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Abstract

Aligning to human preferences and/or intentions is an important requirement for
contemporary foundation models. To ensure alignment, popular approaches such
as reinforcement learning with human feedback (RLHF) break down the task into
three stages: (i) a model is computed with supervised fine-tuning (SFT) based
upon large demonstrations data, (ii) a reward model (RM) is estimated based upon
human feedback data, and (iii) reinforcement learning (RL) is used to further refine
the SFT model by optimizing the estimated reward model. Demonstrations and
human feedback data reflect human user preferences in different ways. As a result,
the reward model estimate obtained from only human feedback data is likely not
as accurate as a reward model estimate obtained from both demonstration and
human feedback data. A policy model that optimizes the reward model estimate
obtained from both demonstration and human feedback data will likely exhibit
better alignment performance. We introduce a tractable algorithm for finding
the reward and policy models and provide a finite-time performance guarantee.
Additionally, we demonstrate the efficiency of the proposed solution with extensive
experiments including alignment problems in LLMs and robotic control problems
in MuJoCo. We observe that the proposed solutions outperform the existing
alignment algorithm by large margins, especially when the data is unbalanced.

1 Introduction

Background. As ChatGPT has taken the world by storm, it is clear that AI systems will soon become
ubiquitous in our lives. For instance, Large Language Models (LLMs) have been used to solve
hard problems including video gaming (Berner et al., 2019; Mnih et al., 2015), autonomous control
(Bellemare et al., 2020), and robotic manipulation (Kalashnikov et al., 2018; Kober & Peters, 2008).
In this context, the notion of alignment plays an increasingly important role in the design and training
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of AI systems. Loosely speaking, alignment refers to the performance guarantee that the AI system
will generate outcomes that are intended or preferred by the human user without undesirable side
effects or behaviors such as deception (Park et al., 2023) or manipulation (Perez et al., 2022). As
human user intentions or preferences may vary under specific contexts, it is critical that the AI system
adapts to evolving user preferences and/or intentions (Leike et al., 2018).

The alignment problem is a learning problem with (at least) three types of input data: the demonstra-
tion data (consists of prompts and human-generated continuations), the preference data (consists of
prompts and pairs of human-ranked responses), as well as prompts without any responses. Moreover,
the process of aligning an LLM model is typically undertaken in successive stages. For example, the
well-known RLHF approach adopted by Ouyang et al. (2022) starts with a supervised fine-tuning
model (SFT) followed by reward model (RM) estimation based upon human-labeled preference
data. The process closes with a final alignment stage in which reinforcement learning (RL) is used
to optimize the estimated reward model. Similar strategies have been used in other related works
such as Rafailov et al. (2023); Li et al. (2023); Zhu et al. (2023); Liu et al. (2023). The approach to
alignment based on successive stages may facilitate computation, but it is at the expense of inefficient
exploitation of data. To illustrate, consider the three-stage RLHF approach proposed in Ouyang et al.
(2022), in the extreme case where the amount of high-quality preference data is quite limited, the
reward model trained cannot adequately reflect the preferences of the human, which may lead to
unsatisfactory performance in the RL stage. Further, the reward model estimate obtained from only
the preference data fails to exploit the information about human users’ preferences that are implicit in
demonstration data. It is therefore reasonable to expect that a policy model that is fine-tuned with the
reward model estimate obtained from both demonstration and human feedback may exhibit better
alignment performance.

An alternative to the successive approach to alignment consists of jointly training the reward and
policy models by leveraging demonstration and preference data. In contrast to the successive approach
adopted in most of the current alignment approaches, the joint approach to reward and policy learning
makes use of all available data, hence mitigating the risk of optimizing an inaccurate reward model.
However, a joint approach to learning reward and policy models may improve alignment at the
expense of potentially significant additional computational effort.

Contribution. We introduce an algorithm jointly learning reward and policy models named Align-
ment with Integrated Human Feedback (AIHF) with a finite-time performance guarantee. This
approach leverages recent advances in Inverse Reinforcement Learning (IRL) (Arora & Doshi, 2021;
Zeng et al., 2022b), stochastic choice theory (Blavatskyy & Pogrebna, 2010) and bi-level optimization
(Hong et al., 2020; Ji et al., 2021; Khanduri et al., 2021). The proposed formulation integrates
SFT, RM, and RL into a single stage, so that reward modeling and policy optimization can fully
leverage all the available human feedback data. More specifically, in the proposed algorithm, the
policy is updated to improve alignment with the current reward model estimate and the reward
model is updated to improve the fit to demonstration and human feedback data. As a result, upon
convergence, the resulting reward and policy models are consistent in the sense that (i) the policy
model is optimal with respect to the reward model and (ii) the reward model maximizes the fit to
both demonstration and human feedback data. Several existing alignment schemes, such as RLHF
(Ouyang et al., 2022) and DPO (Rafailov et al., 2023) and some of their extensions can be seen
as particular instances of the proposed formulation. We provide ample empirical evidence that the
proposed AIHF solution outperforms the existing alignment algorithms by large margins, especially
when the data is unbalanced, where the quality and/or quantity of one data category is worse/smaller
than that of the other.

2 Preliminaries and Related Work
2.1 Notation

The Finite-Horizon MDP Model. A Markov decision process (MDP) is the tuple (S,A, P, ρ, r, γ),
wherein S denotes the state space, A denotes the action space, P : S × A × S → [0, 1] denotes
the transition probabilities, ρ(·) is the initial state distribution, r : S × A → R denotes the reward
function and γ ∈ (0, 1) denotes the discount factor. For every st ∈ S, a randomized policy π(·|st)
is a probability distribution in ∆|A|, the unit simplex in R|A|. Define τ := {(st, at)}Tt=1 as a
(finite horizon T ) trajectory of state and action pairs. Let HT ⊂

∏T
t=1

(
S ×A

)
denote all feasible

state/action sequence of length T .

2



MDP Model of LLM. The generation of text by a language model can be seen as sampling from
policys in an MDP model. Specifically, each state st = (x, y1:t−1) includes the prompt x and all
response tokens produced up to that point y1:t−1. Each action at = yt represents a token from the
vocabulary. The transition kernel P is deterministic, i.e. given tokens st = (x, y1:t−1) and at = yt,
the environment will transition to st+1 = (x, y1:t). An LLM can be seen as a policy π(·|st) so that a
response of lenght T > 0 to prompt x is obtained with probability:π(y1:T |x) :=

∏T
i=1 π(yi|x, y1:i−1)

Human Feedback Data. Let τ := (y1:T , x) denote a finite text produced in response to prompt
x. For a pair of sequences (τl, τw) (which we assume of the same length T for ease of exposition)
we write τl ≺ τw to indicate the sequence τw is preferred over the sequence τl. Following the
Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952), the distribution of preferences over pairs
(τl, τw) can be modeled as follows:

P
(
τl ≺ τw

)
=

expR(τw; θ)

expR(τw; θ) + expR(τl; θ)
= σ

(
R(τw; θ)−R(τl; θ)

)
(1)

where σ is the sigmoid function and R(τ ; θ) :=
∑T

t≥1 γ
tr(st, at; θ) and r(st, at; θ) is a reward

model parametrized by θ ∈ Rd.

2.2 The RLHF Pipeline
RLHF is a popular technique for finetuning AI systems to align with human preferences and values.
The RLHF approach proposed in (Stiennon et al., 2020; Ouyang et al., 2022) consists of the following
three-stage: 1) the supervised fine-tuning (SFT) stage, where the demonstration data is used to fine-
tune the model in a supervised manner; 2) the reward modeling (RM) stage, where the preference
data is used to train a reward model; 3) the reinforcement learning (RL) stage, where the SFT
model is further finetuned by running RL using the trained reward model. Specifically, the RLH
pipeline can be formally described as follows:
Supervised Fine-Tuning (SFT): Given a demonstration dataset D consisting of sequences of the
form τ = {(st, at)}t≥0 the goal is the find the policy πSFT(·|st) that maximizes likelihood, i.e.:

πSFT = argmax
π

Eτ∼D

[
log
∏
t≥0

(
π(at|st)

)γt]
(2)

Reward Modeling (RM): Based upon a dataset P of preferences over pairs (τl, τw) the estimation
of a reward model can be formulated as the following (with β > 0 a hyper-parameter):

max
θ∈Rd

ℓRM(θ) := E(τl≺τw)∈P

[
log
(
σ
( 1
β

(
R(τw; θ)−R(τl; θ)

))]
. (3)

Reinforcement Learning (RL): Let θ̂P denote the solution to problem (3). The last stage in the
RLHF development pipeline consists of solving the problem:

πRLHF = argmax
π

Eτ∼π

[∑
t≥0

γt
[
r(st, at; θ̂P)− βDKL

(
π(·|st)∥πSFT(·|st)

)]
(4)

where DKL

(
π(·|st)∥πSFT(·|st)

)
:=

∑
a∈A π(a|st) log π(a|st)

πSFT(a|st) is the Kullback-Leibler (KL)
divergence, πSFT is the supervised fine-tuning model. Due to the space limit, we put the rest of the
literature review in the Appendix A.1.

3 Alignment with Integrated Human Feedback (AIHF)
As mentioned before, the reward model obtained in (3) fails to exploit the information about human
users’ preferences that are implicit in demonstration data. As a result, the fine-tuned model obtained
with RLHF may exhibit unsatisfactory alignment performance (this phenomenon will be discussed
more concretely in Sec. 3.4). Below we introduce a new approach to jointly train reward and policy
models by simultaneously leveraging demonstration and human feedback data.

3.1 A Meta-Formulation
Towards developing an approach that can model the entire alignment process with a common
parametrization for both policy and reward models, consider the following meta-formulation, termed
Alignment with Integrated Human Feedback (AIHF):

(AIHF) max
θ

L(θ) := w1L1(πθ) + L2(R(·; θ)) (5a)

s.t. πθ := argmax
π

L3(π;R(·; θ)) (5b)
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Figure 1: Comparison of the RLHF (left) with the proposed AIHF(right).

where θ ∈ Rd is a parameter; L1(πθ) is a measure of fit of the parameterized policy πθ to demon-
stration data and L2(R(·; θ)) is a measure of fit of the parameterized reward model R(·; θ) to the
preference data and L3(π,R(·; θ)) is a measure of performance of policy π with respect to reward
model R(·; θ). and w1 ≥ 0 is one balancing coefficient reflecting the relative size of demonstration
versus preference data. See Fig. 1 for an illustration of AIHF. The AIHF (5) is a meta-problem that
models the alignment problem. It has two levels: an upper-level problem in which the goal is to find
policy and reward models that jointly maximize a measure of fit to demonstrations and preference
datasets and a lower-level problem which ensures that the policy model optimizes performance
with respect to the reward model. Its components can be customized to yield specific alignment
formulations and algorithms. Before diving into various customizations, let us discuss the advantages
of this formulation.

Generality. One can specialize the loss functions and problem parameters to yield a number of
existing alignment formulations. Such generality implies that algorithms developed for (5) are easily
applicable to different special formulations it covers. For more details see Sec. 3.3.

Joint optimization. The formulation jointly optimizes the reward and the policy. One benefit here
is that it can strengthen the reward model through integrating both demonstrations and pairwise
comparisons. Compared with the standard RLHF pipeline, through integrating additional data
source such as demonstrations to train the reward model, it can further boost the policy optimization
subroutine to achieve better alignment performance. See Sec. 4 for a detailed discussion on how the
reward parameter θ is updated by leveraging such demonstration.

Dataset Integration. Clearly, the reward learning process leverages all the available data, therefore,
we can expect that a high-quality reward model can still be obtained even under unfavorable situations
where certain category of data is scarce or of low quality.

3.2 Specification of AIHF
In this section, we specify the formulation (5). Let us begin with the choice of L1. It can be directly
instantiated by using one objective similar to (2), which is the likelihood function over the collected
expert demonstrations. Note that we aim to optimize the reward parameter θ to align with human
feedback in (5a), thus the objective of L1 can be specialized as a maximum likelihood function over
expert demonstrations as below:

L1(πθ) := Eτ∼D

[
log
∏
t≥0

(
πθ(at|st)

)γt]
= Eτ∼D

[∑
t≥0

γt log πθ(at|st)
]
. (6)

Here πθ optimizes the measure of performance L3(π;R(·; θ)) for a reward model R(·; θ) as below:

L3(π;R(·; θ)) := Es0∼ρ,τ∼π

[
R(τ ; θ)− β

∑
t≥0

γtDKL

(
π(·|st)∥π0(·|st)

)]
(7)

where π0 is some initial policy and β > 0 is temperature parameter.

Next, we specify L2. To ensure internal model consistency, we identify the likelihood function for
preference data so it is in accordance with the preferences implied by the reward model R(·; θ) used
in the definitions of L1 and L3. Thus, the optimal distribution µθ over the set of T -long sequence of
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state-action pairs is defined as follows:

µθ := arg max
µ∈∆T

Eτ∼µ

[
R(τ ; θ)− βDKL(µ||µ0)

]
where ∆T denotes the simplex on HT and µ0 is a prior distribution on the trajectories. It can be
shown the solution of the above problem is of the form:

µθ(τ) =
µ0(τ) exp

(
R(τ ; θ)/β

)∑
τ ′∈HT

µ0(τ ′) exp
(
R(τ ′; θ)/β

)) .
With this result, we can now obtain a model for the likelihood that sequence τj is preferred over
τj . By the independence of irrelevant alternatives property (Fudenberg et al., 2015) of the optimal
choice µθ, when the set of feasible choices is reduced from HT to just the the two-tuple {τl, τw},
the likelihood that sequence τw is preferred over τl is given by Pθ(τl ≺ τw) :=

µθ(τw)
µθ(τl)+µθ(τw) . This

motivates the choice of L2(θ) as the following likelihood function:

L2(R(·; θ)) = E(τl≺τw)∈P

[
log

µθ(τw)

µθ(τw) + µθ(τl)

]
= E(τl≺τw)∈P

[
log

µ0(τw) exp
(
R(τw; θ)

)
µ0(τw) exp

(
R(τw; θ)

)
+ µ0(τl) exp

(
R(τl; θ)

)].
With µ0 equal to the uniform distribution on HT , this model is equivalent to the BTL model (3):

LBTL
2 (θ) = ℓRM(θ) = E(τl≺τw)∈P

[
log
(
σ
(
R(τw; θ)−R(τl; θ)

))]
. (8)

Remark: The KL-regularized MDP problem described by (5b) and (7) has a closed-form solution:

πθ(a|s) =
π0(a|s) exp(Qθ(s, a)/β)∑
ã π

0(ã|s) exp(Qθ(s, a)/β)
, (9)

where the corresponding value function Vθ and the Q-function Qθ are defined as below:

Vθ(s) := Eτ∼πθ

[
R(τ ; θ)− β

∞∑
t=0

γtDKL

(
π(·|st)∥π0(·|st)

)∣∣∣∣s0 = s

]
(10a)

Qθ(s, a) := r(s, a; θ) + γEs′∼P (·|s,a)
[
Vθ(s

′)
]
. (10b)

Further, assuming that T = 1, i.e., τ = (s0, a0), and considering the LLM alignment problem as
a sequence-level training problem (this is a popular simplification in language models, see, e.g.,
Rafailov et al. (2023)), the closed-form expression of πθ in (9) can be reduced to:

πθ(a|s) =
π0(a|s) exp( 1β r(s, a; θ))∑

a∈A

(
π0(a|s) exp( 1β r(s, a; θ))

) . (11)

3.3 Special Cases of AIHF

Next, we discuss how formulation (5) can be specialized to some of the known alignment algorithms.

Specialization to RLHF-Type Approach. First, if we set the coefficient w1 = 0 in (5), we obtain:
max

θ
L2(θ) s.t. πθ := argmax

π
L3(π;R(·; θ)). (12)

Noticed that now the upper- and lower-level problems are completely decomposable, since the
upper-level problem solves for the reward parameterization θ, while the lower-level problem solves
for the policy (for the given reward), yielding two separate problems, which are exactly the RM and
the RL problems in the typical RLHF approach.

Specialization to DPO-Type Approach. Consider the relationship between formulation (5) with the
DPO-type approaches. Let us set the following objective function L1 = ℓSFT and L2 = ℓRM, and
assume that T = 1 for the generation process. Relaxing the constraint (5b) which ensures the policy
is optimal w.r.t. a certain parameterized model, we can obtain a DPO-type formulation:

max
π

L(π) := w1 · EτE∼πE

[
log π(aE|sE)

]
+ E(τi≺τj)∼πP

[
σ
(
β log

π(aj |sj)
π0(ai|sj)

− β log
π(ai|si)
π0(aj |si)

)]
.

(13)
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The above formulation specializes to Liu et al. (2024), which is a slightly generalized version of
DPO when both demonstration and preference data are used. Setting w1 = 0 reduces to the problem
solved by DPO; see Rafailov et al. (2023, Eq. (2)).

Specialization to Self-Play Approach. Define ℓ(·) as a monotonic and convex loss function, consider
setting L1 := w1 · EτE∈πE ,α∈π(.|sE)ℓ

(
R(τE ; θ)−R(τ ; θ)

)
, and setting L2 and L3 according to (8)

and (7), respectively. Note that the choice of L1 means that given demonstration data, we will find a
policy which generates trajectories that match the rewards of the demonstration data. Again using
DPO type of reformulation, by substituting the reward expression obtained from the optimal policy
(11) to L1 and selecting the σ(·) as ℓ(·), then the AIHF problem in this case becomes:

max
π

L(π) :=w1EτE∼πE,ã∼π(·|s)

[
log σ

(
β log

π(aE|sE)
π0(aE|sE)

− β log
π(ã|sE)
π0(ã|sE)

)]
+ E(τi≺τj)∼πP

[
log σ

(
β log

π(aj |sj)
π0(aj |sj)

− β log
π(ai|si)
π0(ai|si)

)]
. (14)

Note that the first part of the above formulation is similar to what has been proposed in the SPIN
paper Chen et al. (2024), which only utilizes the SFT data.

3.4 Why AIHF can outperform two-stage alignment approaches
To understand the difference between the proposed approach and the successive stages approach of the
standard alignment pipeline, let us consider the a static setting with action set is A := {τ1, τ2, · · · τN},
reward function R(·) : A 7→ R. In what follows, we will compare the optimal solutions for policies
obtained by different alignment approaches. Due to space limitation, all derivation in this section is
relegated to Appendix A.3.

Optimal Policy with Demonstration Data. It can be easily shown that when only the demonstration
data D is available, the probability of generating ith data equals to its empirical probability, i.e.,
πSFT(τi) =

#{τi in D}
|D| ; See Sec. A.3.1 for derivation. To recover the corresponding reward, consider

a softmax choice model where τi ∈ A is selected with probability π∗
i (R) = exp(Ri/β)∑N

j=1 exp(Rj/β)
where

Ri := R(τi). Assuming a reference value R̂D(τ1) = R̄1, then according to (Hotz & Miller, 1993,
Proposition 1), one can solve the following system of equations to obtain the optimal rewards:

#{τi ∈ D}
|D|

= π∗
i (R̂D) =

exp(R̂D(τi)/β)∑N
j=1 exp(R̂D(τj)/β)

i ∈ {2, . . . , N}. (15)

Optimal Policy with Preference Only Data. Next, it can be shown that when only the preference
data P is available, the reward estimation problem is defined as:

R̂P = argmax
R

ℓRM (R) := E(τj≺τi)∼P

[
log

π∗
i (R)

π∗
i (R) + π∗

j (R)

]
(16)

In Appendix A.3.1, we show that with a fixed reference value R̂P(τ1) = R̄1 the solution is:

π∗
i (R̂P) =

∑
j ̸=i |Pi≻j |∑

j ̸=i |Pi,j |ρ−i(π∗(R̂P))
(17)

where |Pi≻j | := #{τj ≺ τi in P} and |Pi,j | := |Pi≻j | + |Pj≻i| and ρ−i(π) :=
∑

j ̸=i ρ−(i,j)(π)

and ρ−(i,j)(π) :=
(
1−

∑
k∈A\{i,j} πk

)−1

is the expected number of times an action other than τi

or τj is selected when sampling actions from π infinitely many times.

RLHF Policy. Based on the above results, it is possible to show that the RLHF approach has the
following optimal policy πRLHF = π∗

i

(
R̂D + R̂P

)
. That is, the RLHF policy can be seen as the

softmax policy for the sum of reward estimators obtained from demonstrations and preferences
separately.

AIHF Policy. Finally, we also show in the Appendix 3.4 that the AIHF policy is of the form:

π∗
i (R̂

AIHF) =
#{τi in D}+

∑
j ̸=i |Pi≻j |

|D|+
∑

j ̸=i |Pi,j |ρ−i

(
π∗(R̂AIHF)

) (18)
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Comparing the RLHF policy πRLHF and (18) above, we claim that by jointly making use of demon-
stration and preference data the AIHF policy estimator is more robust than the RLHF policy. To see
why this is, suppose that |D| ≫ |P|, i.e. there is more demonstration than preference data. In this
case, the policy estimator in (18) will be largely defined by the demonstration data whereas the RLHF
policy (soft) maximizes the sum of two reward estimators: one that is more accurate (i.e. the one
based on demonstrations, R̂D) and one that is less accurate (i.e. the one based on preferences R̂P ). A
similar argument can be made when |D| ≪ |P|.
Finally, when data sets are of similar size the policy estimated in (18) can be seen as approximating a
weighted average of the policies estimated separately with demonstration and preference data. Using
(15) and (17), we can re-write (18) as follows:

π∗
i (R̂

AIHF) =
|D|

|D|+
∑

j ̸=i |Pi,j |ρ−i

(
π∗(R̂AIHF)

)π∗
i (R̂D) +

∑
j ̸=i |Pi,j |ρ−i

(
π∗(R̂P)

)
|D|+

∑
j ̸=i |Pi,j |ρ−i

(
π∗(R̂AIHF)

)π∗
i (R̂P)

Such averaging entails reduced variance. We include numerical examples in the Appendix A.3.3 to
further illustrate this point.

4 Proposed Algorithm for AIHF Training
We are now ready to design algorithms for the proposed AIHF formulation (5). To begin with,
first note that (5) takes a hierarchical form, and it belongs to the class of problem named bi-level
optimization, first developed in the 70s (Fiacco & McCormick, 1990), and recently found many
applications in machine learning (Wang et al., 2021; Liu et al., 2021, 2022). Generically speaking,
bi-level problems are not easy to optimize; more specifically, in (5), the upper-level problem (5a)
is a function of both the lower-level optimal solution πθ and the true parameter θ. It follows that a
(stochastic) first-order algorithm for L(θ) involves some (potentially non-trivial) implicit gradient
computation which often involves computing the Hessian matrix for the lower-level objective function.
Fortunately, as we will show shortly, with some special choices of L1, L2, L3, one can design some
simple and very efficient algorithms.

Before we go to details, we note that throughout this section, we assume that we are searching for a
good policy πθ and a reward estimate r(·, ·; θ) to align with human feedback, where the policy πθ is
an optimal solution w.r.t. the certain reward estimate r(·, ·; θ) according to the policy optimization
problem (5b). Due to such optimal policy constraint w.r.t. one explicit reward estimate, we design an
algorithm to solve such a single-stage, bi-level problem which is different from DPO (Rafailov et al.,
2023) that simply optimizes the fixed loss function (13) directly.

On a high level, the proposed algorithm alternates between a policy alignment step (which updates
π with a fixed reward r(·, ·; θ)), and a reward alignment step (which updates θ using a stochastic
gradient, a function of the demonstration and preference data). Next, we study these steps in detail.

Policy Alignment Step. From our earlier discussion, we know that when L3 takes the form (7), the
optimal policy (for a fixed reward) is given by (9). Of course, one cannot directly compute such an
optimal solution due to the fact that both Qθ and the normalization term are unknown. Therefore
one can adopt the standard approaches such as the well-known proximal policy optimization (PPO)
(Schulman et al., 2017) algorithm to obtain an approximate optimal policy. It is worth noting that,
when considering T = 1, our discussion leading to (11) indicates the optimal policy takes a much
simpler form. In this case, it is possible to consider a simpler method than running PPO to obtain the
optimal policy. One alternative way is to use a baseline estimated reward value to perform variance
reduction Li et al. (2023), thus reducing the computational complexity.

It is important to note that, the point of the above discussion is that these different choices for solving
the policy alignment problem can be incorporated into our overall approach.

Reward Alignment. In this step, we use a stochastic gradient-type algorithm to optimize L(θ).
Towards this end, first, observe that

∇L(θ) = w1∇L1(πθ) +∇L2(θ). (19)

Clearly, regardless of the choice of L2, ∇L2 is relatively easy to compute because the objective is
directly related to θ since L2(θ) can be regarded as one supervised learning loss and do not involve
the optimal policy πθ. In particular, we have the following expressions:

∇LBTL
2 (θ) = E(τl≺τw)∼πP

[
∇θ log

(
σ
(
R(τw; θ)−R(τl; θ)

))]
. (20a)
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Algorithm 1: Alignment with Integrated Human Feedback (AIHF)

Input: Initialize reward parameter θ0 and policy model π0, the stepsize of reward update η. Let P , DE

denote the preference and the demonstration data, respectively.
for Iteration k = 0, 1, . . . ,K − 1 do

Policy Alignment: Optimizing L3 by RL subroutine, e.g. PPO, to obtain one improved policy πk+1

Data Sample I: Sample an expert trajectory τ ∼ DE and agent trajectory from τ ′ ∼ πk+1

Data Sample II: Sample preference pair (τl ≺ τw) ∼ P
Estimating Gradient: Calculate one gradient estimator gk := w1g

k
1 + gk2 of

∇θL(θ) = w1∇θL1(θ) +∇θL2(θ)
Reward Alignment: θk+1 := θk + ηgk

end for

On the contrary, the computation of ∇L1(πθ) is more involved, since L1 depends on θ implicitly
through the corresponding optimal policy πθ. Fortunately, the following lemma indicates that this
gradient has a simple and intuitive form as well.

Lemma 4.1 Suppose that L1 takes the form of the objective (6) for reward learning from demonstra-
tions, and suppose that L3 takes the form (7) with c(·) being the KL-divergence w.r.t. some initial
policy π0. Then we have the following expression:

∇θL1(πθ) = Eτ∼πE,τ ′∼πθ
[∇θ

(
R(τ ; θ)−R(τ ′; θ)

)
] (21)

where πθ is the optimal policy given the reward model parameterized by θ, with the expression (9).

Intuitively, if the current policy πθ has not matched πE yet, then the reward should be improved
by going towards the direction suggested by the expert trajectories, while going away from those
generated by the current policy. Similar to the BTL model, from the gradient expression (21), it is
clear that the optimization is toward the direction of increasing the gap between the reward of the real
samples (demonstrations) and the synthetic ones (model generated continuations).

In practice, a few approximations need to be made to obtain a stochastic gradient of L1. First,
similarly, as before, the precise expectation cannot be obtained because the ground truth policy
πE is unknown. Denote an offline demonstration dataset as DE := {τ}, then one can replace the
expectations Eτ∼πE by Eτ∼DE . Second, in the second expectation in (21), the trajectories τ ′ are
sampled from πθ, the optimal policy for a fixed reward parameterization by θ. This means that the
policy alignment step has to identify the optimal policy πθ first, which, due to limitations such as
computational constraints, and non-linear parameterization, is generally not possible. Instead, we
propose to sample from the current policy πk+1 obtained from the previous policy optimization step,
where index k represents the iteration counter. Following the approximation steps mentioned above,
we construct a stochastic estimator gk to approximate the exact gradient ∇L(θk) in (19) as follows:

gk := w1g
k
1 + gk2 := w1

(
∇θR(τEk , θk)−∇θR(τAk , θk)

)
+
(
1− σ(R(τWk , θk)−R(τLk , θk))

)
×
(
∇θR(τWk , θk)−∇θR(τLk , θk)

)
. (22)

The above two steps are summarized in Algorithm 1. let us remark on the computational complexity
of the proposed algorithm. Note that our algorithm is motivated by a class of popular algorithms in
bi-level optimization, where the upper-level and lower-level problems are updated alternatingly using
stochastic optimization (Hong et al., 2020). We conclude the section by theoretically inspecting the
proposed algorithms.

Theorem 4.1 Suppose Assumptions 1 - 2 hold. Selecting stepsize α := α0

Kσ for the reward update
step (22) where α0 > 0 and σ ∈ (0, 1) are some fixed constants, and K is the total number of
iterations to be run by the algorithm. Then the following result holds:

1

K

K−1∑
k=0

E
[∥∥ log πk+1 − log πθk

∥∥
∞

]
= O(K−1) +O(K−σ) (23a)

1

K

K−1∑
k=0

E
[
∥∇L(θk)∥2

]
= O(K−σ) +O(K−1+σ) +O(K−1) (23b)
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Figure 2: Helpfulness-controlled Generation on Pythia-160M, 1B, 2.8B policy models, where the
reward model is trained from Pythia-1.4B models. We record the average scores of AIHF and RLHF
on the Anthropic-HH test dataset, reporting the results across three different trials.

where ∥ log πk+1−log πθk∥∞ := maxs∈S,a∈A
∣∣ log πk+1(a|s)−log πθk(a|s)

∣∣. In particular, setting
σ = 1/2, then both quantities in (23a) and (23b) converge with the rate O(K−1/2).

The above theorem shows that Alg. 1 could converge to stationary point if we take a large loop
number K. Note that details and proofs of the result above are delegated to Appendix A.5.

5 Experiments
In this section, we provide numerical evaluations of the proposed algorithm. Our experiments
demonstrate the advantages of the proposed methods in the following aspects: (1) Reward learning
from demonstration and preference is key to improving over standard RLHF. (2) Using demonstration
in reward learning could increase model improvement efficiency (w.r.t. the KL divergence violation)
(3) AIHF could reduce the effect of distribution mismatch caused by the sequential alignment method
which could break the performance limits of the state-of-the-art methods.

Models and datasets Since reward-based methods can be costly by training two models at the same
time, we mainly test Alg. 1 on Anthropic-HH dataset (Bai et al., 2022) with pythia Biderman et al.
(2023) models. Anthropic-HH is a preference dataset that provides two continuations based on
helpfulness and harmlessness, and we only pick 10k chosen/preferred continuation data to form the
demonstration dataset, while others serve as preference dataset and RL prompt dataset.

Two variants of AIHF: AIHF-DPO, corresponding to the specification of (13), and Self-Play AIHF,
which is defined in (14) are tested with 7B models. We select Ultrafeedback-binary2 as our preference
dataset and Ultrachat200k3 as the demonstration dataset, with mistral-7b-sft-beta 4 Jiang et al. (2023)
as our base model. For Self-Play AIHF, we adopt the same strategy as Chen et al. (2024), at each
epoch, we generate samples with picked 50k data and generate continuation ã ∼ π(·|s) using the
current model π, then optimize (14) with the sampled ã.

Evaluation For the Anthropic-HH dataset, we present the reward evaluated by the
PKU-Alignment/beaver-7b-v3.0-rewardJi et al. (2024). In our 7B model experiments, we
adopt the widely recognized HuggingFace Open LLM Leaderboard framework (Beeching et al.,
2023). This evaluation suite measures LLM performance across six tasks: commonsense reasoning
(Arc Clark et al. (2018), HellaSwag Zellers et al. (2019), Winogrande Sakaguchi et al. (2021)),
multi-task language understanding (MMLU Hendrycks et al. (2020)), mimicking human falsehoods
(TruthfulQA Lin et al. (2021)), and math problem-solving (GSM8K Cobbe et al. (2021)). Additional
implementation details can be found in the appendix A.2.

Results of AIHF Algorithm 1 We observe that the proposed approach AIHF performs effectively
when initiated from both the demonstration-SFT model and the full-SFT model. As shown in Fig. 2,
utilizing the same data, AIHF algorithm can eventually outperform RLHF irrespective of the initial
model. Furthermore, according to the numerical results as shown in Fig. 4, compared with the RLHF
benchmark, we see that the proposed AIHF algorithm has smaller deviation from the base model.
This benefit of the AIHF approach is due to the fact that we incorporate the maximum likelihood IRL
objective for both reward learning and policy learning. In this case, both reward model and policy
model will be trained to align with the demonstrations, which are also used in the training process
of the SFT stage. We also conducted an ablation study on the demonstration/preference data ratio.
The results show that policy performance initially increases but then quickly decreases when there

2https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
3https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
4https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
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Figure 3: Performance comparison between AIHF-DPO, Self-Play AIHF training across the six
benchmark datasets.

is insufficient demonstration data. This is because the data coverage provided by demonstrations is
crucial; without the support of a robust reward model, the policy model quickly becomes overfitted.

Results of Self-Play AIHF and AIHF-DPO Different from the time-consuming Algorithm 1, AIHF-
DPO and Self-Play AIHF are more capable of handling large data and models. The results are
presented in 3 where we can see that similar to the AIHF case, both AIHF-DPO and Self-Play
AIHF could effectively improve the performance of RLHF model (zephyr-7b-beta) and the average
performance. The success of Self-Play AIHF and AIHF-DPO further suggests that joint learning
from demonstration and preference is indeed beneficial for the alignment.

0 2000 4000 6000 8000 10000 12000 14000
The Number of Policy Optimization Step

0

5

10

15

20

KL
(

||
re

f)

RLHF
AIHF

0 2000 4000 6000 8000 10000 12000 14000
The Number of Policy Optimization Step

1.0

0.5

0.0

0.5

1.0

1.5

Av
er

ag
e 

Sc
or

e

AIHF (Demonstration/Preference = 0.3)
AIHF (Demonstration/Preference = 0.6)
AIHF (Demonstration/Preference = 1)

Figure 4: Left: KL divergence to the Demonstration-SFT policy, Right: AIHF vs RLHF with different
demonstration/preference ratio on 1B models.

Other result Due to the space limitation, we leave two additional experiments in the appendix: 1)
movie review generation with positive sentiment on IMDb dataset Maas et al. (2011), 2) experiment
on Robotics control tasks in MuJoCo Todorov et al. (2012). For the result of MuJoCo Experiment
A.2.1, we observe that even though Behavior Cloning (BC)/SFT could provide a high-performing
initialization, RLHF still fails to improve policy quality in the following RL stage. In the contract, the
proposed AIHF can effectively integrate preferences and demonstrations, leading to a more robust
reward function and consequently, a high-quality policy. For the IMDB result 6, We show that AIHF
is able to alleviate the distribution mismatch between the generated trajectories by the policy, and the
data that the learned reward model is able to rank.

6 Conclusion
In this work, we study the alignment problem when diverse data sources from human feedback are
available. Furthermore, we have developed an algorithmic framework that can integrate both expert
demonstration and pairwise comparison data from human feedback to learn the reward functions
for further guiding policy learning/model fine-tuning in the alignment pipeline. Through extensive
evaluations on robotic control tasks and large language model alignment tasks, we demonstrate that
our proposed method can outperform existing benchmarks on alignment tasks and is able to recover a
better reward model to guide policy learning.
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A Appendix

A.1 literature review

A.1.1 Reward Learning using Demonstration Data
In the RL literature, a line of work referred to as Inverse Reinforcement Learning (IRL) proposes
to learn the reward function in a reinforcement learning environment that is the best fit for the
demonstration data. For example, a recent paper (Zeng et al., 2022a) proposed a maximum likelihood
IRL formulation. Given a dataset D of sequences of the form τ = {(st, at)}t≥0 the goal is the find
the parametrized reward model r(s, a; θ) that solves the following bi-level optimization problem:

max
θ

Eτ∼D

[
log
∏
t≥0

(
πθ(at|st)

)γt]
s.t. πθ ∈ argmax

π
Eτ∼π

[∑
t≥0

γt
[
r(st, at; θ) +H(π(·|st))

]] (24)

where H(π(·|st)) := −
∑

a∈A π(a|st) log π(a|st) is the entropy of policy π(·|st). In this for-
mulation, the upper-level problem identifies the best reward parameterization that maximizes the
log-likelihood of the observed demonstration data; the lower-level ensures the policy solves the
entropy regularized MDP problem defined by the reward r(· : θ).
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A.1.2 Joint Learning from demonstration and preference

Combining data from demonstrations and human feedback to achieve alignment has also been studied
in the robotics literature. In Ibarz et al. (2018), the authors first combine two approaches to learn from
human feedback: expert demonstrations and trajectory preferences. The addition of demonstrations
to learning from preferences typically results in substantial performance gains compared with using
either demonstrations or preferences in isolation. In Palan et al. (2019) and Bıyık et al. (2022),
the authors integrate diverse sources of human feedback including demonstrations and pairwise
comparisons in a Bayesian approach to learn reward functions that are assumed to be linear in
carefully selected features and evaluate their proposed method on robot learning platform. Moreover,
their proposed methods need to actively generate preference queries, which are expensive to collect
in practical applications. In contrast, the approach proposed in this paper is not Bayesian and does
not include the requirement that the reward model is linear in pre-selected features.

A.1.3 Other Approaches to Alignment

Other approaches to alignment include Direct Preference optimization (DPO) (Rafailov et al., 2023)
and Inverse Preference Learning (IPL) (Hejna & Sadigh, 2023) both remove the need for explicit
reward modeling, and they directly extract the policy from preferences. This greatly reduced the
training complexity, but it has been observed that these algorithms can be unstable in the training
process (Azar et al., 2023; Xu et al., 2024). There is also a large number of works that aim to
learn reward functions from rating (Daniel et al., 2014) or ranking (Yuan et al., 2023; Myers et al.,
2022). Hong et al. (2024) proposed a single-stage supervised learning algorithm ORPO that can
perform supervised fine-tuning and preference alignment in one training session without maintaining.
However, all of these works highly rely on high-quality human feedback, which is often more difficult
and expensive to obtain.

A.2 Experiment Setup and Additional Result

A.2.1 MuJoCo Tasks

In MuJoCo, we consider several robotic control tasks with continuous action space. We evaluate the
performance of our proposed algorithm on aligning robot behaviors with provided demonstrations
and preference data. After the robot training stage, we leverage the ground-truth reward function
from the environment to evaluate the performance.

Data. Following the similar data generation pipeline in Brown et al. (2019), we generate the expert
demonstrations and preference dataset as follows. We first train an expert agent by leveraging the
ground-truth reward function and the popular Soft Actor-Critic (SAC) algorithm Haarnoja et al.
(2018), which is developed to solve policy optimization problems with continuous action space.
During the training process, we save the policy checkpoints and collect 30k samples from each
checkpoint. To achieve precise control of dataset quality, we categorize the data collected into three
different classes: low-, medium-, and high-quality datasets according to the performance of the
checkpoints. Then we combine the low- and medium-quality data as the preference dataset and use
high-quality as demonstration data.
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Figure 5: Left: Hopper Environment Middle: HalfCheetah Environment Right: Walker2d
Environment; AIHF (orange) vs RLHF(blue); results are averaged over 3 independent runs. We use
10k demonstrations and 20k preferences. The RLHF curve is initialized from a policy pre-trained
by BC; the AIHF from a random policy. The performance is compared against the # of SAC steps
performed (for AIHF each policy alignment performs 5k steps of SAC.)
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Results. We show that AIHF is able to integrate (insufficient amount of) demonstration data and
(not-so-high-quality) preference data to generate high-quality policy, and it significantly outperforms
the RLHF. In Fig. 5, we observe that due to the limited number of demonstration data Ross &
Bagnell (2010); Zeng et al. (2022b), Even BC could provide a high-performing initialization, RLHF
still fails to improve policy quality in the following RL stage. Moreover, since the preference data
quality is only of low-to-medium quality, the RL step based on the learned reward model fails to
significantly boost the fine-tuning performance. In contrast, clearly the proposed AIHF can effectively
integrate preferences and demonstrations, leading to a more robust reward function and consequently,
a high-quality policy.

In SAC, both the policy network and Q network are (64, 64) MLPs with ReLU activation function,
and the step size is set to 3 ∗ 10−3, we parameterize the reward function by a (64, 64) MLPs with
ReLU activation function. For the reward network, we use Adam as the optimizer, and the step size is
set to be 1 ∗ 10−4.

The quality of the preference dataset and demonstration dataset are listed as follows Tab. 1:

Task
Dataset Non-prefer Data Prefer Data Demonstration Data

Hopper-v2 2345.20± 329.93 3024.63± 40.52 3559.61± 73.12
HalfCheetah-v2 7226.37± 126.88 9434.42± 1315.13 11635.42± 236.51

Walker2d-v2 3952.60± 444.45 5091.71± 291.73 5453.41± 71.07

Table 1: The quality of preference and demonstration

A.2.2 Sentiment-Controlled Generation

Dataset Generation: In the IMDb sentiment completion task, we generate the demonstrations and
preference datasets using the following procedure. Initially, we train a Language Model by employing
the ground-truth reward function DISTILBERT-IMDB and the Proximal Policy Optimization (PPO)
algorithm on 30% of the training dataset for IMDb. Throughout the training process, we save the
policy checkpoint every 500 PPO steps. Subsequently, we select an additional 40% of the training
dataset and generate a response for each prompt for each checkpoint. According to the evaluation
score of each generation, we categorize the data collected into different classes: low-, medium-, and
high-quality datasets, then we combine low-quality and medium-quality as preference datasets, and
use high-quality as demonstration datasets.

Training: After acquiring the preference and demonstration datasets, we train the proposed algorithm
AIHF and baselines on the remaining 30% of prompts from the training dataset. We evaluate
the performance of each algorithm using the test datasets for IMDb and HH, along with their
corresponding ground truth reward functions. For the GPU resources, we use 8× A100 40G for all
the experiments.

Results: Policy Quality. We find that the proposed approach works well when either preference or
demonstration data, or both, are limited. From the 7, we see that by using the same amount of data
(10k preference, 10k demonstration), AIHF-based algorithms achieve faster convergence than their
RLHF and DPO counterparts.

Results: Distribution Mismatch. We show that AIHF is able to alleviate the distribution mismatch
between the generated trajectories by the policy, and the data that the learned reward model is able
to rank. To evaluate the extend of such mismatch, we use the following three steps: (1) use 1k
preference, 1k demonstration to train policy and reward model for RLHF and AIHF ; (2) for a given
set of prompts from test dataset, use RLHF and AIHF to perform generation; (3) use the trained
reward models to rate the generation; (4) compare with the score generated by the ground truth
reward LVWERRA/DISTILBERT-IMDB. Fig. 6 illustrates that the reward score distribution produced
by AIHF aligns closely with that of the ground truth reward, whereas that generated by RLHF
exhibits a poor match. These results show that the reward model learned by AIHF is able to correctly
evaluate the generation produced by the final policy.
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Figure 6: Comparison of the distribution of reward score generated by the trained reward models,
and the ground truth reward model. RLHF vs ground truth (left); AIHF vs ground truth (right).

From Fig.7, our proposed algorithm AIHF could obtain higher rewards than baseline methods in
the IMDb setting for almost all KL values. Although AIHF might get a low score from the ground
truth reward model in the earlier step, AIHF would get a higher reward with more iteration and
optimization steps. This indicates that with the mix of demonstration data and preference data, we
could prevent the policy from known issues of reward hacking, especially when the policy learned
more human-aligned features beyond base models (high KL value). Moreover, AIHF is persistent
in the number of preference data, presenting that AIHF could still gain benefit from the limited
preference data in more optimization steps as long as the demonstration data is high quality enough.
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Figure 7: The frontier of expected reward vs KL to the reference policy in IMDB dataset. fix
the demonstration number to 3k Left: Using 1k preference; Middle: Using 2k preferences; Right:
Using 3k preference

A.2.3 Helpfulness-Controlled Generation

Results: Reward Distribution. Further, in Fig. 8, we show the overall reward distribution of the
continuation, we can observe the distribution of AIHF and RLHF have some overlap in low-quality
continuation, however, AIHF can generate more high-quality continuations compared to RLHF, which
shows that joint optimization can more effectively align the policy model with the demonstration
distribution.
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Figure 8: The Reward Distribution of Helpfulness-controlled Generation. Left: Result on
160m model, Right: Results on 1B model, This figure reports the reward distribution of generation
evaluated by PKU-Alignment/beaver-7b-v3.0-reward for AIHF and RLHF.

A.2.4 The result of 7B experiments

We 7b experiment as in (Dong et al. (2024)), where we utilize DeepSpeed ZeRO-3 (Rajbhandari et al.
(2020)) to reduce the memory cost. To accelerate data generation, we use VLLM (Kwon et al., 2023)
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for inference. We use eight NVIDIA A100-40G to do the training with a per-device batch size of 1
for 7b model. We train all models with bfloat16 precision. We set the learning rate to be 5e-7 for the
7b model with the cosine learning rate scheduler. We consider the max sequence length to be 512.

We also list the metric and number of shots used for LLM evaluation on each dataset.

Dataset Arc Challenge TruthfulQA MC2 Winogrande GSM-8K HellaSwag MMLU

Metric acc_norm acc acc strict-match acc_norm acc
Num. of Shots 25 0 5 5 10 5

Table 2: A summarization of the benchmarks we use in this work. We list the metric and number of
shots used for LLM evaluation on each dataset.

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Avg

zephyr-7b-beta 59.64% 55.18% 77.82% 33.51% 84.18% 59.76% 61.68%
AIHF-DPO(w1 = 0.01) 61.86% 57.55% 79.08% 36.61% 85.58% 60.09% 63.46%
AIHF-DPO(w1 = 0.001) 63.25% 58.73% 79.16% 36.84% 85.59% 59.26% 63.80%
AIHF-DPO(w1 = 0.0001) 61.17% 60.03% 79.00% 39.80% 85.71% 60.02% 64.28%

Self-play AIHF(w1 = 1) Iter1 59.47% 53.58% 77.74% 41.16% 84.58% 59.27% 62.63%
Self-play AIHF(w1 = 1) Iter2 60.66% 54.88% 78.61% 39.87% 85.14% 59.19% 63.05%
Self-play AIHF(w1 = 1) Iter3 61.86% 57.78% 78.53% 42.22% 85.50% 58.68% 64.09%
Self-play AIHF(w1 = 1) Iter4 61.77% 58.29% 78.53% 44.20% 85.53% 58.66% 64.49%

Table 3: Test performance of AIHF-DPO and Self-Play AIHF based on mistral-7b-sft-beta across
HuggingFace Open LLM Leaderboard datasets

A.3 Why AIHF Can Outperform Two-Stage Alignment Approches

A.3.1 RLHF Policy

We revisit the RLHF pipeline in the context of a simple softmax choice model where τi ∈ A is
selected with probability π∗

i (R) = exp(Ri/β)∑N
j=1 exp(Rj/β)

where Ri := R(τi).

Supervised Fine-Tuning (SFT): Given a demonstration dataset D the goal is the find the policy
πSFT that maximizes likelihood, i.e.:

πSFT := argmax
π

Eτi∼D
[
log π∗

i (R)
]

It can easily checked that the solution is of the form πSFT = π∗
i (R̂D) =

#{τi∈D}
|D| , for each τi ∈ A

where R̂D is the unique solution (see (Hotz & Miller, 1993, Proposition 1)) to the system of equations:

#{τi ∈ D}
|D|

=
exp(R̂D(τi)/β)∑N
j=1 exp(R̂D(τj)/β)

i ∈ {2, . . . , N} (25)

with R̂D(τ1) = R̄1 a fixed reference value.

Reward Modeling with Preference Data: With preference data P := {(τi ≺ τj)}, the BTL model
is:

P (τj ≺ τi) = σ
( 1
β

(
R(τi)−R(τj)

)
=

π∗
i (R)

π∗
i (R) + π∗

j (R)
.

The reward estimation problem is defined as:

R̂P = argmax
R

ℓRM (R) := E(τj≺τi)∼P

[
log

π∗
i (R)

π∗
i (R) + π∗

j (R)

]
(26)

The first order condition is:

∂ℓRM (R̂P)

∂Ri
=

1

β

∑
j ̸=i

( |Pi≻j |
|Pi,j |

− π∗
i (R)

π∗
i (R) + π∗

j (R)

) |Pi,j |
|P|

= 0
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where |Pi≻j | := #{τj ≺ τi in P} and |Pi,j | := |Pi≻j | + |Pj≻i|. Again by (Hotz & Miller, 1993,
Proposition 1), there is a unique solution R̂P to the above system of equations with a fixed reference
value R̂P(τ1) = R̄1. The first-order condition can be written in implicit form as:

π∗
i (R̂P) =

∑
j ̸=i |Pi≻j |∑

j ̸=i |Pi,j |ρ−i(π∗(R̂P))
(27)

where ρ−i(π) :=
∑

j ̸=i ρ−(i,j)(π) and ρ−(i,j)(π) :=
(
1 −

∑
k∈A\{i,j} πk

)−1

is the expected
number of times an action other than τi or τj is selected when sampling actions from π infinitely
many times.

RLHF Policy. The RLHF policy is defined as follows:

πRLHF = arg max
π∈∆N

Eτi∼π

[
R̂P(τi)

]
− βKL(π||πSFT)

where R̂P is the estimator obtained from preference data, πSFT is the SFT model trained with
demonstration dataset D, and ∆N is the probability simplex. It can be easily shown that the solution
πRLHF is of the form:

πRLHF(τi) =
πSFT(τi) exp

1
β R̂P(τi)∑N

j=1 π
SFT(τj) exp

1
β R̂P(τj)

=
exp 1

β R̂D(τi) exp
1
β R̂P(τi)∑N

j=1 exp
1
β R̂D(τj) exp

1
β R̂P(τj)

using (25)

=
exp

(
1
β (R̂D(τi) + R̂P(τi))

)∑N
j=1 exp

(
1
β (R̂D(τj) + R̂P(τj))

)
= π∗

i

(
R̂D + R̂P

)
(28)

A.3.2 The AIHF Policy

The AIHF estimation problem is

R̂AIHF = argmax
R

ℓD+P(R) := |D|L1(R) + |P|L2(R) (29)

where L1(R) := Eτi∼D[log π
∗
i (R)] and L2(R) := E(τj≺τi)∼P [log

π∗
i (R)

π∗
i (R)+π∗

j (R) ]. The first order
condition is:

∂ℓD+P(R̂
AIHF)

∂ri
=

#{τi in D}
|D|

|D|+
∑
j ̸=i

|Pi≻j | − π∗
i |D| −

∑
j ̸=i

π∗
i (R̂

AIHF)

π∗
i (R̂

AIHF) + π∗
j (R̂

AIHF)
|Pi,j | = 0

Hence, the first-order condition can be re-written as:

#{τi in D}+
∑
j ̸=i

|Pi≻j | = π∗
i (R̂

AIHF)
(
|D|+

∑
j ̸=i

|Pi,j |
π∗
i (R̂

AIHF) + π∗
j (R̂

AIHF)

)
= π∗

i (R̂
AIHF)

(
|D|+ |P|ρ−i

(
π∗(R̂AIHF)

))
Or equivalently,

π∗
i (R̂

AIHF) =
#{τi in D}+

∑
j ̸=i |Pi≻j |

|D|+
∑

j ̸=i |Pi,j |ρ−i

(
π∗(R̂AIHF)

) (30)

The system (30) has a unique solution R̂AIHF with a fixed reference value R̂AIHF (τ1) = R̄1.
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A.3.3 Numerical Examples

Example 1: With β = 1 and only two actions τ1 and τ2. Since ρ(π)−i = 1, it follows from equations
(25), (27) and (30) that:

πAIHF
1 := π∗

1(R̂
AIHF ) =

#{τ1 in D}+#{τ2 ≺ τ1 in P}
|D|+ |P|

=
|D|

|D|+ |P|
π∗
1(R̂D) +

|P|
|D|+ |P|

π∗
1(R̂P).

Slightly abusing notations, let π∗
1 := π∗

1(R
∗) where R∗ is the ground-truth reward. It follows that

Var(π∗
1(R̂D)) =

π∗
1 (1−π∗

1 )
|D| , Var(π∗

1(R̂P)) =
π∗
1 (1−π∗

1 )
|P| and

Var(πAIHF
1 ) =

π∗
1(1− π∗

1)

|D|+ |P|
< min{Var(π∗

1(R̂D)),Var(π∗
1(R̂P))}

To further illustrate, suppose R∗(τ1) = R∗(τ2) and we have the following datasets:

#{τ1 in D} = #{τ2 in D} = 50, #{τ1 ≻ τ2 in P} = 6, #{τ2 ≻ τ1 in P} = 4.

With the given data, πSFT
1 = π∗

1(R̂D) =
#{τ1 in D}

|D| = 50
100 and the solution to (27) yields

π∗
1(R̂P) =

exp R̂P(τ1)

exp R̂P(τ1) + exp R̂P(τ2)
=

6

10

Hence, πAIHF
1 = 100

10+100π
∗
1(R̂D) +

10
10+100π

∗
1(R̂P) =

56
110 . It follows from (28) that:

πRLHF
1 =

πSFT
1 exp R̂P(τ1)

πSFT
1 exp R̂P(τ1) + πSFT

2 exp r̂P(τ2)

=
exp R̂P(τ1)

exp R̂P(τ1) + exp R̂P(τ2)
=

6

10
.

In this example, the RLHF policy estimator is the farthest from ground-truth, because it does not
correctly use the information provided by the demonstration data which in this case happens by
chance to be correct πSFT

1 = π∗
1(R̂P) =

1
2 .

As a second example, again suppose R∗(τ1) = R∗(τ2). Consider now the datasets:

{#τ1 in D} = 6, {#τ2 in D} = 4, {#τ1 ≻ τ2 in P} = {#τ2 ≻ τ1 in P} = 50. (31)

In this case, πSFT
1 = π∗

1(R̂D) =
6
10 and the solution to (27) yields

π∗
1(R̂P) =

exp R̂P(τ1)

exp R̂P(τ1) + exp R̂P(τ2)
=

50

100
.

It follows from (28) that:

πRLHF
1 =

πSFT
1 exp R̂P(τ1)

πSFT
1 exp R̂P(τ1) + πSFT

2 exp R̂P(τ2)

=
πSFT
1

πSFT
1 + πSFT

2

=
6

10
.

Hence, πAIHF
1 = 10

10+100π
∗
1(R̂D) +

100
10+100π

∗
1(R̂P) = 56

110 . In this example, the RLHF policy
estimator is again farthest from ground-truth, because it does not correctly dismiss the information
provided by the demonstration data which is less informative than preference.

Example 2: Let us use an illustrative example to show that RLHF method will result in significant
data under-utilization when the demonstration coverage is limited. With β = 1, assume that
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there are 50 actions, i.e. A = {1, 2, . . . , 50} and each with a ground-truth reward defined by

R∗(τi) = 1
σ
√
2π

e−
( i
50

−µ)2

2σ2 , where µ = 0.5 and σ = 2. Assume we can sample demonstration
and preference from the ground truth reward distribution: demonstrations are sampled from the
multinomial distribution, while preferences are sampled from the BTL model.

In an extreme scenario, let demonstrations cover actions 1 through 45, i.e. D∩{45, 46, . . . , 50} = ∅,
while preferences have full coverage across all actions. In the subsequent experiment, we initially
sample 2000 demonstrations using the multinomial distribution π∗

i =
expR∗

i∑j=45
j=1 expR∗

j

, and obtain 200

preferences for each preference pair with P (i ≻ j) =
expR∗

i

expR∗
j+expR∗

i
. We then calculate the RLHF

and AIHF policies as in in (28) and (30) to obtain the result depicted in Figure 9:
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Figure 9: The optimal policy of RLHF, SFT, AIHF, and Ground-truth distribution. The left region of
the red dotted line is included in the demonstration, while the right region is uncovered. We report
the results with 100 random repeats.

From the result shown in Figure 9, we demonstrate that both SFT and RLHF transfer the weight
from uncovered action to covered actions when demonstration coverage is limited, as indicated by
πSFT (τi) = 0, τi ∈ {45, 46, . . . , 50}. Consequently, the weight of covered actions is significantly
higher than the ground truth. However, this issue does not occur when jointly optimizing the
demonstration and preference in the AIHF method.

A.4 Appendix: Proof of Lemma 4.1

Proof. Here, under a reward parameter θ and the corresponding optimal policy πθ of (9).

Moreover, under a fixed reward parameter θ, we have defined the optimal policy πθ as below:

πθ := argmax
π

EτA∼π

[ ∞∑
t=0

γt

(
r(st, at; θ)− βDKL

(
π(·|st)||π0(·|st)

))]
.

According to Uehara et al. (2023), the optimal policy πθ of (7) has the closed form expression as
below:

πθ(a|s) =
π0(a|s) exp

(Qθ(s,a;θ)
β

)∑
ã∈A π0(ã|s) exp

(Qθ(s,ã;θ)
β

) , ∀s ∈ S, a ∈ A. (32)

Based on the closed form of πθ, we can also obtain the closed form of Vθ as following:

Vθ(s) := β log
(∑

a∈A
π0(a|s) exp

(Qθ(s, a)

β

))
. (33)
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Then we can re-write the demonstration loss L1(θ) as below:

L1(θ) = EτE∼πE

[ ∞∑
t=0

γt log πθ(at|st)
]

= EτE∼πE

[ ∞∑
t=0

γt log

(
π0(at|st) exp

(Qθ(st,at)
β

)∑
ã∈A π0(ã|st) exp

(Qθ(st,ã)
β

))]

= EτE∼πE

[ ∞∑
t=0

γt

(
log
(
π0(at|st) exp

(Qθ(st, at)

β

))
− log

(∑
ã∈A

π0(ã|st) exp
(Qθ(st, ã)

β

)))]

= EτE∼πE

[ ∞∑
t=0

γt

(
log π0(at|st) +

Qθ(st, at)

β
− log

(∑
ã∈A

π0(ã|st) exp
(Qθ(st, ã)

β

)))]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
β log π0(at|st) +Qθ(st, at)− β log

(∑
ã∈A

π0(ã|st) exp
(Qθ(st, ã)

β

)))]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
β log π0(at|st) +Qθ(st, at)− Vθ(st)

)]
(34)

Then we can take gradient of L1(θ) w.r.t. the reward parameter θ, we have the following expression:

∇L1(θ) :=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
∇θβ log π0(at|st) +∇θQθ(st, at)−∇θVθ(st)

)]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
∇θQθ(st, at)−∇θVθ(st)

)]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
∇θr(st, at; θ) + γ∇θVθ(st+1)−∇θVθ(st)

)]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt∇θr(st, at; θ)

]
− 1

β
Es0∼ρ

[
∇θVθ(s0)

]
(35)

In order to calculate the expression of ∇L1(θ), we further derive the expression of ∇θVθ(s0):

∇θVθ(s0) = ∇θ

(
β log

(∑
a∈A

π0(a|s0) exp
(Qθ(s0, a)

β

)))

= β
∑
a∈A

π0(a|s0) exp
(Qθ(s0,a)

β

)∑
a∈A π0(a|s0) exp

(Qθ(s0,a)
β

)∇θQθ(s, a)

β

= Ea∼πθ(·|s0)

[
∇θQθ(s0, a)

]
= Ea0∼πθ(·|s0),s1∼P (·|s0,a0)

[
∇θr(s0, a0; θ) + γ∇θVθ(s1)

]
= EτA∼πθ

[ ∞∑
t=0

γt∇θr(st, at; θ) | s0
]

(36)

By plugging (36) into (35), we obtain the following expression:

∇L1(θ) =
1

β
EτE∼πE

[ ∞∑
t=0

γt∇θr(st, at; θ)

]
− 1

β
EτA∼πθ

[ ∞∑
t=0

γt∇θr(st, at; θ)

]
(37)
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A.5 Convergence Result

A.5.1 Convergence Lemma

Assumption 1 (Ergodicity) For any policy π, assume the Markov chain with transition kernel P is
irreducible and aperiodic under policy π. Then there exist constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

∥P(st ∈ ·|s0 = s, π)− µπ(·)∥TV ≤ κρt, ∀ t ≥ 0

where ∥ · ∥TV is the total variation (TV) norm; µπ is the stationary state distribution under π.

Assumption 1 assumes the Markov chain mixes at a geometric rate. It is a common assumption in the
literature of RL, which holds for any time-homogeneous Markov chain with finite-state space or any
uniformly ergodic Markov chain with general-state space.

Assumption 2 For any s ∈ S, a ∈ A and any reward parameter θ, the following holds:∥∥∇θr(s, a; θ)
∥∥ ≤ Lr, (38a)∥∥∇θr(s, a; θ1)−∇θr(s, a; θ2)
∥∥ ≤ Lg∥θ1 − θ2∥ (38b)

where Lr and Lg are positive constants.

2, we next provide the following Lipschitz properties:

Lemma A.1 Suppose Assumptions 1 - 2 hold. For any reward parameter θ1 and θ2, the following
results hold:

|Qsoft
rθ1 ,πθ1

(s, a)−Qsoft
rθ2 ,πθ2

(s, a)| ≤ Lq∥θ1 − θ2∥, ∀s ∈ S, a ∈ A (39a)

∥∇L(θ1)−∇L(θ2)∥ ≤ Lc∥θ1 − θ2∥ (39b)

where Qsoft
rθ,πθ

(·, ·) denotes the soft Q-function under the reward function r(·, ·; θ) and the policy πθ.
The positive constants Lq and Lc are defined in Appendix A.5.2.

A.5.2 Proof of Lemma A.1

To proof Lemma A.1, we proof the equality (39a) and the equality (39b) respectively. The constants
Lq and Lc in Lemma A.1 has the expression:

Lq :=
Lr

1− γ
, Lc :=

2LqLrCd

√
|S| · |A|

1− γ
+

2Lg

1− γ
.

A.5.3 Proof of Inequality (39a)

In this subsection, we prove the inequality (39a) in Lemma A.1.

We show that Qsoft
rθ,πθ

has a bounded gradient with respect to any reward parameter θ, then the
inequality (39a) holds due to the mean value theorem. According to the soft Bellman equation,
we have shown the explicit expression of ∇θQ

soft
rθ,πθ

(s, a) for any s ∈ S and a ∈ A. Using this
expression, we have the following series of relations:

∥∇θQ
soft
rθ,πθ

(s, a)∥ =

∥∥∥∥Ea0∼πθ(·|s0),s1∼P (·|s0,a0)

[
∇θr(s0, a0; θ) + γ∇θVθ(s1)

]∥∥∥∥
(i)
=

∥∥∥∥Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

∣∣∣∣(s0, a0) = (s, a)

]∥∥∥∥
(ii)

≤ Eτ∼πθ

[∑
t≥0

γt

∥∥∥∥∇θr(st, at; θ)

∥∥∥∥ ∣∣∣∣(s0, a0) = (s, a)

]
(iii)

≤ Eτ∼πθ

[∑
t≥0

γtLr

∣∣∣∣(s0, a0) = (s, a)

]
=

Lr

1− γ
(40)
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where (i) is from the equality (36) in the proof of Lemma A.1, (ii) follows Jensen’s inequality and
(iii) follows the inequality (38a) in Assumption 2. To complete this proof, we use the mean value
theorem to show that

|Qsoft
rθ1 ,πθ1

(s, a)−Qsoft
rθ2 ,πθ2

(s, a)| ≤ ∥max
θ

∇θQ
soft
rθ,πθ

(s, a)∥ · ∥θ1 − θ2∥ ≤ Lq∥θ1 − θ2∥ (41)

where the last inequality follows (40) and we denote Lq := Lr

1−γ . Therefore, we have proved the
Lipschitz continuous inequality in (39a).

A.5.4 Proof of Inequality (39b)

In this section, we prove the inequality (39b) in Lemma A.1.

According to Lemma A.1, the gradient ∇L1(θ) is expressed as:

∇L1(θ) = Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ)

]
− Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

]
. (42)

Using the above relation, we have

∥∇L1(θ1)−∇L1(θ2)∥
(i)
=

∥∥∥∥(Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

])
−

(
Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

])∥∥∥∥
≤
∥∥∥∥Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥︸ ︷︷ ︸
:=term A

+

∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥︸ ︷︷ ︸
:=term B

(43)

where (i) follows the exact gradient expression in equation (42). Then we separately analyze term A
and term B in (43).

For term A, it follows that∥∥∥∥Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(i)

≤ Eτ∼πE

[∑
t≥0

γt
∥∥∇θr(st, at; θ1)−∇θr(st, at; θ2)

∥∥]
(ii)

≤ Eτ∼πE

[∑
t≥0

γtLg∥θ1 − θ2∥
]

=
Lg

1− γ
∥θ1 − θ2∥ (44)

where (i) follows Jensen’s inequality and (ii) is from (38b) in Assumption 2.
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For the term B, it holds that∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(i)

≤
∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ1)

]∥∥∥∥
+

∥∥∥∥Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(ii)

≤ 1

1− γ

∥∥∥∥E(s,a)∼d(·,·;πθ1
)

[
∇θr(st, at; θ1)

]
− E(s,a)∼d(·,·;πθ2

)

[
∇θr(st, at; θ1)

]∥∥∥∥
+ Eτ∼πθ2

[∑
t≥0

γt

∥∥∥∥∇θr(st, at; θ1)−∇θr(st, at; θ2)

∥∥∥∥]
(iii)

≤ 1

1− γ

∥∥∥∥ ∑
s∈S,a∈A

∇θr(st, at; θ1)

(
d(s, a;πθ1)− d(s, a;πθ2)

)∥∥∥∥+ Eτ∼πθ2

[∑
k≥0

γkLg∥θ1 − θ2∥
]

(iv)

≤ 2Lr

1− γ
∥d(·, ·;πθ1)− d(·, ·;πθ2)∥TV +

Lg

1− γ
∥θ1 − θ2∥ (45)

where (i) follows the triangle inequality, (ii) is from Jensen’s inequality and the definition of the
discounted state-action visitation measure d(s, a;π) := (1− γ)π(a|s)

∑
t≥0 γ

tPπ(st = s|s0 ∼ η);
(iii) is from (38b) in Assumption 2;(iv) is from (38a) and the definition of the total variation norm.

Consider the L2 term:

L2(θ) := E(τi,τw)∼πP [log (σ (R(τw; θ)−R(τi; θ)))]

where σ(x) is sigmoid function defined by: σ(x) = 1
1+e−x . We have

∇θL2(θ) = E(τi,τw)∼πP [(1− σ(R(τw; θ)−R(τi; θ))) · (∇θR(τw; θ)−∇θR(τi; θ))] .

= E(τi,τw)∼πP

[
(∇θR(τw; θ)−∇θR(τi; θ))− σ(R(τw; θ)−R(τi; θ))(∇θR(τw; θ)−∇θR(τi; θ))

]
Using the triangle inequality, we obtain the following equation:

∥∇L2(τw, τl; θ1)−∇L2(τw, τl; θ2)∥

≤
∥∥∥∥E(τi,τw)∼πP

[
(∇θR(τw; θ1)−∇θR(τi; θ1))− (∇θR(τw; θ2)−∇θR(τi; θ2))

]∥∥∥∥︸ ︷︷ ︸
:=term A

+

∥∥∥∥E(τi,τw)∼πP

[
σ(R(τw; θ1)−R(τi; θ1))(∇θR(τw; θ1)−∇θR(τi; θ1))︸ ︷︷ ︸

−σ(R(τw; θ2)−R(τi; θ2))(∇θR(τw; θ2)−∇θR(τi; θ2))
]∥∥∥∥︸ ︷︷ ︸

:=term B

(46)

First we bound the term A of (46)

term A =

∥∥∥∥([∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

])
−
([∑

t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

])∥∥∥∥
≤
∥∥∥∥∑

t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

w
t , a

w
t ; θ2)

∥∥∥∥+ ∥∥∥∥∑
t≥0

γt∇θr(s
l
t, a

l
t; θ1)− γt∇θr(s

l
t, a

l
t; θ2)

∥∥∥∥
≤ 2Lg

1− γ
∥θ1 − θ2∥ (47)
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Then we bounded term B of (46):

term B =

=

∥∥∥∥σ([∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

])([∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

])

− σ

([∑
t≥0

γtr(swt , a
w
t ; θ2)− γtr(slt, a

l
t; θ2)

])([∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

])∥∥∥∥
=

∥∥∥∥σ(∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)

− σ

(∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)

+ σ

(∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)

σ

(∑
t≥0

γtr(swt , a
w
t ; θ2)− γtr(slt, a

l
t; θ2)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)∥∥∥∥
≤
∥∥∥∥σ(∑

t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

+
∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)∥∥∥∥+ ∥∥∥∥(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)
[
σ

(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)
− σ

(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)]∥∥∥∥
≤ 2Lg

1− γ
∥θ1 − θ2∥+

Lg

1− γ
∥θ1 − θ2∥ =

3Lg

1− γ
∥θ1 − θ2∥ (48)

Plugging the inequalities (44), (45) to (43), it holds that

∥∇L(θ1)−∇L(θ2)∥

≤ 2Lr

1− γ
∥d(·, ·;πθ1)− d(·, ·;πθ2)∥TV +

6Lg

1− γ
∥θ1 − θ2∥

(i)

≤ 2LrCd

1− γ
∥Qsoft

rθ1 ,πθ1
−Qsoft

rθ2 ,πθ2
∥+ 6Lg

1− γ
∥θ1 − θ2∥

(ii)

≤
2LrCd

√
|S| · |A|

1− γ
∥Qsoft

rθ1 ,πθ1
−Qsoft

rθ2 ,πθ2
∥∞ +

6Lg

1− γ
∥θ1 − θ2∥

(iii)

≤
(
2LqLrCd

√
|S| · |A|

1− γ
+

6Lg

1− γ

)
∥θ1 − θ2∥. (49)

Define the constant Lc :=
2LqLrCd

√
|S|·|A|

1−γ +
5Lg

1−γ , we have the following inequality:

∥∇L(θ1)−∇L(θ2)∥ ≤ Lc∥θ1 − θ2∥.

Therefore, we complete the proof of the inequality (39b) in Lemma A.1.

A.6 Appendix: Proof of Theorem 4.1

In this section, we prove (23a) and (23b) respectively, to show the convergence of the lower-level
problem and the upper-level problem.
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A.7 Proof of Theorem 4.1

A.7.1 Proof of (23a)

In this proof, we first show the convergence of the lower-level variable {πk}k≥0. Recall that we
approximate the optimal policy πθk by πk+1 at each iteration k. We first analyze the approximation
error between πθk and πk+1 as follows. For any s ∈ S and a ∈ A, we have the following relation:∣∣ log (πk+1(a|s)

)
− log

(
πθk(a|s)

)∣∣
(i)
=

∣∣∣∣ log( π0(a|s) exp
(
Qsoft

rθk ,πk
(s, a)

)∑
ã expπ

0(ã|s)
(
Qsoft

rθk ,πk
(s, ã)

))− log

( π0(a|s) exp
(
Qsoft

rθk ,πθk
(s, a)

)∑
ã π

0(ã|s) exp
(
Qsoft

rθk ,πθk
(s, ã)

))∣∣∣∣
(ii)

≤
∣∣Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)

∣∣+ ∣∣∣∣ log(∑
ã

π0(ã|s) exp
(
Qsoft

rθk ,πk
(s, ã)

))
−

log

(∑
ã

π0(ã|s) exp
(
Qsoft

rθk ,πθk
(s, ã)

))∣∣∣∣ (50)

where (i) follows (9); (ii) follows the triangle inequality. We further analyze the second term in (50).

We first denote the operator log(∥w exp(v)∥1) := log(∥
∑

ã∈A w exp(vã)∥1), where the vector
w, v ∈ R|A| and v = [v1, v2, · · · , v|A|], w = [w1, w2, · · · , w|A|]. Then for any v′, v′′ ∈ R|A|, we
have the following relation:∣∣ log (∥w′ exp(v′)∥1

)
− log

(
∥w′′ exp(v′′)∥1

) (i)
=
〈
v′ − v′′,∇v log

(
∥w exp(v)∥1

)
|v=vc

〉
≤ ∥v′ − v′′∥∞ · ∥∇v log

(
∥w exp(v)∥1

)
|v=vc∥1

(ii)
= ∥v′ − v′′∥∞ (51)

where (i) follows the mean value theorem and vc is a convex combination of v′ and v′′; (ii) follows
the following equalities:

[∇v log
(
∥w exp(v)∥1

)
]i =

wi exp(vi)∑
1≤a≤|A| wa exp(va)

, ∥∇v log
(
∥w exp(v)∥1

)
∥1 = 1, ∀v ∈ R|A|.

Through plugging (51) into (50), it holds that∣∣ log (πk+1(a|s)
)
− log

(
πθk(a|s)

)∣∣
≤
∣∣Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)

∣∣+max
ã∈A

∣∣Qsoft
rθk ,πk

(s, ã)−Qsoft
rθk ,πθk

(s, ã)
∣∣ (52)

Taking the infinity norm over R|S|·|A|, the following result holds:

∥ log πk+1 − log πθk∥∞ ≤ 2∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ (53)

where ∥ log πk+1 − log πθk∥∞ = maxs∈S,a∈A | log πk+1(a|s) − log πθk(a|s)| and ∥Qsoft
rθk ,πk

−
Qsoft

rθk ,πθk
∥∞ = maxs∈S,a∈A |Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)|.

Based on the inequality (53), we analyze ∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ to show the convergence of the
policy estimates. It leads to the following analysis:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
= ∥Qsoft

rθk ,πk
−Qsoft

rθk ,πθk
+Qsoft

rθk−1
,πθk−1

−Qsoft
rθk−1

,πθk−1
+Qsoft

rθk−1
,πk

−Qsoft
rθk−1

,πk
∥∞

≤ ∥Qsoft
rθk ,πθk

−Qsoft
rθk−1

,πθk−1
∥∞ + ∥Qsoft

rθk−1
,πk

−Qsoft
rθk−1

,πθk−1
∥∞ + ∥Qsoft

rθk ,πk
−Qsoft

rθk−1
,πk

∥∞
(i)

≤ Lq∥θk − θk−1∥+ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + ∥Qsoft
rθk ,πk

−Qsoft
rθk−1

,πk
∥∞

(ii)

≤ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥ (54)
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where (i) is from (39a) in Lemma A.1; (ii) follows (39a). Based on (54), we further analyze the two
terms in (54) as below.

Recall we have the “soft” Bellman operator expressed as below:

Tθ(Q)(s, a) = r(s, a; θ) + γEs′∼P (·|s′,a′)

[
log

(∑
a′

π0(a′|s′) exp
(
Q(s′, a′)

))]
(55)

According to the soft Bellman operator, it holds that

Qsoft
rθk ,πk+1

(s, a) = r(s, a; θk) + γEs′∼P(·|s,a)[V
soft
rθk ,πk+1

(s′)]

= r(s, a; θk) + γEs′∼P(·|s,a),a′∼πk+1(·|s′)[−
log πk+1(a

′|s′)
log π0(a′|s′)

+Qsoft
rθk ,πk+1

(s′, a′)]

(i)

≥ r(s, a; θk) + γEs′∼P(·|s,a),a′∼πk+1(·|s′)[−
log πk+1(a

′|s′)
log π0(a′|s′)

+Qsoft
rθk ,πk

(s′, a′)]

(ii)
= r(s, a; θk) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a′|s′) exp
(
Qsoft

rθk ,πk
(s′, a′)

))]
(iii)
= Tθk(Qsoft

rθk ,πk
)(s, a) (56)

where (i) follows the policy improvement result(ii) follows the definition πk+1(a|s) :=
π0(a|s) exp

(
Qsoft

rθk
,πk

(s,a)
)

∑
ã π0(ã|s) exp

(
Qsoft

rθk
,πk

(s,ã)
) (iii) follows the definition of the soft Bellman operator in (55).

For any s ∈ S and a ∈ A, it holds that

0
(i)

≤ Qsoft
rθk ,πθk

(s, a)−Qsoft
rθk ,πk+1

(s, a)
(ii)

≤ Qsoft
rθk ,πθk

(s, a)− Tθk(Qsoft
rθk ,πk

)(s, a) (57)

where (i) is due to the fact that πθk is the optimal policy under reward parameter θk; (ii) is from (56).

Hence, it further leads to

∥Qsoft
rθk ,πθk

−Qsoft
rθk ,πk+1

∥∞
(i)

≤ ∥Qsoft
rθk ,πθk

− Tθk(Qsoft
rθk ,πk

)∥∞
(ii)
= ∥Tθk(Qsoft

rθk ,πθk
)− Tθk(Qsoft

rθk ,πk
)∥∞

(iii)

≤ γ∥Qsoft
rθk ,πθk

−Qsoft
rθk ,πk

∥∞ (58)

where (i) is from (57); (ii) is from the fixed-point property in (74); (iii) is from the contraction
property in (73). Therefore, we have the following result:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
(i)

≤ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥
(ii)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥ (59)

where (i) is from (54); (ii) is from (58).

To show the convergence of the soft Q-function based on (59), we further analyze the error between
the reward parameters θk and θk−1. Recall in Alg.1, the updates in reward parameters (22):

θk = θk−1 + αgk−1

where we denote τ = {(st, at)}∞t=0, h(θ, τ) :=
∑

t≥0 γ
t∇θr(st, at; θ) and gk−1 is the stochastic

gradient estimator at iteration k − 1. Here, τEk−1 denotes the trajectory sampled from the expert’s
dataset D at iteration k − 1 and τAk−1 denotes the trajectory sampled from the agent’s policy πk at
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time k − 1,τw, τi denote the trajectory sampled from the preference dataset. Then according to the
inequality (38a) in Assumption 2, we could show that

∥gk−1∥ ≤ ∥h(θk−1, τ
E
k−1)− h(θk−1, τ

A
k−1)∥+ ∥h(θk−1, τ

W
k−1)− h(θk−1, τ

L
k−1)∥

≤ 2Lr

1− γ
+

2Lr

1− γ
= 4Lq (60)

where the last equality follows the fact that we have defined the constant Lq := Lr

1−γ . Then we could
further show that

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
(i)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 4Lq∥θk − θk−1∥
(ii)
= γ∥Qsoft

rθk−1
,πk−1

−Qsoft
rθk−1

,πθk−1
∥∞ + 4αLq∥gk−1∥

(iii)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 8αL2
q (61)

where (i) is from (59); (ii) follows the reward update scheme; (iii) is from (60).

Summing the inequality (61) from k = 1 to k = K, it holds that

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γ

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ + 8αKL2
q (62)

Rearranging the inequality (62) and divided (62) by K on both sides, it holds that

1− γ

K

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γ

K

(
∥Qsoft

rθ0 ,π0
−Qsoft

rθ0 ,πθ0
∥∞ − ∥Qsoft

rθK ,πK
−Qsoft

rθK ,πθK
∥∞
)
+ 8αL2

q

(63)

Dividing the constant 1− γ on both sides of (63), it holds that

1

K

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γC0

K(1− γ)
+

8L2
q

1− γ
α

where we denote C0 := ∥Qsoft
rθ0 ,π0

−Qsoft
rθ0 ,πθ0

∥∞. We could also write the inequality above as

1

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞

≤ γC0

K(1− γ)
+

C0

K
−

∥Qsoft
rθK ,πK

−Qsoft
rθK ,πθK

∥∞
K

+
8L2

q

1− γ
α

≤ C0

K(1− γ)
+

8L2
q

1− γ
α.

Recall the stepsize is defined as α = α0

Kσ where σ > 0. Then we have the following result:

1

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ = O(K−1) +O(K−σ). (64)

With the inequality (53), it follows that

1

K

K−1∑
k=0

∥ log πk+1 − log πθk∥∞ ≤ 2

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ = O(K−1) +O(K−σ).

Therefore, we complete the proof of (23a) in Theorem 4.1.
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A.7.2 Proof of (23b)

In this part, we prove the convergence of reward parameters {θk}k≥0.

We have the following result of the objective function L(θ):

L(θk+1)
(i)

≥ L(θk) + ⟨∇L(θk), θk+1 − θk⟩ −
Lc

2
∥θk+1 − θk∥2

(ii)
= L(θk) + α⟨∇L(θk), gk⟩ −

Lcα
2

2
∥gk∥2

= L(θk) + α⟨∇L(θk), gk −∇L(θk)⟩+ α∥∇L(θk)∥2 −
Lcα

2

2
∥gk∥2

(iii)

≥ L(θk) + α⟨∇L(θk), gk −∇L(θk)⟩+ α∥∇L(θk)∥2 − 8LcL
2
qα

2 (65)

where (i) is from the Lipschitz smooth property in (39b) of Lemma A.1; (ii) follows the update
scheme (22); (iii) is from constant bound in (60). Taking an expectation over the both sides of (65), it
holds that

E [L(θk+1)]

≥ E [L(θk)] + αE
[
⟨∇L(θk), gk −∇L(θk)⟩

]
+ αE

[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

= E [L(θk)] + αE
[
⟨∇L(θk),E

[
gk −∇L(θk)

∣∣θk]⟩]+ αE
[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

=E [L(θk)] + αE
[〈

∇L(θk),Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)

]

+ E(τl≺τw)∼πP

[∑
t≥0

(1− σ(γtr(swt , a
w
t ; θk)− γtr(slt, a

l
t; θk))(γ

t∇θr(s
w
t , a

w
t ; θk)− γt∇θr(s

l
t, a

l
t; θk))

]〉]

+ αE
[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

(i)

≥ E [L(θk)]− 4αLq E
[∥∥∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)︸ ︷︷ ︸
term A

]∥∥∥∥
+ αE

[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2 (66)

(i) is due to the fact that ∥∇L(θ)∥ ≤ 4Lq and E[gk,2 −∇θL2(θk)|θk] = 0.
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Then we further analyze the term A as below:

E

∥∥∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)

]∥∥∥∥


(i)
= E

[∥∥∥∥ 1

1− γ
E(s,a)∼d(·,·;πθk

)

[
∇θr(s, a; θk)

]
− 1

1− γ
E(s,a)∼d(·,·;πk+1)

[
∇θr(s, a; θk)

]∥∥∥∥]
(ii)

≤ 2

1− γ
· max
s∈S,a∈A

∥∇θr(s, a; θk)∥ · E
[
∥d(·, ·;πθk)− d(·, ·;πk+1)∥TV

]
(iii)

≤ 2Lr

1− γ
E
[
∥d(·, ·;πθk)− d(·, ·;πk+1)∥TV

]
(iv)

≤ 2LqCdE

[
∥ log

π0(a|s) expQsoft
rθk ,πθk

(s, a)∑
ã π

0(ã|s) expQsoft
rθk ,πθk

(s, ã)
− log

π0(a|s) expQsoft
rθk ,πk+1

(s, a)∑
ã π

0(ã|s) expQsoft
rθk ,πk+1

(s, ã)
∥

]
(v)

≤ 2LqCdE

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥+ ∥ log

∑
a

π0(ã|s) expQsoft
rθk ,πθk

(s, ã)− log
∑
a

π0(ã|s) expQsoft
rθk ,πk+1

(s, ã)∥

]
(vi)

≤ 2LqCd

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞ + ∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]

= 4LqCd

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]

(67)

where (i) follows the definition d(s, a;π) = (1 − γ)π(a|s)
∑

t≥0 γ
tPπ(st = s|s0 ∼ η); (ii)

is due to distribution mismatch between two visitation measures; (iii) follows the inequality
(38a) in Assumption 2; the inequality (iv) follows Lemma A.2 and the fact that πθk(·|s) ∝
π0(·|s) exp

(
Qsoft

rθk ,πθk
(s, ·)

)
, πk+1(·|s) ∝ π0(·|s) exp

(
Qsoft

rθk ,πk
(s, ·)

)
and the constant Lq := Lr

1−γ ;
(v) follows the (51);(vi) follows the conversion between Frobenius norm and infinity norm.

Through plugging the inequality (67) into (66), it leads to

E [L(θk+1)]

≥ E [L(θk)]− 2αLqE

∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)
]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)
]∥∥

+ αE
[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

(i)

≥ E [L(θk)]− 8αCdL
2
q

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ αE

[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

where (i) follows the inequality (67).

Rearranging the inequality above and denote C1 := 8CdL
2
q

√
|S| · |A|, it holds that

αE
[
∥∇L(θk)∥2

]
≤ 8LcL

2
qα

2 + αC1E
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ E

[
L(θk+1)− L(θk)

]
Summing the inequality above from k = 0 to K − 1 and dividing both sides by αK, it holds that

1

K

K−1∑
k=0

E
[
∥∇L(θk)∥2

]
≤ 8LcL

2
qα+

C1

K

K−1∑
k=0

E
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ E

[
L(θK)− L(θ0)

Kα

]
(68)

Note that the log-likelihood function L(θK) is negative and L(θ0) is a bounded constant. Then we
could plug (64) into (68), it holds that

1

K

K−1∑
K=0

E
[
∥∇L(θK)∥2

]
= O(K−σ) +O(K−1) +O(K−1+σ) (69)

which completes the proof for the inequality (23b).

31



A.8 Auxiliary Lemmas

Lemma A.2 ((Xu et al., 2020, Lemma 3)) Consider the initialization distribution η(·) and transition
kernel P(·|s, a). Under η(·) and P(·|s, a), denote dw(·, ·) as the state-action visitation distribution
of MDP with the Boltzman policy parameterized by parameter w. Suppose Assumption 1 holds, for
all policy parameter w and w′, we have

∥dw(·, ·)− dw′(·, ·)∥TV ≤ Cd∥w − w′∥ (70)

where Cd is a positive constant.

Next, to facilitate analysis for KL-regularized MDPs, we introduce a “soft” Bellman optimality
operator T : R|S|×|A| → R|S|×|A| as follows:

T (Q)(s, a) := r(s, a) + γEs′∼P(·|s,a)

[
max
π(·|s)

Ea′∼π(·|s′)

[
Q(s′, a′)− log π(a′|s′)

log π0(a′|s′)

]]
. (71)

In the following lemma, the properties of KL-regularized MDPs are characterized.

Lemma A.3 (The operator T as defined in (71) satisfies the properties below:

• T has the following closed-form expression:

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a′|s′) exp
(
Q(s′, a′)

))]
. (72)

• T is a γ-contraction in the ℓ∞ norm, namely, for any Q1, Q2 ∈ R|S|×|A|, it holds that

∥T (Q1)− T (Q2)∥∞ ≤ γ∥Q1 −Q2∥∞. (73)

• Under a given reward function r(·, ·), the corresponding optimal soft Q-function Qsoft
r,π∗ is a

unique fixed point of the operator T , namely,

T (Qsoft
r,π∗) = Qsoft

r,π∗ (74)

We refine its analysis as below.

We first show that

Ea∼π(·|s)

[
Q(s, a)− log π(a|s)

log π0(a|s)

]
=
∑
a

π(a|s) log
(
π0(a|s) exp(Q(s, a))

π(a|s)

)
(i)

≤ log

(∑
a

π0(a|s) exp
(
Q(s, a)

))
(75)

where (i) is from Jensen’s inequality. Moreover, the equality between both sides of (i) holds when
the policy π has the expression π(·|s) ∝ π0(a|s) exp(Q(s, ·)). Therefore, through applying the
inequality (75) to (71), it obtains that

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a|s) exp
(
Q(s′, a′)

))]
, (76)

which proves the equality (72).

We define ∥Q1 −Q2∥∞ := maxs∈S,a∈A |Q1(s, a)−Q2(s, a)| and ϵ = ∥Q1 −Q2∥∞. Then for any
s ∈ S and a ∈ A, it follows that

log

(∑
a

π0(a|s) exp
(
Q1(s, a)

))
≤ log

(∑
a

π0(a|s) exp
(
Q2(s, a) + ϵ

))

= log

(
exp(ϵ)

∑
a

π0(a|s) exp
(
Q2(s, a)

))

= ϵ+ log

(∑
a

π0(a|s) exp
(
Q2(s, a)

))
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Similarly, it is easy to obtain that log
(∑

a π
0(a|s) exp

(
Q1(s, a)

))
≥ −ϵ +

log
(∑

a π
0(a|s) exp

(
Q2(s, a)

))
. Hence, it leads to the contraction property that

∥T (Q1)− T (Q2)∥∞ ≤ γϵ = γ∥Q1 −Q2∥∞ (77)

which proves the contraction property (73). Moreover, we have

T (Qsoft
r,π∗)(s, a)

(i)
= r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a′|s′) exp
(
Qsoft

r,π∗(s′, a′)
))] (ii)

= Qsoft
r,π∗(s, a)

(78)

where (i) follows the equality (76). Based on the definition of the soft Q-function Qsoft
r,π∗ , we have

Qsoft
r,π∗(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
Ea′∼π∗(·|s′)[−

log π∗(a′|s′)
log π0(a′|s′)

+Qsoft
r,π∗(s′, a′)]

]
. (79)

We prove the equality (ii) in (78) through combining (79) and the fact that the optimal soft policy has
the closed form π∗(·|s) ∝ π0(·|s′) exp

(
Qsoft

r,π∗(s, ·)
)
. Suppose two different fixed points of the soft

Bellman operator exist, then it contradicts with the contraction property in (77).

Hence, we proved the uniqueness of the optimal soft Q-function Qsoft
r,π∗ . Moreover, the optimal soft

Q-function Qsoft
r,π∗ is a fixed point to the soft Bellman operator T in (74).
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