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ABSTRACT

Learning tissue-level representations that capture the organization of entire tissues
while preserving cellular and microenvironmental detail is a central challenge in spa-
tial biology. While graph autoencoders have been employed to learn spatially aware
continuous representations, they have limited utility for tissue-level generation,
lack inherent interpretability for biological analysis, and are not readily reusable
across contexts and modeling architectures. To address this challenge, we present
SQUINT, a discrete representation learning framework for spatially-resolved tran-
scriptomics that encodes tissues into a finite vocabulary of interpretable discrete
codes. SQUINT achieves this by combining graph neural networks with vector
quantization, conditioning on relative spatial distances, and employing a masking
strategy during training. Cells are then represented by assignments to this shared
vocabulary, allowing whole tissues to be modeled as sequences of discrete tokens.
At inference, SQUINT codes enable gene expression imputation at arbitrary spatial
locations outperforming state-of-the-art generative methods across diverse datasets.
Further, we demonstrate the interpretability of these discrete tokens in capturing
meaningful tissue structures beyond individual cells and reflecting recurrent mi-
croenvironmental organization patterns through downstream applications including
3D imputation, tumour stratification, and perturbation analysis.

1 INTRODUCTION

Spatially-resolved transcriptomics (SRT) has transformed spatial biology by enabling the measure-
ment of gene expression at single-cell resolution while preserving tissue architecture (Karr et al.,
2012; Zahedi et al., 2024; Du et al., 2023). Unlike single-cell RNA sequencing, which requires
dissociation and thereby destroys spatial context (Yue et al., 2023), SRT captures both transcriptional
states and their spatial locations, offering unprecedented opportunities to study how cells interact
within microenvironments and how these interactions shape tissue function and disease.

A central challenge is learning tissue-level representations that capture organization across multiple
scales, from individual cells to neighborhoods and the whole tissue. Most existing approaches learn
continuous embeddings by combining expression with spatial graphs, for example graph neural
networks and autoencoders for spatial domain discovery (Hu et al., 2021; Dong & Yuan, 2022; Long
et al., 2023a; Xu et al., 2024). More recently, transformer-based architectures treat cells as tokens
and tissues as sets or sequences, leveraging attention to model long-range dependencies (Wen et al.,
2024b; Zhao et al., 2024; Bao et al., 2025). While powerful, these approaches face two limitations:
continuous embeddings often obscure model semantics and are difficult to compare across tissues,
and cell-level tokenizations lead to long sequences and limited interpretability at the tissue scale.

Discrete representation learning offers an appealing alternative. Vector quantization has shown that
a finite codebook of codes can act as a compact, interpretable vocabulary in domains ranging from
vision to graphs (van den Oord et al., 2017; Yang et al., 2023). We argue that SRT is an ideal setting
for discretization because tissues are composed of recurring structural motifs such as layers, follicles,
and crypts. Discrete codes provide symbolic units that describe both local microenvironments and
global tissue organization. This design brings several benefits: (i) Interpretability, since discrete
tokens act as human-readable identifiers of niches that can be traced across samples; (ii) Stability,
since quantization avoids the rotational ambiguity of continuous embeddings; (iii) Compactness,
by compressing noisy high-dimensional counts into denoised symbolic assignments; and (iv) Com-
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Gene Cell Tissue

Figure 1: Tokenization across biological scales. Prior work represents genes with sequence tokens
(e.g., nucleotide k-mers or regulatory peaks) and represents cells with gene tokens. SQUINT extends
this hierarchy by representing tissues with spatially-aware cell tokens learned via a GNN, providing
discrete and interpretable units for downstream generative modeling of tissues.

positionality, enabling tissues to be modeled as sequences of tokens that can serve as inputs to
downstream generative or predictive models.

We introduce SQUINT, a spatially-aware discrete representation learning framework for SRT.
SQUINT encodes tissues into a finite vocabulary of interpretable codes using a graph neural network
encoder with vector quantization conditioned on relative spatial distances. Cells are represented
by assignments to this shared vocabulary, allowing tissues to be modeled as sequences of discrete
tokens (Figure 1). During training, we employ a masking strategy to encourage robust generative
codes; at inference, these codes enable gene expression imputation at arbitrary spatial locations,
effectively reconstructing unseen microenvironments. We further show that the learned tokens capture
meaningful tissue structures beyond individual cells, providing a symbolic representation of recurring
microenvironments.

Contributions.

• We introduce SQUINT, the first spatially-aware discrete tokenizer tailored to SRT, coupling
a graph encoder with vector quantization to yield interpretable tissue-level codes.

• We show that SQUINT outperforms state-of-the-art methods for generating expression
profiles across multiple organs, assays, and species.

• We demonstrate the interpretability and utility of the learned tokens for diverse downstream
applications, including 3D imputation of tissue sections, tumour stratification in kidney
cancer, and in silico cell-level perturbation analysis.

2 RELATED WORK

Generative Cellular Genomics. Generative modeling of gene expression within and across cells
has enjoyed considerable research attention. CellPLM (Wen et al., 2024a) and scGPT-spatial (Wang
et al., 2025) model cell-cell interactions beyond intra-cellular gene relationships to impute the
expression of unseen genes. However, they require cross-modal scRNA-seq data as reference for
pre-training without which performance drops significantly. Similarly, BLEEP (Xie et al., 2023),
His2ST (Long et al., 2023b), and ASIGN (Zhu et al., 2025) predict gene expression at region and
spot levels based on reference histopathological 2D and 3D whole-slide images (WSI), respectively.
More recently, Wasserstein Flow Matching (Haviv et al., 2025) generates PCA representations of
aggregate gene expression of tissue microenvironments, represented as distributions by conditioning
on cell-type annotations using only SRT data. Differently from these approaches, we tokenize cells
within and across SRT tissue samples to impute gene expression at specific spatial positions as well
as across microenvironment populations without query reference datasets from other modalities.

Generative Graph Modeling. Modern deep learning research into building graph generative
models has broadly employed two paradigms, namely, (i) preserving adjacency using variational
autoencoders (Simonovsky & Komodakis, 2018; Kipf & Welling, 2016), auto-regressive models (Li
et al., 2018; You et al., 2018), and diffusion (Maron et al., 2019; Minello et al., 2024) for building
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small (up to 100 nodes) molecular graphs (Jin et al., 2018; Segler et al., 2018), (ii) pooling node-
level representations from GNNs into graph representations and fusing them into input tokens for
large-language models (Fatemi et al., 2024; Mao et al., 2024; Chen et al., 2024) for designing
geometric conformations (Zhou et al., 2023) and generating scientific descriptions (Christofidellis
et al., 2023), and Since SRT data is large (> 105 cells), high-dimensional (> 103 genes), and sparse
(zero expression counts), and given the nature of our cross-tissue tasks such as tumour stratification
and cell-level perturbation, the first two paradigms are less suitable. More recently, Ding et al. (2021)
capture attributes and adjacency jointly via vector quantization leading to applications for molecule
property prediction (Xia et al., 2023) and distillation (Yang et al., 2024). Our approach builds on
this quantization paradigm by incorporating masking and conditioning on multiple covariates to
generalize over previous approaches that focus on reconstruction, providing inherent interpretability
with biological relevance.

3 PRELIMINARIES

Spatial Transcriptomics and Graph Neural Networks. Spatial transcriptomics data for a tissue
is popularly modeled as a graph where each cell is a node, adjacency to other cells is determined
by proximity in physical space, and gene expression counts are node attributes (Wang et al., 2021;
Long et al., 2023b). Let [n] denote the set of integers from 1 to n. Formally, we define a tissue
T as an undirected, unweighted graph GT = (VT ,PT ,AT ,XT ) comprising of a set of nT cells
VT = {ci}i∈[nT ], their 2D spatial coordinates PT = {(xci , yci)}i∈[nT ], adjacency matrix AT ∈
{0, 1}nT ×nT connecting each cell to its k nearest neighbors by Euclidean distance between their
spatial coordinates (with additional reciprocal edges to ensure symmetry), and an attribute matrix
XT ∈ ZnT ×gT of expression counts for gT genes per cell1. Graph neural networks (GNNs) are
widely used to learn node representations from such graph-structured data (Kipf, 2016; Hamilton et al.,
2017; Veličković et al., 2017). The l-th layer of a message-passing GNN produces d(l)-dimensional
latent embeddings H(l) ∈ Rn×d(l)

for cells by aggregating representations (e.g. mean) of their
neighbours and combining them (e.g. concatenation) with their own representations from the previous
layer. That is, for cell ci:

h(l)
ci = COMBINE

(
h(l−1)
ci , AGGREGATE

({
h(l−1)
cj : cj ∈ N (ci)

}))
(1)

where N (ci) denotes the set of neighbors of ci. Typically, H(0) = X, and the final embeddings after
L layers, H(L), are used for downstream tasks such as niche annotation (Birk et al., 2025).

Graph Quantizers. Vector Quantized Variational Autoencoders (VQ-VAEs) learn a mapping
from input data onto a continuous distribution over a latent space followed by discretization to a
categorical distribution over a set of codes in the same space such that the input data can be accurately
reconstructed from these codes (Van Den Oord et al., 2017). Each node ci ∈ V is first mapped to
a latent embedding h

(L)
ci ∈ Rd(L)

via an L-layer GNN (Simonovsky & Komodakis, 2018). Denote
a code as ei ∈ Rd(L)

and a set of K such codes, collectively called a codebook, as E ∈ RK×d(L)

.
Then, node embeddings are quantized to one of the K code vectors using nearest-neighbor lookup:

∀i ∈ [n] , j⋆i = argmin
j∈[K]

∥∥∥h(L)
ci − ej

∥∥∥
2

(2)

Denote Z ∈ Rn×d(L)

as the quantized embeddings where rows zci = ej⋆i ,∀i ∈ [n]. Since argmin is
not differentiable, the stop-gradient sg operator (Bengio et al., 2013) is typically used to minimize
the distance between H(L) and Z while preventing large fluctuations in code assignments:

LVQ =
1

n

n∑
i=1

∥∥∥sg [h(L)
ci

]
− zci

∥∥∥2
2︸ ︷︷ ︸

LCODE

+
1

n

n∑
i=1

∥∥∥h(L)
ci − sg [zci ]

∥∥∥2
2︸ ︷︷ ︸

LCOMMIT

(3)

Further, Z is also jointly optimized to reconstruct attributes, X̂, using (say) mean scaled cosine
error (Xia et al., 2023), adjacency, Â, using entry-wise mean squared error Yang et al. (2024), predict
labels (if available) using cross-entropy loss (Ding et al., 2021), or some combination thereof.

1To simplify notation, we omit the subscript T , reinstating it only when multiple tissues are considered.
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4 SQUINT

Our goal is to train informative codebooks for generating expression profiles of tissue microenviron-
ments in unseen tissue regions. Section 4.1, defines the generative model, Section 4.2, describes the
consequent architecture, and training and inference procedures.

4.1 GENERATIVE MODEL

Masking. Since standard reconstruction criteria are unable to guarantee robust generation, denoised
auto-encoders typically introduce point-wise zeros to mask the input (Vincent et al., 2010). With
SRT being sparse, zero masking is not ideal since the model may learn to infer zero counts for
all genes rather than identifying the masked site as the imputation target. Therefore, we introduce
a custom masking strategy that (uniformly) randomly selects a subset of nodes denoted by M =
(Mc1 , . . . ,Mcn) ∈ {0, 1}n. The input attributes for these selected nodes are then replaced with a
learnable mask token m ∈ Rg (A is uncorrupted) plus a small noise term ϵ ∼ N

(
0, σ2

ϵ I
)

as follows:

x̃ci = (1−Mci)xci +Mci (m+ ϵ) , X̃ = {x̃ci}i∈[n] (4)

Inference Pathway. Denote Z as the latent variable (codes) and C as a set of covariates that encode
semantic labels of interest such as cell-type annotations, relative spatial coordinates (e.g. RBF/Fourier
on P), among others. Consider the joint distribution qϕ

(
Z, X̃,X,A,C

)
parameterized by ϕ. Given

tissue data (X,A,C) from an empirical distribution, the inference pathway learns Z as follows:

X̃ ∼ qm
(
X̃ | X

)
(masking)

Z ∼ qϕ
(
Z | X̃,A,C

)
(learnable variational posterior)

Generation Pathway. Consider the joint distribution pθ (Xnbr,A,Z,C) parameterized by θ. Given
observed covariates C, the generation pathway generates data from the likelihood as follows:

Z ∼ p (Z | C) (prior)
A ∼ pθ (A | Z,C) (adjacency likelihood)

Xnbr ∼ pθ (Xnbr | A,Z,C) (attribute likelihood)

In our experiments, we model Z to be independent of C. Thus, p (Z | C) = p (Z). Further, we
define the prior over Z as a uniform distribution over the discrete code indices and thus free of θ.
For future applications such as controllable generation for perturbations, this may be extended to a
learned categorical prior (e.g. over spatial coordinates) (Maddison et al., 2017).

Training Objective. Following Esmaeili et al. (2019), we frame the denoised, conditional lower
bound (ELBO) as a minimization over the KL-divergence between the variational posterior and the
variational prior. We model edge likelihood with a Bernoulli distribution. Since we are interested in
microenvironments, we model Xnbr, the total expression count of a cell and its neighbors for each
gene, instead of X with the negative binomial distribution as in scVI (Gayoso et al., 2022). Putting
this all together and taking the negative log-likelihood, we get the following objective for a single
tissue:

LTOTAL = λXLNB
ATTR + λALBCE

ADJ + λELVQ + λm ∥m∥22 (5)
where the first two terms are negative binomial and binary cross entropy losses, respectively, the last
term acts as regularization, and each λ is the corresponding weight parameter. The training objective
is the mean LTOTAL over multiple tissues (see Appendix A.2 for the full derivation).

4.2 ARCHITECTURE

Encoder. The encoder captures the inference pathway to learn expressive codes. It parameterizes
the variational posterior qϕ via a multi-layer perceptron (MLP) for dimensionality reduction on X̃,
followed by a GNN to learn neighborhood-aware latent representations for cells. In practice, we find
that a 2-layer MLP helps handle sparsity and a single GraphSAGE (Hamilton et al., 2017) layer with
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Figure 2: SQUINT comprises of an encoder, discretization bottleneck, and decoder to learn discrete
cell tokens from SRT data. Given input tissue sections, gene expression vectors of cells are encoded
to latent representations via an MLP (dimensionality reduction) followed by a GNN (neighborhood
smoothing), followed by FiLM-style conditioning (e.g. using relative spatial distances and batch ID),
to capture spatial dependencies and niche features. These are quantized via a codebook to yield one
spatially-aware, discrete token per cell. The decoder conditions on tokens (via FiLM) to reconstruct
(i) gene expression aggregated across the cell’s microenvironment with empirical read-depth scaling
and a negative binomial likelihood; in parallel, an inner-product decoder reconstructs the adjacency,
trained with binary cross-entropy. The obtained tokens are discrete, interpretable representations of
cellular state, contextualized by the cell’s microenvironment, enabling spatial downstream analysis
and generative modeling.

neighbor sampling and mean pooling smoothes the noise in expression counts. Next, we define C
using an RBF kernel to capture relative distances between neighbor cells because absolute coordinates
of cells vary significantly across tissues depending on how they are assayed. We observe that pairing
RBF distances with one-hot encoding of the tissue IDs helps with batch effect correction. We use
feature-wise linear modulation (FiLM) (Perez et al., 2018) initialized with zero weights, bias and
residual connections to condition the latent representations with C. Lastly, we initialize a VQ module
with a cosine codebook and straight-through estimator. The conditioned latents are quantized using
K-means and the codebook is updated using exponential moving average (EMA) with a decay rate of
0.8. In our experiments, we find that a codebook size of 5000 with multiple heads improves codebook
utilization and diversity and avoids collapse even in the absence of a supervised loss criterion.

Decoder. The generation pathway is captured by two decoders, one to reconstruct A from Z and
C, and another to generate microenvironment-aggregated gene expression Xnbr given C, the learned
codebook, and A. Our adjacency decoder is an MLP that constructs edge vectors from the codebooks
and computes their inner product followed by a sigmoid non-linearity to obtain edge probabilities.
For reconstruction, k highest probability edges are set to 1 and the rest to 0 with additional edges for
ensuring undirectedness. Our attribute decoder is also an MLP that uses the assigned code and applies
FiLM at each intermediate layer to condition the generation of Xnbr using C. We apply softmax to the
output to obtain a probability distribution over genes counts and scale it by the empirical read-depth
to obtain the final expression counts. This is helpful because variance in counts across cells and
tissues can be large.

Training and Inference. In line with graph-learning literature, we train the encoder and decoders
jointly in mini-batch fashion wherein a fraction of nodes are masked but the attribute loss is computed
on all nodes. We observe robust results with a masking fraction of 0.2 annealed to 0.6 over the course
of training. During inference, for each cell in the test patch, we impute its attributes by executing
a forward pass of the model with the learned m in the presence of C to obtain a code assignment
which is subsequently used to generate the counts.
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5 EXPERIMENTS

In this section, we seek to quantitatively answer the following research questions:

1. RQ1: Is SQUINT capable of in-painting, i.e. generating expression of tissue microenviron-
ments in completely unseen regions?

2. RQ2: Does SQUINT provide high quality tissue-level representations?

3. RQ3: Are the codes (tokens) generated by SQUINT biologically meaningful?

To this end, we evaluate SQUINT on four downstream tasks including 2D Imputation (Sec. 5.1), 3D
Imputation (Sec. 5.2), Tumour Stratification (Sec. 5.3), and Cell-level Perturbation (Sec. 5.4). Our
model is written in Pytorch and tested on 1 NVIDIA H100 64GB GPU card. Our code is available
for public release as a Python pip package upon publication.

5.1 TASK A: 2D EXPRESSION IMPUTATION

Table 1: Imputation quality of SQUINT with and without relative spatial distances as covariates
compared to WFM (baseline) measured by Energy (E), Maximum Mean Discrepancy (MMD),
Pearson Correlation (PC) metrics. Lower values for E and MMD and higher values for PC indicate
better performance. Highlights in blue indicate best performance and NA indicates that the model is
not applicable. Results are averaged across three random seeds.

Model
Brain (Mouse) Kidney (Human) Skin (Human)

E ↓ MMD ↓ PC ↑ E ↓ MMD ↓ PC ↑ E ↓ MMD ↓ PC ↑
WFM 0.1653 0.1358 NA NA NA NA 0.1094 0.0876 NA
SQUINT w/o C 0.0077 0.0447 0.8884 0.0039 0.0254 0.827 0.012 0.0864 0.7471
SQUINT 0.005 0.0395 0.9161 0.003 0.0194 0.8687 0.0129 0.0927 0.7882

In this task, we evaluate the performance of SQUINT for imputing gene expression of tissue
microenvironments in unseen regions at user-specified spatial locations within tissue sections. To the
best of our knowledge, SQUINT is the first model to address this task on SRT data.

We conduct experiments on three datasets across two species, three organs, and two assays. BRAIN
(MOUSE) has 4 sections of 1085 gene-atlas mouse brain totaling 48K cells. SKIN 2D (HUMAN)
includes 7 sections of skin tissue totaling 110K cells from 3 human patients assayed with a Xenium
5000 gene-panel. KIDNEY (HUMAN) covers 5 sections of kidney tissue totaling 260K cells from two
human patients assayed with a Xenium 5000 gene-panel (cf. Appendix B for additional statistics).

In each case, we subset the data to top 1000 highly variable genes and define three patches within
one section as imputation sites. SQUINT is trained on other cells from that section as well as the
remaining sections (see App. B for a visual representation). We use batch IDs (unique for each
section) and relative spatial distances obtained from an RBF kernel for conditioning the model during
training and during inference. Further, we define a variant called SQUINT w/o C that does not use
these conditions to measure their utility. We benchmark SQUINT against Wasserstein Flow Matching
(WFM) Haviv et al. (2025) which is the only existing method for generating PCA representations of
expression profiles for microenvironments.

We consider three metrics for evaluating the performance of SQUINT for imputing mean gene
expression of tissue (1-hop) microenvironments. Pearson Correlation (PC) measures similarity
point-wise at specific cell locations in the tissue. Mean Maximum Discrepancy (MMD) using an L1
Gaussian Total Variation kernel averaged across multiple bandwidths (Bunne et al., 2023) and the
Energy Distance (E) (Heumos et al., 2024) to measure similarity in population distributions.

Table 1 showcases the imputation quality of WFM, SQUINT w/o C, and SQUINT averaged across
three random seeds. Since WFM is unsuited to imputing at particular spatial locations, PC is not
applicable for WFM. Further, since cell-type labels are unavailable for the KIDNEY (HUMAN) dataset,
results are unavailable for WFM which requires them as conditions during inference. SQUINT
outperforms WFM and our variant without conditions on this task.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Top-10 Top-20 Top-30 Top-40 Top-50
Gene Group

1
2

3
4

5
6

7
8

9
10

11
12

13
Z-

St
ac

k 
Le

ve
l (

1-
in

de
xe

d)

0.17 0.15 0.18 0.22 0.26
0.14 0.12 0.15 0.20 0.25
0.16 0.14 0.17 0.22 0.25
0.15 0.14 0.15 0.19 0.23
0.09 0.11 0.13 0.17 0.20
0.06 0.06 0.07 0.04 0.04
0.18 0.16 0.16 0.21 0.24
0.17 0.17 0.17 0.22 0.27
0.10 0.12 0.12 0.15 0.19
0.11 0.12 0.13 0.18 0.23
0.12 0.14 0.14 0.16 0.18
0.58 0.56 0.53 0.49 0.45
0.61 0.58 0.53 0.49 0.45

X (original vs. imputed)

Top-10 Top-20 Top-30 Top-40 Top-50
Gene Group

0.29 0.25 0.24 0.26 0.28
0.32 0.27 0.24 0.25 0.27
0.38 0.30 0.27 0.27 0.30
0.25 0.23 0.23 0.24 0.28
0.27 0.16 0.17 0.20 0.23
0.04 0.06 0.09 0.13 0.13
0.30 0.23 0.23 0.25 0.28
0.34 0.23 0.21 0.24 0.27
0.18 0.13 0.15 0.19 0.22
0.26 0.18 0.18 0.21 0.23
0.24 0.19 0.18 0.20 0.23
0.75 0.72 0.74 0.75 0.76
0.84 0.82 0.80 0.76 0.74

X-nbr (original vs. imputed)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Pe

ar
so

n 
Co

rre
la

tio
n

(a) Mean PC of top-k genes across Z-levels.

Token

To
ke

n

0

1

(b) Token co-occurrence across Z-levels.

Figure 3: Fig. 3a shows heatmaps of mean PC at each Z-level between original and imputed expression
of globally ranked gene groups of the cell (left) and microenvironment (middle). Fig. 3b shows a PC
clustermap between per-level token-usage profiles (proportions) for the top-50 most frequent tokens.

5.2 TASK B: 3D SPATIAL IMPUTATION

SKIN 3D (HUMAN) is a collection of 13 sections of skin tissue totaling nearly 280K cells from a
single human patient assayed with a Xenium 5000 gene-panel. These 13 sections are approximately
60µ apart along the vertical (Z-level) axis and may be viewed jointly as a 3D model of the tissue.
We trained a SQUINT model on this dataset using a codebook size of 50 and 200 latent dimensions
across 13 sections wherein 10% cells at each Z-level were held out for evaluation.

For Fig. 3a, we computed Pearson correlation per gene between the original and imputed expression
cell-wise (left) and microenvironment-wise (middle) using all cells. Genes were ranked by this global
correlation and grouped into top-k sets. For each Z-level, we computed gene-wise correlations using
held-out test cells from that level and reported the mean across genes in the group. Across levels,
imputation quality tends to be higher for Xnbr than for X, indicating that neighborhood-aggregated
structure is better captured by the model than per-cell signals. Within each panel, mean correlation
decreases as the size of the gene group increases, reflecting the rising difficulty in imputation quality.
Further, we note that imputation quality deteriorates towards the middle of the Z-stack and improves
towards the higher levels. This may be due to the distance between the sections being larger towards
the middle of the Z-stack or due to mis-alignment of the sections.

In Fig. 3b, each block captures correlation between token pairs based on their co-occurrence across
Z-levels. Values close to 1 indicate token pairs likely to be enriched at the same levels while values
closer to -1 indicate anti-co-occurrence across levels. Dendrograms group tokens into co-occurring
”communities“. The token co-occurrence map reveals coherent groups of tokens whose usage
co-varies with depth suggesting shared spatial or biological roles captured by the discrete codes.

5.3 TASK C: KIDNEY TUMOUR STRATIFICATION

In this task, our goal is determine if codes generated by SQUINT have translational relevance for
tumor stratification. We trained SQUINT on all 5 sections of two patients in KIDNEY (HUMAN)and
conditioned on relative spatial coordinates of cells along with the batch IDs (Figure 5a). Clinical
annotations and cell-type annotations were withheld from model training (Li et al., 2022b). One
patient had a tumour classified as low clinical risk of developing metastasis, based on histological and
morphological assessment, while the second patient presented with high-risk disease and metastasis.
At inference, we identified the top 5 codes with the most frequent assignment among cells in the
high-risk patient. Next, we computed activation scores for each cell across both patients as the
number of times the cell or its 1-hop microenvironment was assigned to the top 5 codes normalized
by the number of neighboring cells.

This revealed distinct spatial patterns: regions of high activation were confined to tumour cores in
the high-risk patient, whereas no such enrichment was observed in the low-risk tumour (Figure 5b).
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Figure 4: Kidney Tumour Stratification. (a) SQUINT was trained on 260,153 cells from five tissue
sections across two patients with kidney cancer. (b) SQUINT activation scores show high activation
in tumour cores of the high-risk patient but not the low-risk case. (c) High-score cells (>0.75) are
enriched for tumour epithelial populations compared to low-score cells (<0.25). (d) Within tumour
epithelial cells, high-score cells show differential expression of genes linked to aggressive kidney
cancer (LDHA, MMP14, PFKFB3).

To examine the cellular context of these signals, we compared cell type proportions between cells
with low (< 0.25) and high (> 0.75) activation scores. High-score cells were markedly enriched
for tumour epithelial populations (Figure 5c). Restricting the analysis to tumour epithelial cells, we
identified differentially expressed genes (DEGs) between high- and low-score groups. The high-score
compartment was enriched for DEGs previously linked to aggressive kidney cancer biology and
adverse outcomes, including LDHA (Girgis et al., 2014), MMP14 (Zhao et al., 2022) and PFKB3 (Li
et al., 2022a) (Figure 5d). Together, these results highlight the ability of SQUINT to achieve clinically
meaningful tumour stratification directly from spatial transcriptomic profiles.

5.4 TASK D: CELL-LEVEL PERTURBATION

In this task, we trained a separate SQUINT model on the 5 KIDNEY sections introduced previously
and ran inference before and after a cell-level perturbation to investigate the biological relevance
of the discrete tokens. Specifically, we computationally mirrored immune checkpoint blockade
(ICB) treatment by replacing the gene expression vectors of native T-cells in a tertiary lymphoid
structure region of interest (ROI) with a prototype gene expression vector of activated T-cells after
ICB treatment. We used the annotations from (Akbarnejad et al., 2025) who have identified native
T-cells and some post-ICB-like activated T-cells in this dataset. We then computed the mean gene
expression vector across all post-ICB-like activated T-cells and used it to replace the gene expression
vectors of all native T-cells in the TLS region. We used the trained SQUINT encoder to obtain tokens
before and after perturbation and compared the tokens of macrophages in the neighborhood of T-cells
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Figure 5: SQUINT tokens recapitulate relevant macrophage biology and cell state changes after
perturbation of neighbouring T-cells. (a) Kidney tissue section with marked tertiary lymphoid
structure region of interest (ROI), displaying macrophages and the subset with T-cell neighbours. (b)
SQUINT token assignments for macrophages in the ROI. (c) Token-level expression of a macrophage
gene program comprising genes relevant in the context of immune checkpoint blockade (ICB): dot
size shows the fraction of macrophages in each token expressing a marker, and color shows mean
expression. (d) Bar plot displaying proportions of macrophages with T-cell neighbours before and
after a perturbation mirroring ICB. After perturbation, macrophages transition to tokens 29 and
44, characterized by high expression in the post-ICB signature. (e) Row-normalized proportions
(excluding diagonal) of original and perturbed token assignments highlight transitions.

as these are expected to react to the induced T-cell changes by transitioning to a known post-ICB
gene signature (Akbarnejad et al., 2025).

First, obtaining the tokens of all macrophages in the ROI in the unperturbed scenario, we observed that
specific SQUINT codes (codes 29 and 44) represented high expression in the curated gene signature,
highlighting how our discrete tokens capture relevant biology and offer inherent interpretability
without time-consuming downstream analysis. After the perturbation, macrophages with T-cells
in their neighborhood, i.e. macrophages affected by the perturbation, moved towards these tokens
representing high expression in the post-ICB gene signature.

6 CONCLUSIONS AND FUTURE WORK

Existing approaches for tokenizing genes for SRT data can be inadequate for tissues-level tasks. As a
remedy, we propose a novel approach called SQUINT to model cells as tokens (codes) using a graph-
based vector-quantized variational autoencoder. We train these codes for the task of imputing gene
expression of tissue microenvironments based on a learned mask and conditioned on covariates such
relative spatial positions to achieve superior performance over a state-of-the-art method. Additionally,
we showcase the translational relevance of these codes on a variety of downstream tasks ranging from
3D imputation of Z-stack tissue sections, tumour stratification in kidney patients, and cell-type gene
profile perturbations. Given their inherent interpretability and utility, for the future, we motivate their
use in training transformer models for SRT tissue data.
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A GENERATIVE MODEL

A.1 FACTORIZATION OF THE JOINT DISTRIBUTIONS

In this section discuss the factorized joint distributions for the inference and generation pathways.
These distributions are subsequently used for defining the training objective in Section ??. The joint
likelihood for the variational posterior for the inference pathway is defined over model parameters ϕ
and m. By the chain rule for conditional probability, we have:

qϕ,m

(
Z, X̃,X,A,C

)
= qϕ,m

(
Z | X̃,X,A,C

)
qϕ,m

(
X̃ | X,A,C

)
qϕ,m (X,A,C)

Note, X, A, and C are independent of ϕ and m. For notational convenience, we drop the parameters
from the subscript, i.e. qϕ,m (X,A,C) = q (X,A,C).

From Equation 4, the corrupted attributes X̃ depends only on X and M, and are independent of A
and C. X̃ is also independent of ϕ. Therefore:

qϕ,m
(
X̃ | X,A,C

)
= qm

(
X̃ | X

)
Let T denote the training epoch and BT =

∑
i Mci denote the masking budget for epoch T . The mask

index vector M is independently drawn from q (M | T ) over all BT -sized subsets of n, independent
of X, A, and C. That is,

M ⊥ (X,A,C) | T
Since the Z does not observe M or X directly, it can be marginalized out. That is,

Z ⊥
(
X̃,A,C

)
| X,M

Putting this all together, we can write the factorized joint distribution for the inference pathway as:

qϕ,m
(
Z, X̃,X,A,C

)
= qϕ

(
Z | X̃,A,C

)
qm
(
X̃ | X

)
q (X,A,C) (6)

The factorization of the joint likelihood for the variational prior over parameters θ for the generation
pathway follows directly from the chain rule for conditional probability:

pθ (X,A,Z,C) = pθ (X | A,Z,C) pθ (A | Z,C) pθ (Z | C) p (C) (7)
We drop the subscript for pθ (C) since C is independent of θ.

A.2 DERIVATION OF THE DENOISED, CONDITIONAL ELBO

Following Esmaeili et al. (2019), we derive the denoised, conditional ELBO by minimizing the
KL-divergence between the variational posterior and the variational prior.

max
θ,ϕ,m

−DKL

[
qϕ,m

(
Z, X̃,X,A,C

) ∥∥∥ pθ (X,A,Z,C)
]

max
θ,ϕ,m

−
∫
(Z,X̃,X,A,C)

qϕ,m
(
Z, X̃,X,A,C

)
log

qϕ,m
(
Z, X̃,X,A,C

)
pθ (X,A,Z,C)

d
(
Z, X̃,X,A,C

)
max
θ,ϕ,m

∫
(Z,X̃,X,A,C)

qϕ,m
(
Z, X̃,X,A,C

)
log

pθ (X,A,Z,C)

qϕ,m
(
Z, X̃,X,A,C

)d(Z, X̃,X,A,C
)

︸ ︷︷ ︸
J (θ,ϕ,m)

(8)

Writing this joint distribution as a nested integral based on the factorized joint distributions for the
inference and generation pathways from Equation 6 and Equation 7, respectively, we have:

J (θ, ϕ,m) =

∫
q (X,A,C)

{∫
qm
(
X̃ | X

)[∫
qϕ
(
Z | X̃,A,C

)(
log pθ (X | A,Z,C)

+ log pθ(A | Z,C) + log pθ(Z | C) + log p (C)− log qϕ

(
Z | X̃,A,C

)
− log qm

(
X̃ | X

)
− log q (X,A,C)

)
dZ

]
dX̃

}
d (X,A,C) (9)
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log p (C) and log q (X,A,C) are independent of θ, m, and ϕ, and so integrating them out yields
constants with respect to the optimization. Rearranging the terms, we get:

J (θ, ϕ,m) =

∫
q (X,A,C)

{∫
qm
(
X̃ | X

)[∫
qϕ
(
Z | X̃,A,C

)(
− log qm

(
X̃ | X

)
+ log pθ (X | A,Z,C) + log pθ(A | Z,C)

+ log pθ(Z | C)− log qϕ
(
Z | X̃,A,C

))
dZ

]
dX̃

}
d (X,A,C)

+ const. (10)

Since, log qm
(
X̃ | X

)
is independent of Z:,

∫
qϕ
(
Z | X̃,A,C

)(
− log qm

(
X̃ | X

))
dZ = − log qm

(
X̃ | X

)
������������:1(∫

qϕ

(
Z | X̃,A,C

)
dZ

)
= − log qm

(
X̃ | X

)
(11)

Further: ∫
qϕ
(
Z | X̃,A,C

)[
log pθ(Z | C)− log qϕ

(
Z | X̃,A,C

) ]
dZ

= −DKL

[
qϕ

(
Z | X̃,A,C

) ∥∥∥ pθ(Z | C)
]

(12)

Plugging in Equation 11 and Equation 12 into Equation 9, we get:

J (θ, ϕ,m) =−
∫

q (X,A,C)

{∫
qm
(
X̃ | X

)(
log qm

(
X̃ | X

))
dX̃

}
d (X,A,C)

+

∫
q (X,A,C)

{∫
qm
(
X̃ | X

)[(∫
qϕ

(
Z | X̃,A,C

)(
log pθ (X | A,Z,C)

+ log pθ(A | Z,C)
)
dZ

)]
dX̃

}
d (X,A,C)

−
∫

q (X,A,C)

{∫
qm
(
X̃ | X

)(
DKL

[
qϕ
(
Z | X̃,A,C

) ∥∥∥ pθ(Z | C)
])

dX̃

}
d (X,A,C)

+ const. (13)

Using the definition of conditional expectation, we obtain the training objective:

argmin
θ,ϕ,m

−J (θ, ϕ,m)

argmin
θ,ϕ,m

− Eq(X,A,C)Eqm(X̃|X)Eqϕ(Z|X̃,A,C)

[
log pθ (X | A,Z,C) + log pθ(A | Z,C)

]
︸ ︷︷ ︸

reconstruction error

+ Eq(X,A,C)Eqm(X̃|X)

[
DKL

[
qϕ
(
Z | X̃,A,C

) ∥∥∥ pθ(Z | C)
] ]

︸ ︷︷ ︸
latent entropy

+ Eq(X,A,C)Eqm(X̃|X)

[
log qm

(
X̃ | X

) ]
︸ ︷︷ ︸

corruption variance

(14)
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A.3 BINARY CROSS-ENTROPY LOSS

We use a binary cross-entropy (BCE) with logits to reconstruct edges in Eq. ??. Let y ∈ {0, 1} be the
target and s ∈ R the logit. The BCE can be written as:

LBCE (y, s) = − y log σ(s) − (1− y) log
(
1− σ(s)

)
= = log

(
1 + e−|s|

)
− y s . (15)

where σ(s) = 1
1+e−s is the logistic sigmoid.

A.4 NEGATIVE BINOMIAL LOSS

For the single-cell transcriptomic attribute reconstruction in Eq. ??, we model raw counts with a
Negative Binomial (NB) likelihood parameterized by mean µ > 0 and inverse-dispersion ϕ > 0:

NB(x; µ, ϕ) =
Γ(x+ ϕ)

Γ(ϕ) Γ(x+ 1)

(
ϕ

ϕ+ µ

)ϕ(
µ

ϕ+ µ

)x

, (16)

and we minimize the corresponding negative log-likelihood:

LNB(x; µ, ϕ) = − logNB(x; µ, ϕ) = − log Γ(x+ ϕ)+log Γ(ϕ)+log Γ(x+ 1)−ϕ log
(

ϕ
ϕ+µ

)
−x log

(
µ

ϕ+µ

)
.

(17)

B EXPERIMENTAL SETTINGS

B.1 DATASETS.

Table 2: Summary statistics of all datasets.

Cells Edges Genes Num Sections Number of Cell Types

Brain (Mouse) 48156 497936 1000 4 23
Skin (Human) 110278 1141520 1000 7 41
Kidney (Human) 260193 2673293 1000 5 NA

Cell-type annotations for all 5 sections across 2 patients are unavailable. The Skin and Kidney datasets
contain 5000 sized gene-panels while Mouse contains 1085 genes. However, for our experiments, we
select the top 1000 highly variable genes and impute their expression profiles for selected cells.
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Dataset: Xenium Brain (Mouse) | Sections: Batch 0, 1, 2, 3 | Split: 3-region Test

Figure 6: Train-Test Splits for the Brain (Mouse) dataset

C SENSITIVITY ANALYSIS

C.1 BACKBONE GNN

We replace GRAPHSAGE with GAT and GIN as the backbone GNN module within the SQUINT
encoder to compute the latent representations of the nodes. We retrained the model for 20 epochs and
computed the Pearson-correlation scores between the original and imputed attributes for 1 and 3 test
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Figure 7: Train-Test Splits for the Kidney (Human) dataset
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Figure 8: Comparison of the performance of the different backbone GNNs on the Xenium Skin
(Human) and Xenium Brain (Mouse) datasets.

patches each for the Xenium Skin (Human) and Xenium Brain (Mouse) datasets. Figure 8 shows
the performance of the different backbone GNNs on the Xenium Skin (Human) and Xenium Brain
(Mouse) datasets. GRAPHSAGE and GIN are consistently similar in performance across metrics,
number of test patches, and metrics across both datasets with GIN slightly better than GRAPHSAGE
on Xenium Skin (Human) and GRAPHSAGE slightly better than GIN on Xenium Brain (Mouse). In
all cases, GAT shows significantly lower performance compared to GRAPHSAGE and GIN.

D AI USAGE CLARIFICATION.

We used LLM agents such as Cursor for assisting in code development and ChatGPT for polishing
text for improved readability and grammar. We take responsibility for suggestions from AI models
that we incorporated into our work. All methodological contributions come from authors.
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