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ABSTRACT

Single-cell RNA-sequencing technique can obtain genes’ expression level of ev-
ery cell. Cell type classification (also known as cell type annotation) on single-
cell RNA-seq data helps to explore cellular heterogeneity and diversity. Previous
methods for cell type classification are either based on statistical hypotheses of
gene expression or deep neural networks. However, the hypotheses may not re-
flect the true expression level. Deep neural networks lack interpretation for the
result. Here we present an interpretable neural-network based method single-cell
capsule attention(scCA) which assigns cells to different cell types based on their
different feature patterns. In our model, we first generate capsules which extract
different features of the cells. Then we obtain compound features which com-
bine a set of features’ information through a LSTM model. In the end, we train
attention weights and apply them to the compound features. scCA provides a
strong interpretation for cell type classification result. Cells from the same cell
type share a similar pattern of capsules’ relationship and similar distribution of
attention weights for compound features. Compared with previous methods for
cell type classification on nine datasets, scCA shows high accuracy on all datasets
with robustness and reliable interpretation.

1 INTRODUCTION

Genes’ expression on celluar level provides lots of information for us to explore homogeneity and
heterogeneity among different cells(Liang et al., 2014; Muraro et al., 2016; Baron et al., 2016).
Traditional bulk sequencing technique can only measure the average gene expression level of all
cells in a sample. Compared with bulk data, single-cell RNA-sequencing(single-cell RNA-seq)
technique gives a more accurate measurement of every cell. Though single-cell RNA-sequencing is
a rising technique, it is not mature enough and still has some limitations. For example, single-cell
RNA-seq data has high ’dropout’. ’Dropout’ means zero or low read counts in the data because
many genes’ expression are hard to detect(Huang et al., 2018; Pierson & Yau, 2015). Also, single-
cell RNA-seq data are of high dimension because thousands of genes are in the transcriptome. These
all bring challenges for studies on single-cell RNA-seq data. So far, many data mining and analysis
methods have been applied on single-cell RNA-seq data to solve these challenges and explore more
information on cells and genes(Svensson et al., 2018; Han et al., 2018; Lopez et al., 2018; Hwang
et al., 2018; Guo et al., 2015).

Cell type classification is one of the most important tasks in single-cell RNA-seq data analysis. It
helps to identify different cell types and explore the cellular heterogeneity. Previous methods on cell
type classification can be categorized into methods based on statistical distribution hypotheses of
gene expression and deep learning methods based on neural networks(Abdelaal et al., 2019). These
methods lay a solid foundation for cell type classification. However, they still have limitations and
weaknesses. Methods based on statistical hypotheses rely on prior knowledge of marker genes or
gene expression’s distribution assumptions. Up to now, there is no widely recognized hypotheses of
gene expression. Deep neural network(DNN), a fast and effective learning method, is widely used
in various fields. DNN does not rely on distribution hypotheses, however, it’s hard to provide an
reasonable explanation for the result behind the deep ’black-box’(Lin et al., 2017). ACTINN(Ma &
Pellegrini, 2020), a deep neural network based method for cell type classification, uses three hidden
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layers in its architecture. Though its model can predict cell types, the model still lacks reliable
interpretations for the result. The challenge is that DNN does not provide a recognizable pattern that
is closely related to different cell types.

Here, we introduce a new neural network based method scCA for cell type classification. scCA
provides an reasonable interpretation for its classification result. Our model learns features from
cells and provides patterns behind these features that are related to cell types. The first part is
feature extraction. Given the gene expression level in every cell, We use capsules to extract different
features. A capsule is a vector that represents a feature, which captures a certain type of information
of the cell. Capsules also serve as dimension reduction for single cell RNA-seq data. We calculate
the Pearson coefficients between every two capsules and generate the coefficient heatmap of every
cell. We discover that cells from same cell type share a similar pattern in the heatmap while cells
from different cell types have different patterns. These capsules capture features that are important
for cell type classification.

And then, we use a sequence to sequence model, bidirectional-LSTM, to generate compound fea-
tures. Each compound feature combines a set of features’ information. Furthermore, we train multi-
ple attention weights for these compound features. Then we multiply these weights to the compound
features and generate the classification result. Attention weights help to lay more emphasis on im-
portant compound features. The larger the attention weight is, the more crucial its corresponding
compound feature is. we also draw heatmaps for every cells’ attention weights. We discover that
cells from same cell type have similar patterns in the heatmaps of attention weights. This leads to a
better classification performance and also provides an reliable interpretation behind the network.

We evaluate scCA on several datasets and compare with previous work. Our method shows high
accuracy and robustness on all datasets.

The main contributions of our article are as follow: We propose an interpretable neural network
based method scCA for cell type classification. Through heatmaps of capsules’ Pearson coef-
ficients and attention weights, we find that cells from same cell type share a similar pattern.
scCA achieves high accuracy and stable performances on all datasets.

2 RELATED WORK

Statistical Hypotheses Based Model

Many machine learning methods with statistical hypotheses of gene expression level have been
proposed for cell type classification. Some of these methods suggest distribution hypotheses of gene
expression level and employ machine learning models based on these hypotheses. Some build a
hierarchy with prior knowledge and statistical hypotheses. Moana takes advantage of KNN and
SVM model(Wagner & Yanai, 2018). It first preprocesses data with KNN, then it uses dimension
reduction method to extract useful features, at last it uses a Support Vector Machine classifier. In
addition, Moana uses marker gene as a prior knowledge for cell type identification. Different from
Moana, Garnett proposes a model based on tree hierarchy. It discovers the relation between cell
types and subtypes with a tree structure(Pliner et al., 2019). With the help of marker gene, it builds a
linear model to classify cell types. CellAssign builds a probabilistic model based on prior knowledge
to classify cell types(Zhang et al., 2019b). SCINA makes use of EM algorithm and the information
of marker gene to accomplish clustering as well as cell type identification task(Zhang et al., 2019a).
scPred extracts features using SVD, then with a nonlinear kernel SVM, it predicts different cell
types(Alquicira-Hernandez et al., 2019). However, these methods have their limitations. Their
hypotheses such as ZINB(Zero-inflated Negative Binomial) or NB distribution of gene expression
are not the exact reflections of gene ’s expression levels in cells. Actually, there is not a consensus
statistical distribution for single-cell RNA-seq data. Also they need prior knowledge like marker
gene for cell type classification.

Neural Network Based Models

Deep neural network(DNN) based methods have been applied to cell type classification task. They
are fast and robust. Neural networks don’t heavily rely on prior knowledge and statistical hypothe-
ses. ACTINN uses three fully connected layers and ReLU, softmax activation function to classify
different cell types(Ma & Pellegrini, 2020). scCapsNet builds a capsule network to extract features
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from the data and use dynamic routings among capsules to get a classification result(Wang et al.,
2020). However, neural networks lack interpretation for their result. Through training the whole
network by propagation, it’s hard to explain every component’s contribution for the result.

3 PRELIMINARIES

Capsule Network and Dynamic Routing

Hinton, Sabour and other co-authors first proposed Capsule network and dynamic routing in com-
puter vision(Sabour et al., 2017). A capsule is a set of neurons or a vector that can represent an
entity. Dynamic routing is the mechanism between capsule’s layers. As they point out, the capsules
in the layer above are parents and the capsules in the layer below are children.(Hinton et al., 2000;
2011). Dynamic routing helps to send the results from capsules in children layer to its appropriate
parents in the above layer. By adjusting the coupling coefficients between capsules in two layers,
the network learns which parent capsule is more important for the children capsule. Here in scCA,
we use capsules to capture different features of the cell. We use a vector for implementation of
capsule in our model. However, different from dynamic routing, we use LSTM and attention as the
architecture for cell type classification.

Long Short-Term Memory and Attention

Long Short-Term Memory(LSTM) is a model widely used in Natural Language Process-
ing(NLP)(Hochreiter & Schmidhuber, 1997). It is a sequence to sequence model. The inputs are
usually the word embeddings(representations) of a sentence and the output is a sequence of repre-
sentations. Each output representation not only contains information from its corresponding input,
but also information from representations in the context, especially its neighbor inputs.

In our method, after extracting different features into capsules, we input these capsules into the
LSTM model and obtain the output sequence. Every vector in the output sequence contains informa-
tion of its corresponding input feature as well as other features. We name these vectors compound
features. Some of the compound features have closer relationships with certain cell types. Inspired
by Attention(Vaswani et al., 2017) mechanism, we apply attention weights to compound features in
order to differentiate and emphasize those important compound features for classification.

4 SINGLE-CELL CAPSULE ATTENTION

In this section, we provide a detailed description of single-cell Capsule Attention(scCA). We will
also give a vivid and transparent explanation for our classification result. scCA can be divided into
three parts. The figure below shows its architecture.

Figure 1: scCA framework
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4.1 FEATURE EXTRACTION

The first part of scCA is feature extraction. Given thousands of genes’ expression levels for a cell, we
hope to learn simple but efficacious features for classification. Capsules not only serve as dimension
reduction, but also extract a type of information of the cell. Through fully connected layers, we
generate capsules to extract different features.

capsulei = ReLU(W ix+ bi), i ∈ [1, 2 · · ·m] (1)

In this formula, m represents the number of capsules. W and b are the weight matrices of fully
connected layers. ReLU is the activation function we use.

Every capsule contains a feature of a cell. We hope to discover different patterns of these features
for different cell types. We calculate the Pearson coefficients between every two capsules. The
Pearson coefficient is an indication of relationship between two features behind capsules. For every
cell, we come to a matrix where every element is a Pearson coefficient of two capsules. We then
draw a heatmap of the matrix. We discover that cells from same cell type share a similar pattern
while cells from different cell types differ from each other.

Figure 2: GSE72056 capsule relationship heatmap

Taking six cells from dataset GSE72056 as examples, we can see cells from same cell type
have a similar pattern of capsules’ relationship. The deeper the color is in the heatmap, the closer
the relationship of two capsules is. The pattern is distinguishable among different cell types. From
the figures above, we conclude that there exists some particular feature patterns for different cell
types. Our feature extraction really extracts useful and discriminative features.

4.2 LSTM FOR COMPOUND FEATURES

Single feature is not enough for cell type classification because cells from different cell types may
share same features. It’s the specific combination of features that decides the cell type. Moreover,
some features may have special relationships with other features. We need to explore the special
patterns behind the features that determine cell types. The motivation for compound features lays in
here. A LSTM model captures other features’ information in the context. The capsules generated
in feature extraction serve as the input of LSTM. For every feature in the sequence, a LSTM model
takes in hidden information from other features as well as its own information. Then LSTM model
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outputs a sequence of compound features. For implementation, we use a bi-directional LSTM model
for training which is more stable and efficient.

[compound feature1, compound feature2, ...] = LSTM [capsule1, capsule2, ...] (2)

4.3 ATTENTION MECHANISM

In the last part of scCA, scCA learns attention weights for these compound features. We have two
intentions for these attention weights. The first intention is that we want to eliminate the effect of
capsule’s order in the input sequence. LSTM model is widely used in natural language processing
where input data is a sequence. However, for cell type classification, capsules or features’ order in
the sequence shouldn’t influence the result. So we add attention to emphasize the compound fea-
tures’ information itself, rather than its position information in the sequence. The second intention
is that some compound features may be more significant in cell type classification. The attention
weights for these compound features will be large, showing their importance. In scCA, we imple-
ment multi-attention and apply them to these compound features. We generate several combinations
of compound features based on different attention weights. Then we use the norms of these combi-
nations to serve as the final classification result.

sum of feature = sum(capsulei), i ∈ [1, 2 · · ·m] (3)

attention weighti = ReLU(W attentioni∗sum of feature+b attentioni), i ∈ [1, 2 · · · cell type num]
(4)

classification result = L2 norm(attention weights ∗ compound feature) (5)

For implementation, we first add all capsules together. Then we use fully connected layers to
generate attention weights. In formula(3), m represents the number of capsules. In formula(4),
cell type num represents the number of cell types in the dataset. We multiply the compound features
which are generated by bi-directional LSTM by the attention weights. Then we use the L2 norm
to get a classification result. Adding attention weights in the model structure lays more emphasis
on important compound features. To provide more illustration for this, We also draw heatmaps of
attention weight matrix for every cell. We find that cells from same cell type share a similar pattern
of heatmap, which means certain cell type has their particular attention combinations of compound
features.

Figure 3: GSE70580 attention weights heatmap
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The figure above shows 6 cells from dataset GSE70580. Three cells come from cell type 0 while
the other come from cell type 1. The deeper the color is in the figure, the larger the attention weight
is. We can find that attention weights’ distribution vary from one cell type to another. Different
cell types have different attention weight combinations of compound features. This provide reliable
interpretation for our model.

5 EXPERIMENTS

5.1 INTRODUCTION OF DATASETS

Every dataset for single-cell RNA-sequencing consists of a gene expression matrix and cell type
labels. Gene expression matrix is the input of our model. Every line in the matrix shows different
genes’ expressions in a cell. The figure below demonstrates a sketch heatmap of gene expression
matrix after data preprocessing mentioned in next section. The higher the expression level is, the
deeper the blue color will be. There are many places in the matrix that are shallow, which are the
reflection of dropouts.

Figure 4: gene expression matrix heatmap

We then elaborate the nine datasets we use in experiments, listing out their numbers of cells and
genes as well as the numbers of cell types.

Table 1: Single-Cell RNA-Seq data description
Dataset cell number gene number cell type number

CRC 8496 12547 20
GSE70580 647 26087 4
GSE72056 4636 22280 7
GSE75688 515 27420 5
GSE96993 334 10827 4
NSCLC 9051 12415 16
PBMC 5356 14218 5
Spleen human 4406 14064 7
Spleen mouse 4432 12699 7

5.2 PREPROCESSING

There are tens of thousands of genes in the dataset. Before we train our model, we first implement
data preprocessing. For every cell in the data, we first divide every gene’s expression level by the sum
of gene expression levels in the cell. This makes genes’ expression levels among cells comparable.
Then, we multiply the gene expression levels with a constant 100000 and employ a log transform to
adjust the expression level in the data into a reasonable range.
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5.3 PARAMETER SETTING

For feature extraction part, we generate 8 capsules through fully connected layers. Each of the
capsule has a dimension of 128. We add L2 normalization to these capsule vectors and we use a
single layer bidirectional LSTM model to generate compound features. We set the output dimension
of LSTM to 16 and dropout of LSTM to 0.3. A bidirectional LSTM has two output sequences. We
add them together and get a single sequence of compound features. To obtain attention weights, we
first add all capsules together. Then we input the sum of capsules into fully connected layers. The
output dimension of these layers is also the number of capsules. The number of attention weights
is set to the same as cell type number in the dataset. We then multiply the attention weights to the
compound features. After multiplying the attention weights to the compound features, we obtain
a matrix whose row number equals to the number of cell types and column number equals to the
dimension of compound features. Then we calculate the L2-norm of every row and apply Softmax
function. In this way, we obtain a vector whose dimension equals to the number of cell types in the
dataset and the sum of the elements in the vector is 1. This vector is the output of scCA. During the
training process, cross entropy loss is used as the loss function. The activation function in our model
is ReLU. We set the dropout to 0.3 and we also add Softmax to the classification result. We split the
dataset into training set and test set with the ratio of 4:1. The model is trained for 50 epochs with a
Pytorch implementation.

5.4 COMPARISON WITH OTHER METHODS

We first compare scCA with some machine learning methods, including Support Vector Ma-
chine(SVM), Linear Discriminant Analysis(LDA), Decision Tree(DT) and Random Forest(RF).
From the table below, we can find that scCA has a robust performance with high accuracy on all
datasets. It also has some outstanding performances on some of the datasets.

Table 2: Accuracy comparison with various machine learning methods
dataset scCA SVM LDA DT RF

CRC 88.29% 90% 87.29% 64% 81.47%
GSE70580 96.92% 97.69% 96.15% 90% 96.92%
GSE72056 94.50% 93.85% 91.91% 86.63% 91.59%
GSE75688 92.23% 92.23% 91.26% 88.34% 91.26%
GSE96993 82.83% 80.59% 77.61% 68.65% 82.08%
NSCLC 84.15% 85.20% 82.77% 62.39% 79.18%
PBMC 98.32% 98.13% 97.48% 95.52% 97.94%
Spleen human 92.85% 92.85% 87.86% 82.53% 87.86%
Spleen mouse 96.84% 97.29% 94.58% 88.61% 92.33%

Table 3: Accuracy comparison with various neural network methods
Dataset scCA scCapsNet fully

connected
network

denoising
autoencoder

CRC 88.29% 84.47% 88.64% 83.71%
GSE70580 96.92% 94.62% 96.92% 96.15%
GSE72056 94.50% 92.20% 93.53% 91.33%
GSE75688 92.23% 91.74% 92.23% 91.98%
GSE96993 82.83% 77.61% 80.59% 79.59%
NSCLC 84.15% 79.18% 82.93% 79.80%
PBMC 98.32% 98.23% 98.5% 97.60%
Spleen human 92.85% 91.40% 92.63% 89.79%
Spleen mouse 96.84% 96.17% 97.64% 95.41%

We then compare scCA with neural network based methods. Here we implement fully-connected
network and denoising autoencoder. We use the code provided in scCapsNet. From the table above,
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we can see that among models based on neural networks, scCA still has a good performance. It
outperforms other methods on most of the datasets.

In conclusion, through the comparison of our model with other models, scCA shows robustness and
high accuracy. On some datasets, scCA has the best performance of all models.

6 INFLUENCE OF DIFFERENT PARAMETERS

In our model, the number and dimension of capsules, the dimension of compound features can be
adjusted. To test their influence on scCA’s performance, we carry out experiments under different
combinations of parameters.

Table 4: scCA’s performance under different parameters with 128-dimension capsule
Dataset 8capsule + 16-dim

compound features
16capsule + 16-dim
compound features

8capsule + 32-dim
compound features

16capsule + 32-dim
compound features

CRC 88.29% 88.41% 88.58% 88.94%
GSE70580 96.92% 96.92% 96.15% 96.92%
GSE72056 94.50% 93.96% 94.07% 94.18%
GSE75688 92.23% 92.23% 92.23% 92.23%
GSE96993 82.83% 82.08% 83.58% 82.78%
NSCLC 84.15% 84.15% 83.76% 84.70%
PBMC 98.32% 98.32% 98.32% 98.60%
Spleen human 92.85% 92.40% 92.29% 92.85%
Spleen mouse 96.84% 96.73% 97.06% 96.73%

In table 4, we set the capsule dimension to 128 and change the number of capsules and the dimen-
sion of compound features. Through the result from the table, we discover that there is no visible
improvements no matter we rise the number of capsule or the dimension of compound features.

Table 5: scCA’s performance under different parameters with 64-dimension capsule
Dataset 8capsule + 16-dim

compound features
16capsule + 16-dim
compound features

8capsule + 32-dim
compound features

16capsule + 32-dim
compound features

CRC 87.70% 88.17% 88% 88.29%
GSE70580 96.53% 96.92% 96.53% 96.92%
GSE72056 93.64% 94.07% 93.75% 94.07%
GSE75688 91.26% 91.26% 92.23% 92.23%
GSE96993 82.08% 82.83% 81.34% 83.58%
NSCLC 82.21% 82.44% 82.93% 84.32%
PBMC 98.32% 98.41% 98.04% 98.41%
Spleen human 92.06% 92.17% 91.95% 92.74%
Spleen mouse 96.73% 96.73% 96.61% 96.92%

In table5, we set the capsule dimension to 64 and change the number of capsules and the dimension
of compound features. Together with table 4, we discover that number of capsules, the dimension
of capsules and dimension of compound features have little influence on scCA’s performance. Our
model performs well under different settings of parameters.

7 CONCLUSION

In this article, we provide a neural network based method scCA for single-cell RNA-seq data cell
type classification. scCA uses capsules to extract features from cells. Then through a LSTM network
it generates compound features which contain information from a set of single features. By apply-
ing attention weights to these compound features, we lay emphasis on compound features which are
more closely related to cell types. Deep neural network based, scCA provides reliable interpreta-
tions for its result. We calculate the Pearson coefficients among capsules and draw heatmaps of these

8



Under review as a conference paper at ICLR 2022

coefficients. We discover that cells from same cell types share a similar pattern of capsules’ relation-
ship while cells from different cell type differ from each other. Moreover, we also draw heatmaps of
the attention weights. We also find out that same cell types emphasize on same compound features.
These provide vivid explanations and illustrations for our model. We test scCA on nine datasets.
Compared with other machine learning and deep learning methods, scCA shows robustness and has
a high classification accuracy. Furthermore, we adjust the parameters in our model and discover that
our model is not sensitive to them.
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