing.176

AST Normalisation Although it is infeasible to177

exhaustively transform a SQL to another equivalent178

form, we can normalise ASTs to reduce undesired179

mismatch. Firstly, nodes of identifiers are lower-180

cased and unnecessary references are removed (e.g.181

<table>.<column> is substituted with <column>182

if possible). We then delete nodes that create183

aliases and map each alias to a copy of the subtree184

to which it references. For cross-domain settings185

wherein databases at inference time are unseen in186

the train set, we mask out nodes of values and187

identifiers after resolving aliases. Otherwise for188

in-domain settings we further sort nodes associated189

with JOIN operations(s) to ensure the ordering of190

tables and keys is consistent.191

AST Similarity Given two normalised ASTs, we192

adopt the Change Distilling algorithm (Fluri et al.,193

2007) that computes a list of tree edit operations to194

transform the source AST to the target AST. Types195

of tree edit operations include: insert, delete,196

alignment, move and update. It is essential to197

note that move operation relocates a node to a dif-198

ferent parent while moving a node within the same199

parent is an alignment. Therefore, we calculate200

the similarity between ASTs simply as the ratio of201

alignments to the total number of operations within202

the list. Examples of our normalisation and AST203

similarity are provided in Appendix A.204

4 Database Context Selection205

Apart from relevant question-SQL pairs, prompting206

for Text-to-SQL parsing requires the context of207

database schema and values.208

4.1 Schema Selection209

We present a hybrid search strategy that selects210

a sub-schema given a test question to minimise211

lengthy and potentially irrelevant schema elements212

input to LLMs, while maintaining high recall.213

Let rij be a semantic representation of column cij .214

We aggregate the semantic names1 of cij and the 215

table it belongs to, ti, and its corresponding value 216

set in D, vcij , as follows: 217

rij =
{
ti ∪ cij ∪ vcij

| i ∈ [1, T] and j ∈ [1, Ci]
}

. 218

Given question q, we retrieve the most relevant 219

columns using scoreBM25(q, r
i
j) ∀i ∈ [1, T] and 220

j ∈ [1, Ci] (Robertson et al., 1994). A table is 221

retrieved if any of its columns are retrieved. 222

4.1.1 Incorporating for Approximated Query 223

The semantic search for schema selection requires 224

a comprehension of the relevance between hetero- 225

geneous database information and natural language 226

questions, in addition to interactions across schema 227

elements. To this end, a trained parser can inher- 228

ently be a semantic search model for retrieving 229

a sub-schema, where columns and tables are ex- 230

tracted from the approximated query s′. We argue 231

that a semantic parser which is performing reason- 232

ably on the task, can provide us with an s′, whose 233

structure would assimilate the structure of the ex- 234

pected final query, s. Consequently, we opt to 235

dynamically determine the number of columns to 236

be retrieved by scoreBM25 as proportional to the 237

number of unique columns in s′, returned by the 238

approximator. A sub-schema is then obtained by 239

merging schema elements selected by scoreBM25 240

with elements from the approximated query. 241

4.1.2 Approximating for Longer Schemata 242

To further reduce the computational workload, we 243

opt for using a smaller model for computing s′. 244

However, smaller models usually have shorter con- 245

text windows (i.e. < 2k tokens), and, as such, 246

they cannot be easily scaled to the requirements of 247

larger schemata. To this end, we propose an ap- 248

proach that enables transformer-based encoders to 249

process longer schemata, in a parallelised manner. 250

We start with FastRAT (Vougiouklis et al., 2023), 251

which exploits a decoder-free architecture for effi- 252

cient text-to-SQL parsing. Given a concatenation 253

of the input natural language question q with the 254

column and table names of a database schema, Fas- 255

tRAT computes the SQL operation in which each 256

element of the input schema would participate in 257

the expected SQL query. We refer to these SQL 258

operations as SQL Semantic Prediction (SSP) la- 259

bels (Yu et al., 2021). SQL queries are then de- 260

terministically constructed from the predicted SSP 261

1Semantic name can refer to simply to the name of a par-
ticular or to a concatenation of its name and description.

3

labels. We introduce a schema splitting strategy to262

scale the model up to the requirements of schemata263

comprising several columns.264

We augment the input embedding matrix of the265

model, with two special schema-completion tokens,266

[full_schema] and [part_schema], which are267

used for signalling cases in which a full and a par-268

tial schema are provided as input respectively. Our269

goal is to split a schema consisting of
∑T

j=1Cj270

columns into rm splits s.t. each split includes271

a maximum, pre-defined number of columns r.272

Each split consists of the question tokens, a sin-273

gle schema-completion token, the table names of274

the input D and up to a maximum r number of275

columns allocated to this particular split (see Algo-276

rithm 1 for further details).277

Algorithm 1: Algorithm for splitting a
schema into smaller splits.
Input: # col. name tokens concat.

ctok ← [ctok1
1 , . . . , ctokT

CT
]

flatten concat. of tab.
name tokens
ttok ← [ttok

1 , ttok
2 , . . . , ttok

T]
q← [q1, . . . , qQ] # q tokens
r : int

1 splits← [];
2 if len(c) > r then
3 prefix← q+ [“[part_schema]”];
4 else
5 prefix← q+ [“[full_schema]”];
6 end
7 sp← prefix; # one sp per split

8 for j ← 1 to
∑T

j=1Cj do
9 sp← sp+ ctok [j];

10 if j mod r = 0 or j =
∑T

j=1Cj then
11 sp← sp+ ttok;
12 splits.append(sp);
13 sp← prefix;
14 end
15 end
16 Return splits

The returned schema splits along with the SSP278

labels corresponding to the schema elements of279

each split are treated as independent instances dur-280

ing training. At test time, an input schema is split281

according to Algorithm 1, and the model is input282

with a batch of the resulting splits. After aggregat-283

ing the results from all splits, we obtain the SSP284

label for each column ∈ c. Inconsistencies across285

the SSP labels of tables are resolved using majority 286

voting. We refer to this model as FastRAText. 287

4.2 Value Selection 288

The inference of LLMs for text-to-SQL parsing 289

can be augmented with column values (Sun et al., 290

2024). We select values for columns in a schema 291

(or a sub-schema) by simply matching keywords 292

in questions and values. This is based on the as- 293

sumption that LLMs can generalise to unseen val- 294

ues given a set of representative values; thus, the 295

recall and precision of value selection are less crit- 296

ical. We consider value selection providing ad- 297

ditional information for LLMs to discern covert 298

differences among columns. An example of our 299

resulting prompt is shown in Appendix B. 300

5 Experiments 301

We run experiments using two approximators: 302

FastRAText and Graphix-T5 (Li et al., 2023b). 303

Graphix-T5 is is the approximator used by DAIL- 304

SQL (Gao et al., 2023), and is included to facilitate 305

a fair comparison against the closest work to ours. 306

FastRAText is trained and tested using r = 64, un- 307

less otherwise stated (cf. Section 5.4). For all 308

experiments, we use 5 (question, SQL) examples. 309

We test our approach against both closed- 310

and open-source LLMs: (i) gpt-3.5-turbo 311

(gpt-3.5-turbo-0613), (ii) gpt-4 (gpt-4-0613) 312

and (iii) deepseek-coder-33b-instruct. Re- 313

sults using additional models from the DeepSeek 314

family are provided in Appendix C.4. 315

5.1 Datasets 316

We experiment with several SQL datasets, seek- 317

ing to explore the effectiveness of our approach on 318

both monolingual and cross-lingual setups. Specif- 319

ically, we report experiments on CSPIDER (Min 320

et al., 2019) and SPIDER (Yu et al., 2018). Since 321

CSPIDER is a translated version of SPIDER in Chi- 322

nese, when it comes to the natural language ques- 323

tions, the characteristics of the two with respect 324

to structure and number of examples are identi- 325

cal. We focus our evaluation on the development 326

sets2, which are used as test sets in our experiments. 327

These splits consists of 1, 034 examples of ques- 328

tions on 20 unique databases that are not met at 329

training time. 330

We rely on the training splits to maintain an 331

index of (question, SQL) examples, one for each 332

2Appendix D includes results on the test sets.

4

dataset. Using these splits, we train a monolingual333

and a cross-lingual version of FastRAText.334

Furthermore, we use popular SPIDER variants:335

(i) SPIDER-DK (Gan et al., 2021b), (ii) SPIDER-336

REAL (Deng et al., 2021) and (iii) SPIDER-337

SYN (Gan et al., 2021a) to evaluate zero-shot338

domain generalisation in English (leveraging the339

SPIDER (question, SQL) examples index).340

Consistently with the relevant leaderboards3, we341

report results using execution (EX) and exact match342

(EM) accuracy.4 Since CSPIDER comes without rel-343

evant DB content, we follow previous works, and344

we focus our evaluation on EM scores (Vougiouklis345

et al., 2023; Cao et al., 2023).346

Model EX EM

GraPPa (Yu et al., 2021) − 73.6
FastRAT (Vougiouklis et al., 2023) 73.2 69.1
FastRAText 71.5 64.2
Graphix-T5 (Li et al., 2023b) 81.0 77.1
RESDSQL (Li et al., 2023a) 84.1 80.5

deepseek-coder-33b-instruct
Ours (w/ FastRAText) 81.5 62.1
Ours (w/ Graphix-T5) 83.4 64.7

PaLM2
Few-shot SQL-PaLM (Sun et al., 2024) 82.7 −

text-davinci-003
Zero-shot (Guo et al., 2024) 73.1 −
RAG w/ Rev. Chain (Guo et al., 2024) 85.0 −

gpt-3.5-turbo
Zero-shot (Liu et al., 2023) 70.1 −
C3 (Dong et al., 2023) 81.8 −
DAIL-SQL (Gao et al., 2023) 79.0 −
Ours (w/ FastRAText) 82.0 65.7
Ours (w/ Graphix-T5) 83.0 68.8

gpt-4
Zero-shot (Pourreza and Rafiei, 2023) 72.9 40.4
DIN-SQL (Pourreza and Rafiei, 2023) 82.8 60.1
DAIL-SQL (Gao et al., 2023) 83.6 68.7
Ours (w/ FastRAText) 84.3 73.8
Ours (w/ Graphix-T5) 86.6 77.3

Table 2: EX and EM accuracies on the development split
of SPIDER. Fine-tuning-based baselines are listed at the
top part of the table. Results of our approach are shown
with both FastRAText and Graphix-T5 as approximators.
The best model is in bold, the second best is underlined,
and the best prompt-based setup is in blue.

5.2 Baselines347

We dichotomize the landscape of baselines in fine-348

tuning- and prompting-based baselines. Further349

3https://taolusi.github.io/CSpider-explorer/
and https://yale-lily.github.io/spider

4EX and EM scores are computed using: https://
github.com/taoyds/test-suite-sql-eval.

details are provided in Appendix E. 350

Fine-tuning-based (i) GraPPa, (ii) DG- 351

MAML, (iii) FastRAT, (iv) Graphix-T5, 352

(v) RESDSQL and (vi) HG2AST. 353

Prompting-based Zero-shot LLM prompting 354

has been explored by Guo et al.; Liu et al.; Pour- 355

reza and Rafiei; (i) C3 introduces calibration bias 356

for LLM prompting; (ii) DIN-SQL uses chain- 357

of-thought prompting with pre-defined prompting 358

templates tailored for the assessed question hard- 359

ness; (iii) DAIL-SQL uses query approximation 360

and SQL skeleton-based similarities for example 361

selection; (iv) SQL-PaLM proposes a framework 362

for soft column selection and execution-based re- 363

finement; (v) RAG w/ Rev. Chain augments the 364

input prompt with question skeleton-based example 365

retrieval and an execution-based revision chain. 366

5.3 Text-to-SQL Evaluation 367

Table 2 and 3 summarise the results of our 368

approach with deepseek-coder-33b-instruct, 369

gpt-3.5-turbo and gpt-4 against the baselines. 370

Our approach, comprising a single-prompting 371

round, surpasses other LLM-based solutions, that 372

incorporate several prompting iterations, for LLMs 373

of the same capacity. We note consistent improve- 374

ments over DAIL-SQL, the closest work to ours, 375

even when FastRAText is used as approximator 376

(i.e. a model consisting of < 500M vs the ≥ 3B 377

parameters that DAIL-SQL’s approximator is us- 378

ing). For the same approximator, our framework 379

is able to meet, performance standards of DAIL- 380

SQL (equipped with gpt-4 and an additional self- 381

consistency prompting step) using an open-source 382

model as backbone LLM, by achieving shorter 383

prompts in a single prompting step. 384

SPIDER results are consistent with the results 385

across the various Spider variants and CSPIDER5 386

(Table 3). Our approach levering FastRAText and 387

AST-based re-ranking for example selection out- 388

performs other prompting-based solution, and is in- 389

line with the scores of state-of-the-art fine-tuning- 390

based baselines. While gpt-4 is the most capa- 391

ble model within our framework (with this being 392

more noticeable in the case of SPIDER-SYN), we 393

observe surprising findings with DeepSeek with 394

which in many cases our approach can surpass 395

much more computationally expensive alternatives 396

5In CSPIDER, questions are fully translated in Chinese
while the DB content remains in English. Due to this limita-
tion, DB schema and content selection are disabled.

5

https://taolusi.github.io/CSpider-explorer/
https://yale-lily.github.io/spider
https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval

Model
SPIDER-DK SPIDER-REAL SPIDER-SYN CSPIDER

EX EM EX EM EX EM EM

RAT-SQL + BERT (Wang et al., 2020) − 40.9 62.1 58.1 − 48.2 −
DG-MAML (Wang et al., 2021) − − − − − − 51.0
FastRAT (Vougiouklis et al., 2023) − − − − − − 61.3
FastRAText − 44.1 − 47.8 − 48.5 53.2
HG2AST (Cao et al., 2023) − − − − − − 61.0a

RESDSQL (Li et al., 2023a) 66.0 55.3 81.9 77.4 76.9 69.1 −

deepseek-coder-33b-instruct
Ours (w/ FastRAText) 70.5 46.4 77.4 59.3 68.7 49.5 55.9

gpt-3.5-turbo
Zero-shot (Liu et al., 2023) 62.6 − 63.4 − 58.6 − 32.6
DAIL-SQL (Gao et al., 2023) − − 67.9 − − − −
Ours (w/ FastRAText) 68.8 49.3 78.0 60.8 66.9 51.2 54.0

PaLM2
Few-shot SQL-PaLM (Sun et al., 2024) 66.5 − 77.6 − 74.6 − −

gpt-4
DAIL-SQL (Gao et al., 2023) − − 76.0 − − − −
Ours (w/ FastRAText) 72.3 59.1 80.9 66.1 74.4 61.3 64.4

Table 3: Results on SPIDER-DK, SPIDER-REAL, SPIDER-SYN and CSPIDER. Fine-tuning-based baselines are
listed at the top. The best model is in bold, second best is underlined, and the best prompt-based setup is in blue.

aWithout using question translation; 64.0 EM when question translation is used.

based on larger closed-source LLMs. Our findings397

remain consistent with (Liu et al., 2023) since the398

EM scores of prompting-based methods fall behind399

those of their fine-tuning based counterparts.400

5.3.1 Schema Selection Evaluation401

We evaluate our proposed schema selection strategy402

in a two-fold manner, given that value selection is403

applied for selected columns. Firstly, we use recall404

and schema shortening (rate) to compute averaged405

metrics across all samples showcasing the extent406

to which (i) the most relevant schema elements407

are successfully retrieved, and (ii) the size of the408

resulting schema, after selection, with respect to409

its original size. Secondly, we explore how the410

performance of the end-system changes across dif-411

ferent schema pruning settings by reporting EX412

and EM scores. Recall is the percentage of sam-413

ples for which all ground-truth schema elements414

are selected. Schema shortening is the number415

of schema elements that are excluded divided by416

the total number of schema elements. Results are417

summarised in Table 4.418

The benefits of schema selection are apparent in419

the oracle setup, in which only schema elements420

from the gold query are included in the prompt421

(cf. Table 8). In this setup, the highest execution422

accuracy is achieved while filtering out > 70%423

of the original schema on average. We note that424

our approach of coupling the schema elements re- 425

turned in the approximated query with the ones 426

returned by BM25 navigates a healthy trade-off be- 427

tween maximising recall and reducing processing 428

of unnecessary schema elements. We also notice 429

that our strategy of dynamically determining the 430

number of retained schema elements per input (cf. 431

Section 4.1.1) results in improvements compared 432

to static top-k determination. For roughly the same 433

extent of schema shortening (i.e. by comparing 434

scores with dynamic top-k against top-7), the re- 435

sults with the former are higher across all metrics. 436

5.3.2 Ablation Study 437

Table 5 shows a comprehensive ablation study for 438

the efficacy of our database context selection, and 439

example selection methods including DAIL (Gao 440

et al., 2023) and AST. We consistently notice im- 441

provement when selecting examples using AST, for 442

the same approximator. Interestingly, the perfor- 443

mance gap is increasing the better the approximator 444

becomes, leading to an improvement > 2.4% in the 445

case of an oracle approximator. This finding is in 446

agreement with our hypothesis that AST re-ranking 447

can preserve structural information for more pre- 448

cise example selection when s′ ∼ s. The inclusion 449

of combined schema and value selection (SVS) 450

leads to further improvements when coupled with 451

example selection based on AST or DAIL. 452

6

Approximator Schema Selection Setup Recall Schema Shorten. EX EM

Oracle Gold Query 100.0 71.3 86.3 73.9

FastRAText N/A 100.0 0.0 79.3 63.6
FastRAText BM25 (top-10) 92.0 36.5 78.9 64.1
FastRAText BM25 (top-20) 98.3 14.1 80.7 64.9
FastRAText Approx. Query 86.8 71.3 78.4 63.8
FastRAText Approx. Query + BM25 (top-7) 93.3 50.4 81.1 65.4
FastRAText Approx. Query + BM25 (top-10) 97.0 37.3 81.2 65.6
FastRAText Approx. Query + BM25 (dynamic top-k) 97.2 49.0 82.0 65.7

Graphix-T5 N/A 100.0 0.0 79.8 65.6
Graphix-T5 Approx. Query 92.3 71.8 81.8 68.8
Graphix-T5 Approx. Query + BM25 (dynamic top-k) 97.9 49.4 83.0 68.8

Table 4: Recall, Schema Shortening, EX and EM scores (using gpt-3.5-turbo) across different schema selection
setups, on the development split of SPIDER. Value selection is enabled for the selected columns across all setups.
For the oracle setup, we report performance upper-bounds using only the schema elements from the gold query.

Approximator Selection EX EM

N/A Question Similarity 74.7 52.3

FastRAText

DAIL 78.6 61.4
DAIL + SVS 81.3 62.3
AST 79.3 63.6
AST + VS 80.4 63.8
AST + SS 78.9 63.8
AST + SVS 82.0 65.7

Graphix-T5

DAIL 77.8 61.9
DAIL + SVS 81.0 63.7
AST 79.8 65.6
AST + VS 81.4 66.4
AST + SS 80.2 66.2
AST + SVS 83.0 68.8

Oracle

DAIL 79.1 63.2
DAIL + SVS 82.5 66.0
AST 81.0 67.6
AST + VS 82.6 68.1
AST + SS 82.5 69.6
AST + SVS 84.6 71.3

Table 5: EX and EM scores on the development set of
SPIDER, with gpt-3.5-turbo, across different approx-
imators, and selection setups: example selection (with
DAIL or AST), schema selection (SS), value selection
(VS), and schema & value selection (SVS). We report
results from oracle approximator using gold queries.

5.4 Schema Splitting453

We evaluate the effect of splitting a schema into454

rm splits, using FastRAText for schema selection.455

Figure 1 shows EX scores across different maxi-456

mum number of columns per schema split (r), on457

the development set of SPIDER. We see that the EX458

scores of our approach remain consistent across459

different r. The performance in the case where460

particular schemata from the development set are461

split into rm = 3 or rm = 4 splits (i.e. for r = 24462

or r = 16 respectively) is identical to the scores463

where schemata are split using the default r with 464

which FastRAText has been trained. 465

16 24 32 40 48 64

r Columns / Split

30

40

50

60

70

80

90

100
E

xe
cu

ti
on

A
cc

u
ra

cy
(E

X
)

gpt-3.5-turbo w/ FastRAText (Easy)

gpt-3.5-turbo w/ FastRAText (Medium)

gpt-3.5-turbo w/ FastRAText (Hard)

gpt-3.5-turbo w/ FastRAText (Extra)

gpt-3.5-turbo w/ FastRAText (All)

FastRAText

Figure 1: Execution accuracy scores on on the devel-
opment set of SPIDER across different maximum num-
bers of columns per schema split, r. The results of our
approach, using gpt-3.5-turbo, are presented across
different SPIDER-query difficulty levels.

6 Discussion 466

Are there any theoretical performance upper 467

limits for example selection using AST? For 468

each data instance in the development set of Spider, 469

we compute the average AST similarity between 470

the approximated query and each SQL query that 471

is included (after example selection) in the cor- 472

responding prompt. In Table 6, we measure EX 473

scores on the development set of SPIDER, across 474

different AST-similarity intervals. We see an ob- 475

vious correlation between execution accuracy and 476

AST scores–execution accuracy is higher for higher 477

AST scores. Besides highlighting an empirical, ex- 478

ecution accuracy upper-bound, in the case of test 479

7

questions whose SQL structure is well-covered (i.e.480

with high AST score) in the examples space, our481

approach can hint data instances that might be chal-482

lenging for the current configuration, without even483

requiring to prompt the target LLM or executing484

the resulting SQL against a database instance. Chal-485

lenging data instances can be taken into consider-486

ation with respect to the existence of insufficient487

examples in X to support the expected SQL struc-488

ture or a potentially harmful approximator.489

AST Interval
Approximator

Oracle Graphix FastRAText

[0.0, 1.0] 84.6 83.0 82.0

[0.95, 1.0] 90.8 88.4 88.7
[0.9, 0.95) 80.7 74.1 76.8
[0.85, 0.9) 73.0 68.3 59.4
[0.8, 0.85) 62.4 66.8 63.5
[0.0, 0.8) 50.0 54.1 58.7

Table 6: EX scores on the SPIDER development set
using gpt-3.5-turbo, across different average AST-
similarity intervals.

Is the choice of approximator critical? Al-490

though our AST re-ranking and schema selection491

benefit from more accurate SQL predicted by a492

stronger approximator, the choice of approximator493

depends on the desired trade-off between effective-494

ness and efficiency in practice. FastRAText is over495

600 times faster than Graphix-T5 (Li et al., 2023b)496

on an A100 80G GPU, while the resulting differ-497

ence, within our framework, in EX on the SPIDER498

development set is ≤ 1% (Table 5).499

Does schema selection improve the perfor-500

mance? In Table 5, we noted that performing501

schema selection (i.e. SS) without DB value se-502

lection does not necessarily lead to performance503

improvements. This is in partial agreement with504

Sun et al. that hard column selection can be harm-505

ful for the end-to-end performance, and can be506

attributed to the drop of recall, when less capable507

approximators are involved. Nonetheless, as we508

note in Section 5.3.2, the combination of schema509

and value selection (SVS) can consistently improve510

EX and EM, while significantly reducing the LLM511

token-processing cost due to shortened schema.512

7 Related Work513

Significant number of recent works have looked at514

how LLMs can be employed in Text-to-SQL sce-515

narios (Rajkumar et al., 2022; Chang and Fosler-516

Lussier, 2023; Liu et al., 2023; Pourreza and Rafiei, 517

2023; Gao et al., 2023; Guo et al., 2024). More 518

recent works have looked at how incorporating ex- 519

amples in the prompt could benefit the performance 520

of LLMs in the end task (Pourreza and Rafiei, 2023; 521

Gao et al., 2023; Guo et al., 2024; Sun et al., 2024). 522

In spite of its underlying benefits, conventional 523

solutions for example selection have focused on re- 524

trieving pairs using question similarity (Nan et al., 525

2023). Other approaches have sought to approxi- 526

mate expected SQL queries, and either directly use 527

these approximations in the prompt, in a few-shot 528

setting (Sun et al., 2024) or to filter candidate (ques- 529

tion, SQL) pairs by taking into consideration the 530

similarity of their corresponding SQL query skele- 531

tons (Li et al., 2023a) against the skeleton of the 532

approximated SQL (Gao et al., 2023). We argue 533

that such example selection strategies can result in 534

information loss, and we propose an approach for 535

re-ranking examples using similarity of normalised 536

SQL ASTs. 537

The benefits of schema selection for Text-to- 538

SQL have been highlighted across the relevant bib- 539

liography(Wang et al., 2020; Li et al., 2023b; Pour- 540

reza and Rafiei, 2023). From the LLMs perspec- 541

tive, pruning schema elements from the prompts 542

has been usually leading to performance degrada- 543

tion(Sun et al., 2024). Inspired by Gao et al., we 544

compute a preliminary query for a given (q,D) by 545

we adapting FastRAT (Vougiouklis et al., 2023), to 546

the requirements of processing longer schemata, in 547

a parallelised manner. We couple the resulting ap- 548

proximator with a sparse retriever, and we propose 549

a dynamic strategy for reducing the computational 550

cost of the task while achieving performance im- 551

provements. 552

8 Conclusion 553

In this paper, we augment LLMs for Text-to-SQL 554

semantic parsing by selecting suitable examples 555

and database information. We present a novel 556

AST-based metric to rank examples by similarity 557

of SQL queries. Our hybrid search strategy for 558

schema selection reuses a preliminary query to re- 559

duce irrelevant schema elements while maintaining 560

high recall. Extensive experiments demonstrate 561

that our AST-based ranking outperforms previous 562

approaches of example selection and that a sym- 563

biotic combination of schema and value selection 564

can further enhance the end-to-end performance of 565

both closed- and open-source LLM solutions. 566

8

Limitations567

There are limitations with regards to both of our568

example selection and schema selection. Our AST-569

based ranking can be biased when an approximated570

SQL deviates significantly from structurally cor-571

rect answers. To address the failure of approxi-572

mators, a future direction is to sensibly diversify573

selected examples such that LLMs can generalise574

compositionally. As for schema selection, our se-575

mantic search relies on an approximator which is576

essentially a parser with high precision in schema577

linking but lack mechanisms to control recall as a578

standalone model. Therefore, it is worth extending579

cross-encoder architecture such as FastRAT to sup-580

port ranking schema elements while being a SQL581

approximator in the meantime.582

We demonstrate that schema splitting strategies583

within our framework can be applied across various584

numbers of splits without noticeable performance585

degradation. Nonetheless, given the lack of avail-586

able datasets that incorporate longer commercial587

schemata, we focus our experiments on the cross-588

database setting provided by CSPIDER and SPIDER589

variants.590

Ethics Statement591

We do not make use of any private, proprietary,592

or sensitive data. FastRAText is trained on pub-593

licly available Text-to-SQL datasets, using publicly594

available encoder-models as base. Our framework595

for retrieval-augmented generation builds on-top596

of large, pre-trained language models, which may597

have been trained using proprietary data (e.g. in the598

case of the OpenAI models). Given the nature of599

pre-training schemes, it is possible that our system600

could carry forward biases present in the datasets601

and/or the involved LLMs.602

References603

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen,604
Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.605
2023. Skill-based few-shot selection for in-context606
learning. In Proceedings of the 2023 Conference607
on Empirical Methods in Natural Language Process-608
ing, pages 13472–13492, Singapore. Association for609
Computational Linguistics.610

Ruisheng Cao, Lu Chen, Jieyu Li, Hanchong Zhang,611
Hongshen Xu, Wangyou Zhang, and Kai Yu. 2023.612
A heterogeneous graph to abstract syntax tree frame-613
work for text-to-SQL. IEEE Transactions on Pattern614
Analysis and Machine Intelligence, 45(11):13796–615
13813.616

Shuaichen Chang and Eric Fosler-Lussier. 2023. How 617
to prompt llms for text-to-SQL: A study in zero-shot, 618
single-domain, and cross-domain settings. Preprint, 619
arXiv:2305.11853. 620

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 621
Denny Zhou. 2024. Teaching large language models 622
to self-debug. In The Twelfth International Confer- 623
ence on Learning Representations. 624

Xiang Deng, Ahmed Hassan Awadallah, Christopher 625
Meek, Oleksandr Polozov, Huan Sun, and Matthew 626
Richardson. 2021. Structure-grounded pretraining 627
for text-to-SQL. In Proceedings of the 2021 Con- 628
ference of the North American Chapter of the Asso- 629
ciation for Computational Linguistics: Human Lan- 630
guage Technologies, pages 1337–1350, Online. As- 631
sociation for Computational Linguistics. 632

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, 633
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou. 634
2023. C3: Zero-shot text-to-SQL with ChatGPT. 635
Preprint, arXiv:2307.07306. 636

Beat Fluri, Michael Wursch, Martin PInzger, and Harald 637
Gall. 2007. Change distilling:tree differencing for 638
fine-grained source code change extraction. IEEE 639
Transactions on Software Engineering, 33(11):725– 640
743. 641

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew 642
Purver, John R. Woodward, Jinxia Xie, and Peng- 643
sheng Huang. 2021a. Towards robustness of text- 644
to-SQL models against synonym substitution. In 645
Proceedings of the 59th Annual Meeting of the Asso- 646
ciation for Computational Linguistics and the 11th 647
International Joint Conference on Natural Language 648
Processing (Volume 1: Long Papers), pages 2505– 649
2515, Online. Association for Computational Lin- 650
guistics. 651

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b. 652
Exploring underexplored limitations of cross-domain 653
text-to-SQL generalization. In Proceedings of the 654
2021 Conference on Empirical Methods in Natural 655
Language Processing, pages 8926–8931, Online and 656
Punta Cana, Dominican Republic. Association for 657
Computational Linguistics. 658

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 659
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 660
Text-to-SQL empowered by large language models: 661
A benchmark evaluation. CoRR, abs/2308.15363. 662

Chunxi Guo, Zhiliang Tian, Jintao Tang, Shasha 663
Li, Zhihua Wen, Kaixuan Wang, and Ting Wang. 664
2024. Retrieval-augmented GPT-3.5-based text- 665
to-SQL framework with sample-aware prompting 666
and dynamic revision chain. In Neural Information 667
Processing, pages 341–356, Singapore. Springer Na- 668
ture Singapore. 669

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 670
2023a. RESDSQL: Decoupling schema linking 671
and skeleton parsing for text-to-sql. Proceedings 672
of the AAAI Conference on Artificial Intelligence, 673
37(11):13067–13075. 674

9

https://doi.org/10.18653/v1/2023.emnlp-main.831
https://doi.org/10.18653/v1/2023.emnlp-main.831
https://doi.org/10.18653/v1/2023.emnlp-main.831
https://doi.org/10.1109/TPAMI.2023.3298895
https://doi.org/10.1109/TPAMI.2023.3298895
https://doi.org/10.1109/TPAMI.2023.3298895
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://arxiv.org/abs/2305.11853
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2307.07306
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,675
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo676
Si, and Yongbin Li. 2023b. Graphix-T5: mixing677
pre-trained transformers with graph-aware layers for678
text-to-SQL parsing. In Proceedings of the Thirty-679
Seventh AAAI Conference on Artificial Intelligence680
and Thirty-Fifth Conference on Innovative Applica-681
tions of Artificial Intelligence and Thirteenth Sympo-682
sium on Educational Advances in Artificial Intelli-683
gence, AAAI’23/IAAI’23/EAAI’23. AAAI Press.684

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S.685
Yu. 2023. A comprehensive evaluation of Chat-686
GPT’s zero-shot text-to-SQL capability. Preprint,687
arXiv:2303.13547.688

Qingkai Min, Yuefeng Shi, and Yue Zhang. 2019. A689
pilot study for Chinese SQL semantic parsing. In690
Proceedings of the 2019 Conference on Empirical691
Methods in Natural Language Processing and the692
9th International Joint Conference on Natural Lan-693
guage Processing (EMNLP-IJCNLP), pages 3652–694
3658, Hong Kong, China. Association for Computa-695
tional Linguistics.696

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu697
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and698
Dragomir Radev. 2023. Enhancing text-to-SQL capa-699
bilities of large language models: A study on prompt700
design strategies. In Findings of the Association701
for Computational Linguistics: EMNLP 2023, pages702
14935–14956, Singapore. Association for Computa-703
tional Linguistics.704

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,705
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-706
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-707
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,708
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-709
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-710
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,711
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,712
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-713
man, Tim Brooks, Miles Brundage, Kevin Button,714
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany715
Carey, Chelsea Carlson, Rory Carmichael, Brooke716
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully717
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben718
Chess, Chester Cho, Casey Chu, Hyung Won Chung,719
Dave Cummings, Jeremiah Currier, Yunxing Dai,720
Cory Decareaux, Thomas Degry, Noah Deutsch,721
Damien Deville, Arka Dhar, David Dohan, Steve722
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,723
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,724
Simón Posada Fishman, Juston Forte, Isabella Ful-725
ford, Leo Gao, Elie Georges, Christian Gibson, Vik726
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-727
Lopes, Jonathan Gordon, Morgan Grafstein, Scott728
Gray, Ryan Greene, Joshua Gross, Shixiang Shane729
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,730
Yuchen He, Mike Heaton, Johannes Heidecke, Chris731
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,732
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin733
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,734
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun735

Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 736
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 737
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 738
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 739
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 740
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 741
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 742
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 743
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 744
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 745
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 746
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 747
Anna Makanju, Kim Malfacini, Sam Manning, Todor 748
Markov, Yaniv Markovski, Bianca Martin, Katie 749
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 750
McKinney, Christine McLeavey, Paul McMillan, 751
Jake McNeil, David Medina, Aalok Mehta, Jacob 752
Menick, Luke Metz, Andrey Mishchenko, Pamela 753
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 754
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 755
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 756
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 757
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 758
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 759
tista Parascandolo, Joel Parish, Emy Parparita, Alex 760
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 761
man, Filipe de Avila Belbute Peres, Michael Petrov, 762
Henrique Ponde de Oliveira Pinto, Michael, Poko- 763
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow- 764
ell, Alethea Power, Boris Power, Elizabeth Proehl, 765
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, 766
Cameron Raymond, Francis Real, Kendra Rimbach, 767
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry- 768
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, 769
Girish Sastry, Heather Schmidt, David Schnurr, John 770
Schulman, Daniel Selsam, Kyla Sheppard, Toki 771
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 772
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, 773
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin 774
Sokolowsky, Yang Song, Natalie Staudacher, Fe- 775
lipe Petroski Such, Natalie Summers, Ilya Sutskever, 776
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, 777
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, 778
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe- 779
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, 780
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, 781
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, 782
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji- 783
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, 784
Clemens Winter, Samuel Wolrich, Hannah Wong, 785
Lauren Workman, Sherwin Wu, Jeff Wu, Michael 786
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, 787
Qiming Yuan, Wojciech Zaremba, Rowan Zellers, 788
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian- 789
hao Zheng, Juntang Zhuang, William Zhuk, and Bar- 790
ret Zoph. 2024. GPT-4 technical report. Preprint, 791
arXiv:2303.08774. 792

Mohammadreza Pourreza and Davood Rafiei. 2023. 793
DIN-SQL: Decomposed in-context learning 794
of text-to-SQL with self-correction. Preprint, 795
arXiv:2304.11015. 796

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 797

10

https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://doi.org/10.18653/v1/D19-1377
https://doi.org/10.18653/v1/D19-1377
https://doi.org/10.18653/v1/D19-1377
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,798
Wei Li, and Peter J. Liu. 2020. Exploring the limits799
of transfer learning with a unified text-to-text trans-800
former. J. Mach. Learn. Res., 21(1).801

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-802
danau. 2022. Evaluating the text-to-SQL ca-803
pabilities of large language models. Preprint,804
arXiv:2204.00498.805

Nils Reimers and Iryna Gurevych. 2019. Sentence-806
BERT: Sentence embeddings using Siamese BERT-807
networks. In Proceedings of the 2019 Conference on808
Empirical Methods in Natural Language Processing809
and the 9th International Joint Conference on Natu-810
ral Language Processing (EMNLP-IJCNLP), pages811
3982–3992, Hong Kong, China. Association for Com-812
putational Linguistics.813

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,814
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio815
Blanco, and Shuai Ma. 2020. CodeBLEU: a method816
for automatic evaluation of code synthesis. Preprint,817
arXiv:2009.10297.818

Stephen E. Robertson, Steve Walker, Susan Jones,819
Micheline Hancock-Beaulieu, and Mike Gatford.820
1994. Okapi at TREC-3. In Proceedings of The Third821
Text REtrieval Conference, TREC 1994, Gaithers-822
burg, Maryland, USA, November 2-4, 1994, volume823
500-225 of NIST Special Publication, pages 109–824
126. National Institute of Standards and Technology825
(NIST).826

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-827
Yan Liu. 2020. MPNet: Masked and permuted pre-828
training for language understanding. In Advances in829
Neural Information Processing Systems, volume 33,830
pages 16857–16867. Curran Associates, Inc.831

Ruoxi Sun, Sercan Ö. Arik, Alex Muzio, Lesly Mi-832
culicich, Satya Gundabathula, Pengcheng Yin, Han-833
jun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng834
Wang, and Tomas Pfister. 2024. SQL-PaLM: Im-835
proved large language model adaptation for text-to-836
sql (extended). Preprint, arXiv:2306.00739.837

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen,838
and Tien Nguyen. 2019. Does bleu score work for839
code migration? In 2019 IEEE/ACM 27th Inter-840
national Conference on Program Comprehension841
(ICPC), pages 165–176.842

Pavlos Vougiouklis, Nikos Papasarantopoulos, Danna843
Zheng, David Tuckey, Chenxin Diao, Zhili Shen, and844
Jeff Pan. 2023. FastRAT: Fast and efficient cross-845
lingual text-to-SQL semantic parsing. In Proceed-846
ings of the 13th International Joint Conference on847
Natural Language Processing and the 3rd Confer-848
ence of the Asia-Pacific Chapter of the Association849
for Computational Linguistics (Volume 1: Long Pa-850
pers), pages 564–576, Nusa Dua, Bali. Association851
for Computational Linguistics.852

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021. 853
Meta-learning for domain generalization in seman- 854
tic parsing. In Proceedings of the 2021 Conference 855
of the North American Chapter of the Association 856
for Computational Linguistics: Human Language 857
Technologies, pages 366–379, Online. Association 858
for Computational Linguistics. 859

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr 860
Polozov, and Matthew Richardson. 2020. RAT-SQL: 861
Relation-aware schema encoding and linking for text- 862
to-SQL parsers. In Proceedings of the 58th Annual 863
Meeting of the Association for Computational Lin- 864
guistics, pages 7567–7578, Online. Association for 865
Computational Linguistics. 866

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai 867
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao 868
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, 869
Qi Zhang, and Xuanjing Huang. 2023. A comprehen- 870
sive capability analysis of GPT-3 and GPT-3.5 series 871
models. Preprint, arXiv:2303.10420. 872

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin 873
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev, 874
Richard Socher, and Caiming Xiong. 2021. GraPPa: 875
Grammar-augmented pre-training for table semantic 876
parsing. In International Conference on Learning 877
Representations. 878

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 879
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 880
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 881
Radev. 2018. Spider: A large-scale human-labeled 882
dataset for complex and cross-domain semantic pars- 883
ing and text-to-SQL task. In Proceedings of the 2018 884
Conference on Empirical Methods in Natural Lan- 885
guage Processing, pages 3911–3921, Brussels, Bel- 886
gium. Association for Computational Linguistics. 887

John M. Zelle and Raymond J. Mooney. 1996. Learn- 888
ing to parse database queries using inductive logic 889
programming. In Proceedings of the Thirteenth Na- 890
tional Conference on Artificial Intelligence - Volume 891
2, AAAI’96, page 1050–1055, Portland, Oregon. 892
AAAI Press. 893

A SQL Similarity using Normalised 894

Abstract Syntax Trees 895

Table 7 shows the corresponding SQL queries after 896

each step of our AST normalisation as explained 897

in Section 3. An example of the similarity be- 898

tween normalised ASTs is provided in Figure 2, 899

where tables, columns and values are masked out 900

for cross-domain settings. 901

B Prompt Formulation 902

Table 8 shows an example of our prompt, after 903

example and DB context selection (i.e. schema and 904

value selection). This prompt is provided as input 905

11

https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.18653/v1/2023.ijcnlp-main.38
https://doi.org/10.18653/v1/2023.ijcnlp-main.38
https://doi.org/10.18653/v1/2023.ijcnlp-main.38
https://doi.org/10.18653/v1/2021.naacl-main.33
https://doi.org/10.18653/v1/2021.naacl-main.33
https://doi.org/10.18653/v1/2021.naacl-main.33
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

SQL

SELECT T1.Category, COUNT(*) AS
Num FROM Products AS T1 JOIN Orders
AS T2 ON T1.id = T2.pid GROUP BY
T1.Category ORDER BY Num ASC

1. Unify
Identifiers

SELECT t1.category, COUNT(*) AS
num FROM products AS t1 JOIN orders
AS t2 ON t1.id = t2.pid GROUP BY
t1.category ORDER BY num ASC

2. Resolve
Aliases

SELECT products.category, COUNT(*)
FROM products JOIN orders ON
products.id = orders.pid GROUP BY
products.category ORDER BY
COUNT(*) ASC

3. Reorder
JOIN

SELECT products.category, COUNT(*)
FROM orders JOIN products ON
orders.id = products.pid GROUP BY
products.category ORDER BY
COUNT(*) ASC

4. Mask
Identifiers
& Values
(cross-
domain
only)

SELECT _, COUNT(*) FROM _ JOIN _
ON _ = _ GROUP BY _ ORDER BY
COUNT(*) ASC

Table 7: An example of the effects to corresponding
SQL after each step of our AST normalisation.

to LLMs. Following the latest OpenAI example6906

for Text-to-SQL parsing, we represent a schema907

with CREATE TABLE statements in SQL. Semantic908

names or descriptions of tables and columns are909

included as COMMENT along with the corresponding910

columns or tables. Note that we filter out comments911

that can be obtained by simply lowercasing original912

names and/or removing underscores. To maintain913

a compact representation of database information,914

we append selected values of columns into their915

COMMENT rather than introducing additional lines916

as in the work by Chen et al. (2024). Example917

(question, SQL) pairs are provided in a similar918

manner to DAIL-SQL (Gao et al., 2023), followed919

by an instruction to prompt LLMs to generate SQL920

for the test question.921

C Implementation Details922

We use this section to provide further details about923

the implementation of our approach.924

C.1 Example Selection925

Following (Gao et al., 2023), we employ the pre-926

trained all-mpnet-base-v2 model (Song et al.,927

2020) from Sentence Transformer (Reimers928

6https://platform.openai.com/examples/
default-sql-translate

SELECT T2.name, T2.capacity
FROM concert AS T1 JOIN stadium AS T2
ON T1.stadium_id = T2.stadium_id
WHERE T1.year >= 2014

SELECT name FROM highschooler
WHERE grade = 10

FROM WHEREEXPR

=

SELECT

FROM WHERE

[col] [col]

EXPR JOIN

=

>=ON

SELECT

[tab] [tab]

[col] [col]

[col] [val]

[col] [tab]

[val][col]

Normalised AST

Similarity: 0.52

Normalised AST

Figure 2: Example of how the similarity between two
different SQL queries is computed using normalised
ASTs.

and Gurevych, 2019) to compute dense 929

question embeddings for English datasets 930

including SPIDER, SPIDER-DK, SPIDER- 931

REAL, and SPIDER-SYN. For CSPIDER, 932

paraphrase-multilingual-MiniLM-L12-v2 is 933

used instead. SQL queries are parsed into AST 934

by using SQLGlot7 and are then normalised 935

as explained in Section 3. SQLGlot provides 936

an implementation of the Change Distilling 937

algorithm for AST differencing. We refer readers 938

to SQLGlot’s documentation8 for more details. 939

For selecting example question-SQL pairs, we first 940

retrieve top 500 examples by question similarity 941

and rerank them in terms of the similarity of 942

normalised SQL ASTs. For relevant experiments 943

in Table 5, we reproduced the implementation of 944

7https://github.com/tobymao/sqlglot
8https://github.com/tobymao/sqlglot/blob/main/

posts/sql_diff.md

12

https://platform.openai.com/examples/default-sql-translate
https://platform.openai.com/examples/default-sql-translate
https://github.com/tobymao/sqlglot
https://github.com/tobymao/sqlglot/blob/main/posts/sql_diff.md
https://github.com/tobymao/sqlglot/blob/main/posts/sql_diff.md

Given SQLite database schema student_transcripts:

Selected

Schema
w/

Selected

Values

CREATE TABLE Departments(
department_id number,
department_name text COMMENT ’department

name (e.g. engineer, statistics, medical) ’,

...);
CREATE TABLE Degree_Programs(

degree_program_id number,
degree_summary_name text COMMENT ’degree

summary name (e.g. PHD, Master, Bachelor) ’,
...
PRIMARY KEY (degree_program_id),
FOREIGN KEY (department_id) REFERENCES

Departments(department_id));
Your task is to translate Question into SQL.
Some examples are provided based on similar problems:

Selected

Examples

Question: How many courses does the department of
Computer Information Systems offer?
SQL: SELECT count(*) FROM department AS T1
JOIN course AS T2 ON T1.dept_code =
T2.dept_code WHERE dept_name = “Computer
Info.Systems”
Question: ...
SQL: ...
Complete the following SQL for schema stu-
dent_transcripts:

Test

Question

Question: How many degrees does the engineering de-
partment have?
SQL:

Table 8: An example of the resulting prompt, after ex-
ample and schema and DB content selection.

DAIL selection from the original paper (Gao et al.,945

2023). The number of few-shot examples is set to946

5 across all experiments.947

C.2 Schema & Value Selection948

Each database schema is treated as an indepen-949

dent collection of columns that are analogous to950

documents to be retrieved by using BM25. As men-951

tioned in Section 4.1, we represent a column by952

concatenating semantic names of both the column953

and its table, and the column values in the database.954

Semantic names and values are tokenized using955

spaCy9 and preprocessed by lowercasing and stem-956

ming10. At inference time, the same processing957

is applied to questions. We adopt the implementa-958

tion of Okapi BM25 (Robertson et al., 1994) from959

Rank-BM2511. The number of columns to retrieve960

is dynamically set to ⌊1.5× γ⌋ where γ is the num-961

ber of unique columns in an approximated query.962

We limit the resulting number to a range between963

6 and 20. By retrieving at column level, a table964

is selected if any of its columns are selected. We965

merge retrieved schema elements with schema el-966

ements from the approximated query to construct967

a sub-schema. To further increase the recall, we968

add additional primary keys and foreign keys that969

9https://github.com/explosion/spaCy
10https://www.nltk.org/api/nltk.stem.porter.

html
11https://github.com/dorianbrown/rank_bm25

are not selected but valid based on selected tables, 970

except for experiments where only approximated 971

queries are used (see Table 4). In such cases, how- 972

ever, if the SQL query involves only tables (e.g. 973

SELECT * FROM books), primary keys of selected 974

tables are still included to ensure that correspond- 975

ing CREATE TABLE statements (see Table 8) are 976

meaningful and consistent. 977

For selecting values, similarly, we match the 978

input question and the set of values for each (se- 979

lected) column that has a non-numeric type. The 980

top 3 results are added to the prompt as exemplified 981

in Table 8. The same setting of schema and value 982

selection is used for all datasets we experimented 983

with except CSPIDER. Due to the cross-lingual 984

nature of CSPIDER, schema selection and value 985

selection are simply disabled. 986

Training FastRAText We follow the original 987

hyper-parameters provided by (Vougiouklis et al., 988

2023) for training FastRAText. The monolingual 989

version of FastRAT is based on BERTLARGE while 990

its cross-lingual variant on XLM-RoBERTa-large. 991

C.3 OpenAI Models 992

We use gpt-4 (gpt-4-0613) and gpt-3.5-turbo 993

(gpt-3.5-turbo-0613) for our experiments. For 994

decoding, sampling is disabled and the maximum 995

number of tokens to generate is set to 256. A 996

single experiment, on the SPIDER development 997

set using our approach with FastRAText as the 998

approximator and dynamic database context se- 999

lection costs around $0.8 and $16.5 in the case 1000

of gpt-3.5-turbo-0613 and gpt-4-0613 respec- 1001

tively. 1002

C.4 Experiments with Open-Source LLMs 1003

We further conduct experiments with open-source 1004

models from the DeepSeek family12, that spe- 1005

cialise in code generation. Prompting and de- 1006

coding setups remain consistent across all LLMs 1007

(cf. Section C of the Appendix). Table 9 sum- 1008

marises the results. We see that our approach 1009

can generalise even in the case of open-source 1010

LLM alternatives. Interestingly, our scores using 1011

deepseek-coder-33b-instruct are comparable 1012

to the scores when using gpt-3.5-turbo-0613 1013

across all approximators. Inference experiments 1014

are conducted on a machine using 8×NVIDIA- 1015

V100 32G GPUs. 1016

12We use the implementations provided by https://
huggingface.co/deepseek-ai.

13

https://github.com/explosion/spaCy
https://www.nltk.org/api/nltk.stem.porter.html
https://www.nltk.org/api/nltk.stem.porter.html
https://github.com/dorianbrown/rank_bm25
https://huggingface.co/deepseek-ai
https://huggingface.co/deepseek-ai

Model
SPIDER SPIDER-DK SPIDER-REAL SPIDER-SYN CSPIDER

EX EM EX EM EX EM EX EM EM

deepseek-coder-6.7b-instruct
Ours (w/ FastRAText) 78.6 64.8 66.7 46.4 73.2 55.7 66.0 49.5 53.0
Ours (w/ Graphix-T5) 79.5 64.8 − − − − − − −

deepseek-coder-33b-instruct
Ours (w/ FastRAText) 81.5 62.1 70.5 46.4 77.4 59.3 68.7 49.5 55.9
Ours (w/ Graphix-T5) 83.4 64.7 − − − − − − −

Table 9: Execution (EX) and exact match (EM) accuracy scores of our approach using DeepSeek family models, on
the development splits of SPIDER and CSPIDER, and the SPIDER-DK, SPIDER-REAL and SPIDER-SYN test splits.
CSPIDER results are using only FastRAText as approximator.

D SPIDER and CSPIDER Experiments1017

We report experiments on CSPIDER (Min et al.,1018

2019) and SPIDER (Yu et al., 2018), which contain1019

database schema information and examples in Chi-1020

nese and English respectively. Since CSPIDER is a1021

translated version of the SPIDER dataset, the char-1022

acteristics of the two with respect to structure and1023

number of examples are identical. Both datasets1024

contain 8, 659 examples of questions and SQL1025

queries along with their relevant SQL schemata1026

(i.e. 146 unique databases). The development and1027

test13 sets consist of 1, 034, on 20 unique databases1028

and 2, 147, on 40 unique databases, respectively,1029

and none of the relevant databases are seen in the1030

training set. Due to the scarcity of works report-1031

ing test scores on these benchmarks, we chose1032

not to include our results in the main body of our1033

manuscript. Table 10 shows the performance of1034

our framework with respect to execution and exact1035

match accuracy scores on the test splits of SPIDER1036

and CSPIDER.1037

E Baselines1038

We compare the performance of our approach1039

against several baselines. We dichotomize the land-1040

scape of baselines in fine-tuning- and prompting-1041

based baselines.1042

Fine-tuning-based GraPPa uses synthetic data1043

constructed via induced synchronous context-free1044

grammar for pre-training an MLM on the SSP-label1045

classification; DG-MAML applies meta-learning1046

targeting zero-shot domain generalization. Fas-1047

tRAT incorporates a decoder-free framework, by1048

directly predicting SQL queries from SSP labels;1049

Graphix-T5 inserts a graph-aware layer into T51050

13Since the 1st of March 2024, the test sets of both Spider
and CSpider have become publicly available.

(Raffel et al., 2020) to introduce structural induc- 1051

tive bias; RESDSQL decouples schema linking 1052

and SQL skeleton parsing using a framework based 1053

on a ranking-enhanced encoder and skeleton-aware 1054

decoder; HG2AST proposes a framework to inte- 1055

grate dedicated structure knowledge by transform- 1056

ing heterogeneous graphs to abstract syntax trees. 1057

Prompting-based Zero-shot prompting with 1058

LLMs has been explored by Guo et al.; Liu et al.; 1059

Pourreza and Rafiei; C3 introduces calibration bias 1060

prompting to alleviate LLMs’ biases; DIN-SQL 1061

uses chain-of-thought prompting with pre-defined 1062

prompting templates tailored for the assessed ques- 1063

tion hardness; DAIL-SQL uses query approxima- 1064

tion and SQL skeleton-based similarities for exam- 1065

ple selection; SQL-PaLM proposes a framework 1066

for soft column selection and execution-based re- 1067

finement; RAG w/ Rev. Chain augments the input 1068

prompt with question skeleton-based example re- 1069

trieval and an execution-based revision chain. 1070

14

Model
Easy Medium Hard Extra All

EX EM EX EM EX EM EX EM EX EM

SPIDER

FastRAText 86.2 81.3 72.2 66.0 60.0 51.6 48.5 33.9 68.7 60.9

deepseek-coder-33b-instruct
Ours (w/ Graphix-T5) 89.6 85.5 88.6 66.4 73.9 50.1 58.8 28.0 80.7 60.7

gpt-4
Ours (w/ Graphix-T5) 91.9 87.4 90.3 80.4 81.2 66.1 74.2 47.6 86.0 73.4

CSPIDER

FastRAText − 67.2 − 49.9 − 41.5 − 12.9 − 45.5

deepseek-coder-33b-instruct
Ours (w/ FastRAText) − 79.7 − 58.2 − 40.2 22.4 − 52.9

gpt-4
Ours (w/ FastRAText) − 81.2 − 67.7 − 53.2 − 29.9 − 61.1

Table 10: Execution (EX) and exact match (EM) accuracy scores of our framework, on the test splits of SPIDER and
CSPIDER.

15

	Introduction
	Preliminaries
	Example Selection using Abstract Syntax Trees
	Database Context Selection
	Schema Selection
	Incorporating for Approximated Query
	Approximating for Longer Schemata

	Value Selection

	Experiments
	Datasets
	Baselines
	Text-to-SQL Evaluation
	Schema Selection Evaluation
	Ablation Study

	Schema Splitting

	Discussion
	Related Work
	Conclusion
	SQL Similarity using Normalised Abstract Syntax Trees
	Prompt Formulation
	Implementation Details
	Example Selection
	Schema & Value Selection
	OpenAI Models
	Experiments with Open-Source LLMs

	Spider and CSpider Experiments
	Baselines

