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Abstract

Large language models have demonstrated surprising ability to perform in-context
learning, i.e., these models can be directly applied to solve numerous downstream
tasks by conditioning on a prompt constructed by a few input-output examples.
However, prior research has shown that in-context learning can suffer from high in-
stability due to variations in training examples, example order, and prompt formats.
Therefore, the construction of an appropriate prompt is essential for improving
the performance of in-context learning. In this paper, we revisit this problem
from the view of predictive bias. Specifically, we introduce a metric to evaluate
the predictive bias of a fixed prompt against labels or a given attributes. Then
we empirically show that prompts with higher bias always lead to unsatisfactory
predictive quality. Based on this observation, we propose a novel search strategy
based on the greedy search to identify the near-optimal prompt for improving
the performance of in-context learning. We perform comprehensive experiments
with state-of-the-art mainstream models such as GPT-3 on various downstream
tasks. Our results indicate that our method can enhance the model’s in-context
learning performance in an effective and interpretable manner. Code is available at:
https://github.com/MaHuanAAA.

1 Introduction

Large language models (LLMs), such as GPT-3 [1] and BLOOM [2], have demonstrated remarkable
ability in performing in-context learning (ICL) on downstream tasks. ICL refers to the process
of conditioning an LLM to solve various downstream tasks using prompts constructed from a few
demonstration input-output pairs [3] (i.e., few-shot prompting). Despite its impressive performance,
prior research has shown that ICL suffers from high instability due to variations in the choice of
in-context demonstrations, demonstration order, and prompt formats [4, 5]. Therefore, constructing
an appropriate prompt has been identified as a critical factor for improving the performance of ICL
[6].

Previous research studies this problem typically from two directions: (1) prompt tuning in the
embedding space [7, 8, 9, 10, 11], (2) prompt searching in the text space [4, 12, 13, 14, 15, 16]. The
key idea of prompt tuning is to inject task-specific embedding into hidden layers and then tune these
embeddings using gradient-based optimization [8, 15]. However, these methods require to modify the
original inference process of the model, which is impractical for the case of black-box LM services
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such as GPT3 and ChatGPT [17]. Furthermore, prompt tuning introduces additional computational
and storage costs, which is typically expensive for LLM. A more feasible and efficient way is to
optimize prompting via searching approximate demonstration samples and ordering in the original
text space [4, 15]. Bunch of works are presented to constructs prompts from either "global" or "local"
views. On the one hand, global-view based methods typically optimize the different elements of the
prompt as a whole, with the aim of achieving superior performance. For example, one approach, as
described in [14], constructs a search procedure that leverages the overall diversity of demonstrations.
Another approach [4] attempts to optimize the ordering of the entire set of demonstrations to achieve
better performance. In contrast to the global view, local-view based methods optimize each individual
demonstration by designing different heuristic selection criteria such as prior work KATE [15].
These methods have achieved impressive improvements on a wide range of tasks. However, most
of them still suffer from the following limitations: (1) Most of current research mainly focuses on
searching prompts along a single dimension, such as example selection or order. However, the overall
influence of various dimensions on the performance remains unclear. (2) These methods are typically
based on heuristic criteria, and there is a gap between them and actual performance. A unified view
that explains how these methods work is needed. (3) More importantly, existing methods optimize
prompts globally or locally, which may lead to suboptimal performance.

In this paper, we revisit this problem from the perspective of predictive bias. We find a key insight
that the quality of a given prompt depends on its inherent bias. Based on this insight, we propose
a surrogate metric based on predictive bias for evaluating the quality of prompts. This metric
allows us to evaluate a prompt in a single forward process without an additional development set.
Specifically, we apply a given prompt to a "content-free" input and expect the model output an
uniform predictive distribution (a content-free input contains no useful information). Therefore, we
employ the uniformity of the predictive distribution to characterize the bias of a give prompt. This
shares a similar idea to the prior work which uses this metric to calibrate the model output [18]. In
contrast to this work which mainly focus on using this metric for calibration when the prompt is fixed,
we further explore its usage in automatically searching an approximate prompt. Moreover, through
extensive experiments, we empirically validate the correlation between the inherent bias of a given
prompt and its quality measured by the average task performance on a given test set (see Fig. 2).

Moreover, this bias-based metric allows us to build prompting optimization techniques in a "local-to-
global" manner. We present two novel strategies for efficiently searching high-quality prompts in a
bias-guided way: (1) T-fair-Prompting (2) G-fair-Prompting. We focus on a general setting where a
labeled set with size N is given. The goal of our strategies is to perform combinatorial optimization
over this set to find near-optimal prompts (i.e., select demonstrations and their orders). Specifically,
T-fair-Prompting uses an intuitive way that first computes the bias of each single demonstration
(i.e., one-shot prompting) and then select the top-k fair demonstrations to form the final prompts.
This strategy can be efficiently done with a complexity of O(N). Note that T-fair-Prompting is
based on the assumption that the optimal prompt is usually constructed from demonstrations with
the smallest individual bias. However, this may not hold true in real situations and often leads
to sub-optimal solutions. Therefore, we further introduce G-fair-Prompting to improve the search
quality. G-fair-Prompting follows the normal procedure of the greedy search which finds the optimal
solution by making locally optimal choices at each step. At each step of the algorithm, the selected
demonstration is the one which makes the updated prompts achieves the best fairness score.This
strategy trades off the quality of the search with the worst-case time complexity. By accepting a
higher worst-case time complexity of O(N2), the search quality is significantly improved. Note that
G-fair-Prompting works from a local to global perspective, wherein bias of individual samples are
considered in the early stages while the later stage focus on the reduction of global predictive bias.

To evaluate the effectiveness of our strategies, we conduct extensive experiments with current
mainstream models, such as GPT-3 [1], on various downstream tasks. Our results indicate that our
method can significantly enhance the model’s in-context learning performance in an effective and
interpretable manner. The overall contribution is summarized as follows:

• We introduce to use the predictive bias to assess the quality of a given prompt in an efficient
and development set independent way and the empirical effectiveness of this metric is
comprehensively validated.

• Based on the above idea, we propose two efficient and effective strategies, namely, T-fair-
Prompting and G-fair-Prompting to optimize the prompts.
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(a) Selection (b) Selection (cal) (c) Permutation (d) Permutation (cal)

Figure 1: ICL suffers from high instability due to high variations in demonstrations selection and
order, even when post calibration is performed.

• The effectiveness of these two strategies are validated on various LLMs ranging from
GPT-series models to LLaMA family [19] released by Meta recently. Consistent relative
improvements of over 10% have been observed over different downstream tasks in contrast
to SOTA methods.

Relation to Calibration-before-use: Our paper shares a similar metric with cal-before-use [18] to
asses the predictive bias of a given prompt. However, the prior approach aims to use this metric to
calibrate the output, which can be still easily affected by the quality of the used prompt (more results
can be found in Table 2). In contrast, our research aims to find a near-optimal prompt on the original
space to improve the model’s performance, without requiring any post-adjustment to the output of
the model. Moreover, we have firstly empirically validated the connection between predictive bias
and the final task performance as shown in Fig. 2, which has not been studied in [18]. Through
experiments, we have discovered that, even without calibration, the prompt selected by our method
can outperform a randomly selected prompt with calibration.

2 Related Work

In-context Learning Previous research, as cited in [1, 20], has demonstrated that Large Language
Models can complete tasks with zero- or few-shot learning using in-context learning. LLMs perform
well with an appropriate prompt. However, recent works [4, 18] has shown that the performance of
LLMs is affected by the prompt used. Therefore, determining the optimal prompt is a crucial and
fundamental research area.

Original space searching A more intuitive approach for determining the best prompt is to search
in the original space by selecting or reordering the prompt sentences entered by users. The searching
can be concluded in two perspective. • Global view: A naive strategy is to enumerate all candidates
to find the prompt that can achieve the best performance on validation set, but this strategy is
computationally expensive since its complexity is

∑n
k=1 C

k
nk! considering to demonstration selection

and order permutation, where k represents the number of demonstrations selected, and C signifies
the combinatorial function. Zhang et al. [12] find that errors frequently fall into the same cluster,
where each cluster contains similar questions, so they proposed a diversity-guided searching strategy
to select diverse demonstrations. In addition to demonstrations selection, Lu et al. [4] have identified
the impact of the prompt order on the results. They found the best sequence which yields the most
diverse prediction results on the probing set by generating a probing set through LLMs. However,
this method is also computationally expensive, and it may be difficult to ensure that the generated
probing set is sufficiently balanced. • Local view: Previous studies [13] show that reducing the
model’s uncertainty helps improve the model’s performance, and [14] propose Active Prompting to
select demonstrations according to the uncertainty of LLMs. KATE [15] selects the prompt based
on the distance amongst embeddings, with the goal of selecting the closest example. However, this
method ignores the influence of the order of the examples and requires access to sentence embeddings.
[16] demonstrate that LLMs can be easily distracted by irrelevant context, accordingly they identify
several approaches for filtering out irrelevant information in context.

In the realm of original space searching, most of the current methods tend to focus solely on the
influence of a singular factor (highlighted above) on performance, utilizing heuristic metrics to select
context demonstrations that perform well according to this criterion. While these investigations
certainly bring benefits to the community, they lack a comprehensive consideration of both local and
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(a) AGNews (BLOOM 176B) (b) AGNews (LLaMA 13B) (c) AGNews (LLaMA 65B)

(d) TREC (BLOOM 176B) (e) TREC (LLaMA 13B) (f) TREC (LLaMA 65B)

Figure 2: Accuracy is highly consistency with fairness and greedy search can find a good prompt,
where "Random" and "Oracle" indicate the average accuracy of all prompts and the upper-bound
performance according to fairness.

global perspectives. The method proposed offers a metric to select context demonstrations from the
perspective of predictive bias, which naturally facilitates a transition from local view to global view.

3 Revisiting the Sensitivity across Demonstrations

In this section, we will clarify the notations and the templates used in this paper. Then, we will
demonstrate some brief empirical results to show how different demonstration construction factors
(e.g., example selection and order) affect performance. We further introduce the definition of
predictive bias/fairness of a given prompt and show its connection to the predictive performance on
different downstream tasks.

3.1 Notations

We consider a training set consisting of N samples S = {(xi, yi)}Ni=1, where xi is the sen-
tence and yi ∈ Y is the label of the ith training sample, and Y is the space of all labels for
the task. We use a template Γ(·) to transform these sentences and labels into natural language
space (i.e., prompt construction). Take an instance from the AGNews dataset [21] for exam-
ple, we have xi = "Cubans Risking Life for Lure of America.", yi = "World", and Γ(xi, yi) is
"Article: Cubans Risking Life for Lure of America. Answer: World". We concatenate these demon-
strations to form a prompt ρ, which by default is ρ = Γ(x1, y1) ⊕ · · · ⊕ Γ(xn, yn), where
⊕ indicates sentences combination option. At test time, we append the prompt ρ with τ =
"Article: <test sentence>. Answer: " and feed it to a large language modelM. The predicted class
is given by:

ŷ = argmax
y∈Y

p̂(y|ρ⊕ τ), p̂(y|ρ⊕ τ) =
M(y|ρ⊕ τ)∑

y∈YM(y|ρ⊕ τ)
, (1)

whereM(y|ρ⊕ τ) indicates the probability predicted by LLM, and the probability is normalized
to fit the task. We denote the predictive distribution by P̂ (x) := {p̂(y|ρ⊕ τ)|y ∈ Y}. In this paper,
we focus on evaluating the instability caused by demonstrations, and we fix the prompt template
following prior work [18].

3.2 Stability of Few-shot Prompting

As demonstrated by prior research, the few-shot prompting technique is highly susceptible to a variety
of factors, including the selection and order of demonstrations [4, 18]. In this study, we delve deeper
into the stability of few-shot prompting, specifically focusing on the recently released LLaMA family
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by Meta [19]. Additionally, we evaluate the stability of LLaMA models calibrated using the current
state-of-the-art method [12, 15].

To elucidate the impact of demonstration selection, we select four demonstrations for each different
seed and randomly sample an order for each combination. Subsequently, we present the performance
on AGNews in the form of a boxplot, which displays the data distribution based on a five-number
summary (minimum, first quartile [Q1], median, third quartile [Q3], and maximum). As shown in
Fig.1(a)(b), the accuracy demonstrates significant variability across various demonstrations. The
detailed settings please refer to Appendix A.7.

To investigate the influence of permutations, we examine all possible permutations of four fixed
demonstrations, resulting in 4! distinct candidates. Fig.1(c)(d) also reveals a high degree of variance.
While post-calibration contributes to mitigating instability, it is essential to note that the model
remains sensitive even after post-calibration. This finding underscores the importance of meticulous
demonstration selection. In subsequent experiments, we discover that our approach can be employed
to further enhance the performance of the calibrated model.

3.3 Predictive Bias of ICL

As demonstrated in the preceding discussion, the performance of ICL is significantly impacted
by various factors such as demonstration, permutation, and selection (refer to Appendix A.4 for
additional information). Consequently, devising an efficient method for constructing an appropriate
prompt with near-optimal performance is a crucial step in deploying LLMs for diverse downstream
tasks. As outlined in the introduction, numerous studies aim to optimize prompts in ICL. This paper
further investigates this issue through the lens of predictive bias, which refers to the discrepancy
between targeted classes. 2

To achieve this, we initially introduce an efficient technique to assess the inherent predictive bias of a
given prompt, drawing inspiration from previous work [18]. We construct a training set-independent
metric to measure predictive bias as follows: first, we merge the provided prompt with "semantic-free"
test sample information (e.g., "[N/A]", denoted by η) and obtain the LLM’s predictive distribution for
this sample. Ideally, the predictive distribution should closely resemble a uniform distribution, as the
test sample lacks semantic information. In this paper, we employ entropy as a measure of predictive
bias, defined as:

fair(ρ) = −
∑
y∈Y

p(y|ρ⊕ η) log p(y|ρ⊕ η) (2)

Previous studies have utilized this metric to calibrate the model’s output. In this paper, we conduct
a comprehensive examination of the relationship between predictive bias and overall performance.
Specifically, in a scenario with four training samples (due to the time-consuming nature of enumerat-
ing all prompt cases for a larger number), we enumerate all possible combinations and permutations of
demonstrations for various datasets and LLMs. Subsequently, we arrange all candidates in descending
order based on fairness, where an "index 0" denotes the prompt with the highest fairness. We perform
experiments using five different seeds, resulting in training sets comprising distinct demonstrations
while maintaining the test samples with seed 0. Fig. 2 displays the results for different models,
revealing a strong correlation between the model’s performance and fairness score (i.e., fairer prompts
yield better performance). The red star, referred to as the "Oracle" represents the optimal average
performance, which consistently correlates with higher fairness. This observation prompts us to
enhance the ICL performance by identifying the fairest prompt.

Nevertheless, discovering the fairest demonstration combination proves to be a formidable challenge,
given the existence of

∑N
k=1 C

k
Nk! distinct candidates. As the size of the training set increases, this

task becomes intractable. In order to tackle this problem, we propose two efficient strategies for
approximating the most suitable demonstrations in the subsequent section.

2This notion differs slightly from the concept of social bias, which concentrates on specific feature attributes
rather than labels. Our approach can be naturally extended to mitigate social bias in various settings.
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Figure 3: Overview of Most-fair Prompting.

4 Fairest Prompt Search

Drawing upon the aforementioned observations, we propose two strategies aimed at identifying the
most fair prompt, which have been empirically demonstrated to achieve superior performance. Let
us consider a training set S comprising N samples; the goal of these search strategies is to select a
subset of samples from the training set and construct the context in a specific order so as to optimize
the fairness criterion in Eq. 2.

In an ideal scenario, we would consider the factors of demonstration selection and order permutation
by examining

∑N
k=1 C

k
Nk! distinct candidates, which enumerates all possible situations. However,

evaluating every candidate is infeasible, as demonstrated when N = 8, yielding over 106 candidates.
In this paper, we introduce two search strategies to reduce computational cost: T-fair-Prompting
and G-fair-Prompting. The T-fair-Prompting strategy decreases complexity from Θ(

∑N
k=1 C

k
Nk!) to

Θ(N), but its performance hinges on the selection of k and may be unstable when an unsuitable value
of k is chosen. As a result, we propose an additional greedy search strategy, termed G-fair-Prompting,
which lowers complexity to O(N2) and offers a superior approximation of the oracle solution. Fig. 9
visualizes the computational costs over different training set size.

4.1 T-fair-Prompting

The central idea of T-fair-Prompting (top-k) is founded on the heuristic understanding that the fairest
prompt usually consists of demonstration samples with reduced individual biases. Consequently,
T-fair-Prompting constructs the prompt through a two-stage process. Initially, the prediction bias is
assessed when the prompt is formulated using individual demonstrations. Subsequently, the top-k
fairest demonstrations are chosen and employed to prompt the LLM. It is important to note that fairer
demonstrations are likely to be situated towards the end of the sequence, as the generation is more
influenced by proximate demonstrations, in accordance with prior research [18]. A comprehensive
description of the process is presented in Algorithm 1, while a visual representation can be found
in Fig. 3. Specifically, when k is equivalent to the size of the training set, the method degrade to a
search for the optimal order of demonstrations. Nevertheless, T-fair-Prompting is heavily reliant on
the chosen value of k. More crucially, T-fair-Prompting addresses this issue through a purely local
perspective, thereby neglecting considerations from a global standpoint, which typically results in
sub-optimal outcomes. As a result, we subsequently introduce the G-fair-Prompting method, which
operates in a local-to-global fashion, as described below.
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4.2 G-fair-Prompting

The G-fair-Prompting (greedy search) algorithm adheres to the standard procedure of greedy search,
which seeks the optimal solution by making locally optimal choices at each stage. In each step of the
algorithm, the chosen demonstration is the one that allows the updated prompts to achieve the highest
fairness score. This strategy balances the quality of the search with the worst-case time complexity.
By accepting an increased worst-case time complexity of O(N2), the search quality is significantly
enhanced. It is important to note that the G-fair-Prompting algorithm operates from a local to global
perspective as shown by Algorithm 2. During the initial stages, the bias of individual samples is
taken into account, while the later stages focus on reducing global predictive bias. Specifically,
at each step, we insert a new demonstration Γ(xi, yi) from the remaining demonstration set S ′
(ensuring demonstrations are not repeated) at the beginning of the current context ρ and select the
demonstration that maximizes the fairness improvement. Formally, at step 9 in Algorithm 2, the
inserted demonstration should satisfy the following criterion:

arg max
xi∈S′

fair(Γ(xi, yi)⊕ ρ) s.t. fair(Γ(xi, yi)⊕ ρ) > fair(ρ). (3)

Algorithm 1 T-fair-Prompting

1: Given: training set S = {(xi, yi)}Ni , pre-
trained LLMM, transformation template
Γ(·), and context-free input η

2: Initial prompt ρ
3: for (xi, yi) in S do
4: Inference P̂ ← {p̂(y|Γ(xi, yi) ⊕

η)|y ∈ Y} viaM
5: Calculate the fair(Γ(xi, yi)) according

to Eq. 2
6: end for
7: Sort fairi=1,··· ,N (Γ(xi, yi)) in descend-

ing order
8: for d in 1, · · · , k do
9: Insert the most d fair demonstration at

the head of ρ
10: end for
11: return ρ

Algorithm 2 G-fair-Prompting

1: Given: training set S = {(xi, yi)}Ni , pretrained
LLM M, transformation template Γ(·), and
context-free input η

2: Initial prompt ρ
3: while S is not null do
4: for (xi, yi) in S do
5: ρtmp ← Γ(xi, yi)⊕ ρ

6: Inference P̂ ← {p̂(y|ρtmp ⊕ η)|y ∈ Y} via
M

7: Calculate the fair(ρtmp) according to Eq. 2
8: end for
9: Insert the demonstration that can improve fair-

ness best and remove it from S
10: Stop searching when fairness can’t be im-

proved
11: end while
12: return ρ

5 Experiments

5.1 Experimental Setup

Models. There are a large number of available LLMs (Appendix A.2) including open-source models
and black-box cloud API. Recently, Meta has released their powerful pretrained LLMs, LLaMA.
LLaMA models with 13B parameters can achieve comparable performance in contrast to BLOOM
and GPT-3 with much larger model size. In this paper, we evaluate the effectiveness of our method on
BLOOM (176B) and LLaMA models of different sizes. We have opted to employ LLaMA (65B) as a
substitute for GPT-3 in our experiments, since oepnai strictly restricts the API access to certain areas.

Datasets. We conducted experiments on various text classification datasets [21], namely SST-2,
AGNews, CoLA, TREC, and RTE. Furthermore, the maximum input length of LLaMA is 512, and
the sentences in RTE are too long for LLaMA. The task descriptions and statistics are available in
Table 6 in Appendix.

5.2 Results

We conducted experiments on different settings and reported the results of five runs. We compared our
method with the diversity-guided searching strategy proposed by Zhang et al.[12] (Global view) and
the similarity-guided searching strategy proposed by Liu et al.[15] (Local view). Note that methods

7



Table 1: Accuracy for different prompting strategies (averaged on 5(0,··· ,4) different seeds, where Top-
k and Greedy indicate T-fair-Prompting with k demonstrations and G-fair-Prompting respectively).

Model Dataset Random Diversity Similarity Ours
Top-2 Top-4 Greedy

BLOOM (176B)

SST2 92.72.3 95.00.9 94.00.9 94.60.5 93.82.1 91.24.0

AGNews 73.95.9 70.210.1 74.83.8 75.42.2 74.82.3 79.61.4

TREC 47.914.6 46.08.7 31.43.1 55.413.3 39.219.3 66.82.5

RTE 62.44.2 69.21.9 67.23.5 55.61.0 57.61.9 63.02.1

CoLA 68.44.8 71.03.7 69.82.5 66.48.6 66.83.7 68.26.2

LLaMA (33B)

SST2 82.511.8 90.02.7 72.84.4 82.011.1 80.012.2 85.68.2

AGNews 75.25.0 75.05.1 75.02.4 73.23.9 69.84.4 76.44.6

TREC 68.111.1 68.24.7 60.63.4 71.411.1 57.817.3 80.25.3

CoLA 66.911.0 68.86.8 72.82.0 63.813.3 69.83.9 70.64.2

LLaMA (65B)

SST2 90.07.7 90.89.0 87.43.1 88.28.6 95.81.5 87.89.0

AGNews 76.85.0 78.23.1 78.21.8 77.03.4 76.24.9 76.04.0

TREC 63.614.2 65.210.9 64.05.5 65.813.0 57.419.9 74.012.2

CoLA 66.29.8 62.68.6 59.214.0 67.611.7 62.66.5 72.04.5

based on local view are time-consuming since they require searching different demonstrations for
every test example. Table 1 shows the performance of the different strategies, where "Random"
indicates the average accuracy for enumerating all situations, "Diversity" and "Similarity" indicate
demonstrations are selected according to diversity and similarity (details please refer to Appendix A.6),
respectively. For each dataset, we set the size of the training set to 4. "Diversity" and "Similarity"
select 4 from 16 demonstrations, as they need more candidates. The baseline is expensive to compute
since enumerating all candidates for 4 demonstrations in RTE on BLOOM will take more than 120
NVIDIA A100 GPU hours. We enumerate all candidates for the training set with 4 demonstrations
on different models, as shown in Fig. 2. The results on models whose parameters less than 13B are
shown in Table 4 (i.e., GPT2-XL (1.5B), LLaMA (7B), and LLaMA (13B)).

• G-fair-Prompting can reach a close approximation of enumeration. To evaluate whether
the G-fair-Prompting (Greedy) method can approximate the best performance of enumerating all
candidates, we marked the performance of G-fair-Prompting with a green star (representing the
closest value to averaged accuracy of G-fair-Prompting on the line). We found that G-fair-Prompting
can achieve a very close approximation to enumeration. As shown in Fig. 2, most prompts searched
by G-fair-Prompting achieved a top 20% ranking, and on BLOOM (176B), G-fair-Prompting almost
found the most fair prompt.

• G-fair-Prompting outperforms T-fair-Prompting. As shown in Table 1, although T-fair-
Prompting achieves better performance compared with random selection, G-fair-Prompting consis-
tently outperforms T-fair-Prompting. Furthermore, Top-2 significantly outperforms Top-4 in most
cases (over 5%), indicating that the number of demonstrations selected is crucial. Overall, the results
demonstrate that G-fair-Prompting achieves satisfactory performance with only a slight additional
cost.

Figure 4: BLOOM is not sensitive to CoLA.

• Compared with SOTA methods. We compared
our methods with several State-of-the-Art (SOTA)
methods, including diversity-guided and similarity-
guided techniques. We observed that our greedy
approach outperforms most of these SOTA methods
in most situations, and the improvements of over 10%
are observed on dataset TREC. The similarity-guided
method, on the other hand, achieved the best per-
formance on the topic classification task (AGNews).
This is because it searches for a unique prompt for every different test example based on the dis-
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tance between the embeddings of the training samples and the test example. This strategy selects
demonstrations with labels that are the same as the test samples, and Language Models (LLMs)
tend to predict biased predictions toward the labels that always appear in the context. However,
the similarity-guided method may prove inadequate when applied to other tasks. Specifically, the
similarity-guided strategy exhibits lower performance compared to random selection in QC and
acceptability tasks. Furthermore, the G-fair-Prompting approach may occasionally falter when the
model’s sensitivity to the task is not immediately evident, as observed in the acceptability task on
BLOOM (depicted in Fig. 4). Note that the training set size of compared methods is 4× larger than
ours.

• Comparison with Calibration Method. Post-calibration [18], can enhance the accuracy of a given
prompt in most cases. However, when the selected prompt is of poor quality, the performance may
remain inadequate even after calibration. We compared the performance of G-fair-Prompting with
random selection with calibration (averaged on all candidates), and found that G-fair-Prompting
can outperform random selection with calibration in most situations. For example, on the topic
classification task, G-fair-Prompting achieves the best performance on most models. Moreover, we
find that post calibration can harm the performance of the model and it occurs significantly times, so
it is worthwhile to reconsider the influence of manipulating the model’s probability directly.

Table 2: Accuracy comparison after post calibration.

Dataset Method BLOOM (176B) LLaMA (33B) LLaMA (65B)
Average Worst Average Worst Average Worst

TREC

Random (cal) 66.89.0 57.2 69.26.2 59.4 74.69.774.69.774.69.7 66.266.266.2

Ours 66.82.5 64.0 80.25.380.25.380.25.3 75.075.075.0 74.012.2 50.0
Ours (cal) 77.01.177.01.177.01.1 75.075.075.0 76.65.1 70.0 72.812.6 48.0

AGNews

Random (cal) 73.06.6 61.8 71.95.0 64.0 78.24.778.24.778.24.7 71.671.671.6

Ours 79.61.479.61.479.61.4 77.077.077.0 76.44.676.44.676.44.6 69.069.069.0 76.04.0 71.0
Ours (cal) 77.41.4 76.0 76.04.4 68.0 76.43.6 70.0

CoLA

Random (cal) 68.55.568.55.568.55.5 61.261.261.2 67.85.1 63.6 54.012.4 42.4

Ours 68.26.2 57.0 70.64.270.64.270.64.2 64.0 72.04.572.04.572.04.5 66.066.066.0
Ours (cal) 68.05.2 58.0 70.43.8 65.065.065.0 72.04.572.04.572.04.5 66.066.066.0

Post calibration [18] can improve the accuracy of a certain prompt (in most cases), but when
the selected prompt is very poor, the performance is still very poor even after calibration. We
conducted experiments (Table 2) to compare the performance of G-fair-Prompting and random
selection with calibration ("Average" and "Worst" indicate averaged accuracy and worst performance
on all permutations of training examples), and observed that G-fair-Prompting outperforms random
selection with calibration in most case. For instance, on the CoLA, G-fair-Prompting exhibited
superior performance on most models. Additionally, we find that post-calibration could negatively
affect the model’s performance in many scenarios while it sometimes can improve the performance
significantly even on selected prompts, for example, an improvement by 10% is observed on BLOOM-
TREC. For more detailed discussions, please refer to Appendix A.5. Hence, it is crucial to reconsider
the impact of directly manipulating the model’s probability.

6 Conclusion

In this paper, we revisit the sensitivity of large language model across prompts, and analyse the issue
from a predictive bias perspective. Accordingly, we employ a "content-free" strategy as a metric
termed as fairness to evaluate the predictive bias of a fixed prompt and show that model’s performance
is highly consistency with fairness. Then, we propose two strategy to search the most fair prompt
in the original space. We conduct extensive experiments on current famous LLMs, and validate the
effectiveness of the proposed strategy. Moreover, in addition to fairness adopted in this paper, there
would be more metrics for prompt searching in the future for different scenarios.
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A Appendix

A.1 Pretrained Large Language Models

Neural autoregressive language model (LMs) are designed for next token prediction to predict the
probability distribution over the next token after a sequence of tokens input, and pre-trained LMs show
their superior performance since they are trained on various programming languages and a large-scale
curated dataset. Training large natural LMs are very expansive and time-consuming process since
they always have billions of parameters, which limits the development of LMs. Fortunately, many
pre-trained LMs are open access or limited access, which promotes researchers to pool their time and
makes the resources to collectively achieve a higher impact. EleutherAI makes the GPT-J [22] and
GPT-Neox [23] public available on Hugging Face. GPT-3 [1] is limited access in OpenAI which can
be used by researchers for a fee, and another large open-science open-access multilingual language
model named Bloom [2] is provided by BigScience.

A.2 Open Access Models

Table 3: Pretrained language models
Model Params Provider Access

GPT-2 124 M Hugging Face OPEN
GPT-Medium 335 M Hugging Face OPEN
GPT2-Large 774 M Hugging Face OPEN
GPT-XL 1.5 B Hugging Face OPEN

GPT-3 (ada) 350 M OPENAI LIMITED
GPT-3 (babbage) 1.3 B OPENAI LIMITED
GPT-3 (curie) 6.7 B OPENAI LIMITED
GPT-3 (davinci) 175 B OPENAI LIMITED

GPT-J 6 B EleutherAI OPEN
GPT-NeoX 20 B EleutherAI OPEN

Bloom 176 B BigScience OPEN

LLaMA

7 B Meta OPEN
13 B Meta OPEN
33 B Meta OPEN
65 B Meta OPEN

A.3 Additional Figures on Different Settings

In additional to the Fig. 2, we shows the performance on different models for enumerating all
candidates, note that the shadow indicates the half value of standard deviation for clear presentation
since the variance is very high for LLMs.

A.4 Accuracy Varies with demonstrations

Accuracy Varies with Example Amount Demonstrations play an important role in imparting
task-related information to language models through in-context learning. Then, the question arises -
does a larger number of demonstrations necessarily equate to better performance? To answer this
question, we evaluated performance in terms of accuracy by gradually increasing the number of
demonstrations. We set ρ = Γ(x1, y1)⊕ · · · ⊕ Γ(xk, yk), where k = 1, · · · , n, and demonstrations
are erased with k decreasing from n to 1. Intuitively, accuracy would vary highly across different
numbers of demonstrations, and the phenomenon is observed in Fig. 6a. To our surprise, however,
erasing some demonstrations can result in a better performance. Removing some demonstrations can
perform better and sometimes GPT-3 achieves best accuracy when there is only a few demonstrations
remaining. This highlights the importance of considering the appropriate number of demonstrations.
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(a) AGNews (GPT2-XL 1.5B) (b) TREC (GPT2-XL 1.5B) (c) RTE (GPT2-XL 1.5B)

(d) AGNews (LLaMA 33B) (e) TREC (LLaMA 33B) (f) SST-2 (LLaMA 33B)

Figure 5: Accuracy is highly consistency with fairness and greedy search can find a good prompt,
where "Random" and "Oracle" indicates the average accuracy of all prompts and the upper-bound
performance according to fairness.

(a) Varying amount of examples (b) Permutation (c) Select different examples

Figure 6: ICL suffers from high instability due to variations in example amount, example order, and
example selection.

Example Order The performance of a model is sensitive to the order of the demonstrations, as
has been discussed in [4]. Even when the demonstrations are the same, different permutations of
the demonstrations can result in vastly different outcomes. As there are n! possible permutations,
we introducing a strategy of permuting the demonstrations by circularly shifting the index of the
demonstrations. The demonstration can be represented as ρ = Γ(xk+1, yk+1)⊕ · · · ⊕ Γ(xn, yn)⊕
Γ(x1, y1)⊕ · · · ⊕ Γ(xk, yk).As shown in Fig. 6b, the accuracy varies highly with permutation which
consistent with the observations in [4].

Example Selection In this paper, we find which demonstrations are selected is influence the model
extremely. This scenario can be described as selecting k demonstrations in n training samples. In
Fig. 6c, we only select one example for demonstration to ablate the impact of demonstrations order,
and the accuracy also varies highly with different example selected. In this work, we only detail
evaluate the proposed probing method on the erasing demonstrations and permutation, although our
method improves by 20% in the setting of example selection on SST-2 (GPT2-XL), because selecting
k demonstrations on a set with n training samples can’t be regarded as k−shot learning in the strict
sense.

A.5 Relationship between with- and without-calibration

• G-fair-Prompting without post-calibration outperforms random demonstrations after post-
calibration. Based on Table 1, it is apparent that G-fair-Prompting outperforms random selection prior
to post-calibration. This leads to a natural question: do prompts with better performance before cali-
bration also indicate better performance after calibration proposed by Zhao et al. [18]? To investigate
the relationship between performance with- and without-calibration, we calculated the Pearson cor-
relation coefficient between the accuracy with- and without-calibration Pearson(accw/o, accwith).
A positive coefficient value suggests that a prompt with high accuracy before calibration has a
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Table 4: Accuracy for different prompting strategies (averaged on 50,··· ,4 different seeds).

Model Dataset Random Diversity Similarity Ours
Top-2 Top-4 Greedy

GPT2-XL (1.5B)

SST-2 61.16.1 − − 60.811.4 65.88.7 74.212.0

AGNews 38.911.4 − − 45.212.5 37.211.2 46.411.9

TREC 22.15.7 − − 19.48.9 28.29.2 25.07.4

RTE 53.26.9 − − 54.07.5 53.65.9 56.42.2

LLaMA (7B)

AGNews 64.510.0 66.49.1 − 66.011.7 69.25.5 63.85.7

TREC 49.510.4 51.49.6 − 48.410.5 38.615.2 61.34.8

CoLA 60.410.6 63.88.7 − 58.27.8 61.66.5 36.43.6

LLaMA (13B)

AGNews 72.27.7 78.43.5 − 73.69.0 74.24.3 75.22.8

TREC 46.416.5 48.016.0 − 51.016.6 39.223.3 61.412.1

CoLA 67.72.9 67.22.4 − 67.02.0 67.21.6 67.02.0

Figure 7: Illustration of accuracy relationship between with- and without calibration when Pearson(·)
is positive.

higher likelihood of achieving higher accuracy after calibration than other prompts. We take the
topic classification task on LLaMA(65B) for illustration to show the relationship between with- and
without calibration when Pearson is positive in Fig.7. Table 5 presents the Pearson correlation coef-
ficient on accuracy of permutation and G-fair-Prompting after calibration. The majority of Pearson
correlation coefficients were found to be positive, indicating that prompts with better performance
before calibration have more potential to perform well after calibration. Furthermore, our results on
the LLaMA family reveal that the larger the model, the stronger the correlation between performance
with- and without-calibration. For instance, the value of the Pearson correlation coefficient increases
from 0 to 0.7 as the model size increases.
Theorem A.1. Suppose the performance of the model under certain prompts with- and without-
calibration is positively correlated, i.e., Pearson(accw/o, accwith) > 0, if we can assure
E(accSelected

w/o ) > E(accRandom
w/o ), then we have E(accSelected

with ) > E(accRandom
with ).

Table 5: Pearson’s r between the with- and without-calibration.

Dataset BLOOM LLaMA
176B 7B 13B 33B 65B

TREC 0.1274 0.1551 0.2959 0.3090 0.5151
AGNews 0.3875 −0.0471 0.3044 0.6953 0.7100

CoLA 0.4050 0.3592 0.5193 0.3611 0.8012

As analysed in Theorem A.1, if we can find a prompt with high accuracy before calibration, we have a
higher likelihood of achieving higher accuracy after calibration than random selection. Our approach
consistently identifies an appropriate prompt, as evidenced by the results in Table 1. Moreover, the

14



performance of the model exhibits a positive correlation with and without calibration under certain
prompts, as illustrated in Table 5. Therefore, our method is more likely to enhance calibration
performance.

A.6 Diversity and Similarity

Diversity indicates the demonstrations are selected according to the diversity of the embeddings of
all samples [12]. Specifically, we select the 4 most diverse samples as demonstrations by k-means
clustering on training set consists of 16 samples.

Similarity indicates the demonstrations are selected according to the similarity of the embeddings
of all samples [15]. Specifically, we select the 4 most similar samples as demonstrations according
to Euclidean distance from the training set consists of 16 samples. Note that demonstrations for
different test samples are different for best performance. A larger training set may result in a better
performance, but we set the size of training set as 16 for a fair comparison.

Figure 8: Illustration for Diversity and Similarity.

A.7 Details for experiments

In Fig. 1, we show the high instability due to high variations in demonstrations selection and
order for both with- and without-calibration [18]. Specifically, for left two figures, we sample 4
different demonstrations randomly from dataset AGNews, and estimate the influence of demonstration
selection. On the other hand, the right two figures show the instable performance due to permutation
when the demonstrations are fixed. Specifically, we randomly sample 4 demonstrations and estimate
the performance with all possible orders.

A.8 Complexity of different strategies

Figure 9: Computational cost. T-fair and G-fair indicate T-fair-Prompting and G-fair-Prompting
respectively, and "w/c" indicates the worst case.
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A.9 Limitations.

While the proposed strategy does not require modification of the original inference process of the
Language Model (LM), it still necessitates the logits or probabilities of the next token. As a result, it
may be necessary to approximate the probabilities in some completely black-box LM services, such
as GPT-4.
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B Clarifications After Rebuttal

Q: Computational cost of using G-fair Prompting becomes non-trivial as N goes larger.

(1) We acknowledge the concern regarding the computational cost of G-fair Prompting as N increases.
However, we would like to emphasize that the worst-case computation cost of 1/2 ∗ N2 is not a
common scenario. In practice, only a few demonstrations are required. For example, in GPT-4
Technical Report [24], the number of demonstrations is fixed at 5. As a result, the overall computation
cost remains acceptable, especially when compared to other existing methods [15] among the typical
methods detailed in the related work.

(2) Moreover, our method does not require re-selection of demonstrations for different test samples.
Consequently, the inference cost for selecting demonstrations is minimized, particularly when dealing
with a larger number of test samples.

(3) In the worst-case scenario, even with an infinitely large training set, our model can efficiently
perform Greedy search on a subset, consistently outperforming random demonstration. The additional
computational cost depends on the size of the search space that users want to explore.

(4) In contrary, the naive strategy, i.e., enumerating all possible situations, has an exponential time
complexity of O(n!). The smaller training set used in our experiments is due to considering the
computational cost of the comparative methods in the report, rather than any limitations of the
proposed method.

Q: One can think of even better algorithm that can show benchmark performance that provides upper
bound against G-Prompting.

(1) The proposed simple version T-fair-prompting serves as a time-efficient alternative of G-fair-
prompting, while still maintaining competitive performance.

(2) Compared with T-fair-prompting, G-fair-prompting offers the advantage of automatically deter-
mining the number of demonstrations, providing a more natural and flexible approach.

(3) Therefore, a tradeoff between performance and time cost can be achieved by transitioning between
T-fair-prompting and G-fair-prompting. Specifically, we can select the demonstrations order as same
as T-fair-prompting and then decide the number of demonstrations by the strategy of G-fair-prompting.
The computation cost upper bound of this strategy will be the lower bound of G-fair-prompting while
its fairness lower bound will be the upper bound of T-fair-prompting.

Q: Under the proposed problem formulation, there will be a natural extension to test both different
choices of few-shot examples and all possible ordering of them.

(1) As shown in Fig.2, we have tested different choices of few-shot examples (e.g., [x1, x2]/[x3, x4])
and all possible orderings of them (e.g., [x1, x2, x4]/[x2, x4, x4]). In total, 64 different possible
situations were considered when the training set size was 4.

(2) Notably, G-fair-Prompting performs remarkably close to the best performance obtained through
enumeration, highlighting the efficacy of our proposed method.

Q: How to choose the semantic-free token without any guidance?

(1) Following previous work [18], three different semantic-free prompts are selected, i.e., [‘N/A’, ‘’, ‘
’]. The fairness is then calculated as the average of them.

(2) These tokens were chosen based on their guaranteed performance in previous work [18]. We will
provide further clarification on this selection in the final version of our paper.

Q: Would be the proposed method helpful for long-form QA?

While the current version of our method is designed for classification tasks, we acknowledge the
potential for its extension to long-form QA scenarios.

(1) The limitation preventing direct deployment in generation tasks lies in the absence of an appropri-
ate method to measure the fairness of sentence-level generation.

(2) Similarly, for measuring the calibration of large language models, such as ECE, it can only be
calculated for classification tasks [24].
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(3) However, we believe that once the community develops techniques to measure the predictive bias
of sentences, our proposed strategies can be naturally extended to long sentence generation tasks.
This presents an exciting avenue for future research.

Q: What does “total cost” in table “Dataset descriptions” refer to?

Table 6: Dataset descriptions.

Corpus Task Classes Domain Total Cost1

SST-2 sentiment 2 movie reviews over 60 GPU hours
TREC QA/QC 6 open domain over 220 GPU hours

AGNews topic 4 news over 250 GPU hours
CoLA acceptability 2 misc. over 160 GPU hours
RTE2 NLI 2 news, Wikipedia over 110 GPU hours

1 Total Cost=Hours×GPUs. Hardware: BLOOM=A100, LLaMA=V100.
2 Not applicable to LLaMA because of the maximum prompt token limit.

(1) “Total cost” indicates the overall computational cost on each dataset including baselines and the
proposed methods.

(2) We report the total computational cost on each dataset to provide a more comprehensive description
of the datasets used in this paper. We will clarify this in the final version.

Q: The diversity baseline seems similarly competitive to the proposed approach.

Regarding performance, we would like to clarify the following points:

(1) Our method consistently outperforms the diversity baseline across various scales of the LLaMA
family datasets.

(2) The similarity in performance between the diversity method and our method on the Bloom model
is attributed to the Bloom model’s robustness to the transformations of the demonstration. Even
random demonstrations can achieve competitive performance with the Bloom model.

(3) It is essential to note that the baselines, including the diversity method, are the latest methods
proposed shortly before submitting this paper. They have demonstrated robust performance on
multiple tasks.

Q: Could the authors compare using a strategy such as the proposed one with a large language model
vs. fine-tuning with a smaller model?

** Note that although the former strategy requires iterating over the entire dataset, the latter strategy
only requires performing inference. It does not incur any space cost for storing gradients nor time
cost for updating gradients, making this process highly efficient.

We would like to clarify the advantages of utilizing a large language model and comparing it with
fine-tuning a smaller model:

(1) Generalization ability of large models: Large language models (LLMs) accumulate significant
prior knowledge during pre-training, resulting in better generalization abilities compared to small
models fine-tuned for specific tasks. Even if the performance of a large model is not significantly
better than that of a dedicated small model on a specific task, the robustness of the large model in
open environments, such as out-of-distribution (OOD) scenarios, is significantly superior to that of a
dedicated small model [24].

(2) Multiple tasks: A single large model can perform multiple tasks simultaneously. Compared to
fine-tuning a small model for each task, a large model can seamlessly switch between various tasks
and effortlessly incorporate new tasks.

(3) Time efficiency: Many open-source large models, such as LLaMA, do not require modifications
when encountering new tasks. Even equipped by the methods including baselines in this paper, only
a few additional inferences are necessary, without any updates to the model or backpropagation of
gradients.

Q: Explanation about the text in lines 293-296 and 300.
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(1) Line 293-296 Explanation:

The sentence mentioned in lines 293-296 analyzes why the similarity-guided method achieved the
best performance on the topic classification task (AGNews). This method selects unique prompts for
different test examples based on the distance metric. Consequently, it chooses demonstrations with
labels that are the same as the test samples. Large Language Models (LLMs) tend to predict biased
outcomes towards the labels that frequently appear in the context of demonstrations . As a result,
the similarity-guided method excels on the topic classification task but may perform poorly on other
tasks, such as natural language inference.

(2) Line 300 Explanation:

The Bloom model exhibits high robustness to various demonstrations, even random ones, leading to
similar performance results between our method and the compared method. It can be observed that
the Bloom model’s performance remains competitive regardless of the selected demonstrations.

Q: Discussion about limitations.

Due to space limitations, our discussion on limitations is included in Appendix (A.9 Limitations).
While the proposed strategy does not require modification of the original inference process of the
Language Model (LM), it still necessitates the logits or probabilities of the next token. As a result, it
may be necessary to approximate the probabilities in some completely black-box LM services, such
as GPT-4.

Q: Figure 2 shows a non-monotonic trend between the bias and predictive quality.

According to Figure 2, the relationship between predictive bias and predictive quality is not strictly
monotonic. Instead, the overall trend shows a significant negative correlation. To avoid any misunder-
standings, we will use clearer descriptions in the final version of the paper.

Q: The term fairness is slightly misleading.

The fairness defined in our work is defined from the concept of predictive bias, which may not align
precisely with the fairness, such as social bias, that is commonly referred to. It is important to note
the distinction between fairness in the context of predictive bias and fairness in the context of social
bias. Moreover, we highlight that the proposed metric can be extended to analyze social bias, as
social bias can also lead to predictive bias [24].

Q: Contribution and difference from [18].

Our paper shares a similar metric with calibration-before-use [18] to access the predictive bias of a
given prompt. However, the differences are significant and listed as follows:

(1) The prior approach aims to use the metric for calibrating the output, which can still be influenced
by the quality of the used prompt, as evidenced by Table 3.

(2) In contrast, our research focuses on finding a near-optimal prompt on the original space to improve
the model’s performance, eliminating the need for any post-adjustment to the output.

(3) Additionally, our paper introduces an empirical validation of the connection between predictive
bias and final task performance, as depicted in Fig. 2, which is not explored in [24].

(4) The main contribution of our work lies in analyzing the relationship between predictive bias and
performance through extensive experiments, and proposing a Greedy research strategy to solve the
NP-hard problem.

(5) Our experiments have revealed that even without calibration, the prompt selected by our method
outperforms randomly selected prompts, even with calibration.

(6) Moreover, we have observed that [24] can potentially harm the model’s performance, which is a
practical concern worth considering when manipulating the model’s probability directly.

Q: How sensitive are these strategies to the choice of hyperparameters?

In this paper, we reduce the influence of hyperparameters by minimizing the need for manual
hyperparameter tuning.
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(1) In G-fair-prompting, the number of demonstrations is automatically determined, indicating that
no new demonstrations are added once it is determined that adding more demonstrations does not
lead to improvement.

(2) As for the threshold for fairness improvement, we fix it with 0, indicating that new demonstrations
are added to the prompt if they are deemed helpful.

(3) While these two aspects could be manually adjusted to make the method more flexible. To ensure
the stability of the experimental results, we avoid deliberately setting these hyperparameters.
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