
Published at Building Trust Workshop at ICLR 2025

DIAGNOSTIC UNCERTAINTY: TEACHING LANGUAGE
MODELS TO DESCRIBE OPEN-ENDED UNCERTAINTY

Brian Sui∗, Jessy Lin∗, Michelle Li∗, Anca Dragan, Dan Klein, Jacob Steinhardt
University of California, Berkeley
{brian.sui, jessy lin, michelle li}@berkeley.edu

ABSTRACT

Language models (LMs) often hallucinate. While uncertainty measures like calibra-
tion scores provide coarse measures of model uncertainty (e.g. “This proof is 40%
likely to be correct”), ideally a model could tell us what it’s uncertain about, such
as “I don’t know how to find the length of side AB,” enabling people to understand
exactly where to trust a model response. We propose diagnostic uncertainty:
open-ended descriptions of uncertainty that are grounded in model behavior. Our
key idea is that a model can be said to be uncertain about X (e.g., “how to find the
length of side AB”) if its responses significantly improve after being told X , and
X is earliest in its reasoning process. We implement a method to bootstrap models’
ability to generate these diagnostic uncertainty descriptions by iteratively training
on sampled descriptions that satisfy these criteria. To evaluate whether diagnostic
descriptions are meaningful, we provide the model with the information it claims
to be uncertain about and measure whether its performance improves. Compared
to the descriptions generated by prompting alone, resolving diagnostic uncertainty
descriptions leads to 8% higher accuracy and 20% more reduction in entropy of
the answer distribution, supporting the hypothesis that diagnostic uncertainty is
more faithful to the model’s underlying uncertainty. The main contribution of our
work is a framework for operationalizing open-ended uncertainty in LMs, enabling
richer ways for people to understand LM behavior beyond raw probabilities.

1 INTRODUCTION

Language models (LMs) are becoming increasingly popular tools and real-world assistants, so it
is crucial that users know when to trust their outputs. There are a myriad of possible sources of
uncertainty, whether they are facts about the world that are constantly being updated or simply
weren’t in the training data, technical concepts that are tricky to implement perfectly, or ambiguity in
a problem specification. Even when augmented to use external sources or tools, there will always be
things LMs do not know. Whenever this is true, we would like LMs to express their uncertainty, but
unfortunately, language models often hallucinate or confidently output false statements, so they must
be trained to express uncertainty.

One approach is to train models to qualify their answers with confidences like “I’m 70% confident
that...”. While linguistic confidences provide a useful score of how much a model’s answer can
be trusted, probabilities are not a natural way for end users to understand uncertainty, especially
in long-form generations or open-ended domains such as coding where it would be impractical to
quantify the confidence at every step.

Ideally, we want models to express not only how much they’re uncertain in a response, but what or why
they’re uncertain, e.g. “I’m not sure how to implement the boundary condition for the algorithm,” or
“I don’t remember exactly whether the date was 1890 or 1990.” Practically, this kind of open-ended
uncertainty would allow end users to understand exactly when to trust model responses, enabling
models and humans to collaborate to answer increasingly difficult questions where neither has the
answer. This kind of uncertainty is also reminiscent of the introspective process that humans engage
in when learning or solving problems: thinking about one’s own thinking, or metacognition (Flavell,
1976), is an important feature of reasoning. In contrast to verbalized calibration scores, open-ended
uncertainty can enable richer ways to understand and improve models.

1

Published at Building Trust Workshop at ICLR 2025

Calibration-Based Uncertainty

Diagnostic Uncertainty

One step where I was most uncertain was during
the identification of which configuration of
the isosceles triangle with sides 10 inches and
20 inches was valid and applicable for the
problem. How can I definitively confirm which
configuration of the triangle (10-10-20 or
20-20-10) is valid based on the triangle
inequality theorem?

Confidence: 60% / Medium

Question: Two sides of an isosceles triangle are 10 inches
and 20 inches. If the shortest side of a similar triangle is 50
inches, what is the perimeter of the larger triangle?

Model: To solve the problem, we first identify the sides of the
original isosceles triangle. The triangle has two sides of length 10
inches (the equal sides) and one side of length 20 inches.

...

Answer: 200 Incorrect: True answer “250”

Figure 1: Our goal is to enable people to understand
what an LM is uncertain about, beyond calibration
scores that only communicate the likelihood a re-
sponse is wrong. In contrast, we propose diagnos-
tic uncertainty: a way to train LMs to output open-
ended uncertainty descriptions—identifying ambigu-
ous questions, knowledge gaps, and reasoning errors
in a unified way. The figure above shows a diagnos-
tic uncertainty generated by our trained model on a
MATH example, where it identifies that it may have
chosen the configuration of the triangle incorrectly.

How can we extract models’ open-ended uncertainties? We can’t simply ask models what they’re
uncertain about and trust that their responses are faithful to their true uncertainty because the standard
training methods for language models do not incentivize faithfulness by default. We could try to train
models to report their uncertainties, via supervised fine-tuning, but it is unclear how to get labels
for what models are actually uncertain about. And certainly, we do not want models to imitate what
human annotators are uncertain about, as this may be different from what the model is uncertain
about.

In this work, we propose diagnostic uncertainty: a way to operationalize open-ended uncertainty
grounded in model behavior. Our key idea is that a model can be said to be uncertain about X if
knowing X would improve its responses. For example, a model should only say it’s uncertain about
X = “how to find the length of side AB” if its current solution is incorrect and it is able to correct
it after being told how to find side AB. Additionally, we want descriptions of the root uncertainty:
a model should not say it’s uncertain about X = A+B if knowing A alone would be sufficient to
correct its solution.

We introduce a method that searches for diagnostic uncertainties via iterative filtering and fine-tuning.
We sample an initial set of possible uncertainties from the model, filter for the ones that, when resolved,
improve model performance, and fine-tune the model to produce those filtered uncertainties. We
iterate this process to bootstrap the model’s ability to express its own uncertainty in a self-supervised
way.

Our method works with any sort of uncertainty so long as there is a way to measure task performance,
whether this is a ground truth answer, solution, or reward model for an open-ended problem.

We test our method on Hendrycks MATH (math reasoning; Hendrycks et al. (2021)), finetuning
gpt-4o-mini to produce diagnostic uncertainty descriptions. To evaluate whether uncertainty
descriptions are better than those generated with prompting alone, we resolve the model’s uncertainty
by telling it what it doesn’t know (using another model with access to the solution), and measure:
(1) does the entropy of the answer distribution decrease? (2) does the accuracy increase? Compared
to prompting the model to report its uncertainty, diagnostic uncertainty decreases the entropy of the
answer distribution by 20% more and accuracy increases by 8% relative to prompting, supporting
our hypothesis that diagnostic uncertainty is more faithful to the model’s underlying uncertainty.
Qualitatively, we show that diagnostic uncertainty indeed enables a richer way to diagnose model
errors: we identify hallucinated facts, incorrect reasoning steps, and ambiguities in the dataset
question in a unified way.

2 RELATED WORK

Uncertainty Estimation for LMs. Existing work on uncertainty in LMs has largely focused on
calibration of short form answers using token probabilities, ensembling across multiple samples, or
verbalized confidences that directly prompt the LM to output its uncertainty in words (Mielke et al.,
2022; Kadavath et al., 2022; Lin et al., 2022; Farquhar et al., 2024; Xiong et al., 2024). LMs have
been found to have internal representations of their errors (Burns et al., 2022; Orgad et al., 2024;

2

Published at Building Trust Workshop at ICLR 2025

Figure 2: Conceptual Framework. To formalize which uncertainty descriptions we want the model to
output, we can think of the process of solving a problem as a graph, where each node in the graph is a
decision point or computational step. In this example, to determine the number of digits in the product,
one node in the graph is to determine the solution approach (sum logarithms, multiply the largest 3-
digit and 4-digit numbers, etc.); once an approach is selected, another node is to compute a particular
value for the solution. Uncertainty or errors early on in solving a problem affect downstream nodes: if
the model can’t reliably determine log10(9999), it also can’t determine log10(9999) + log10(999).
In our framework, we would like the model to describe the first (“root”) node where intervening on
that node makes the model’s solutions significantly more correct (“critical”). Note that the graph is
simply a conceptual tool to motivate what open-ended descriptions we would like to output—it is not
explicitly generated by our method.

Simhi et al., 2024; Ferrando et al., 2024), and they are surprisingly calibrated even with prompting
alone (Tian et al., 2023). However, these outputs may be influenced by spurious correlations to
expressions of uncertainty in pretraining data (Zhou et al., 2023). Recent works extend this to
the long-form generation case by decomposing long generations into atomic claims (Band et al.,
2024; Jiang et al., 2024), or aggregating across many samples (Manakul et al., 2023). We build on
prior techniques such as sample aggregation, but aim to produce natural language descriptions of
uncertainty for long-form outputs, rather than confidence scores.

Another body of work studies how to enable LMs to identify uncertainty about user queries rather
than internal knowledge, training models to generate clarification questions when queries are am-
biguous (Rao & Daumé III, 2018; Andukuri et al., 2024; Chi et al., 2024). Rather than handling
query ambiguity separately, we propose a unified way to identify when models are uncertain about
the question, specific facts, or reasoning steps.

Reasoning and Metacognition. Metacognition, or awareness of one’s own thought processes, is an
important part of reasoning and learning in humans (Flavell, 1976). Some work studies metacognitive
abilities in LMs, e.g. to determine which skills they use on a task (Didolkar et al., 2024), predict
what they will output (Binder et al., 2024), or why they make classification decisions (Sherburn
et al., 2024); we focus on improving LMs’ ability to express their own uncertainty. While our work
does not test whether whether our outputs represent true introspection or metacognition in LMs, our
framework provides one way to ground these ideas in concrete model behavior.

Recent reasoning models output reflections of their own thinking when they are trained to output
chains of thought that reach the correct answer (Zelikman et al., 2022; OpenAI, 2024; DeepSeek-AI
et al., 2025). Some of these chains of thought emergently express and reason through uncertainty in
the course of solving a problem. However, it is unclear whether the uncertainty described in these
chains of thought are faithful to the model’s actual uncertainty, or just serve to lead the model to the
right answer for uninterpretable reasons (Turpin et al., 2023; Lanham et al., 2023). Our work trains
these open-ended uncertainty descriptions to be interpretable and grounded in model behavior. Our
goal is not to generate descriptions that make model outputs more correct, but to use descriptions to
inform human users where they can trust a model’s response (Zhou et al., 2024).

3

Published at Building Trust Workshop at ICLR 2025

Model Interpretability. Our method can be viewed as a tool for model interpretability, searching
over natural language descriptions that describe knowledge a model is missing when answering a
question. Current methods use natural language descriptions as a rich way to label neurons (Hernandez
et al., 2022; Bills et al., 2023), elicit harmful behaviors (Li et al., 2024), or identify error patterns
in model outputs (Zhong et al., 2023). Like our method, these approaches often leverage LMs
themselves to enable the generation and validation of richer, open-ended descriptions (Singh et al.,
2024).

3 FORMULATION

Our goal is to generate open-ended natural language descriptions of model uncertainty on a particular
task, which can include:

• which step of a problem is likely to be incorrect: “I’m not sure what 1578 * 979 is”

• “why” responses might be incorrect: “I’m unsure about how to incorporate the boundary
condition”

• what the uncertainty is between: “I’m not sure whether the date is 1980 or 1990”

• ambiguity: “I’m not sure whether you’re asking for the name of the chemical, or the name
of its solvent”

While LMs can be prompted to superficially generate these descriptions zero-shot, they are not useful
unless they meaningfully represent the model’s uncertainty or some property of its responses. In
this section, we describe diagnostic uncertainty, one way of operationalizing natural language
descriptions of model uncertainty.

3.1 CONCEPTUAL FRAMEWORK

To motivate what open-ended uncertainty descriptions are meaningful, we introduce an intuitive
conceptual framework based on computational graphs. Consider the process of solving a problem
p as traversing a directed graph G = (V,E) where the final node is the model’s answer a and
each intermediate node v ∈ V represents a decision point or computational step. These nodes can
represent planning decisions like “decide which algorithm to apply”, interpretation steps like
“translate ‘twice the difference’ into an equation”, or concrete claims and computations
like “determine the square footage of La Norte Mall.” We depict this in Figure 2.

One can have a belief distribution about the value of each node, i.e., the correct output of that compu-
tation. In this view, models not only have a distribution over answers (calibration-based uncertainty;
uncertainty about the value of the final answer node a), but also nodes that represent higher-level ab-
stract reasoning steps. This allows us to express the search space of potential uncertainty descriptions:
all possible nodes, in all possible solution graphs.

Importantly, each node’s value influences downstream values and the structure of what computations
to do later in the graph. If we enumerated all the possible decision points, nodes that the model is
highly uncertain about would have large branching factors in structure and values downstream graph.
If a model is uncertain about how to interpret the question “What is twice the difference between 12
and 5?” it will also be uncertain about how to write down the equation, the value of the evaluated
expression, and the final answer.

Instantiating the space of graphs explicitly would be intractable, but this framework helps us char-
acterize the description we’d like models to output. Intuitively, the first property we want is to find
nodes where uncertainty at that node explains the uncertainty in the model’s final response. If we
intervened by revealing the value of node v, how much does the model’s accuracy at the final output
improve? This rules out nodes where the model is certain and nodes with “irrelevant” uncertainty
(e.g., about surface forms)—both of these have no causal effect on improving the final response.

Expressing uncertainty about the final answer node trivially satisfies the first property, but these
descriptions are not as informative. Ideally, we should incentivize models to output precise uncertainty,
or the most upstream node that accounts for the uncertainty in the response—“I’m unsure how to
interpret the question,” rather than “I’m unsure about the final answer.”

4

Published at Building Trust Workshop at ICLR 2025

Sample
responses

Simulate: “How will resolving this
uncertainty improve my response?”

Select root uncertainty
with question ordering

Resolve uncertainty with
teacher model

Reattempt solution

Sample uncertainty
descriptions

I’m not sure if the area...

What is the area when...?

I’m not sure how to solve...

When I determine X, how...?

I’m not sure if the side is AB
or BA. Which convention...?

The area is...

To determine X, ...

You can use convention...

A

A

B

B
x

... Train

Figure 3: Overview of our method. First we sample n chain-of-thought responses from the model M ,
and then we show all samples to M and sample k descriptions of its uncertainty. For each candidate
uncertainty description, we ask a teacher model with access to the solution for the information that
would resolve the uncertainty. We then prompt M to edit each of its initial n attempts given the
teacher’s response. We filter for the uncertainties which, when resolved, significantly improve M ’s
performance (“critical” uncertainty). Finally, we order each uncertainty and select the earliest ones
to add to a training set (“root” uncertainty). The training set is used for supervised fine-tuning to
reinforce M generating diagnostic uncertainties.

Formally, we define an uncertainty at node v as diagnostic if it is both:

Critical: Providing the value of v sufficiently determines the downstream computation to solve the
problem correctly

Root: No ancestor node u of v satisfies the critical property

In the next section, we propose a practical method to select for critical and root uncertainty.

We have described a setup where resolving uncertainty at a single node is sufficient for correctness,
these definitions can be generalized to sets of uncertainties in instances where e.g. there are multiple
challenging steps in a long-horizon task that have to be resolved one-by-one. Additionally, we limit
our focus in this paper to resolving uncertainty makes the model’s answers more correct under a
ground-truth metric like exact match. More generally, critical nodes v can be defined as those where
fixing the value of v improves the model’s response, e.g. under a reward model.

4 METHOD

Our goal is to train a model M to reliably output diagnostic uncertainty descriptions for any given
question it is asked. Our graph-theoretic framework provides a precise definition of what kinds
of descriptions we would like the model to output, but implementing it directly would require
enumerating all possible solution paths and uncertainties. Instead, we approximate the search for
diagnostic uncertainty descriptions by sampling from the LM itself.

We assume that we have a dataset D of questions and answers to train model M to output its
uncertainty. We first sample n = 20 chain-of-thought attempts from M . Then we prompt M to
generate k = 5 uncertainty descriptions given the problem and its n attempts by asking “Given this
problem and your sampled responses, what are you most uncertain about?” Without training M to
output diagnostic uncertainty descriptions, we expect that some of the k sampled descriptions will
be spurious (e.g. unnecessarily hedging on a fact M is already certain about), or no samples will
identify M ’s root uncertainty (and instead only identify uncertainties about downstream facts). To
address this, we filter the sampled descriptions for those that are critical and root, train the model to
output these diagnostic uncertainties, and then iterate this process several times to bootstrap more
training data. On each iteration i, we use Mi−1, M finetuned on all diagnostic descriptions that we
discovered at the previous iterations 1, ..., i − 1, to generate k = 5 new candidates. This iterative
process bootstraps the model’s ability to generate better uncertainty descriptions. We describe this
process in more detail below.

5

Published at Building Trust Workshop at ICLR 2025

Critical Uncertainty: Teacher Model First, out of the sampled uncertainty descriptions, we filter
for critical uncertainty. To do so, we prompt M to formulate its uncertainty into a question that would
resolve its uncertainty, and then answer the question with a “teacher” gpt-4o model with access to the
problem solution. For example, if the model is uncertain about interpreting “twice the difference,” the
teacher would use the solution to clarify “In this context, ’twice the difference’ means you should first
subtract the numbers, then multiply by 2.” For each (uncertainty+query, answer) pair, we prompt M
to edit each of its n original responses independently, given this new information after resolving the
uncertainty it asked about. An uncertainty is considered critical if M is able to improve its accuracy
on the problem after editing. We evaluate whether the improvement is statistically significant with
the exact sign test with significance threshold α = 0.05.

Root Uncertainty: Pairwise Comparison Out of the descriptions that are critical, we then identify
which uncertainties are root. To do so, we train a pairwise ordering judge J that determines for two
uncertainties A and B which question is “upstream” – i.e., whether A strictly needs to be answered
first, B strictly needs to be answered first, or neither, e.g. in the case where A and B are incomparable
steps in different solution approaches. Our goal is to use the judge to select for examples where the
model expresses more specific uncertainty when possible. For example:

Problem: For how many two-digit prime numbers is the sum of its digits 8?
A: How can I definitively determine if a number is prime or not?
B: What are the prime numbers among the two-digit numbers that can be formed
from digit pairs where the sum of the digits equals 8?
ANSWER: A

In the example above A is upstream since a knowing how to determine if numbers are prime in
general is necessary to find a set of prime numbers with a specific condition.

We train the judge on a small hand-labeled dataset to distinguish very specific queries from obvious
“giveaway” queries that simply ask for the answer. For each of d problems in the dataset, we generate
k′ = 20 possible uncertainty queries and identify queries that are either S=Specific or G=Giveaways.
Some queries may be neither; we only label the clear ones. We then construct the judge dataset as
follows:

• ∀s1, s2 ∈ S : ((s1, s2),−), ((s2, s1),−)

• ∀s ∈ S, g ∈ G : ((s, g), A), ((g, s), B)

• ∀g1, g2 ∈ G : ((g1, g2),−), ((g2, g1),−)

where a label of A means the former query was upstream, B means the latter, and − means neither.

If there are any inconsistencies in the judge’s output, e.g. if there is a cycle among a set of queries,
we consider all those queries equally upstream. The judge model achieves 75% accuracy at this task
on a held-out validation set.

Out of the critical uncertainty descriptions, we order all the descriptions with the judge to determine
a set of questions that are upstream in the graph compared to the rest of the questions, and add this to
the training set. This process approximates the search for root uncertainty by selecting for uncertainty
that is most upstream out of the sample set.

Iterative Training Finally, we train M to output the uncertainty descriptions that are both critical
and root, where each training example consists of:

<problem>
<n sampled attempts from M>
What are you most uncertain about?
< uncertainty: 'I'm unsure what the name of...'>
< query: 'What is the name of...?'>

We avoid reinforcing the tokens of the sampled attempts and only train M with a loss on the tokens
of the uncertainty description and query.

6

Published at Building Trust Workshop at ICLR 2025

On each iteration, we add the selected uncertainties and queries to the training dataset and train from
the base model (rather than the fine-tuned M from the previous iteration). On the next iteration, we
sample candidate uncertainty description from the finetuned model. We repeat this process for several
iterations until the number of new examples plateaus. We choose to retrain from the base model
on each iteration because we found that fine-tuning models from previous iterations was prone to
overfitting.

At a high level, our method has similarities to hallucination detection methods that work by aggregat-
ing many samples (Farquhar et al., 2024), but in our case the model aggregates its own samples to
determine an open-ended description of its uncertainty. By selecting for critical and root uncertainty,
we ensure that these descriptions are actually important to solving the problem, rather than spurious
or superficial differences between the samples (such as different ways to format the answer).

5 EXPERIMENTS

We run our experiments on Hendrycks MATH, using gpt-4o-mini as the base model that we train to
express uncertainty.

We focus on investigating whether the model can generate good uncertainty descriptions on problems
where it is incorrect, using a dataset of 1220 examples where gpt-4o-mini’s base empirical accuracy
(out of 20 samples) is between 20% and 75% (885 train, 335 validation). Our goal is to produce open-
ended uncertainty descriptions that are more meaningful to human users. However, to automatically
evaluate whether these descriptions are more meaningful than those generated by zero-shot prompting,
we measure several proxy metrics:

• Edit Accuracy: accurately identifying the part of the solution it’s uncertain about should
enable the model to improve its response after it resolves the uncertainty with the teacher
model. We measure the model’s accuracy after asking questions generated by our finetuned
model, relative to questions generated by the baselines.

• Entropy Reduction: accurately identifying the part of the solution it’s uncertain about
should enable the model to reduce the entropy in its answer distribution after it resolves the
uncertainty. We measure the difference between the model’s answer distribution entropy
before and after asking the question, relative to questions generated by the baselines.

We compare against three baselines, (1) just ask (no samples), (2) just ask (with samples),
and (3) edit without teacher. For (1) and (2), we prompt the model to generate a query to the
teacher and do not fine-tune, simply taking the out-of-the-box results. In (1), the model only sees the
overall question; in (2) it is additionally given n = 20 of its own samples to generate a better query.
For (3), we prompt the model for an uncertainty, allow it to edit its response given the uncertainty,
but forgo the teacher response and the iterative bootstrapping.

For all experiments and methods, we evaluate the question generated by greedy decoding from the
model. Following OpenAI’s simple-evals evaluation harness, we grade answers by comparing the
model response to the ground-truth answer with gpt-4o-mini to allow equivalent answers (grading
1.5 as correct if the true answer is 3

2).

For our final model, we ran two iterations of training on successful questions to create model M ,
and compared its performance to four baselines. The results are in figure Figure 4. The model gets
the highest accuracy when given samples to generate questions from, and our model gets 5% higher
accuracy on validation after training.

5.1 ENTROPY REDUCTION

In order to analyze the entropy of the answer distribution, we merge sampled answers into groups
of equivalent responses. Since equivalent responses may be presented in various different forms, a
request is made to gpt-4o-mini determine if each pair of responses is equivalent or not, in the same
manner that responses are graded. We compute the average cross-entropy, per problem, across the
model’s answers before and after editing, using log base 2. We then take the difference to measure
entropy reduction.

7

Published at Building Trust Workshop at ICLR 2025

Figure 4: The final accuracy of the model on problems on different settings. “Base Task Accuracy” is
the model’s accuracy on attempting the problems with no chance to edit. “Zero-shot, question only,”
“Zero-shot, 20 samples,”, and “Self-Critique (no teacher answer)” correspond to baselines (1), (2),
and (3), respectively. “Ours” refers to our fine-tuned model M .

Figure 5: The difference in entropy before
and after editing. “Zero-shot, 20 samples”
baseline (2), and “Ours” is when model M
asks questions.

Figure 6: Accuracy on problems after edit-
ing. “Zero-shot, question only” is baseline
(1). “Ours” is a our trained model M ′.

8

Published at Building Trust Workshop at ICLR 2025

As seen in figure Figure 5, our model model has about 21% more entropy reduction on held out
validation compared to a model without training. Moreover, editing in general can greatly decrease
entropy due to hints that make more consistent decisions.

5.2 DISTILLATION

In practice, generating 20 samples to determine uncertainty may be impractical in settings where the
time to do so is significant. We investigated the setting of baseline (1) to see if the model is able to
diagnose its uncertainty on problems without viewing its own samples. We will refer to this setting as
the distilled setting.

To consider how fine-tuning can be used to improve questions in the distilled setting, we trained a
model M ′, and evaluated it in the distilled context. M ′ is fine-tuned from the same model as M ,
gpt-4o-mini. To prepare it for the distilled context, the training examples for M were modified to
no longer have sample solutions, mimicking the distilled context. Then, gpt-4o-mini was fine-tuned
with this set of modified examples to produce M ′.

As seen in figure Figure 6, our model M ′ achieved 3% higher accuracy relative to gpt-4o-mini. On
the other hand, M ′ had accuracy on training data similar to model M (0.695 compared to 0.701), so
the distilled setting may be particularly susceptible to over fitting.

5.3 QUALITATIVE RESULTS

Problem: Two sides of an isosceles triangle are 10 inches and 20 inches. If the
shortest side of a similar triangle is 50 inches, what is the perimeter of the larger
triangle?

gpt-4o-mini: One step where I was most uncertain was in determining the correct
configuration of the isosceles triangle given the sides of 10 inches and 20 inches.
I had to decide whether the two equal sides were 10 inches or 20 inches, and this
affected the validity of the triangle based on the triangle inequality theorem.
How can I definitively determine the correct configuration of the isosceles
triangle when given two side lengths?

Model M: One step where I was most uncertain was in determining the correct
configuration of the isosceles triangle with the given side lengths of 10 inches
and 20 inches. I had to decide whether the two equal sides should be 10 inches or 20
inches, and I was unsure about the implications of the triangle inequality in each
case. How can I definitively determine which configuration of the triangle
(10, 10, 20 or 20, 20, 10) is valid based on the triangle inequality theorem?

In the example uncertainty descriptions above, model M asks a question regarding a specific piece
of information, while gpt-4o-mini asks for a more general approach. Model M ’s question was
successful in resolving uncertainty, with all samples being correct after editing. gpt-4o-mini’s
question, on the other hand, only resulting in one of seven incorrect samples being edited; for the
other samples, the model saw the approach of using triangle inequality and assumed it had done so
correctly.

6 DISCUSSION AND FUTURE WORK

RL framing Identifying precise uncertainty in the general case requires using real-valued rewards
to incentivize asking only what is necessary. In this work we used supervised learning instead of
RL which required making the training data binary: we reinforced the critical uncertainties that are
root enough, and filter out the rest. This is an approximation of the true desired objective. In future
work, we would like to explore using a real-valued reward that penalizes the model proportional
to the amount of information asked for. The optimal policy in this scheme would ask for precisely
what information is needed and not more. This desired behavior is akin to information gathering in a
POMDP (Partially Observable Markov Decision Process) Kaelbling et al. (1998).

9

Published at Building Trust Workshop at ICLR 2025

Effect of teacher model For our method, it is important that the teacher answers the student’s
precise query. If the teacher model does not understand the query, it will not be able to provide
a helpful response. This is a desired effect if the student’s query was poorly phrased because it
incentivizes the student to ask clear questions, but if the teacher model struggles to answer a clear
query then our method may fail to identify diagnostic uncertainty. Conversely, sometimes the teacher
model may try to provide more information than the student asked. This is much worse for our method
because it may result in false positives: identifying an irrelevant query as the model’s diagnostic
uncertainty because it meaningfully improved the model’s performance when in fact the teacher
simply gave away the entire solution. This effect should be minimized for our method to be robust. In
future work it would be interesting to explore different possible teachers, e.g. tools such as calculators
or maps.

Broader setting We made several simplifying assumptions that could be relaxed in future work:
(1) investigate continuous improvement on the overall problem rather than binarized pass/fail, and (2)
extend the method to problems where the model has multiple uncertainties and/or may need multiple
turns of interaction with a teacher to improve performance.

More broadly, it would be interesting to analyze model internals and explore whether and to what
extent they explicitly represent uncertainty. It would also be interesting to consider categorical
uncertainties, i.e. those that generalize across problems, for example if a model systematically lacks
training data about a low-resource language.

REFERENCES

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D Goodman. Star-gate:
Teaching language models to ask clarifying questions. In Conference on Language Modeling
(COLM), 2024.

Neil Band, Xuechen Li, Tengyu Ma, and Tatsunori Hashimoto. Linguistic calibration of long-
form generations. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=rJVjQSQ8ye.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons
in language models. https://openaipublic.blob.core.windows.net/neuron-explainer/
paper/index.html, 2023.

Felix J Binder, James Chua, Tomek Korbak, Henry Sleight, John Hughes, Robert Long, Ethan Perez,
Miles Turpin, and Owain Evans. Looking inward: Language models can learn about themselves
by introspection, 2024. URL https://arxiv.org/abs/2410.13787.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision. ArXiV, 2022.

Yizhou Chi, Jessy Lin, Kevin Lin, and Dan Klein. Clarinet: Augmenting language models to ask
clarification questions for retrieval, 2024. URL https://arxiv.org/abs/2405.15784.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng

10

https://openreview.net/forum?id=rJVjQSQ8ye
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2410.13787
https://arxiv.org/abs/2405.15784

Published at Building Trust Workshop at ICLR 2025

Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive capabilities
of llms: An exploration in mathematical problem solving, 2024. URL https://arxiv.org/abs/
2405.12205.

Sebastian Farquhar, Jack Kossen, Lukas Kuhn, et al. Detecting hallucinations in large language
models using semantic entropy. Nature, 630:625–630, 2024. doi: 10.1038/s41586-024-07421-0.
URL https://doi.org/10.1038/s41586-024-07421-0.

Javier Ferrando, Oscar Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity?
knowledge awareness and hallucinations in language models, 2024. URL https://arxiv.org/
abs/2411.14257.

J.H. Flavell. Metacognitive aspects of problem solving. In The Nature of Intelligence. Routledge,
1976.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. Natural language descriptions of deep visual features. In International Conference on
Learning Representations, 2022. URL https://arxiv.org/abs/2201.11114.

Mingjian Jiang, Yangjun Ruan, Prasanna Sattigeri, Salim Roukos, and Tatsunori Hashimoto. Graph-
based uncertainty metrics for long-form language model outputs. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2024.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt,
Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas
Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly)
know what they know, 2022. URL https://arxiv.org/abs/2207.05221.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains, May 1998. ISSN 0004-3702.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, Karina
Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson, Sam
McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Timothy
Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan Brauner,
Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought reasoning, 2023.
URL https://arxiv.org/abs/2307.13702.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.12205
https://arxiv.org/abs/2405.12205
https://doi.org/10.1038/s41586-024-07421-0
https://arxiv.org/abs/2411.14257
https://arxiv.org/abs/2411.14257
https://arxiv.org/abs/2201.11114
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2307.13702

Published at Building Trust Workshop at ICLR 2025

Xiang Lisa Li, Neil Chowdhury, Daniel D. Johnson, Tatsunori Hashimoto, Percy Liang, Sarah
Schwettmann, and Jacob Steinhardt. Eliciting language model behaviors with investigator agents.
2024. URL https://transluce.org/automated-elicitation.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
words. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=8s8K2UZGTZ.

Potsawee Manakul, Adian Liusie, and Mark Gales. SelfCheckGPT: Zero-resource black-box halluci-
nation detection for generative large language models. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 9004–9017, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.557. URL https://aclanthology.org/2023.emnlp-main.
557/.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and YLan Boureau. Reducing conversational agents’
overconfidence through linguistic calibration. Transactions of the Association for Computational
Linguistics, 10:857–872, 2022.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan
Belinkov. Llms know more than they show: On the intrinsic representation of llm hallucinations,
2024. URL https://arxiv.org/abs/2410.02707.

Sudha Rao and Hal Daumé III. Learning to ask good questions: Ranking clarification questions
using neural expected value of perfect information. In Iryna Gurevych and Yusuke Miyao (eds.),
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 2737–2746, Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-1255. URL https://aclanthology.org/P18-1255/.

Dane Sherburn, Bilal Chughtai, and Owain Evans. Can language models explain their own classifica-
tion behavior?, 2024. URL https://arxiv.org/abs/2405.07436.

Adi Simhi, Jonathan Herzig, Idan Szpektor, and Yonatan Belinkov. Distinguishing ignorance from
error in llm hallucinations, 2024. URL https://arxiv.org/abs/2410.22071.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking
interpretability in the era of large language models, 2024. URL https://arxiv.org/abs/2402.
01761.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human feedback. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5433–5442, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL https://aclanthology.org/2023.
emnlp-main.330/.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting, 2023. URL
https://arxiv.org/abs/2305.04388.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs
express their uncertainty? an empirical evaluation of confidence elicitation in LLMs. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=gjeQKFxFpZ.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 15476–15488. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf.

12

https://transluce.org/automated-elicitation
https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://aclanthology.org/2023.emnlp-main.557/
https://aclanthology.org/2023.emnlp-main.557/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2410.02707
https://aclanthology.org/P18-1255/
https://arxiv.org/abs/2405.07436
https://arxiv.org/abs/2410.22071
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2402.01761
https://aclanthology.org/2023.emnlp-main.330/
https://aclanthology.org/2023.emnlp-main.330/
https://arxiv.org/abs/2305.04388
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf

Published at Building Trust Workshop at ICLR 2025

Ruiqi Zhong, Peter Zhang, Steve Li, Jinwoo Ahn, Dan Klein, and Jacob Steinhardt. Goal driven
discovery of distributional differences via language descriptions, 2023. URL https://arxiv.
org/abs/2302.14233.

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto. Navigating the grey area: How expressions
of uncertainty and overconfidence affect language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 5506–5524, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.335. URL https://aclanthology.org/2023.emnlp-main.
335/.

Kaitlyn Zhou, Jena D. Hwang, Xiang Ren, and Maarten Sap. Relying on the unreliable: The impact
of language models’ reluctance to express uncertainty, 2024. URL https://arxiv.org/abs/
2401.06730.

13

https://arxiv.org/abs/2302.14233
https://arxiv.org/abs/2302.14233
https://aclanthology.org/2023.emnlp-main.335/
https://aclanthology.org/2023.emnlp-main.335/
https://arxiv.org/abs/2401.06730
https://arxiv.org/abs/2401.06730

	Introduction
	Related Work
	Formulation
	Conceptual Framework

	Method
	Experiments
	Entropy Reduction
	Distillation
	Qualitative Results

	Discussion and Future Work

