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ABSTRACT

Classifier-Free Guidance (CFG) is a widely used technique for improving con-
ditional diffusion models by linearly combining the outputs of conditional and
unconditional denoisers. While CFG enhances visual quality and improves align-
ment with prompts, it often reduces sample diversity, leading to a challenging
trade-off between quality and diversity. To address this issue, we make two key
contributions. First, CFG generally does not correspond to a well-defined denoising
diffusion model (DDM). In particular, contrary to common intuition, CFG does not
yield samples from the target distribution associated with the limiting CFG score
as the noise level approaches zero—where the data distribution is tilted by a power
w > 1 of the conditional distribution. We identify the missing component: a Rényi
divergence term that acts as a repulsive force and is required to correct CFG and
render it consistent with a proper DDM. Our analysis shows that this correction
term vanishes in the low-noise limit. Second, motivated by this insight, we propose
a novel sampling procedure to draw samples from the desired tilted distribution.
This method starts with an initial sample from the conditional diffusion model
without CFG and iteratively refines it, preserving diversity while progressively
enhancing sample quality. We evaluate our approach on image and text-to-audio
generation, showing consistent improvements over CFG across all metrics.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) have emerged as
a powerful framework for generative modeling, achieving state-of-the-art performance in a variety of
tasks such as text-to-image generation (Rombach et al., 2022; Podell et al., 2023), video (Blattmann
et al., 2023) and audio generation (Kong et al., 2020b). The success of these models can be partly
attributed to their ability to produce powerful conditional generative models through guidance.
Among various methods, Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) has become a very
popular method for sample generation, as it allows strengthening the alignment to the conditioning
context via a temperature-like parameter w > 1 that acts as a guidance scale. Beyond improving
alignment, CFG plays a crucial role in ensuring high-quality samples, as unguided diffusion models
typically produce subpar outputs, limiting their practical use (Dieleman, 2022b; Karras et al., 2024a).

CFG is implemented by linearly combining the outputs of a conditional denoiser—one that takes the
conditioning context as additional input—and an unconditional one, with linear coefficients param-
eterized by a scaling w. Previous works have demonstrated that although this simple combination
effectively enhances the performance of diffusion models, it often results in overly simplistic images
and a substantial reduction in output diversity (Karras et al., 2024a; Kynkäänniemi et al., 2024). This
is essentially due to the fact that a linear combination of the conditional and unconditional denoisers
does not yield a valid denoiser, thereby breaking the correspondence with any underlying diffusion
process (Karras et al., 2024a; Bradley & Nakkiran, 2024; Chidambaram et al., 2024).

Contributions. Below, we summarize our two key contributions

1 We revisit guidance from a probabilistic perspective, focusing on the problem of sampling from
the data distribution tilted by the conditional distribution of the context given the data raised to some
power w > 1. We show that the denoisers used in CFG are neither posterior-mean estimators for
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Figure 1: Illustration of sample refinement across iterations. Left, samples generated using EDM-XXL for two
ImageNet classes: 291 (top) and 967 (bottom). Right, samples generated using Stable Diffusion XL (SDXL)
for the prompts: “A black bear walking in the grass and leaves.” (top) and “A dog jumping through the air
above a pool of water that has been marked for distance, with people watching in the distance.” (bottom). Each
row displays an initial sample X(0)

0 alongside two subsequent iterates X(1)

0 , X(2)

0 .

this tilted target distribution nor valid denoisers for any other data distribution; see Example 1. We
then prove (Proposition 1) that for CFG to target the tilted distribution of interest, it must include an
additional term—the gradient of a Rényi divergence—which acts as a repulsive force that encourages
output diversity, as illustrated in Figure 2. Finally, as an additional contribution of independent
interest, we derive a new expression for the tilted target scores that involves two different noise levels,
providing a theoretical justification for recent guidance methods (Sadat et al., 2025; Li et al., 2024).

2 These theoretical insights motivate our second contribution: an iterative sampling procedure
referred to as CLASSIFIER-FREE ITERATIVE GUIDANCE (CFIG), which generates samples from
the tilted distribution. As summarized in Algorithm 1, it begins by first drawing a sample from
the conditional distribution, without CFG, then iteratively refines it via alternating noising and
CFG-denoising steps. We illustrate the iterative refinement procedure in Figure 1. A key advantage
of this approach is the ability to preserve the sample diversity of the prior model while improving
generation quality. We then analyze the algorithm and quantify the bias introduced by omitting the
Rényi divergence term in the Gaussian setting (Proposition 4).

We validate CFIG on class conditional image generation, text-to-image generation, and text-to-audio
generation, showing that it significantly outperforms CFG and is competitive with INTERVAL-CFG,
a state-of-the-art method recently proposed in Kynkäänniemi et al. (2024).

2 BACKGROUND

Diffusion models. Denoising diffusion models (DDMs) (Song & Ermon, 2019; Song et al., 2021a;b)
define a generative procedure targeting a data distribution p0. It proceeds by first sampling from a
highly noised distribution pσmax that practically resembles a Gaussian, and then iteratively sampling
through a sequence of progressively less noisy distributions pσ for decreasing noise levels σ < σmax.
The distribution pσ is the xσ-marginal of p0,σ(x0,xσ), the joint distribution of the (X0, Xσ) :=
(X0, X0 + σZ), where X0 and Z are drawn independently from p0 andN (0, I). Formally, by letting
qσ|0(xσ|x0) := N(xσ;x0, σ

2I), the marginals are defined as pσ(xσ) :=
∫
p0,σ(x0,xσ) dx0 =∫

qσ|0(xσ|x0)p0(x0) dx0. Following Karras et al. (2022), exact sampling from the target p0 can be
achieved by solving, backwards in time over [0, σmax] and starting from xσmax ∼ pσmax ,

dxσ/dσ =
(
xσ −Dσ(xσ)

)
/σ , where Dσ(xσ) =

∫
x0 p0|σ(x0|xσ) dx0 . (2.1)

Dσ is the denoiser at noise level σ; see Karras et al. (2022, Equations 1 and 3). The drift in the
probability-flow ODE (PF-ODE) (2.1) can be identified as the score function (x, σ) 7→ ∇ log pσ(x),
since using Tweedie’s formula (Robbins, 1956), it follows that Dσ(x) = x+ σ2∇ log pσ(x).

The practical implementation of this generative process involves first estimating Dσ using para-
metric approximations Dθ

σ, θ ∈ Θ, trained by minimizing the weighted denoising loss θ 7→∫
E
[
∥X0 −Dθ

σ(Xσ)∥2
]
λ(σ) dσ, where λ denotes a probability density function over R+ which

assigns weights to noise levels (Karras et al., 2022). This training procedure also provides parametric
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approximations of the score function. Therefore, once (Dθ
σ)σ≥0 are trained, a new approximate

sample X̂0 from p0 can be drawn by fixing a decreasing sequence (σt)
0
t=T of noise levels and then

solving the ODE (2.1) backwards from σT to σ0 using an integration method such as Euler or Heun
starting from X̂σT

∼ N (0, σ2
T I) (Karras et al., 2022). In particular, the Euler method corresponds to

the Denoising Diffusion Implicit Model (DDIM) scheme of Song et al. (2021a), with updates

X̂σt = (1− σt/σt+1)D
θ
σt+1

(X̂σt+1) + (σt/σt+1) X̂σt+1 . (2.2)

Conditional DDMs. This generative procedure also extends to sampling conditionally on C ∈ C,
where C can be a collection of classes or text-prompts. Denote by p̄0(c,x0) the joint density of
(C,X0). The goal is to approximately sample from the conditional distribution p0(x0|c) ∝ p̄0(c,x0),
given training samples from the joint distribution. Similar to the unconditional case, we introduce
the joint distribution p̄0,σ(c,x0,xσ) ∝ p̄0(c,x0) qσ|0(xσ|x0), where only the data X0 is noised.
Conditional DDM sampling from p0(x0|c) thus reduces to estimating the conditional denoiser defined
by Dσ(xσ|c) :=

∫
x0 p0|σ(x0|xσ, c) dx0, by using a parametric family {(x, c, σ) 7→ Dθ

σ(x|c) :
θ ∈ Θ} and minimizing the loss θ 7→

∫
E
[
∥X0 −Dθ

σ(Xσ|C)∥2
]
λ(σ) dσ, where the expectation

is taken with respect to the joint law of (C,X0, Xσ) ∼ p̄0,σ. As noted in (Ho & Salimans, 2022;
Karras et al., 2024b), it is possible to learn simultaneously a conditional and unconditional denoiser
by augmenting C with a null context ∅ to represent the unconditional case. Then, during training,
(C,X0) is first sampled from p̄0 and C is replaced by ∅ with probability puncd; a procedure also
referred to as conditioning dropout (Dieleman, 2022a). Henceforth, we denote the unconditional
denoisers by Dσ(·|∅) = Dσ ,

Classifier-Free Guidance (CFG). In many complex applications—such as text-to-image synthesis
and audio generation—directly using the conditional diffusion models often results in samples that
lack the perceptual quality of the training data. This discrepancy is especially evident in terms of
perceived realism, texture fidelity, and fine-grained detail. CFG (Ho & Salimans, 2022) has emerged
as a standard approach to mitigate this issue, enhancing both the visual fidelity and the alignment of
generated samples and the context c. Yet, this improvement typically comes at the cost of reduced
sample diversity. In CFG, the denoiser is defined as a linear combination of the conditional and
unconditional denoisers:

Dcfg
σ (xσ|c;w) := wDσ(xσ|c) + (1− w)Dσ(xσ) , (2.3)

where w > 1 is a guidance scale. To illustrate the impact of the scale w, we denote by
g0(c|x0) := p̄0(c,x0)/p0(x0) the conditional distribution of the context and set gσ(c|xσ) :=∫
g0(c|x0) p0|σ(x0|xσ) dx0. By construction, the conditional distribution of Xσ given the context is

pσ(xσ|c) ∝
∫
p̄0,σ(c,x0,xσ) dx0 ∝

∫
g0(c|x0) p0(x0) qσ|0(xσ|x0) dx0 ∝ gσ(c|xσ) pσ(xσ) ,

where we used that p0(x0)qσ|0(x0|xσ) = pσ(xσ)p0|σ(x0|xσ). Thus, Tweedie’s formula implies that

Dσ(xσ|c) = xσ + σ2∇ log pσ(xσ|c) = xσ + σ2
(
∇ log gσ(c|xσ) +∇ log pσ(xσ)

)
. (2.4)

Substituting back into (2.3), we obtain Dcfg
σ (xσ|c;w) = xσ + σ2∇ log pcfgσ (xσ|c;w), where

pcfgσ (xσ|c;w) ∝ gσ(c|xσ)
wpσ(xσ) . (2.5)

Hence, CFG modifies the conditional denoiser (2.4) solely through the guidance scale w applied to
the classifier score. With w > 1, CFG amplifies the influence of regions where gσ(c|xσ) is large. In
practice, this results in enhanced prompt alignment and improved perceptual quality of generated
images, at the cost of reduced sample diversity (Kynkäänniemi et al., 2024).

Note that generally, pcfgσ (xσ|c;w) ̸=
∫
qσ|0(xσ|x0)p

cfg
0 (x0|c;w) dx0. This discrepancy prompts a

fundamental question: does incorporating the CFG denoiser (2.3) into the ODE (2.1) yield a sampling
process that corresponds to a well-defined DDM? Specifically, does there exist π(·|c;w) such that
for all σ > 0, pcfgσ (xσ|c;w) =

∫
qσ|0(xσ|x0)π(x0|c;w) dx0? We show in the next example that

this is not the case in general.
Example 1. Let p0 = N (0, 1) and g0(c|x0) = N(c;x0, γ

2) is the one-dimensional Gaussian density
with mean x0 and variance γ2; then pcfgσ (·|c;w) is Gaussian with variance

v(w, σ2) :=
(1 + σ2)γ2 + σ2

w/(1 + σ2) + γ2 + σ2/(1 + σ2)
. (2.6)

3
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Figure 2: Left: DDIM sampling with CFG denoiser (2.3); Right: DDIM sampling with the ideal denoiser (3.2).
The trajectories of 1000 particles are represented with thin red lines and 5 selected trajectories are displayed in
black thick line along which scores are being depicted with arrows. The histogram of the simulated particles is
represented in light gray. We also plot the ideal score (3.2) (arrow in black) with the contribution of both the
CFG score (arrow in red) and the repulsive term arising from the Rényi divergence (arrow in blue).

We now show that it does not exist π(·|c;w) such that for all σ > 0,

pcfgσ (xσ|c;w) =
∫
qσ|0(xσ|x0)π(x0|c;w) dx0 . (2.7)

The proof is by contradiction. Suppose that (2.7) holds. Then we may show, by letting σ tend to
zero, that π(·|c;w) = pcfg0 (·|c;w), where pcfg0 (x0|c;w) = N(x0;wc/(w + γ2), γ2/(w + γ2)); see
Appendix B.3. In addition, let (X0, Xσ) be distributed according to the joint distribution with density
qσ|0(xσ|x0)p

cfg
0 (x0|c;w). Then, V(Xσ) = σ2+ γ2/(w+ γ2). However, by (2.7), Xσ ∼ pcfgσ (·|c;w)

which implies that v(w, σ2) < V(Xσ) for all σ > 0 and w > 1. Thus, we obtain a contradiction.

3 ANALYZING THE BIAS IN CLASSIFIER-FREE GUIDANCE

As demonstrated in Example 1 and illustrated in Figure 2, CFG does not necessarily yield an
approximate sample from pcfg0 (·|c;w). We now focus on introducing a DDM specifically designed to
target this distribution, which we from now on denote by p0(·|c;w)—omitting the superscript cfg.

Tilted distribution scores and denoisers. Define the joint distribution p̄0,σ(x0,xσ|c;w) ∝
g0(c|x0)

wp0,σ(x0,xσ), of which p0(·|c;w) is the x0-marginal. Proposition 1 provides a simple and
interpretable form of the scores of the smoothed marginals pσ(xσ|c;w) =

∫
p̄0,σ(x0,xσ|c;w)dx0.

For w > 1, define the Rényi divergence of order w of p from q (Van Erven & Harremos, 2014) as

Rw(p∥q) :=
1

w − 1
log

∫
p(x)w

q(x)w
q(x) dx . (3.1)

For ease of notation, we setRσ(xσ, c;w) := Rw(p0|σ(·|xσ, c)∥p0|σ(·|xσ)).

Proposition 1. For any σ > 0, the scores associated with pσ(·|c;w) are

∇ log pσ(xσ|c;w) = (w − 1)∇Rσ(xσ, c;w) +∇ log pcfgσ (xσ|c;w) . (3.2)

Sketch of the proof. We use that pσ(xσ|c;w) ∝
∫
qσ|0(xσ|x0)p0(x0|c)wp0(x0)

1−w dx0 and that
qσ|0(xσ|x0) = qσ|0(xσ|x0)

w qσ|0(xσ|x0)
1−w. We then gather the terms under the powers w and

1 − w respectively and apply the Bayes’ rule. The complete proof is provided in Appendix B.1.
The decomposition (3.2) highlights that the CFG score ∇ log pcfgσ (xσ|c;w) differs from the ideal
score ∇ log pσ(·|c;w) by an additional term: the gradient of the Rényi divergence. To illustrate
Proposition 1 and the bias introduced by CFG, we consider a one-dimensional toy model; see Figure 2.
In this example, we compare the trajectories obtained by integrating the ODE (2.1) using the ideal
denoiser—defined as Dσ(xσ|c;w) := xσ + σ2∇ log pσ(xσ|c;w)—and the CFG denoiser (2.3). The
CFG trajectories are observed to collapse onto a single mode, neglecting other regions of significant
probability mass, as observed in Kynkäänniemi et al. (2024).
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Intuition behind CFG bias. The over-concentration of paths in Figure 2 stems from omitting the
term (w − 1)∇Rσ(xσ, c;w), which acts as a repulsive force. Indeed, since w > 1, this term pushes
the sample in the direction where the conditional and unconditional distributions p0|σ(·|xσ, c) and
p0|σ(·|xσ) differ most, thereby counteracting over-concentration.

Our next result show that the CFG score ∇ log pcfgσ (·|c;w) serves as a good approximation of the
ideal score∇ log pσ(·|c;w) for small σ.

Proposition 2. Under suitable assumptions on p0 and g0, it holds for all w > 1, x ∈ Rd, c ∈ C,

∇Rσ(x, c;w) = O(σ2) as σ → 0 .

Sketch of the proof. We rely on the observation that for densities of the form πσ(xσ) =∫
qσ|0(xσ|x0)π(x0) dx0, it holds as σ approaches 0 that ∇ log πσ(xσ) = ∇ log π(x0) +O(σ2), a

result that we establish in Lemma 1. Applying this lemma to pσ(·|c;w), pσ(·|c), and pσ yields

∇ log pσ(xσ|c;w) = ∇ log pcfgσ (xσ|c;w) +O(σ2), σ → 0,

which enables to conclude after plugging the results in Equation (3.2). We provide the full proof
in Appendix B.2. The CFG denoiser suffers from an intrinsic flaw due to the absence of the term
(w − 1)∇Rσ(xσ, c;w), which plays a crucial role at high to medium noise levels in preserving
the diversity of the generated samples. Conversely, the denoiser Dσ(·|c;w) is well approximated
by Dcfg

σ (·|c;w) in the low-noise regime, where the missing Rényi divergence term is effectively
negligible. In Section 4, we present a new method for generating approximate samples from the
target p0(·|c;w), which relies on using the CFG approximation of the denoiser exclusively in the
low-noise regime below a given noise level σ∗. In this regime, the intractable Rényi divergence term
can be safely omitted as we discuss in the next section.

An alternative expression of the ideal score. We now present a generalization of the score
expression (3.2) that offers an novel alternative expression to Dσ(·|c;w). For conciseness, we set
Rσ1,σ2

(x, c;w) := Rw(p0|σ1
(·|x, c)∥p0|σ2

(·|x)), where σ1, σ2 > 0 are two noise levels.

Proposition 3. Let w > 1. For all δ > 0 and σ > 0, the scores associated with p0(·|c;w) are

∇ log pσ(xσ|c;w) = (w−1)∇Rσ−,σ+(xσ, c;w)+w∇ log pσ−
(xσ|c)+(1−w)∇ log pσ+(xσ) ,

where σ− := σ
√

w/(1 + δ) and σ+ := σ
√

(w − 1)/δ.

Sketch of the proof. The proof mirrors the argument in Proposition 1. We use that for any δ > 0,
qσ|0(xσ|x0) = qσ|0(xσ|x0)

1+δ qσ|0(xσ|x0)
−δ and then the key observation that

qσ|0(xσ|x0)
1+δ ∝ qσ−|0(xσ|x0)

w , qσ|0(xσ|x0)
δ ∝ qσ+|0(xσ|x0)

1−w ,

which follows from the fact that the forward process is Gaussian. The full proof is provided in
Appendix B.1. The key novelty of this generalized formula is that it involves score evaluations at two
distinct noise levels, σ− and σ+. By setting δ = w − 1, we recover the original formula (3.2), while
selecting 0 < δ < w − 1 yields the ordering σ− < σ < σ+. Similar to (3.2), the Rényi divergence
term vanishes as σ → 0, leading to the practical approximation Dσ(xσ|c;w) ≈ wDσ−

(xσ|c;w) +
(1 − w)Dσ+

(xσ|c;w) in this regime. The idea of performing guidance by combining denoisers
at different noise levels has also been recently explored in Sadat et al. (2025); Li et al. (2024).
Specifically, these works introduce the modified denoiser wDσ(xσ|c) + (1− w)Dσ̃(xσ|c), where
σ̃ := σ + ∆σ for some small increment ∆σ. Remarkably, this formulation avoids the use of the
unconditional denoiser employed in CFG, thereby allowing guidance solely through the conditional
denoiser. Proposition 3 hence provide a theoretical ground for these alternative methods. We further
discuss extensions of this score formulation in Appendix D.

4 ITERATIVE GUIDANCE

Our method consists in defining a Markov chain (X(r)

0 )r∈N that admits p0(·|c;w) as stationary
distribution. We rely on a fixed noise level σ∗ that we assume to be small enough. The chain is
generated recursively as follows. Given X(r)

0 at stage r, X(r+1)

0 is obtained by

5
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Algorithm 1 CFIG

1: Require: Guidance scales w0 ≥ 1 and w > w0

2: Require: Number of repetitions R, total steps T , and initial steps T0

3: Require: Standard deviations σ∗, σmax
4: Xσmax ∼ N (0, σ2

maxI)
5: X0 ← ODE_Solver(Xσmax , D

cfg
σ (·|c;w0), T0)

6: for r = 1 to R do
7: Xσ∗ ← X0 + σ∗Z, where Z ∼ N (0, I)
8: X0 ← ODE_Solver(Xσ∗ , D

cfg
σ (·|c;w), ⌊(T − T0)/R⌋)

9: end for
10: Output: X0

Step 1) sampling an intermediate state X(r)
σ∗
∼ qσ∗|0(·|X

(r)

0 );

Step 2) denoising it by integrating the PF-ODE (2.1) with the ideal denoiser Dσ(·|c;w).

These updates can be compactly written as X(r+1)

0 = F0|σ∗

(
X(r)

0 + σ∗Z
(r+1);w

)
, where (Z(r))r∈N

is a sequence of i.i.d. standard Gaussian random variables and F0|σ∗(xσ∗ ;w) is the solution to
the PF-ODE with denoiser Dσ(·|c;w) and initial condition xσ∗ . We can verify that the associated
Markov chain admits p0(·|c;w) as its unique stationary distribution under appropriate conditions;
see Appendix B.3. Taking σ∗ small enough, we implement this scheme by using the CFG denoiser
(2.3) instead of Dσ(·|c;w) in Step 2) for integrating the PF-ODE (2.1).

Initial distribution. The initial sample X(0)

0 is generated using an ODE solver applied to the PF-ODE
(2.1) using either the plain conditional denoisers Dθ

σ(·|c) or the CFG denoisers (2.3) with a moderate
guidance scale 1 ≤ w0 ≪ w. In the case of image generation, this tends to provide initial samples
that exhibit high diversity but low perceptual quality (Ho & Salimans, 2022; Karras et al., 2024a).
These coarse samples are subsequently refined and sharpened in the later stages of the algorithm,
where a larger guidance scale w is used. Given a total budget of T function evaluations and R
refinements stages, we allocate a number T0 of steps—between ⌊T/3⌋ to ⌊T/2⌋—for generating the
initial sample, with the remaining budget evenly distributed across the R refinement stages.

CFIG algorithm. The proposed generation pipeline consists of two stages: (1) an initialization stage,
where coarse samples are generated with weak guidance to preserve the same level of diversity as
the target distribution; and (2) a refinement stage, where these samples are progressively improved
through iterative noising-denoising stages. The full procedure, referred to as CFIG, is presented in
Algorithm 1. For clarity, Algorithm 1 assumes that T − T0 is divisible by R. When this is not the
case, the remaining steps are added to the initialization stage. Finally, the ODE_Solver component
may be instantiated with any standard solver, such as the Heun method (Karras et al., 2022); one such
example is provided in Algorithm 2.

The Gaussian case. We now analyze the behavior of CFIG in the Gaussian setting to gain a deeper
understanding of its dynamics, with particular focus on the role of the parameter σ∗. To enable
an exact analysis, we consider the simplified Gaussian scenario in Example 1 with c = 0, which
admits an explicit solution to the PF-ODE (2.1) when using the CFG denoisers Dcfg

σ (·|c;w). This
simplified setting mirrors the one studied in Bradley & Nakkiran (2024). Formally, we consider the
following iterative procedure, which corresponds to Algorithm 1 with no discretization error. Let
X(0)

0 be a square-integrable random variable, meaning we start from the conditional distribution, and
define for all r ≥ 1, X(r)

0 = c(σ∗)
(
X(r−1)

0 + σ∗Z
(r)), where c(σ∗) := γw(1 + σ2

∗)
(w−1)/2/(γ2 +

(1 + γ2)σ2
∗)

w/2; see Appendix B.3 and Lemma 2. The following proposition compares the limiting
distribution of X(r)

0 (as r →∞) to the tilted distribution p0(·|c;w) := N (0, V (w)), where V (w) :=
γ2/(γ2 + w). Define V∞(w) := σ2

∗c(σ
2
∗)/(1− c(σ2

∗)).

Proposition 4. For all w > 1, (X(r)

0 )r∈N converges to N (0, V∞(w)) exponentially fast in
Wasserstein-2 distance, with rate proportional to σ2

∗. Furthermore,

V∞(w) = V (w) +O(σ2
∗) , as σ2

∗ → 0 .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Thus, in this simplified setting, the limiting distribution of our procedure converges to the target
distribution as the parameter σ∗ tends to zero. However, as highlighted in Proposition 4, a bias–
variance trade-off emerges when the number R of refinements stages is finite as shown in Figure 10.
More specifically, selecting a very small value of σ∗ may result in slow mixing, since each noising
step induces only a minor change in the state X(r)

σ∗
. On the other hand, selecting a larger σ∗ can

enhance mixing speed, albeit at the cost of introducing some bias as detailed in Appendix B.3.

5 RELATED WORKS

The seminal work of Ho & Salimans (2022) initiated a line of research to understand and improve
guidance mechanisms in conditional diffusion models. Below, we review the key contributions.

Tilted distribution samplers. Recent works on CFG (Bradley & Nakkiran, 2024; Chidambaram
et al., 2024) have pointed out that Dcfg

σ (·|c;w) does not correspond to a valid denoiser for p0(·|c;w).
To address this shortcoming, Bradley & Nakkiran (2024) introduce a hybrid predictor–corrector
approach, in which each update (2.2) is followed by a few Langevin dynamics steps targeting the
intermediate distribution pcfgσ (·|c;w); see Bradley & Nakkiran (2024, Algorithm 2). The key insight
is that, although the family (pcfgσ (·|c;w))σ∈[0,σmax] are not the marginals of a valid diffusion process,
it nonetheless defines an annealing path connecting the initial distribution pσmax and p0(·|c;w), and
can therefore be used within an MCMC framework. The recent approach of Skreta et al. (2025)
proposes using sequential Monte Carlo methods (Doucet et al., 2001) to iteratively construct empirical
approximations of the distributions pcfgσ (·|c;w) via a set of N weighted particles. A simple derivation
of this sampler is provided in Appendix C. Concurrently, Lee et al. (2025) proposed a similar approach
for discrete diffusion models. The present work falls within the same class of methods, sharing
the goal of generating approximate samples from p0(·|c;w). However, in contrast to particle-based
approaches, we use an iterative scheme that do not rely on multiple particles to produce samples.

Adaptive CFG methods. Other approaches in the literature do not explicitly aim to sample from
the tilted distribution. Instead, they employ various heuristics aimed at enhancing sample quality,
diversity, or both simultaneously. To enhance sample diversity under guidance, Chang et al. (2023);
Sadat et al. (2024) propose a time-dependent guidance scale that prioritizes the unconditional model
in the early stages of the diffusion process, gradually transitioning toward standard CFG as sampling
proceeds. In Kynkäänniemi et al. (2024), guidance is activated only when σ is within a specified
noise interval [σlo, σhi], and empirical results indicate that this strategy can significantly improve
over the vanilla CFG. Xi et al. provide an empirical study of adaptive CFG schedulers and conclude
that increasing the guidance scale throughout the iterations improves the performance, aligning with
the conclusions of the previous works. Similarly, Chung et al. (2025) formulate text-guidance as an
inverse problem and arrive at the dynamic CFG schedule wt = λσt/(σt − σt−1), where λ ∈ [0, 1].

Guidance through different mechanisms. Alternatives to the CFG denoiser have also been proposed
in the literature. Karras et al. (2024a) propose to combine a denoiser Dθ

σ(·|c) with a smaller or
undertrained version of itself Dθ−

σ (·|c) as D̃θ
σ(xσ|c;w) = wDθ

σ(xσ|c) + (1 − w)D
θ−
σ (xσ|c). In

terms of scores this is equivalent to substracting the score of a more spread-out density and results
in a score of a more peaked density, amplifying sharpness and conditioning alignment. The same
effect is achieved by substracting the score at a higher noise level, as in Sadat et al. (2025); Li et al.
(2024), and with the score approximation resulting from Proposition 3 when δ < w − 1. Moreover,
Pavasovic et al. (2025) develops non-linear guidance mechanisms that automatically reduce or switch
off guidance when the difference between the conditional and unconditional scores becomes small.

Compared to the above approaches, our method employs a distinct guidance strategy: it begins by
generating an initial sample using no or moderate guidance, then repeatedly applies the forward
noising process up to a predefined noise level, followed by denoising using CFG. This noising-
denoising procedure was originally introduced in SDEdit Meng et al. (2021) for image editing and
has also been adopted later by subsequent work. In particular, it has been leveraged by Yu et al.
(2023); Bansal et al. (2023) —under the name of time-travel— to guide diffusion models with
an auxiliary function, and later utilized by Ma et al. (2025) to improve inference-time scaling of
DDMs. Our contribution differs by applying this noising-denoising procedure within the framework
of classifier-free guidance to maintain both sample diversity and quality.
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Quality metrics
Algorithm FID ↓ FDDINOv2 ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑
EDM2-S
CFG 2.30 88.70 0.61 0.57 0.58 0.54
INTERVAL-CFG 1.71 80.75 0.61 0.61 0.58 0.56
CFG++ 2.89 95.52 0.60 0.54 0.57 0.52
FK 9.17 155.36 0.54 0.39 0.44 0.39
PG 5.79 87.54 0.67 0.41 0.67 0.55
CFIG 1.78 75.38 0.64 0.59 0.63 0.58
EDM2-XXL
CFG 1.81 56.82 0.67 0.65 0.71 0.65
INTERVAL-CFG 1.50 40.08 0.70 0.68 0.78 0.70
CFG++ 2.30 65.32 0.66 0.63 0.69 0.62
FK 8.86 76.29 0.75 0.38 0.87 0.49
PG 5.76 44.23 0.8 0.5 0.85 0.53
CFIG 1.48 42.87 0.70 0.68 0.77 0.70

Table 1: Comparison of average FID, FDDINOv2, Preci-
sion/Recall, and Density/Coverage on ImageNet-512
for EDM2-S and EDM2-XXL.
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Figure 3: Impact of the hyperparameters for the EDM2-
S (top) and EDM2-XXL (bottom) models. The metrics
are computed with 10k generated samples.

6 EXPERIMENTS

We compare CFIG against five baselines: CFG (Ho & Salimans, 2022), INTERVAL-
CFG (Kynkäänniemi et al., 2024), CFG++ (Chung et al., 2025), Feynman-
Kac Corrector (FK) (Skreta et al., 2025), and Particle Guidance (PG) (Corso
et al., 2023), with the last two belonging to the class of particle-based methods.
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Figure 4: Precision and recall as a
function of σ∗ for EDM2-S (top)
and EDM2-XXL (bottom).

Unless otherwise specified, we adopt the hyperparameters recom-
mended by the respective authors; when unavailable, and conduct
a grid search otherwise. We exclude CADS (Sadat et al., 2024)
from our comparisons due to its close similarity to the more recent
INTERVAL-CFG, which has demonstrated state-of-the-art perfor-
mance. In fact, INTERVAL-CFG can be seen as a special case of
CADS where the guidance scale is set to zero at high noise lev-
els. We present results on both image and audio generation tasks,
considering two computational budget settings: 32 diffusion steps
for image generation and 200 for audio. By design, this ensures
that CFIG requires no more NFEs than CFG, as shown in Table 7,
which reports the exact NFE counts for each method across all ex-
periments. We evaluate performance under two samplers, Heun and
DDIM, with the exception of FK, which is an SMC algorithm, see
Appendix C.

We emphasize that all competitors are run under a fixed number of diffusion steps. For our
method, increasing the number of refinement stages reduces the number of denoising steps allocated
per refinement, which may not yield performance gains, as shown in the Image Experiments ablation
in Figure 3. We additionally analyze the scenario where the compute budget scales linearly with the
number of refinement stages R in Figure 7. We provide details about the setups of the used models,
the implementation details of the competitors as well as their hyperparameters in Appendix A.2, and,
defer the discussion about runtime, NFEs, and memory requirements of each them to Appendix A.4.

Table 2: CLIP-Score and FID
results for SDXL on MS-COCO
validation data set

CLIP-Score ↑ FID ↓
CFG 31.81 49.41
INTERVAL-CFG 31.75 49.91
CFG++ 31.54 47.88
FK 32.17 48.72
PG 31.82 49.70
CFIG (ours) 31.97 47.05

Image experiments. For class-conditional generation, we evaluate
the algorithms on the ImageNet-512 dataset using EDM2 small
(EDM2-S) and largest (EDM2-XXL) models, which operate in the
latent space (Karras et al., 2024b). Following the setup of Kynkään-
niemi et al. (2024), all algorithms are run with the 2nd Heun sampler
and a fixed budget of 32 deterministic steps (Karras et al., 2022).
We assess perceptual quality using FID (Heusel et al., 2017) and
FDDINOv2 (Stein et al., 2023), and further analyze fidelity and diver-
sity through Precision/Recall and Density/Coverage (Naeem et al.,
2020). Metrics are computed using 50k generated samples follow-
ing commun practices and averaged over three independent runs. Results are reported in Ta-
ble 1, and qualitative examples are provided in Appendix E. For text-to-image generation, we
conduct experiments on the Microsoft COCO 2017 (MS-COCO) validation set (Lin et al., 2014),
which contains 5k image-prompt pairs, using the SDXL model (Podell et al., 2023). Evalua-
tion metrics include CLIP-Score (Radford et al., 2021) to measure prompt alignment and FID
to assess image fidelity. As in the class-conditional setting, we fix the computational budget to
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Quality metrics
Algorithm FAD↓ KL↓ IS↑
CFG 1.78 1.59 7.07
INTERVAL-CFG 1.74 1.61 6.93
CFG++ 1.88 1.55 7.37
FK 2.22 1.67 6.84
PG 2.77 1.58 7.39
CFIG (w0 = 1.0, R = 1) 1.71 1.65 7.05
CFIG (w0 = 1.5, R = 1) 1.61 1.58 7.31
CFIG (w0 = 1.5, R = 2) 1.74 1.56 7.64

Table 3: FAD, KL, and IS results on AudioCaps
test set for AudioLDM 2-Full-Large model.
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Figure 6: Impact of the hyperparameters on the FAD
with the AudioLDM 2-Full-Large model. The metrics
are computed with 1k prompts.

32 diffusion steps with the Heun sampler. For each algorithm, hyperparameters are tuned via
grid search to maximize CLIP-Score. The corresponding results are summarized in Table 2.
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Figure 5: FID as a function of σ∗
for different guidance scales w on
EDM-S model with 5k samples.

Results. In class-conditional generation, CFIG consistently achieves
the best or near-best performance across all evaluation metrics.
Both CFIG and INTERVAL-CFG outperform CFG and CFG++
on FID/FDDINOv2, indicating better perceptual quality and diversity
as measured by Precision/Density and Recall/Coverage. In contrast,
FK and PG obtain relatively weak FID/FDDINOv2 scores, primar-
ily due to limited diversity, as evidenced by their lower Recall and
Coverage. This phenomenon is attributable to mode-collapse, a well-
known limitation of particle-based methods in high-dimensional
settings. Importantly, the performance of CFIG also extends to text-
to-image generation, where it achieves the best FID and performs on
par with FK in terms of CLIP-Score. Taken together, these results
demonstrate that CFIG improves visual quality in alignment with
conditioning information while maintaining high sample diversity; see Figures 8 and 9.
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Figure 7: FID as a function of
σ∗ for different number of refine-
ment steps R in the setup of a dy-
namic computational budget lin-
ear w.r.t. R. Results are for EDM-
S model with 5k samples.

Audio experiments. We assess CFIG on a text-to-audio task us-
ing the AudioCaps (Kim et al., 2019) test set. We use the model
AudioLDM 2-Full-Large of (Liu et al., 2024) and adopt their ex-
perimental setup, namely, 1k prompts were randomly selected from
AudioCaps, and the following quality metrics were computed for
each algorithm: Fréchet Audio Distance (FAD), Kullback–Leibler
divergence over softmax outputs (KL), and Inception Score (IS). The
KL is computed by applying Softmax to extracted features from the
generated and groundtruth samples. Following Liu et al. (2024), for
each prompt, the best out of 3 samples were selected. We fix the
computatinal budget to 200 diffusion steps with DDIM sampler, we
run a grid search over the hyperparameter space of each algorithm
to optimize for the FAD. The results are reported in Table 3.

Results. The configuration of CFIG with w0 = 1.5 and R = 2
achieves the best overall balance across the three evaluated metrics.
Interestingly, reducing refinements to R = 1 significantly improves the FAD metric. While this
scenario closely resembles INTERVAL-CFG, CFIG consistently outperforms it, highlighting fun-
damental differences between these methods. In all these settings, we set T0 = 100, σ∗ = 5, and
w = 5. We also observed that omitting initial guidance (w0 = 1) yields better FAD scores compared
to CFG, INTERVAL-CFG, and CFG++, but negatively impacts the other metrics. Overall, both
text-to-audio and text-to-image models require a moderate degree of guidance, since when unguided
they frequently produce samples of poor perceptual quality.

Ablations. In Figure 3, we investigate the impact of the hyperparameters (w, σ∗, R) for a fixed
number of diffusion steps. For each model, we vary one parameter at a time while keeping the
others fixed to the values used in Table 1. Using R = 2 refinement stages improves performance over
R = 1, yielding the results reported in Table 1. However, increasing R beyond 2 degrades both FID
and FDDINOv2, as a higher number of repetitions reduces the number of ODE integration steps per
refinement (under a fixed NFE), leading to loss of high-frequency details and attenuation of semantic
content. Varying σ∗ exhibits a different pattern: FID decreases until reaching an optimal point and

9
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Figure 8: Comparison of sample diversity between CFIG and CFG across a batch of 6 samples generated using
EDM-XXL model for two ImageNet classes: 84 (top) 957 (bottom). Both algorithms are run with a total of
32 Heun steps and the same seed. CFG is run with a guidance scale w = 3.5. CFIG is run with 12 initial steps
at guidance scale w0 = 1, followed by two refinement stages starting at σ∗ = 1 and using w = 3.5.

then worsens, while FDDINOv2 continues to improve beyond that turning point before eventually
showing a slight degradation at higher noise levels. Similar trends are observed for text-to-audio
generation, as shown in Figure 6.

Trade-off diversity/quality. Figure 4 shows the evolution of Precision and Recall with respect to
the noise level σ∗. As expected, larger σ∗ reduces diversity—indicated by falling Recall—since
subsequent samples X(r)

0 (r ≥ 1) drift away from the initial unguided sample X(0)

0 , and CFIG
effectively collapses to standard CFG. Conversely, Precision increases and correlates with FDDINOv2.

Different guidance scales. In Figure 5, we further ablate FID and FDDINOv2 as a function of σ∗ across
different guidance scales w. We observe that stronger guidance shifts the optimal value of σ∗ toward
smaller values. This behavior arises because larger guidance amplifies the influence of the Rényi
divergence term and thereby increases the bias of CFG when omitting it. Hence, this shrinks the
range in which removing the Rényi divergence term remains acceptable.

Dynamic computational budget as function of R. We additionally evaluate CFIG under a dynamic
computational budget in which computation scales linearly with the number of refinement stages R
as reported in Figure 7. Increasing refinement stages consistently improves FID and FDDINOv2, but
shifts the optimal σ∗ toward smaller values for FID. In particular, when using more refinement stages,
lower noise levels become preferable.

7 CONCLUSION

We have provided a detailed analysis of CFG and identified a crucial missing term—the gradient of a
Rényi divergence—which naturally promotes diversity in generated samples. Our theoretical analysis
demonstrates that this additional term becomes negligible in the low-noise regime, motivating a
new sampling algorithm, CFIG, that leverages this insight. Through extensive experiments on both
image and audio generation tasks, we have confirmed the effectiveness and practical benefits of the
proposed method. The insights gained in this work suggest several promising directions for future
research. One especially promising avenue involves utilizing our newly derived score expressions to
design novel training procedures for conditional diffusion models to explicitly account for the Rényi
divergence term and hence enables guidance without sacrificing diversity or perceptual quality.
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Ethics Statement. The presented approach enhances sample fidelity and diverity in conditional
diffusion models, opening opportunities for use in creative workflows. At the same time, it brings
ethical challenges related to the possible misuse in producing synthetic-deceptive media that obscure
authenticity, emphasizing the necessity of robust detection mechanisms and careful, responsible
deployment.

Reproducibility statement. Reproducibility is a key priority in this work. The released codebase
includes complete implementations of our approach and all baseline methods, together with experi-
ment scripts and configuration files detailing the hyperparameters and settings used in each evaluation.
These materials enable researchers to reproduce all reported results reliably and to build upon our
work with minimal effort.
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Figure 9: Comparison of sample diversity between CFIG and CFG across a batch of 6 samples. Samples are
generated using SDXL model for two for two prompts: “A lone horse walking through a grassy field." (top) and

“A truck with a snow plow attached to the front.” (bottom). Both algorithms are run with a total of 32 Heun steps
and the same seed. CFG is run with a guidance scale of w = 16. CFIG is run with 10 initial steps at guidance
scale w0 = 1, followed by two refinement stages starting at σ∗ = 2.5 and using a guidance scale w = 16.

A EXPERIMENTS DETAILS

A.1 MODELS SETUPS AND EVALUATION DATASETS

Class Conditional Image Generation. We employ the class conditional latent diffusion models
introduced in Karras et al. (2024b) and trained on ImageNet-512 dataset. These model operate
in a latent space, with dimension 4 × 64 × 64, defined by the pre-trained VAE (Rombach et al.,
2022). The experiments are performed using two model sizes: small (EDM-S) and largest (EDM-
XXL); see (Karras et al., 2024b, Table 2) for their model sizes. We use the publicly available
weights1, more specifically the models under the pseudos edm2-img512-s-guid-fid and
edm2-img512-xxl-guid-fid. These weights were obtained by tuning the EMA length to
optimize FID as detailed in (Karras et al., 2024b, Section 3). In both models, we use σ0 = 2× 10−3

and σmax = 80 for sampling.

Dataset and evaluation. We assess the overall quality of the generated samples by computing the
Fréchet distance between the reference and generated samples. We follow the recommendations
in Stein et al. (2023) and report, in addition to the FID, the FDDINOv2; in the former the images
representations are computed using InceptionV3 (Szegedy et al., 2016), whereas in the latter they
are computed with DINOv2 ViT-L/14 (Oquab et al., 2023). We reuse the precomputed statistics
provided in EDM2 repository1 for the reference distribution, and use, following common practices
(Stein et al., 2023), 50k samples to compute the statistics of the generative distribution. We also
evaluate individually the fidelity and diversity of the generated samples using Precision/Recall and
Density/Coverage (Naeem et al., 2020). We follow the setting in Kynkäänniemi et al. (2024), where
the manifold of the data is estimated using 50k samples with representations computed using DINOv2
ViT-L/14 (Oquab et al., 2023) and using 3 neighbors, except that for the reference images, where we
use ImageNet validation set instead of training set.

1https://github.com/NVlabs/edm2
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Text-to-Image Generation. We use Stable Diffusion XL (SDXL) (Podell et al., 2023), a text-to-
image latent diffusion model with latent size 4 × 128 × 128 for generating images at resolution
1024× 1024. SDXL relies on pre-trained text encoders (Ilharco et al., 2021; Radford et al., 2021) to
extract semantic features from text; see (Podell et al., 2023, Section 2.1) for details. In our experiments,
we employ the publicly available pre-trained model from HuggingFace2. Since SDXL follows the
variance-preserving (VP) formulation, we convert it to the variance-exploding (VE) formulation
following Karras et al. (2022). For sampling, we set σ0 = 2.92× 10−2 and σmax = 14.61.

Dataset and evaluation. We evaluate on the Microsoft COCO 2017 (MS-COCO) validation
dataset (Lin et al., 2014), which contains 5k image-prompt pairs. Prompt alignment is measured
using CLIP-Score (Radford et al., 2019) with the clip-vit-base-patch32 model3 for feature
extraction, and image fidelity is assessed with FID.

Text-to-Audio Generation. We use the model AudioLDM 2-Full-Large Liu et al. (2024). It is
a latent diffusion model tailored for general-purpose audio generation. It operates on compressed
representations of mel-spectrograms obtained through a variational autoencoder. The model uses a
self-supervised AudioMAE Xu et al. (2022) to extract a semantic embedding known as the Language
of Audio (LOA), which captures both acoustic and semantic information. A GPT-2 language model
Radford et al. (2019) translates text prompts into LOA features, which then condition the diffusion
model for audio generation in a computationally efficient latent space. We use the publicly available
pre-trained model at HuggingFace4 under the pseudo name audioldm2-large. Similar to SDXL,
AudioLDM 2-Full-Large follows the VP formulation and hence we converted it to VE formulation
following Karras et al. (2022). In the experiments, we use σ0 = 3.88× 10−2 and σmax = 83.33 for
sampling.

Dataset and evaluation. We sampled 1k prompts randomly from the AudioCaps Kim et al. (2019)
test set. Following Liu et al. (2024), each algorithm was run with a negative prompt “low quality”
along side the conditioning prompt and the best out of 3 samples was selected for each conditioning
prompt. The evaluation was performed on 10 seconds audios at 16 kHz. The VGGish model Hershey
et al. (2017) was used to extract the features to be used to compute FAD. Similarly, PANNs Kong
et al. (2020a) was used to compute the features for the KL and IS metrics.

A.2 IMPLEMENTATION OF ALGORITHMS

Table 4: CFIG hyperparameters for the considered models. The symbol # stands for “number of”.

Sampler # Total steps # Initial steps Initial
guidance scale # Repetitions Noise level Guidance scale

EDM-S
Heun with

{
σ0 = 2× 10−3

σmax = 80
T = 32

T0 = 12 w0 = 1 R = 2 σ∗ = 2 w = 2.3

EDM-XXL T0 = 12 w0 = 1 R = 2 σ∗ = 1 w = 2

SDXL Heun with
{
σ0 = 2.92× 10−2

σmax = 14.61
T = 32 T0 = 12 w0 = 2 R = 2 σ∗ = 3.5 w = 14

AudioLDM 2-Full-Large DDIM with
{
σ0 = 3.88× 10−2

σmax = 83.33
T = 200 T0 = 100 w0 = 1.5 R = 2 σ∗ = 5 w = 5

Our proposed algorithm. We implement CFIG as described in Algorithm 1. Notably, since at
each refinement stage, we simulate the PF-ODE over a newly redefined interval [0, σ∗], it is possible
to adapt the sequence of noise levels for it. We use the noise-scheduling method proposed in (Karras
et al., 2022, Eqn. (269)), i.e., for some ρ ≥ 1,

σt =

(
σ
1/ρ
0 +

t

T − 1
(σ1/ρ

max − σ
1/ρ
0 )

)ρ

.

For ImageNet, we use ρ = 7 and recompute the discretization steps accordingly for the refinement
starting from σmax = σ∗. For AudioLDM and Stable Diffusion, which follow the VP formulation,
we found that selecting uniformly over the diffusion steps and then mapping these diffusion steps to
noise levels yields better performance.

2https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
3https://huggingface.co/openai/clip-vit-base-patch32
4https://huggingface.co/cvssp/audioldm2
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CFG++ (Chung et al., 2025). For CFG++, we leverage the equivalence between the proposed
algorithm and standard CFG with a dynamic guidance scale, as described in Chung et al. (2025,
Appendix B). We use CFG denoiser when the dymamic guidance scale is greater than 1 and the plain
denoiser otherwise.

Interval-CFG (Kynkäänniemi et al., 2024). For INTERVAL-CFG, we implement the procedure as
defined in Kynkäänniemi et al. (2024, Equations 5 and 6).

FK (Skreta et al., 2025). We build on the insight provided in Appendix C and use it to adapt the
authors’ algorithm based on the discretization of the SDE Skreta et al. (2025, 1, Proposition 3.1).

PG (Corso et al., 2023). We implement the Fixed Potential PG as described in Corso et al. (2023,
Equation 4) based on the implementation provided in the released code5.

A.3 CHOICE OF THE HYPERPARAMETERS OF THE ALGORITHM

For each algorithm, we perform a grid search over its hyperparameter space and select the config-
uration that optimizes FID for class conditional image generation, CLIP-Score for text-to-image
generation, and FAD for audio generation. The used hyperparameters are summarized in Table 4 for
CFIG and in Table 5 for the other algorithms.

Table 5: Competitors’ hyperparameters for the considered models. The symbol # stands for “number of”. For
space contraint, we use “G” to denote “Guidance”.

CFG INTERVAL-CFG CFG++ FK PG

Sampler # Total steps G scale G interval G scale G factor G scale # particles G scale # particles

EDM-S
Heun with

{
σ0 = 2× 10−3

σmax = 80
T = 32

w = 1.4 [σlo, σhi] = [0.28, 2.9] w = 2.1 λ = 0.35 w = 1.8 K = 4 w = 2.4 K = 4

EDM-XXL w = 1.2 [σlo, σhi] = [0.19, 1.61] w = 2 λ = 0.35 w = 1.2 K = 4 w = 1.8 K = 4

SDXL Heun with
{
σ0 = 2.92× 10−2

σmax = 14.61
T = 12 w = 12 [σlo, σhi] = [0, 7.5] w = 16 λ = 0.8 w = 10 K = 4 w = 16 K = 4

AudioLDM
2-Full-Large DDIM with

{
σ0 = 3.88× 10−2

σmax = 83.33
T = 200 w = 4.5 [σlo, σhi] = [0, 8.5] w = 5 λ = 0.1 w = 2.5 K = 4 w = 5 K = 4

A.4 RUNTIME AND GPU MEMORY REQUIREMENT

Table 6: Runtime in seconds for the considered algorithms.

CFG INTERVAL-CFG CFG++ CFIG FK PG

EDM-S (500 samples) 907 638 811 760 1758 3590

EDM-XXL (500 samples) 1623 1334 1480 1445 3170 6410

SDXL (8 prompts) 22.3 21.16 22.33 21.59 46.1 614

All experiments were conducted on an NVIDIA H100 SXM5 80GB. The reported runtimes in Table 6
were measured as follows: for EDM2-S and EDM2-XXL, we averaged a single run that generated
50k images with a batch size of 500, while for SDXL we averaged a single run that generated 5k
samples with a batch size of 8.

Particle-based algorithms complicate direct timing comparisons because each sample is obtained by
evolving multiple particle trajectories—four particles in our experiments. This imposes additional
memory constraints, preventing us from using the same batch size as the other methods. For a relevant
comparison, we therefore report runtimes scaled linearly to the equivalent batch size of the other
methods. Notably, in Table 6, particle-based methods are separated from the others with a vertical
line, and we discuss their performance separately below.

5https://github.com/gcorso/particle-guidance
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Table 7: Number of Function Evaluations (NFEs) split as CFG and plain denoiser evaluations. Note that one
CFG denoiser NFE accounts for 2 plain denoiser NFEs.

CFG INTERVAL-CFG CFG++ CFIG (ours) FK PG

EDM-S

CFG denoiser 63 14 45 38 31 63

Plain denoiser 0 49 18 23 0 0

Total plain denoiser NFEs 126 77 108 99 62 126

EDM-XXL

CFG denoiser 63 12 39 38 31 63

Plain denoiser 0 51 24 23 0 0

Total plain denoiser NFEs 126 75 102 99 62 126

SDXL

CFG denoiser 63 56 63 61 31 63

Plain denoiser 0 7 0 0 0 0

Total plain denoiser NFEs 126 119 126 122 62 126

AudioLDM
2-Full-Large

CFG denoiser 200 142 194 200 199 200

Plain denoiser 0 58 6 0 0 0

Total plain denoiser NFEs 400 342 394 400 398 400

Comments on runtime and memory. Overall, CFIG achieves a runtime close to INTERVAL-CFG,
and is faster than CFG and CFG++ for class-conditional image generation, namely EDM-S and
EDM-XXL models. In contrast, the runtime of CFIG relative to CFG and CFG++ in text-to-image
and audio experiments is similar, since CFIG relies on a CFG denoiser with a moderate guidance
scale to generate the initial samples.

This runtime improvement in class-conditional image generation can be attributed to the reduced
number of NFEs, as detailed in Table 7: standard classifier-free guidance requires two evaluations per
denoising step—one conditional and one unconditional. By contrast, CFIG first generates an initial
sample using the plain denoiser—hence one single plain call—and then applies iterative refinement
in few diffusion steps in which the CFG denoiser is invoked. Similarly, INTERVAL-CFG applies the
CFG denoiser only within a restricted interval of noise levels. This reduction in NFE accounts for the
lower runtime of CFIG and INTERVAL-CFG compared to methods—CFG and CFG++—that apply
CFG throughout the full sampling trajectory.

In terms of memory consumption, CFG, CFG++, INTERVAL-CFG, and CFIG are the same. Particle-
based methods, however, require additional memory that scales with the number of particles, since
they must be processed concurrently.

Regarding runtime, on EDM models, PG is approximately 4× slower than non-particle baselines
due to its use of four particles. FK runs at roughly half the runtime of PG, as it rely on an Euler
discretization of the SDE without the second-order Heun correction used in PG. On SDXL, FK
exhibits a similar trend. Finally, we note that the PG implementation experienced overflow when
using float16, which forced us to fall back to float32 and hence further increased runtime.

Table 8: Comparison with respect to CFIG when the initial stage is performed with INTERVAL-CFG. The
EDM2-S model was considered. Quality metrics are computed for 50k samples. Runtime is reported for
generating a batch of 500 samples.

FID ↓ FDDINOv2 ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑ Runtime (seconds)

INTERVAL-CFG 1.71 80.75 0.61 0.61 0.58 0.56 638
CFIG with INTERVAL-CFG 1.82 68.56 0.65 0.58 0.65 0.60 785
CFIG 1.78 75.38 0.64 0.59 0.63 0.58 760
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B PROOFS

B.1 SCORE EXPRESSIONS

In this section, we adopt measure-theoretic notations. Denote by P(Rd) the set of probability
distribution on Rd endowed with its Borel σ-algebra. We first restate the definition of the w-Rényi
divergence between two arbitrary probability distributions µ and ν in P(Rd):

Rw(µ∥ν) :=
{

1
w−1 log

∫ [
dµ
dν

]w
dν ifµ≪ ν,

∞ otherwise.
(B.1)

Let p0 ∈ P(Rd) and denote, for any c ∈ C, Z (c) :=
∫
g0(c|x̃0)p0(dx̃0). We impose the fol-

lowing assumptions on the likelihood function x0 7→ g0(c|x0) in order to make p0(dx0|c) =
g0(c|x0)p0(dx0)

/
Z (c) a well-defined probability distribution.

(A1) For every x ∈ Rd and c ∈ C, g0(c|x0) ≥ 0 and 0 < Z (c) <∞.

Moreover, we recall the definitions

p0|σ(dx0|xσ) :=
p0(dx0)qσ|0(xσ|x0)

pσ(xσ)
, (B.2)

p0|σ(dx0|xσ, c) :=
p0(dx0|c)qσ|0(xσ|x0)

pσ(xσ|c)
. (B.3)

Proposition (Restatement of Proposition 1). Assume (A1). Then for every σ > 0, xσ ∈ Rd, and
c ∈ C,

∇xσ
log pσ(xσ|c;w) = (w − 1)∇xσ

Rw(p0|σ(·|xσ, c)∥p0|σ(·|xσ)) +∇xσ
log pcfgσ (xσ|c;w) .

Proof of Proposition 1. Combining definitions (B.2) and (B.3) yields

p0|σ(dx0|xσ, c) =
1

Z (c)

g0(c|x0)pσ(xσ)

pσ(xσ|c)
p0|σ(dx0|xσ) ,

from which it follows that p0|σ(·|xσ, c)≪ p0|σ and
dp0|σ(·|xσ,c)

dp0|σ(·|xσ)
(x0) =

g0(c|x0)pσ(xσ)
Z (c)pσ(xσ|c) . Hence,∫ [dp0|σ(·|xσ, c)

dp0|σ(·|xσ)

]w
(x0) p0|σ(dx0|xσ)

=
1

Z (c)w
pσ(xσ)

w

pσ(xσ|c)w
∫

g0(x0|c)w p0|σ(dx0|xσ)

=
1

Z (c)w
pσ(xσ)

w−1

pσ(xσ|c)w
∫

g0(x0|c)wqσ|0(xσ|x0) p0(dx0)

=

∫
g0(c|x̃0)

w p0(dx̃0)

Z (c)w
pσ(xσ)

w−1

pσ(xσ|c)w
pσ(xσ|c;w) ,

where we used, in the last step, the definition

pσ(xσ|c;w) :=
∫

qσ|0(xσ|x0)
g0(c|x0)

w p0(dx0)∫
g0(c|x̃0)w p0(dx̃0)

.

Taking the logarithm of both sides of the identity and then differentiating with respect to xσ yields

(w − 1)∇xσ
Rw(p0|σ(·|xσ, c)∥p0|σ(·|xσ))

= ∇xσ
log pσ(xσ|c;w)− w∇xσ

log pσ(xσ|c) + (w − 1)∇xσ
log pσ(xσ) ,

which is the desired result upon rearranging.

Similarly, we establish the following generalization of the identity in Proposition 1, involving the
scores at two different noise levels.
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Proposition (Restatement of Proposition 3). Assume (A1) and let w > 1. Then for every δ > 0,
σ > 0, xσ ∈ Rd, and c ∈ C,

∇xσ
log pσ(xσ|c;w) = (w − 1)∇xσ

Rw(p0|σ−
(·|xσ, c)∥p0|σ+

(·|xσ))

+ w∇xσ log pσ−
(xσ|c) + (1− w)∇xσ log pσ+(xσ) ,

where σ− := σ
√

w/(1 + δ) and σ+ := σ
√
(w − 1)/δ.

Proof of Proposition 3. Since w > 1 and δ > 0, the two noise levels σ+ and σ− are well defined and
by combining definitions (B.2) and (B.3) we obtain that

p0|σ−
(dx0|xσ, c) =

1

Z (c)

g0(c|x0)pσ+
(xσ)qσ−|0(xσ|x0)

pσ−
(xσ|c)qσ+|0(xσ|x0)

p0|σ+
(dx0|xσ) .

Thus, ∫ [dp0|σ−
(·|xσ, c)

dp0|σ+
(·|xσ)

]w
(x0) p0|σ+

(dx0|xσ)

=
1

Z (c)w
pσ+(xσ)

w

pσ−
(xσ|c)w

∫ [
qσ−|0(xσ|x0)

qσ+|0(xσ|x0)

]w
g0(c|x0)

wp0|σ+
(dx0|xσ)

=
1

Z (c)w
pσ+(xσ)

w−1

pσ−
(xσ|c)w

[ ∫
qσ−|0(xσ|x0)

w

qσ+|0(xσ|x0)w−1
g0(c|x0)

wp0(dx0)

]
.

Here, by the definition of σ−,

qσ−|0(xσ|x0)
w = N

(
xσ;x0, σ

2w/(δ + 1)I
)w

∝ N
(
xσ;x0, σ

2I
)(δ+1)

∝ qσ|0(xσ|x0)
δ+1 ,

where the constant of proportionality is independent of (x0,xσ). Similarly, qσ+|0(xσ|x0)
w−1 ∝

qσ|0(xσ|x0)
δ . Hence, qσ−|0(xσ|x0)

w/qσ+|0(xσ|x0)
w−1 ∝ qσ|0(xσ|x0), which implies that∫ [dp0|σ−

(·|xσ, c)

dp0|σ+
(·|xσ)

]w
(x0) p0|σ+

(dx0|xσ)

∝ 1

Z (c)w
pσ+

(xσ)
w−1

pσ−
(xσ|c)w

∫
qσ|0(xσ|x0)g0(c|x0)

wp0(dx0)

∝
∫
g0(c|x̃0)

wp0(dx̃0)

Z (c)w
pσ+(xσ)

w−1

pσ−
(xσ|c)w

pσ(xσ|c;w) .

Finally, taking the logarithm of both sides and then the gradient with respect to xσ yields

(w − 1)∇xσ
Rw(p0|σ−

(·|xσ, c)∥p0|σ+
(·|xσ))

= ∇xσ log pσ(xσ|c;w)− w∇xσ log pσ−
(xσ|c) + (w − 1)∇xσ log pσ+(xσ) ,

which is the desired expression upon rearranging.

A direct consequence of Proposition 3 is that the score of the unconditional distribution can be
expressed in terms of the scores at two different noise levels.

Corollary 1. Let p0 ∈ P(Rd) and w > 1. Then for every δ > 0, σ > 0, and xσ ∈ Rd,

∇ log pσ(xσ) = (w − 1)∇Rw(p0|σ−(·|xσ)∥p0|σ+
(·|xσ))

+ w∇ log pσ−(xσ) + (1− w)∇ log pσ+
(xσ) ,

where σ− := σ
√

w/(1 + δ) and σ+ := σ
√
(w − 1)/δ.
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Proof. The result follows by applying Proposition 3 with g0 being the constant mapping x 7→ 1.

B.2 SCORE APPROXIMATIONS

Throughout this section, we will often assume that the relevant densities belong to the following
class.
Definition 1. For m ∈ N∗, denote by Q3(Rm) the set of functions f0 : Rm → R satisfying

(i) f0 is strictly positive,

(ii) f0 is three times continuously differentiable with third-order partial derivatives of at most
polynomial growth, i.e., there exist C ≥ 0 and m ≥ 0 such that for any (i, j, k) ∈ J1, dK3,
|∂i∂j∂kf0(x)| ≤ C(1 + ∥x∥2)m.

The proof of Proposition 1 relies on the following general result, which is proven subsequently. For
any σ > 0 and x ∈ Rd, define

fσ(x) :=

∫
f0(x0)qσ|0(x|x0) dx0 .

Lemma 1. Let f0 ∈ Q3(Rd). Then for every x ∈ Rd,

∇ log fσ(x) = ∇ log f0(x) +O(σ2) as σ → 0 .

Proposition (Restatement of Proposition 2). Assume that p0, g0(c|·) and g0(c|·)w belong to
Q3(Rd) for some c ∈ C and w > 1. Then for any fixed x ∈ Rd,

∇Rw(p0|σ(·|x)∥p0|σ(·|x)) = O(σ2) as σ → 0 .

Proof. Since the third derivatives of p0 and g0(c|·) satisfy the polynomial growth assumption (ii) in
Definition 1, so does p0(·|c). Thus, by Lemma 1 it holds that

w∇ log pσ(x|c) + (1− w)∇ log pσ(x) = w∇ log p0(x|c) + (1− w)∇ log p0(x) +O(σ2)

as σ → 0. Recall that we assume that g0(c|x)w and p0 belong to Q3(Rd). Consequently, p0(·|c;w)
satisfies the same condition. Thus, since p0(x|c;w) ∝ p0(x|c)wp0(x)1−w, we have that

∇ log pσ(x|c;w) = w∇ log p0(x|c) + (1− w)∇ log p0(x) +O(σ2)

as σ → 0. Finally, by Proposition 1, as σ → 0,

(w − 1)∇Rw(p0|σ(·|x)∥p0|σ(·|x)) = ∇ log pσ(x|c;w)−∇ log pcfgσ (xσ|c;w)
= O(σ2) .

Proof of Lemma 1. For every x ∈ Rd,

∇ log fσ(x) =

∫
∇xqσ|0(x|x0)f0(x0) dx0∫
f0(x̃0)qσ|0(x|x̃0) dx̃0

=

∫
∇x log qσ|0(x|x0)f0(x0)qσ|0(x|x0) dx0∫

f0(x̃0)qσ|0(x|x̃0) dx̃0
. (B.4)

Since qσ|0(x|x0) = N(x;x0, σ
2I) and ∇ log qσ|0(x|x0) = (x0 − x)/σ2, making the change of

variable z = x0 − x yields the expression

∇ log fσ(x) =
1

σ2

∫
z f0(z+ x)φd(z;σ) dz∫
f0(z̃+ x)φd(z̃;σ) dz̃

, (B.5)
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where φd(·;σ) denotes the zero-mean d-dimensional Gaussian density with covariance σ2I. Define
N(x) :=

∫
z f0(z + x)φd(z;σ)dz and D(x) :=

∫
f0(z + x)φd(z;σ) dz, so that ∇ log fσ(x) =

1
σ2N(x)/D(x).

We start with the numerator N(x) and expand f0 around x using the Taylor’s inequality and using the
assumption that f0 ∈ Q3(Rd), we get that there exist C ≥ 0 and m ∈ N such that for any z ∈ Rd,∣∣∣∣fσ(z+ x)− σ2f0(x)− z⊺∇f0(x)−

1

2
z⊺∇2f0(x)z

∣∣∣∣ ≤ C(1 + ∥x∥m + ∥z∥m) ∥z∥3 .

Hence, ∣∣∣∣N(x)−
∫ [

f0(x)z+ (z⊺∇f0(x))z+
(
1

2
z⊺∇2f0(x)z

)
z

]
φ(z;σ) dz

∣∣∣∣
≤ C

∫
(1 + ∥x∥m + ∥z∥m) ∥z∥4 φ(z;σ) dz . (B.6)

Since
∫
zφd(z;σ) dz = 0 and

∫
zizj φd(z;σ) dz = σ2δij ,

∫
∥z∥4 zφ(z;σ) dz = O(σ4), we get

N(x) = σ2∇f(x) +O(σ4).

Similarly, we obtain D(x) = f0(x) +O(σ2).

Combining the expansions for the numerator and denominator, we obtain, as f0 is strictly positive
(Definition 1(i)),

∇ log fσ(x) =
1

σ2

N(x)

D(x)

=
∇f0(x) +O(σ2)

f0(x) +O(σ2)

=
1

f0(x)
(∇f0(x) +O(σ2))(1 +O(σ2))

= ∇ log f0(x) +O(σ2) .

B.3 CLASSIFIER-FREE ITERATIVE GUIDANCE

Uniqueness of the stationary distribution in the ideal case. Recall that the Markov chain under
consideration is given by X(r+1)

0 = F0|σ∗

(
X(r)

0 + σ∗Z
(r+1)|c;w

)
, where (Z(r))r∈N is a sequence of

i.i.d. standard Gaussian random variables and F0|σ∗(xσ∗ |c;w) is the solution to the PF-ODE (2.1)
with denoiser Dσ(·|c;w) and initial condition xσ∗ . By definition of this denoiser, it is associated
with p0(·|c;w), i.e., if Xσ∗ ∼ pσ∗

(·|c;w), then F0|σ∗(Xσ∗ |c, w) ∼ p0(·|c;w); see Section 3.

Moreover, by Step 1), if X(r)

0 ∼ p0(·|c;w), then X(r)
σ∗
∼ pσ∗

(·|c;w). Hence X(r+1)

0 =
F0|σ∗(X

(r)
σ∗
|c;w) ∼ p0(·|c;w), showing that p0(·|c;w) is indeed a stationary distribution. In order

to show that this invariant distribution is unique, we now establish that the chain (X(r)

0 )r∈N is Leb-
irreducible, where Leb is the Lebesgue measure. To facilitate the analysis, we make the following
simplifying assumption.

(A2) For some fixed σ∗ > 0, w > 1, and c ∈ C, the flow map z 7→ F0|σ∗(z|c;w) is a continuously
differentiable diffeomorphism on Rd.

Proposition 5. Assume (A2). Then the Markov chain (X(r)

0 )r∈N is Leb-irreducible and has
p0(·|c;w) as its unique invariant distribution.

Proof. Let A be a Borel set of Rd such that Leb(A) > 0. It is enough to show that for any x ∈ Rd,∫
1A(F0|σ∗(z|c;w))N(z;x, I) dz > 0 . (B.7)
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Denote by z 7→ F←0|σ∗
(z|c;w) the inverse of z 7→ F0|σ∗(z|c;w). In addition, denote by det JacΦ,

the Jacobian determinant of any function Φ : Rd → Rd and note that since z 7→ F0|σ∗(z|c;w) is
a diffeomorphism, it holds that z 7→ det JacF0|σ∗(z|c;w) and z 7→ det JacF←0|σ∗

(z|c;w) are both
non-zero. Then a change a variables yields∫

1A(F0|σ∗(z|c;w))N(z;x, I) dz =

∫
1A(y)N(F←0|σ∗

(y|c;w);x, I) |det JacF←0|σ∗
(y|c;w)|dy ,

which implies (B.7). Finally, the fact that the Markov chain (X(r)

0 )r∈N has p0(·|c;w) as its unique
invariant distribution follows from Meyn & Tweedie (2012, Proposition 10.1.1. and Theorem 10.4.4).

Example 1 details. Recall that pcfgσ (xσ|c;w) ∝ gσ(c|xσ)
wpσ(xσ), where gσ(c|xσ) :=∫

g0(c|x0) p0|σ(x0|xσ) dx0. In addition, note that since p0 = N (0, 1), it holds that p0|σ(x0|xσ) =

N(0;xσ/(1 + σ2), σ2/(1 + σ2)). Since g0(c|x0) = N(c;x0, γ
2), this implies that gσ(c|xσ) =

N(c;xσ/(1 + σ2), γ2 + σ2/(1 + σ2)). Therefore, we get

pcfgσ (xσ|c;w) = N(xσ; v(w, σ
2)wc/((1 + σ2)γ2 + σ2), v(w, σ2)) , (B.8)

where

v(w, σ2) := (1 + σ2)
(1 + σ2)γ2 + σ2

w + γ2(1 + σ2) + σ2
.

The limit part follows by a simple characteristic-function argument, since pcfgσ (·|c;w) is a Gaussian
distribution and we make the assumption that it is the result of a Gaussian convolution. It remains to
show that v(w, σ2) < V(Xσ), where we recall that V(Xσ) = σ2 + γ2/(γ2 + w). However, since
w > 1, we have that

(1 + σ2)−1V(Xσ) =
γ2(1 + σ2) + σ2w

w + γ2(1 + σ2) + wσ2

= 1− w

w + γ2(1 + σ2) + wσ2

> 1− w

w + γ2(1 + σ2) + σ2

= (1 + σ2)−1v(w, σ2) .

Proofs for Proposition 4. We assume that p0 = N (0, 1) and g0(c|x0) = N(c;x0, γ
2). Then it

holds using that p0(x0|c) = pcfg0 (x0|c; 1) and (B.8) that

Dσ(xσ) =
1

1 + σ2
xσ , Dσ(xσ|c) =

γ2

γ2(1 + σ2) + σ2
xσ +

σ2

γ2(1 + σ2) + σ2
c .

The next lemma provides the expression of the distribution obtained by integrating exactly the
PF-ODE (2.1) from σ to zero using the CFG denoiser (2.3). We assume c = 0, as the solution to the
PF-ODE cannot, in general, be expressed using elementary functions when c ̸= 0. In that setting, we
have the following standard result.

Lemma 2. Let w > 1 and consider the first-order linear homogeneous ODE

dx(σ)

dσ
=

[
w(1 + γ2)σ

γ2 + (1 + γ2)σ2
+

(1− w)σ

1 + σ2

]
x(σ) , σ ≥ 0. (B.9)

Let x be the unique solution to (B.9) on the interval [0, σ∗], for some σ∗ > 0, satisfying the
condition x(σ∗) = Xσ∗ . Then the value of the solution at σ = 0 is given by

X0 =
γw(1 + σ2

∗)
(w−1)/2

(γ2 + (1 + γ2)σ2
∗)

w/2
Xσ∗ . (B.10)
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Proof. We define

P (σ) =
w(1 + γ2)σ

γ2 + (1 + γ2)σ2
+

(1− w)σ

1 + σ2
. (B.11)

The function P is continuous on [0, σ∗] and thus, by the Cauchy–Lipschitz theorem, it admits a unique
solution satisfying x(σ∗) = Xσ∗ . If x(σ∗) = 0, then the unique solution to (B.9) with x(σ∗) = 0
satisfies x(σ) = 0 for any σ ∈ [0, σ∗].

Now, assume x(σ∗) ̸= 0. Then x(σ) ̸= 0 for any σ ∈ [0, σ∗], and integrating from σ∗ to zero yields∫ X0

Xσ∗

dx(σ)

x(σ)
=

∫ 0

σ∗

P (s) ds = F (0)− F (σ∗),

where F (s) = w
2 log(γ2+(1+γ2)s2)+ 1−w

2 log(1+s2) for any s ∈ [0, σ∗]. Note that F (0) = log γw

and
F (σ∗) =

w

2
log(γ2 + (1 + γ2)σ2

∗) +
1− w

2
log(1 + σ2

∗) ;

thus,

log

∣∣∣∣ X0

Xσ∗

∣∣∣∣ = log
γw

(γ2 + (1 + γ2)σ2
∗)

w/2(1 + σ2
∗)

(1−w)/2
.

Applying the exponential function to both sides and rearranging terms leads to∣∣∣∣ X0

Xσ∗

∣∣∣∣ = γw(1 + σ2
∗)

(w−1)/2

(γ2 + (1 + γ2)σ2
∗)

w/2
.

By continuity of the solution and the fact that x(σ) ̸= 0 for any σ, x has a fixed sign on [0, σ∗], which
yields the result.

As a sanity check, note that when w = 0, it holds that X0 = Xσ∗/
√

1 + σ2
∗ . Thus, if Xσ∗ ∼ pσ∗ =

N (0, 1 + σ2
∗), then X0 ∼ p0. If w = 1, we get X0 = γXσ∗/

√
γ2 + (1 + γ2)σ2

∗, and hence, if
Xσ ∼ pσ∗

(·|c) = N (0, σ2
∗ + γ2/(1 + γ2)), then X0 ∼ p0(·|c).

Analysis as σ∗ → 0 and R → ∞. We now consider the iterative procedure defined by, for any
r ≥ 1,

X(r)

0 = c(σ∗)
(
X(r−1)

0 + σ∗Z
(r)) , (B.12)

where c(σ∗) := γw(1 + σ2
∗)

(w−1)/2/(γ2 + (1 + γ2)σ2
∗)

w/2 and (Z(r))r∈N is a sequence of i.i.d.
standard Gaussian random variables. Define V∞(w) := σ2

∗c(σ∗)
2/(1− c(σ∗)

2).

We denote by W2(µ, ν) the 2-Wasserstein distance between distributions µ and ν inP(Rd).

Proposition (Restatement of Proposition 4). Assume that V(X(0)

0 ) < ∞. For any w > 1,
(X(r)

0 )r∈N converges to N (0, V∞(w)) exponentially fast in the 2-Wasserstein distance, with rate
proportional to σ2

∗. Furthermore,

V∞(w) = V (w) +O(σ2
∗) as σ2

∗ → 0 .

Proof. We let µr := Law(X(r)

0 ) and µ∞ := N (0, V∞(w)). Defining the transition kernel k(x|x̃) =
N(c(σ∗)x̃, c(σ∗)

2σ2
∗), it holds that µr(x) :=

∫
k(x|x̃)µr−1(dx̃). Furthermore, it is easily checked

that µ∞ is the stationary distribution of the chain (B.12). Hence, µ∞(x) =
∫
k(x|x̃)µ∞(dx̃). Then,

W2(µr, µ∞) = W2

(∫
k(·|x̃)µr−1(dx̃),

∫
k(·|x̃)µ∞(dx̃)

)
≤ c(σ∗)W2

(∫
qσ∗|0(·|x̃)µr−1(dx̃),

∫
qσ∗|0(·|x̃)µ∞(dx̃)

)
≤ c(σ∗)W2(µr−1, µ∞

)
,

where we used, in the second step, the fact that for any c > 0, if X ∼ µ and Y ∼ ν, then
W2(Law(cX), Law(cY )) ≤ cW2(µ, ν). Moreover, in the third step we used the fact that convolution
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does not increase the Wasserstein distance (Santambrogio, 2015, Lemma 5.2). Iterating the bound
we obtain that W2(µr, µ∞) ≤ c(σ∗)

rW2(µ0, µ∞), and as µ0 is square-integrable by assumption,
W2(µ0, µ∞) <∞. Thus, since

c(σ∗) =
(γ2 + γ2σ2

∗)
w/2√

1 + σ2
∗(γ

2 + γ2σ2
∗ + σ2

∗)
w/2

< 1 ,

we establish the exponential convergence of (µr)r∈N to µ∞. Next, making a Taylor expansion of
V∞(w) around σ2

∗ = 0 yields that

log c(σ∗) = w log γ +
w − 1

2
log(1 + σ2

∗)−
w

2
log(γ2 + (1 + γ2)σ2

∗)

=
w − 1

2
log(1 + σ2

∗)−
w

2
log

(
1 +

1 + γ2

γ2
σ2
∗

)
=

(
w − 1

2
− w

1 + γ2

2γ2

)
σ2
∗ + o(σ2

∗)

= −γ2 + w

2γ2
σ2
∗ + o(σ2

∗) ,

which in turn yields the expansion 1− c(σ∗)
2 = γ2+w

γ2 σ2
∗+ o(σ2

∗). Substituting the same into V∞(w)

gives

V∞(w) =
σ2
∗

(
1− γ2+w

γ2 σ2
∗ + o(σ2

∗)
)

γ2+w
γ2 σ2

∗ + o(σ2
∗)

=
1− γ2+w

γ2 σ2
∗ + o(σ2

∗)

γ2+w
γ2 + o(1)

.

Developing the right-hand side further, we arrive at

V∞(w) =

(
1− γ2 + w

γ2
σ2
∗ + o(σ2

∗)

)(
γ2 + w

γ2

)−1(
1 +

o(σ2
∗)

γ2+w
γ2

)−1

=
γ2

γ2 + w

(
1− γ2 + w

γ2
σ2
∗ + o(σ2

∗)

)
(1 + o(σ2

∗))

=
γ2

γ2 + w

(
1− γ2 + w

γ2
σ2
∗ + o(σ2

∗)

)
=

γ2

γ2 + w
− σ2
∗ + o(σ2

∗) ,

from which the claim follows.

Analysis as σ∗ → 0 and R <∞. To investigate the behavior at finite R, we initialize the recursion
(B.12) with X(0)

0 ∼ p0(·|c) = N (0, V0), where V0 := γ2/(γ2 + 1). For any R > 0, the final iterate
satisfies X(R)

0 ∼ N (0, VR(w)), where

VR(w) = c(σ∗)
2RV0 +

c(σ∗)
2 σ2
∗ (1− c(σ∗)

2R)

1− c(σ∗)2
.

We plot the absolute error |VR(w)− V (w)| as a function of σ∗ for various values of R in Figure 10.
We observe that for small R, the error is minimized at higher values of σ∗, and that the minimal error
achieved for small σ∗ is lower than that observed at larger σ∗.

C INSIGHTS ON THE CONSIDERED METHODS.

CFG++ with Heun sampler. Let λ ∈ [0, 1]. Following Chung et al. (2025, Appendix A), CFG++
with the Euler discretization of the PF-ODE (2.2) corresponds to the update

Xt = Dcfg
t+1(Xt+1|c;λ) +

σt

σt+1

(
Xt+1 −Dt+1(Xt+1)

)
,
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Figure 10: The difference |VR(w)− V (w)| as a function of σ∗ for various values of R.

which, upon replacing with the definition of the CFG denoiser (2.3), writes as

Xt =

[
(1− σt

σt+1
)Dt+1(Xt+1) + λ

(
Dt+1(Xt+1|c)−Dt+1(Xt+1)

)]
+

σt

σt+1
Dt+1(Xt+1)

=
σt

σt+1
Xt+1 +

(
1− σt

σt+1

)
Dcfg

t+1(Xt+1|c;w++

t+1),

with w++

t+1 = λσt+1/
(
σt+1 − σt

)
. In short, CFG++ can be viewed as a DDIM update based on the

CFG denoiser with a σ-dependent guidance scale. Hence, in our experiment, we implement CFG++
with Heun sampler by using Algorithm 2 with the CFG denoiser (2.3) and time-dependent guidance
factors (w++

t )Tt=1.

Feynman–Kac correctors. In Skreta et al. (2025), a sequential Monte Carlo (SMC) algorithm is
proposed to target the distribution sequence (pcfgσ (·|c;w))σ. In what follows, we provide a simple
derivation of the (approximate) recursion relating two consecutive distributions pcfgσt

(·|c;w) and
pcfgσt+1

(·|c;w), for σt < σt+1. This serves as the basis for the SMC algorithm resulting from Skreta
et al. (2025, Proposition 3.1). Write

pcfgσt
(xt|c;w) ∝

∫
pcfgσt

(xt|c;w)qσt+1|σt
(xt+1|xt) dxt+1

∝
∫

pσt
(xt|c)wpσt

(xt)
1−wqσt+1|σt

(xt+1|xt) dxt+1

∝
∫ [

pσt
(xt|c)qσt+1|σt

(xt+1|xt)
]w

[pσt(xt)qσt+1|σt
(xt+1|xt)]

1−w dxt+1

∝
∫

pσt|σt+1
(xt|xt+1, c)

wpσt|σt+1
(xt|xt+1)

1−wpcfgσt+1
(xt+1|c;w) dxt+1 (C.1)

∝
∫
Zcfg

t+1(xt+1;w)p
cfg
σt|σt+1

(xt|xt+1, c;w)p
cfg
σt+1

(xt+1|c;w) dxt+1, (C.2)

where we have defined

pσt|σt+1
(xt|xt+1, c) :=

pσt
(xt|c)qσt+1|σt

(xt+1|xt)

pσt+1
(xt+1|c)

, (C.3)

pσt|σt+1
(xt|xt+1) :=

pσt(xt)qσt+1|σt
(xt+1|xt)

pσt+1
(xt+1)

, (C.4)

pcfgσt|σt+1
(xt|xt+1, c) ∝ pσt|σt+1

(xt|xt+1, c)
wpσt|σt+1

(xt|xt+1)
1−w , (C.5)

and Zcfg
t+1(xt+1;w) :=

∫
pσt|σt+1

(xt|xt+1, c)
wpσt|σt+1

(xt|xt+1)
1−w dxt+1.

The recursion in Skreta et al. (2025) approximates (C.1) by replacing (C.3) and (C.4) with their
Gaussian approximations. More precisely, consider, e.g., the Gaussian approximations

pσt|σt+1
(xt|xt+1, c) ≈ N(xt;µt|t+1(xt+1|c), σ2

t|t+1I) ,

pσt|σt+1
(xt|xt+1) ≈ N(xt;µt|t+1(xt+1), σ

2
t|t+1I)
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stemming from DDPM, where

µt|t+1(xt+1|c) :=
σ2
t

σ2
t+1

Xt+1 +

(
1− σ2

t

σ2
t+1

)
Dσt+1

(Xt+1|c) ,

µt|t+1(xt+1) :=
σ2
t

σ2
t+1

Xt+1 +

(
1− σ2

t

σ2
t+1

)
Dσt+1

(Xt+1) ,

and σ2
t|t+1

:= σ2
t (σ

2
t+1 − σ2

t )/σ
2
t+1. The Gaussian approximation of pcfgσt|σt+1

(·|xt+1, c) is formed
by plugging the two previous Gaussian approximations into (C.5). When two Gaussian densities
N (xt;m1,Σ) and N (xt;m2,Σ) are raised to powers w and 1 − w, respectively, their product
is proportional to another Gaussian density with the same covariance matrix Σ and a new mean
wm1 + (1− w)m2; hence,

pcfgσt|σt+1
(xt|xt+1, c) ≈ N

(
xt;

σ2
t

σ2
t+1

xt+1 +

(
1− σ2

t

σ2
t+1

)
Dcfg

σt+1
(xt+1|c), σ2

t|t+1I

)
.

It remains to derive an approximation of the weighting term Zcfg
t+1(xt+1;w). Plugging again the two

previous Gaussian approximations into the definition of the latter yields

Zcfg
t+1(xt+1;w) ≈

∫
N(xt;µt|t+1(xt+1|c), σ2

t|t+1I)
wN(xt;µt|t+1(xt+1), σ

2
t|t+1I)

1−w dxt

∝ exp
(
w(w − 1)(σ2

t+1 − σ2
t )

2σ2
t+1σ

2
t

∥∥Dσt+1
(xt+1|c)−Dσt+1

(xt+1)
∥∥2
2

)
.

Algorithm 2 Heun sampler

Require: Initial Sample Xσinit

Require: Denoiser (X,σ) 7→ Dσ(X)
Require: Total number of steps T
Create: {σt}Tt=0 such that σT = σinit and σ0 ≈ 0

for t = T − 1 to 0 do
X ′t ← (σt/σt+1)Xt+1 + (1− σt/σt+1)Dσt+1

(Xt+1)

Xt ← Xt+1 +
σt−σt+1

2

[X′
t−Dσt

(X′
t)

σt
+

Xt+1−Dσt+1
(Xt+1)

σt+1

]
end for
Output: Dσ0

(X0)

D DELAYED GUIDANCE

In Proposition 3 and Corollary 1 we have proposed two novels expression for the score of the tilted
distribution p0(·|c;w). Similarly to the CFG score, it can be shown that the Rényi divergence term
involved in Proposition 3 is negligible. Thus, we get the following new denoiser approximation:

Ddel
σ (xσ|c;w) := wDσ−

(xσ|c) + (1− w)Dσ+
(xσ) (D.1)

where we recall that σ+ = σ
√
(w − 1)/δ and σ− = σ

√
w/(1 + δ). Note that for the practical

implementation, δ cannot be too small since in this case we would have σ+ ≫ σ and the inputs to the
denoiser at noise level σ+ would be too of this distribution.

In Table 9, we report FID and FDDINOv2 scores for various combinations of (w, δ). We observe that
using a slightly reduced guidance scale in conjunction with the approximation (D.1) substantially
improves FDDINOv2, albeit at the cost of a higher FID. Conversely, increasing the guidance scale
to 2.3—which achieves the best FID in Table 1—leads to a notable degradation in both FID and
FDDINOv2 performance. We provide a qualitative assessment of D-CFIG in Appendix E.5 using the
EDM2-XXL model. Overall, it tends to produce sharp and diverse images, though often with less
detailed or rich textures compared to CFIG.
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Table 9: Comparison of average FID, FDDINOv2 on ImageNet-512 for EDM2-S with 50k samples. Besides w,
we use the default hyperparameters given in Table 4.

Quality metrics
Algorithm FID ↓ FDDINOv2 ↓
EDM2-S
D-CFIG (w = 2, δ = 0.85) 3.63 56.53
D-CFIG (w = 2, δ = 0.90) 3.57 54.81
D-CFIG (w = 2, δ = 0.95) 3.53 54.13
D-CFIG (w = 2.3, δ = 0.85) 6.35 86.79
D-CFIG (w = 2.3, δ = 0.90) 5.51 74.31
D-CFIG (w = 2.3, δ = 0.95) 5.02 65.63

E QUALITATIVE ASSESSMENT

In this section we qualitatively assess CFIG. We begin by juxtaposing its outputs with those of
competing methods, then vary individual parameters to observe their effect on the generated images.
All figures share the default hyperparameters from Tables 4 and 5; only the parameter indicated above
each figure is altered.

E.1 COMPARISON OF CFIG, INTERVAL-CFG, CFG AND CFG++ WITH A HIGH GUIDANCE
SCALE

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.2 VARYING w
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E.3 VARYING σ∗
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E.4 VARYING R
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E.5 VARYING δ IN D-CFIG
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