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ABSTRACT

The success of score-based generative models (SGMs), and particularly denoising
diffusion probabilistic models (DDPMs), rests on the statistical technique of score
matching, for which rigorous guarantees are nascent. In fact, recent work has shown
that for estimation in parametric models, a variant of score matching known as
implicit score matching is provably statistically inefficient for multimodal densities
that are common in practice. In contrast, under mild conditions, we show that
denoising score matching in DDPMs is asymptotically efficient, i.e., the DDPM
estimator is asymptotically normal with covariance matrix given by the inverse
Fisher information. Our proof is based on a pointwise relationship between the
empirical risks of DDPM and maximum likelihood estimation.

1 INTRODUCTION

Score-based generative models (SGMs), also known as diffusion models, have emerged as a popular
approach to generate samples from complex data distributions. These models leverage learned
score functions—that is, the logarithmic gradients of the probability density—to progressively
transform white noise into samples from the target data distribution by following a stochastic
differential equation (SDE). The remarkable empirical success of SGMs has not only led to impressive
practical applications but has also spurred significant interest within the statistics community toward
establishing rigorous theoretical foundations for SGMs.
A central component underlying SGMs is score estimation (Hyvärinen, 2005), which transforms the
problem of learning the score function into a regression objective amenable to first-order optimization.
Despite a number of recent works investigating its efficacy, a complete statistical understanding
remains to be developed. In this work, we aim to address this gap by investigating this problem in the
setting of point estimation in a finite-dimensional family P := {Pθ : θ ∈ Θ ⊆ Rp}.
Within this parametric framework, the prior work of Koehler et al. (2023) investigated a variant of
score matching known as implicit score matching (ISM): Given i.i.d. samples x(1), . . . , x(n) drawn
from Pθ⋆ , θ⋆ ∈ Θ, the ISM estimator is

θ̂ ISM
n := argminθ∈Θ

1
n

∑n
i=1

{
∥∇ logPθ(x

(i))∥2 + 2∆ logPθ(x
(i))

}
.

Under appropriate regularity conditions, they prove asymptotic normality:
√
n (θ̂ ISM

n − θ⋆)
d−→

N (0,ΣISM(θ⋆)). Moreover, they bound the operator norm of ΣISM(θ⋆) in terms of the asymptotic
covariance of the maximum likelihood estimator (MLE)—i.e., the inverse Fisher information matrix—
and the so-called restricted Poincaré constant of the model. Follow-up work by Qin & Risteski (2024)
generalized this asymptotic efficiency result to generalized (implicit) score matching estimators (Lyu,
2009) by establishing a connection between the mixing time of broad classes of Markov processes, and
the statistical efficiency of an appropriately chosen generalized score matching loss (GISM). Under
this framework, they managed to show that for Gaussian mixtures in d dimensions, the generalized
score estimator is asymptotically normal with covariance matrix ΣGISM(θ⋆) which has an operator
norm that is, roughly speaking, at most poly(d) times the (squared) operator norm of the inverse
Fisher information (bypassing the lower bounds of Koehler et al. (2023)).
In short, both works (Koehler et al., 2023; Qin & Risteski, 2024) indicated strong statistical properties
of (generalized) ISM. That said, they still cannot match the performance of MLE or come within a
constant factor of it for general families P, and they left open whether some diffusion-based estimator
can achieve the statistical efficiency of MLE under mild assumptions on P. This is particularly
interesting as SGMs have seem immense success in sampling from multimodal densities.

Remark. The full-version of this paper more thoroughly explores the relation between DDPM score matching
and different notions of distribution learning; it is available at https://arxiv.org/abs/2504.05161
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In contrast to implicit score matching based estimators above, denoising diffusion probabilistic models
(DDPMs)—arguably the most popular variant used in practice—do not rely on implicit score matching.
Instead, DDPMs employ an alternative known as denoising score matching (Hyvärinen, 2008; Vincent,
2011) and extend the idea by applying score matching at many different noise levels (Song & Ermon,
2019; Ho et al., 2020; Yang et al., 2023). This raises a natural and fundamental question:

What is the statistical efficiency of DDPM score matching?
Toward answering this question, we consider the following idealized estimator. Below, Pθ,t denotes
the law of xt := exp(−t)x0+

√
1− exp(−2t) zt, where x0 ∼ Pθ and zt ∼ N (0, I) are independent.

We provide relevant background on the DDPM objective in Appendix B.

Definition 1 (DDPM estimator). Fix a terminal time T > 0. Given samples x(1)
0 , . . . , x

(n)
0 and a

family {Pθ : θ ∈ Θ ⊆ Rp}, the DDPM estimator is θ̂DDPM
n := argminθ∈Θ R̂DDPM

n (θ), where

R̂DDPM
n (θ) :=

1

n

n∑
i=1

∫ T

0

E
[
∥∇ logPθ,t(x

(i)
t )∥2 +

〈
∇ logPθ,t(x

(i)
t ),

2z
(i)
t√

1− exp(−2t)

〉 ∣∣∣ x(i)
0

]
dt

and for each i ∈ [n] and t ∈ [0, T ], we draw z
(i)
t ∼ N (0, I) independently from x

(i)
0 and define the

noised sample x
(i)
t := exp(−t)x

(i)
0 +

√
1− exp(−2t) z

(i)
t .

The expectation above is often replaced with E[∥∇ logPθ,t(x
(i)
t )+ z

(i)
t /

√
1−exp(−2t)∥2 | x(i)

0 ], which
formally defines an equivalent objective by completing the square. However, we prefer to write the
objective as above since

∫ T

0
E[∥z(i)

t /
√

1−exp(−2t)∥2] dt = ∞.

1.1 OUR CONTRIBUTION: DDPM IS ASYMPTOTICALLY EFFICIENT

Our main result is that, under mild regularity assumptions on the distribution family P (essentially
the same conditions needed for the asymptotic normality of the MLE, see Assumption 1) and by
choosing the terminal time T = Tn to grow sufficiently rapidly with the number of samples n (namely,
Tn − 1

2 log n → ∞), the DDPM estimator θ̂DDPM
n converges in distribution to a Gaussian centered

at θ⋆ with covariance exactly equal to the inverse Fisher information. Recall that the inverse Fisher
information is also the asymptotic covariance of the MLE and is the best possible for any unbiased
estimator (by the Cramér–Rao or information inequality), so this statement can be interpreted as a
form of asymptotic optimality; furthermore, by comparison of experiments, the MLE can be shown
to be locally asymptotically minimax.
To state the result formally, let θ̂DDPM

n denote the DDPM estimator as defined in Definition 1 on n

i.i.d. samples x(1)
0 , . . . , x

(n)
n ∼ Pθ⋆ .

Informal Theorem 1 (DDPM is asymptotically efficient). Under standard assumptions (see Theo-
rem 1 for more precise statement),

√
n
(
θ̂DDPM
n − θ⋆

) d−→ N (0, I(θ⋆)−1) as n → ∞ ,

where I(θ⋆) denotes the Fisher information matrix at θ⋆.

Informal Theorem 1 provides a principled explanation for the statistical power of the DDPM estimator
in the asymptotic regime. This finding not only advances our theoretical understanding of DDPM but
also sheds some light on its empirical success in generating highly multimodal densities that pose
significant challenges for standard score matching approaches (as proved by Koehler et al., 2023).
In terms of the techniques used to prove Informal Theorem 1, our main tool is a strong pointwise
relationship between the DDPM and MLE objectives.

Proposition 1 (Tight connection between DDPM and MLE). The DDPM objective R̂DDPM
n and the

maximum likelihood objective R̂MLE
n satisfy:

R̂MLE
n (θ) = R̂DDPM

n (θ) + Cd,T +
1

n

∑n

i=1
KL

(
QT |0(· ∥ X

(i)
0 )

∥∥ Pθ,T

)
where R̂MLE

n (θ) := − 1
n

∑n
i=1 logPθ(X

(i)
0 ), R̂DDPM

n is given in Definition 1, and Cd,T = d (T +
1
2 log(2πe (1− e−2T ))) is a fixed constant.

Related work. Closest to our paper is the work of Koehler et al. (2023) that studies the implicit
score matching estimator, as discussed in the introduction. To the best of our knowledge, the first
appearance of an objective such as Definition 1 for the purpose of point estimation is Shah et al.
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(2023), in the context of Gaussian mixture models, which also shows how to algorithmically minimize
the DDPM objective (at carefully selected noise levels). We are not aware of general statistical theory
for θ̂DDPM

n . Most works studying score estimation in DDPM instead consider estimating the score
functions at different times separately (as opposed to θ̂DDPM

n , which finds the value of the parameter
that optimizes an objective using all of the scores). In particular, a line of work shows that score
estimation can achieve minimax rates for density estimation. We review these and other related
works in Appendix C. Finally, we note that variants of Proposition 1 have appeared in the literature,
e.g., Song et al. (2021b) shows that the DDPM loss can be pointwise lower bounded in terms of the
MLE loss, and Chen et al. (2022) proves an analogous result for the Schrödinger bridge. A similar
formula was also put forth in the work of Song et al. (2021b), where it was presented as a variational
lower bound on the log-likelihood, although the connection likely dates back even earlier to ideas by
Jarzynski (Jarzynski, 1997).

We now proceed with the proof of Informal Theorem 1 regarding the asymptotic efficiency of DDPM
score matching. Given a probability measure P over Rd, we let Pt denote the law of the Ornstein–
Uhlenbeck (OU) process started at time t ∈ [0, T ] (abstracting the notation of the previous section).
We further denote by Qt|0 the transition density of the OU process.1

Step 1 (An identity). First, we prove Lemma 1, which, as we will see is similar to Proposition 1.

Lemma 1 (Likelihood identity). Let P be a continuous density over Rd with finite second moment.
Then, for all x0 ∈ Rd,∫

logPT dQT |0(· | x0)− logP (x0)︸ ︷︷ ︸
log-density at x0

=

∫ T

0

∫ {
∥∇ logPt∥2 − 2 ⟨∇ logPt,∇ logQt|0(· | x0)⟩

}
dQt|0(· | x0) dt︸ ︷︷ ︸

integrated DDPM score matching objective at x0

+ d · T︸ ︷︷ ︸
known constant

.

Proof of Lemma 1. Let (Bt)t≥0 be standard Brownian motion and let (Xt)t≥0 denote the OU process
started at X0 = x0. By parabolic regularity (or direct computation with the OU semigroup), the
mapping (t, x) 7→ Pt(x) is strictly positive and smooth on R>0 × Rd, with Pt → P pointwise as
t ↘ 0. Therefore, the Fokker–Planck equation implies

∂t logPt =
∆Pt + div(Pt xt)

Pt
= ∆ logPt + ∥∇ logPt∥2 + d+ ⟨∇ logPt, xt⟩ .

By Itô’s formula,

d logPt(Xt) =
{
∂t logPt(Xt)− ⟨∇ logPt(Xt), Xt⟩+∆ logPt(Xt)

}
dt+

√
2 ⟨∇ logPt(Xt),dBt⟩

=
{
∥∇ logPt(Xt)∥2 + 2∆ logPt(Xt) + d

}
dt+

√
2 ⟨∇ logPt(Xt),dBt⟩ .

Integrating over time and taking expectations, for ε > 0,

E
[
logPT (XT )− logPε(Xε)

]
= d (T − ε) +

∫ T

ε

E
{
∥∇ logPt(Xt)∥2 + 2∆ logPt(Xt)

}
dt ,

where we used the fact that {
∫ t

ε
⟨∇ logPs(Xs),dBs⟩}t∈[ε,T ]

is a martingale which, in turn, can be

deduced because E[∥∇ logPt(Xt)∥2] = O(1/t2) (cf. Otto & Villani, 2001). On the other hand, for
any t > 0, we note that∫

⟨∇ logPt(xt),∇ logQt|0(xt | x0)⟩Qt|0(dxt | x0) =

∫
⟨∇ logPt(xt),∇Qt|0(xt | x0)⟩dxt

= −
∫

∆ logPt(xt)Qt|0(dxt | x0) .

Substituting this in and taking ε ↘ 0 completes the proof.

1We overload the notation using the same symbols for probability distributions and their Lebesgue densities.
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Step 2 (Relating MLE and DDPM). Therefore, if we consider the one-sample empirical risks (where
Equation (1) is proved in Appendix B),

R̂MLE(θ) = − logPθ(x0) ,

R̂DDPM(θ) =

∫ T

0

∫
{∥∇ logPθ,t∥2 − 2 ⟨∇ logPθ,t,∇ logQt|0(· | x0)⟩} dQt|0(· | x0) dt , (1)

we can re-write the identity of Lemma 1 as

R̂MLE(θ) = R̂DDPM(θ) + dT −
∫

logPθ,T dQT |0(· | x0)

= R̂DDPM(θ) + d
(
T +

1

2
log(2πe (1− exp(−2T ))

)
+ KL(QT |0(· | x0) ∥ Pθ,T ) , (2)

where the last line follows by adding and subtracting
∫
logQT |0(· | x0) dQT |0(· | x0) and using

the formula for the differential entropy of a Gaussian. Equation (2) is a slightly different version of
Proposition 1 that we will use to complete the proof.

Step 3 (Exponential decay of KL). The last term in (2) is controlled by the following lemma.
Lemma 2. For any probability measure P with finite second moment and any x0 ∈ Rd,

KL(QT |0(· | x0) ∥ PT ) ≤
1

exp(2T )− 1

(
∥x0∥2 +

∫
∥x∥2 P (dx)

)
.

Proof of Lemma 2. By the dimension-free log-Harnack inequality (see, e.g., Bobkov et al., 2001;
Wang, 2006; Altschuler & Chewi, 2024), KL(QT |0(· | x0), PT ) ≤ W 2

2 (δx0
, P )/{2 (exp(2T )− 1)}.

The result follows from the triangle inequality for W2.
Statement and Proof of Informal Theorem 1. To state our result , we build on the following standard
conditions for asymptotic normality of the MLE. Note that it is implicitly assumed that the MLE
exists for sufficiently large n. (This assumption could also be relaxed.)
Assumption 1 (Conditions for asymptotic normality of MLE (van der Vaart, 1998)). The family
{Pθ}θ∈Θ is differentiable in quadratic mean (DQM) at an interior point θ⋆ ∈ Θ ⊆ Rp. Furthermore,
there exists a function L such that for all θ, θ′ in a neighborhood of Θ, |logPθ − logPθ′ | ≤
L ∥θ − θ′∥ with

∫
L2 dPθ⋆ < ∞. The Fisher information matrix Iθ⋆ is positive definite. Finally, the

MLE θ̂MLE
n is consistent: θ̂MLE

n → θ⋆ in probability as n → ∞.
Here, the DQM condition weakens the classical assumptions for asymptotic normality of the MLE,
which require the existence of a third derivative of θ 7→ logPθ, and instead asks for the existence
of a derivative of θ 7→

√
Pθ at θ⋆ in L2(Pθ⋆). This covers non-differentiable examples such as the

two-sided exponential location family. Under Assumption 1, it is shown in van der Vaart (1998,
Theorem 5.39) that

√
n (θ̂MLE

n − θ⋆)
d−→ N (0, I(θ⋆)

−1
). We prove the following result.

Theorem 1 (Asymptotic normality of the DDPM estimator). Adopt Assumption 1. Consider the
DDPM estimator θ̂DDPM

n where the time Tn of the diffusion satisfies Tn− 1
2 log n → ∞. Assume that

for some neighborhood Θ′ of θ⋆, supθ∈Θ′
∫
∥x∥2 Pθ(dx) < ∞, and that the DDPM estimator is con-

sistent. Then, the DDPM estimator is asymptotically efficient:
√
n (θ̂DDPM

n − θ⋆)
d−→ N (0, I(θ⋆)

−1
).

Proof of Theorem 1. We modify the proof of van der Vaart (1998, Theorem 5.39), which relies on
Theorem 5.23 therein. For θ ∈ Θ, let mθ := log pθ and Pn := (1/n)

∑n
i=1 δXi

. In order to invoke
Theorem 5.23, it suffices to show that Pnmθ̂DDPM

n
≥ Pnmθ̂MLE

n
− oPθ⋆

(n−1). By (2),

−Pnmθ̂DDPM
n

= R̂DDPM
n (θ̂DDPM

n ) + cd,T + Pnerr(θ̂
DDPM
n )

≤ R̂DDPM
n (θ̂MLE

n ) + cd,T + Pnerr(θ̂
DDPM
n )

= −Pnmθ̂MLE
n

+ Pn[err(θ̂
DDPM
n )− err(θ̂MLE

n )] ,

where cd,T is a constant and err(θ, x) := KL(QT |0(· | x) ∥ Pθ,T ). Since err is non-negative, it yields
Pnmθ̂DDPM

n
≥ Pnmθ̂MLE

n
− Pnerr(θ̂

DDPM
n ). Since the DDPM estimator is consistent, Lemma 2 and

our assumptions imply Pθ⋆err(θ̂
DDPM
n ) ≤ 2 (exp(2T )− 1)

−1
supθ′∈Θ

∫
∥x∥2 Pθ(dx) = o(1/n).

By Markov’s inequality, Pnerr(θ̂
DDPM
n ) = oPθ⋆

(1/n). The rest of the proof is unchanged.

The assumption of consistency for the MLE and the DDPM estimators is typically mild and can be
handled by standard tools, e.g., van der Vaart (1998, §5.2).
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A NOTATION

In this section, we briefly present the notation used in the main body. We focus on continuous
distributions over Rd that are absolutely continuous with respect to the Lebesgue measure. Given
a distribution P , for each point x ∈ Rd, we abuse notation by using P (x) to denote its Lebesgue
density evaluated at x. We use standard definitions of distances and divergences between distributions.
Namely, for two distributions P and Q over Rd, the KL divergence of P with respect to Q is
KL(P ∥ Q) :=

∫
log dP

dQ dP (provided P ≪ Q), and the 2-Wasserstein distance between P and Q

is W2(P,Q) = infγ∈C(µ,ν) (
∫
∥x− y∥2 γ(dx,dy))1/2, where the infimum is over the set C(µ, ν) of

all couplings of P and Q.

B BACKGROUND ON DENOISING DIFFUSION PROBABILISTIC MODELING

In this section, we provide standard background on denoising diffusion probabilistic models (DDPMs);
see Chen et al. (2023) for further details on sampling.

DDPM employs two Markov chains. The first Markov chain iteratively adds noise to the data and
the second Markov chain reverses this process, converting noise back to the original data. The
first Markov chain is usually handcrafted, the most prevalent choice being the addition of standard
Gaussian noise. The second Markov chain, i.e., the reverse process, is parameterized by learned
neural networks. Below, we present the continuous time extension of DDPM with standard Gaussian
noise, which corresponds to the Ornstein–Uhlenbeck (OU) process in continuous time.

Forward process arising from OU. The forward process arising from the OU process is the
following stochastic differential equation (SDE):

dXt = −Xt dt+
√
2 dBt , X0 ∼ Pθ⋆ , (3)

where (Bt)t≥0 is a standard Brownian motion in Rd. The forward process transforms samples from
the data distribution Pθ⋆ into standard Gaussian noise. We denote by Pθ⋆,t the law of Xt. It holds that
limt→∞ Pθ⋆,t = γ. In fact, the convergence is exponentially fast in many metrics and divergences
(Bakry et al., 2014).

Reversing the OU process. The ultimate goal of generative modeling is to generate samples from
Pθ⋆ . To this end, we must reverse the process (3) in time, which yields the reverse process that
transforms pure noise back to samples from the target distribution.

Fix a terminal time T > 0. Denote

X←t = XT−t , t ∈ [0, T ] .

It turns out that the time reversal of (3) is

dX←t = {X←t + 2∇ logPθ⋆,T−t(X
←
t )}dt+

√
2 dBt , X←0 ∼ Pθ⋆,T , (4)

where now (Bt)t≥0 is the reversed Brownian motion.

DENOISING SCORE MATCHING WITH DDPM

To implement the reverse process, one needs to learn the unknown score functions ∇ logPθ⋆,T−t for
t ∈ [0, T ]. This is where denoising score matching (DSM) is utilized in the DSM–DDPM estimator
Ho et al. (2020); Song et al. (2021a). We start with the objective

argmin
θ∈Θ

∫ T

0

∥∇ logPθ,t −∇ logPθ⋆,t∥2L2(Pθ⋆,t)
dt . (5)

This objective is not amenable to empirical risk minimization since it involves the unknown score
function ∇ logPθ⋆,t. Instead, we note that for fixed t ∈ (0, T ],∫

∥∇ logPθ,t −∇ logPθ⋆,t∥2 dPθ⋆,t

=

∫
∥∇ logPθ,t∥2 dPθ⋆,t − 2

∫
⟨∇ logPθ,t,∇ logPθ⋆,t⟩dPθ⋆,t + CONST.

8
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In this derivation, CONST. refers to any term that does not depend on the optimization variable θ.
Continuing, the second term above can be written

− 2

∫
⟨∇ logPθ,t,∇ logPθ⋆,t⟩dPθ⋆,t = −2

∫
⟨∇ logPθ,t(xt),∇Pθ⋆,t(xt)⟩dxt

= −2

∫ 〈
∇ logPθ,t(xt),∇xt

∫
Qt|0(xt | x0)Pθ⋆(dx0)

〉
dxt

= −2

∫∫
⟨∇ logPθ,t(xt),∇Qt|0(xt | x0)⟩Pθ⋆(dx0) dxt

= −2

∫∫
⟨∇ logPθ,t(xt),∇ logQt|0(xt | x0)⟩Qt|0(dxt | x0)Pθ⋆(dx0) .

We deduce that the original problem (5) is equivalent to

argmin
θ∈Θ

∫
ℓDDPM(θ;x0)Pθ⋆(dx0) ,

where

ℓDDPM(θ;x0) :=

∫ T

0

∫ {
∥∇ logPθ,t∥2 − 2 ⟨∇ logPθ,t,∇ logQt|0(· | x0)⟩

}
dQt|0(· | x0) dt .

This is now amenable to empirical risk minimization, and hence we define the empirical version

R̂DDPM
n (θ) :=

1

n

n∑
i=1

ℓDDPM(θ;x
(i)
0 )

where x
(1)
0 , . . . , x

(n)
0 are samples.

Finally, to see that this is equivalent to Definition 1, we note that by well-known properties of the OU
semigroup, if zt ∼ N (0, I) is independent of x0 and xt := exp(−t)x0 +

√
1− exp(−2t) zt, then

xt ∼ Qt|0(· | x0). Then, we can write

∇ logQt|0(xt | x0) = −xt − exp(−t)x0

1− exp(−2t)
= − zt√

1− exp(−2t)
.

C FURTHER RELATED WORK

In this section, we present further related work.

Statistical Guarantees for Diffusion Models for Learning. Recent works have established rigorous
statistical guarantees for diffusion models and related score matching estimators. For example, Oko
et al. (2023) bound the estimation error when using a neural network and demonstrated that diffusion
models are nearly minimax-optimal estimators in both the total variation and the Wasserstein distance
of order one, provided that the target density belongs to the Besov space. Cui et al. (2024) employ a
two-layer neural network to learn score functions and, in the special case where the target distribution
is a mixture of two Gaussians, they establish an error guarantee of Θ(1/n) for the estimated mean.
Further, Wibisono et al. (2024) consider subgaussian densities with Lipschitz-continuous score
functions and provide optimal rates for estimating the scores in the L2-norm. In a related direction,
Koehler & Vuong (2024) show that pseudolikelihood methods can be used to learn low-rank Ising
models, which is an example of using score matching for designing learning methods with provable
statistical guarantees. Also, Mei & Wu (2025) study the statistical efficiency of neural networks to
approximate score functions focusing on the setting of graphical models and variational inference
algorithms. Moreover, Dou et al. (2024) study the score matching (SM) estimator in detail and
establish the sharp minimax rate of score estimation for smooth, compactly supported densities
using sophisticated techniques. In contrast to these works, which focus on the vanilla SM estimator
and variants, we investigate the statistical properties of the DDPM estimator and, hence, use a very
different set of tools.

Computational Properties of the DDPM Estimator. Beyond the immense practical success of
DDPM estimators and the growing interest from statisticians, surprisingly, DDPM estimators are also

9
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leading to new provably efficient algorithms for sampling and distribution learning Shah et al. (2023);
Chen et al. (2024); ?.

Sampling Guarantees for Diffusion Models. Finally, a rapidly growing body of work establishes
sampling guarantees for SGMs under the assumption that the score functions are accurately estimated.
Since the literature is vast and orthogonal to the statistical concerns in this paper, we do not survey it
here.
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