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Abstract
Deciding whether saddle points exist or are approximable for nonconvex-nonconcave problems is
usually intractable. We take a step toward understanding a broad class of nonconvex-nonconcave
minimax problems that do remain tractable. Specifically, we study minimax problems in geodesic
metric spaces. The first main result of the paper is a geodesic metric space version of Sion’s
minimax theorem; we believe our proof is novel and broadly accessible as it relies on the finite
intersection property alone. The second main result is a specialization to geodesically complete
Riemannian manifolds, for which we analyze first-order methods for smooth minimax problems.

The full version of this paper is currently “in press” at the SIAM Journal on Optimization.

1. Introduction

We study minimax optimization problems of the form

min
x∈X

max
y∈Y

f(x, y), (1)

where the constraint sets X and Y lie in geodesic metric spaces, and f is a suitable bifunction. Prob-
lem (1) generalizes the standard Euclidean minimax problem where X ⊆ Rm, Y ⊆ Rn. Minimax
problems as such have drawn great attention recently, e.g., in generative adversarial networks [8],
robust learning [6, 14], multiagent reinforcement learning [3], adversarial training [9], etc.

A common goal of solving minimax problems is to find global saddle points1. A pair (x∗, y∗)
is a saddle point if x∗ is a minimum of f(·, y∗) and y∗ is a maximum of f(x∗, ·). In game theory, a
saddle point is a special Nash equilibrium [15] for a two-player game. When f is convex-concave
(i.e., convex in x and concave in y), existence of saddle points is guaranteed by Sion’s minimax
theorem [17], and their computation is often tractable (e.g., [16]). But without the convex-concave
structure, saddle points may fail to exist, or even when they exist, computing them can be in-
tractable [4]. Even computing local saddle points with linear constraints is PPAD-complete [5].
Therefore, it is natural to pose the following question:

Which nonconvex-nonconcave minimax problems admit saddle points, and can
we compute them?

While at this level of generality this question is unlikely to admit satisfactory answers, it motivates
us to pursue a more nuanced study, and to seek tractable subclasses of problems or alternative opti-
mality criteria—e.g., the works [7, 10, 12] explore this topic and establish novel optimality criteria

1. Without further qualification, we refer to global saddle points as saddle points in this paper.
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for nonconvex-nonconcave problems. We instead explore a rich subclass of nonconvex-nonconcave
problems that do admit saddle points: minimax problems over geodesic metric spaces [2]. We
provide sufficient conditions that ensure existence of saddle points by establishing a metric space
analog of Sion’s theorem. An informal statement of our first main result is as follows:

Theorem 1 (Informal; see Thm. 3) Let X,Y be geodesically convex subsets of geodesic met-
ric spaces M and N , and let X be compact. If a bifunction f : X × Y → R is geodesi-
cally (quasi)-convex-concave and (semi)-continuous, then the equality supy∈Y minx∈X f(x, y) =
minx∈X supy∈Y f(x, y) holds.

If we further assume that both X and Y are compact, then there exists a saddle point (x∗, y∗) ∈
X×Y . Later in the paper, we will address computability of saddle points by focusing on the special
case of Riemannian manifolds, for which we exploit the available differentiable structure to obtain
first-order algorithms for the Riemannian minimax problem

min
x∈M

max
y∈N

f(x, y), (P)

whereM,N are finite-dimensional complete and connected Riemannian manifolds, while f :M×
N → R is a smooth geodesically convex-concave bifunction. When the manifolds in (P) are
Euclidean, first-order methods such as optimistic gradient descent-ascent and extragradient can find
saddle points efficiently [13, 16]. But in the Riemannian case, the extragradient steps do not succeed
by merely translating Euclidean concepts into their Riemannian counterparts. We must account for
the distortion caused by nonlinear geometry; to that end, we introduce an additional correction that
offsets the distortion and thereby helps us obtain a Riemannian corrected extragradient (RCEG)
algorithm, for which our main result is stated below.

Theorem 2 (Informal; see Thm. 5) Under suitable conditions on the Riemannian manifolds M,
N , RCEG admits a curvature-dependent O(

√
τ/ϵ) convergence to an ϵ-saddle point for geodesi-

cally convex-concave problems, where τ is a constant determined by curvature of the manifolds.

Our analysis enables us to efficiently solve minimax problems in nonlinear spaces. This is verified
by conducting experiments on SPD bilinear functions.

2. Preliminaries
Metric (geodesic) geometry. In a metric space (M, dM), a path γ : [0, 1] → M joining x, y ∈
M is called a geodesic if it is of constant speed and locally minimizing. M is called a geodesic
metric space if any two points x, y ∈ M are joined by a geodesic. A non-empty set X ⊂ M is
called a geodesically convex set, if every (not necessarily unique) geodesic connecting two points in
X lies completely within X . A function f :M→ R is geodesically convex, if for any x, y ∈ M
and t ∈ [0, 1], for any geodesic γ with γ(0) = x and γ(1) = y, the following inequality holds:
f(γ(t)) ≤ (1 − t)f(x) + tf(y). Moreover, we say f is geodesically quasi-convex if f(γ(t)) ≤
max {f(x), f(y)}; (concavity and quasi-concavity are defined by considering −f ).

Riemannian geometry. An n-dimensional manifold is a topological space that is locally Eu-
clidean. A smooth manifold is referred as a Riemannian manifold if it is endowed with a Rie-
mannian metric ⟨·, ·⟩x on the tangent space TxM, for each x ∈ M. The metric induces a norm on
the tangent space, denoted ∥ · ∥x; we usually omit x when it causes no confusion.
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A curve γ : [0, 1]→M on Riemannian manifold is a geodesic if it is locally length-minimizing
and of constant speed. An exponential map defines a mapping from tangent space TxM toM as
Expx(v) = γ(1), where γ is the geodesic with γ(0) = x and γ′(0) = v. If geodesic is unique
between any two points, we can define the inverse map as Logx : M → TxM. The exponential
map also induces the Riemannian distance as dM(x, y) = ∥Logx(y)∥. A parallel transport Γy

x :
TxM→ TyM provides a way of comparing vectors between different tangent spaces that preserves
inner product, i.e., ⟨u, v⟩x = ⟨Γy

xu,Γ
y
xv⟩y for u, v ∈ TxM. Unlike Euclidean space, a Riemannian

manifold is not always flat and sectional curvature κ characterizes the distortion of geometry.
We will restrict our discussion to connected and complete manifolds, which admits at least a

geodesic between any two points [11]. Hence, it is a geodesic metric space and inherits the definition
of geodesically convex sets and geodesically convex/concave functions in geodesic space.

3. Main theorem: Minimax in Nonlinear Geometry

In Euclidean space, Sion’s minimax theorem guarantees strong duality for convex-concave minimax
problems. In this section, we establish an analog of Sion’s theorem in geodesic metric spaces.

We consider the general form of (P) in geodesic metric spaces, i.e.,M, N are geodesic metric
spaces, f |X×Y is a geodesically (quasi-)convex-concave bifunction restricted to compact convex
subset X ⊆M and convex subset Y ⊆ N . We present below our main theorem.

Theorem 3 (Sion’s theorem in geodesic metric space) Let (M, dM) and (N , dN ) be geodesic
metric spaces. Suppose X ⊆ M is a compact and geodesically convex set, and Y ⊆ N is a
geodesically convex set. If the bifunction f : X × Y → R satisfies: (1) f(·, y) is geodesically-
quasi-convex and lower semi-continuous; and (2) f(x, ·) is geodesically-quasi-concave and upper
semi-continuous, then we have the equality

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

We specialize to the Riemannian minimax problem (P) and obtain immediately next corollary.

Corollary 4 Suppose thatM and N are finite-dimensional complete and connected Riemannian
(sub)-manifolds. If subsets X , Y and the bifunction f satisfy the condition in Thm. 3, and addition-
ally, Y is also compact, then the following min-max identity holds:

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

By Cor. 4 we deduce that there is at least one saddle point (x∗, y∗) such that: minx∈X f(x, y∗) =
f(x∗, y∗) = maxy∈Y f(x∗, y). If f is geodesically convex-concave, the minimax problem (P) can
be tackled by closing the duality gap, defined for a given pair (x̂, ŷ) as

gapf (x̂, ŷ) := max
y

f(x̂, y)−min
x

f(x, ŷ).

The duality gap then serves as an optimality criterion as in the Euclidean setup.
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4. Riemannian Minimax Algorithms and Analysis

In this section we present our algorithm for minimax optimization of a geodesically convex-concave
bifunction f on Riemannian manifolds under a suitable smoothness assumption. Building upon
the aforementioned optimality criterion, we establish convergence rate of our algorithm via a non-
asymptotic analysis. To this end, we assume the following regularity conditions.

Assumption 1 The gradients of f are geodesically L-smooth, i.e., for any two pairs (x, y) and
(x′, y′) ∈M×N , the gradient satisfies the bounds

∥∇xf(x, y)− Γx
x′∇xf(x

′, y′)∥ ≤ L
(
dM(x, x′) + dN (y, y′)

)
,

∥∇yf(x, y)− Γy
y′∇yf(x

′, y′)∥ ≤ L
(
dM(x, x′) + dN (y, y′)

)
.

Assumption 2 The bifunction f(x, y) is geodesically convex-concave in (x, y).

Further, we require the curvature ofM and N to be bounded in range [κmin, κmax]. An additional
bound on the diameter is necessary when positive curvature is involved, i.e., κmax > 0. It allows
us to (1) use comparison inequalities (see [1, 19].), and (2) to ensure that the geodesic is unique
between any two points [11], so that we can use the inverse exponential map Log.

Assumption 3 The sectional curvatures of M,N lie in the range [κmin, κmax] with κmin ≤ 0.
Moreover, if κmax > 0, the diameter of the corresponding manifold is upper bounded by π/√κmax.

Riemannian corrected extragradient. We present a Riemannian extragradient method with a
correction term (RCEG) for geodesically convex-concave f (see Algorithm 1). We overload mani-
fold operations to allow compact notation for the Riemannian gradient step of pair (x, y) ∈M×N :

Exp(x,y)(u, v) := (Expx(u), Expy(v)). (2)

We use a geodesic averaging scheme [18, 19] in Algorithm 1: at each iteration we calculate

(wt+1, zt+1) = Exp(wt,zt)

(
1

t+1 · Logwt
(wt+1),

1
t+1 · Logzt(zt+1)

)
. (3)

The following theorem shows that the averaged output of RCEG achieves a curvature-dependent
convergence rate for smooth convex-concave f on Riemannian manifolds.

Algorithm 1: Riemannian Corrected Extragradient (RCEG)
Input: objective f , initialization (x1, y1), step-size η
w1 ← x1, z1 ← y1
for t = 1, 2, . . . , T do

(wt, zt)← Exp(xt,yt)(−η∇xf(xt, yt), η∇yf(xt, yt))
(xt+1, yt+1)← Exp(wt,zt)(−η∇xf(wt, zt) + Logwt

(xt), η∇yf(wt, zt) + Logzt(yt))

end
Output: geodesic averaging scheme (wT , zT ) as in (3)

Theorem 5 Suppose Assumptions 1–3 hold, and the iterations remain in subdomains2 of bounded
diameter DM and DN . Let (xt, yt, wt, zt) be the sequence generated by Algorithm 1 initialized at

2. The condition allows an upper-bound for distortion (cf. τ ) and is regular in Riemannian optimization literature [1, 19].
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x1 = w1, y1 = z1. Then, using a step-size η = 1
2L

√
τ

, the following bound holds for T :

max
y∈N

f(wT , y)− min
x∈M

f(x, zT ) ≤
d2M(x1, x

∗) + d2N (y1, y
∗)

ηT
,

with (wT , zT ) obtained via averaging in (3), and τ = τ([κmin, κmax],max(DM, DN )).

Thm. 5 is a natural nonlinear extension of the known result on extragradient method in the Euclidean
setting. We notice that, different from Riemannian minimization algorithms (e.g., [19]), whenever
the lower and upper bound of curvature coincide, the curvature-free convergence rate is retrieved.

5. Toy example: SPD Bilinear Function

We provide a synthetic test problem to illustrate the better convergence property of RCEG over
Riemannian gradient descent-ascent (RGDA) methods. As the direct generalization of its Euclidean
counterpart, RGDA formulates the following iteration

(xt+1, yt+1) = Exp(xt,yt)(−η∇xf(xt, yt), η∇yf(xt, yt))

and is not guaranteed to convergence for convex-concave objectives. We empirically verify this by
utilizing f(x, y) = ⟨Logx(x0), Logy(y0)⟩F , where x, y belong to the same SPD manifold P(n) and
⟨·, ·⟩F is the Frobenius inner product. Then f formalizes an analogy of Euclidean bilinear function.
The result in Fig. 1 illustrates that, while our RCEG is convergent, similar to its Euclidean counter-
part, the naive RGDA method can diverge for certain geodesically convex-concave objectives.

0 10 20 30 40 50
10−2

10−1

100

101

102

gr
ad
no
rm

 o
f x

0 10 20 30 40 50
10−2

10−1

100

101

102

gr
ad
no
rm

 o
f y

RCEG RGDA

0 100 200 300 400 500
10−1

100

101

102

gr
ad
no
rm

 o
f x

0 100 200 300 400 500
10−1

100

101

102
gr
ad
no
rm

 o
f y

Figure 1: Comparison between RGDA and RCEG for bilinear objective. While RCEG is convergent, the
RGDA method is divergent for minimax problem f(x, y) = ⟨Logx(x0), Logy(y0)⟩F , where x, y
are defined on P(100). We utilize a step-size η = 0.2.

6. Conclusion

In this work, we provide a new perspective into nonconvex-nonconcave minimax optimization and
game theory by considering geodesic convex-concave problems in non-linear geometries. First, we
provide an analog of Sion’s theorem on geodesic metric spaces. Second, we provide novel and ef-
ficient minimax algorithm for a different class of geodesic convex-concave games on geodesically
complete Riemannian manifolds. We believe our work takes a significant step towards understand-
ing the properties of minimax problems in non-linear geometry, and should help inform the study
of many structured learning problems on manifolds.
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[6] Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with uncer-
tain data. SIAM J. Matrix Anal. Appl., 18(4):1035–1064, 1997.

[7] Tanner Fiez, Lillian J Ratliff, Eric Mazumdar, Evan Faulkner, and Adhyyan Narang. Global
convergence to local minmax equilibrium in classes of nonconvex zero-sum games. In Ad-
vances in Neural Information Processing Systems. Curran Associates, 2021.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems. Curran Associates, 2014.

[9] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. preprint, arXiv:1412.6572, 2014.

[10] Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In Proceedings of the International Conference on Ma-
chine Learning, pages 4880–4889. PMLR, 2020.

[11] John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer,
Cham, Switzerland, 2006.

[12] Oren Mangoubi and Nisheeth K Vishnoi. Greedy adversarial equilibrium: an efficient alter-
native to nonconvex-nonconcave min-max optimization. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 896–909, 2021.

[13] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient
and optimistic gradient methods for saddle point problems: Proximal point approach. In Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics, pages 1497–
1507. PMLR, 2020.

6



MINIMAX IN GEODESIC METRIC SPACE

[14] Andrea Montanari and Emile Richard. Non-negative Principal Component Analysis: Message
passing algorithms and sharp asymptotics. IEEE Trans. Inform. Theory, 62(3):1458–1484,
2015.

[15] John F Nash. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

[16] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequali-
ties with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[17] Maurice Sion. On general minimax theorems. Pacific J. Math., 8(1):171–176, 1958.

[18] Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging
stochastic gradient descent on riemannian manifolds. In Proceedings of the Conference on
Learning Theory, pages 650–687. PMLR, 2018.

[19] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Proceedings of the Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

7


	Introduction
	Preliminaries
	Main theorem: Minimax in Nonlinear Geometry
	Riemannian Minimax Algorithms and Analysis
	Toy example: SPD Bilinear Function
	Conclusion

