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ABSTRACT
Cognitive diagnosis models have been widely used in different ar-

eas, especially intelligent education, to measure users’ proficiency

levels on knowledge concepts, based on which users can get per-

sonalized instructions. As the measurement is not always reliable

due to the weak links of the models and data, the uncertainty of

measurement also offers important information for decisions. How-

ever, the research on the uncertainty estimation lags behind that

on advanced model structures for cognitive diagnosis. Existing ap-

proaches have limited inefficiency and leave an academic blank for

sophisticated models which have interaction function parameters

(e.g., deep learning-based models). To address these problems, we

propose a unified uncertainty estimation approach for a wide range

of cognitive diagnosis models. Specifically, based on the idea of

estimating the posterior distributions of cognitive diagnosis model

parameters, we first provide a unified objective function for mini-

batch based optimization that can be more efficiently applied to a

wide range of models and large datasets. Then, we modify the repa-

rameterization approach in order to adapt to parameters defined

on different domains. Furthermore, we decompose the uncertainty

of diagnostic parameters into data aspect and model aspect, which

better explains the source of uncertainty. Extensive experiments

demonstrate that our method is effective and can provide useful

insights into the uncertainty of cognitive diagnosis.
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1 INTRODUCTION
Cognitive diagnosis is a class of methods that have been widely

studied in areas such as education [19], psychometric [27], and med-

ical diagnosis [30]. The main purpose of cognitive diagnosis is to

obtain examinees’ cognitive states from their activities. Particularly,

in educational area, such as the online learning platforms, cognitive

diagnosis obtains students’ knowledge proficiencies from the their
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Figure 1: A toy example.

learning activities (e.g., question answering), as well as estimates

the attributes of questions (e.g., question difficulty). A toy exam-

ple is illustrated in Figure 1, where two students have answered

questions that relate to the knowledge concept “Division”. After
diagnosis, we know that 𝑠1 has mastered “Division” well while 𝑠2
has a lower proficiency (black points). Cognitive diagnosis usually

serves as the core of intelligent tutoring systems, which provide

personalized support for learners.

In practice, however, the diagnostic results of students are not

always highly reliable. In the example of Figure 1, although both stu-

dents 𝑠1 and 𝑠2 are diagnosed to have high proficiency of “Division”,
the diagnostic result of 𝑠1 is not as reliable as 𝑠2. The reason is that

𝑠1’s proficiency of “Division” is inferred based on a single response

related to “Division”, which may cause severe bias. The uncertainty

of diagnosis has important influence on personalized teaching. The

system can assign less practice of “Division” to 𝑠2; while for 𝑠1, more

questions or better cognitive diagnosis models are needed to obtain

an exact proficiency assessment. Furthermore, in a recommender

system, more diverse learning resources can be recommended to

students with higher uncertainty [13]. In computerized adaptive

testing, reducing uncertainty of diagnosis is an important target

when selecting the next test question for an examinee [2]. However,

most existing diagnosis models cannot tell how confident they are

with their point-wise diagnosis.

In recent years, more sophisticated model structures have been

proposed for better diagnosis, including deep learning-based mod-

els such as NeuralCD [32]. However, the research on the uncertainty

estimation of cognitive diagnosis remains on several traditional

non-deep learning based models. For example, Bayesian method

is the most representative for item response theory (IRT) based

models [9]. The application of existing methods is limited due to

the following challenges. 1) Limited application range of training

algorithms. The widely accepted training algorithms for existing

methods, such as Expectation-Maximum (EM) based algorithms

and Metropolis-Hasting (MH) sampling based algorithms, are inef-

ficient or even inapplicable to complex diagnosis models (e.g., deep

learning-based models) having large scale parameters and on large

datasets. 2) Insufficient estimation of parameters. Generally, there

are two types of parameters in cognitive diagnosis models, i.e., the

diagnostic parameters that represent the features of student and

1
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questions, and function parameters that decide the interaction func-

tions among diagnostic parameters. Existing methods only consider

diagnostic parameters, because they are proposed based on tradi-

tional cognitive diagnosis models, where the interaction functions

are fixed without extra parameters. However, in the state-of-the-art

deep learning-based models, the interaction functions are modeled

with neural networks, where additional uncertainty from neural

network parameters should be considered.

Our Work. In this paper, we propose a unified Uncertainty es-

timation approach for Cognitive Diagnosis models (abbreviated

as UCD), which can both be applied to traditional latent trait

models and fill the vacancy for deep learning-based models. 1)

Based on an idea of learning the posterior distributions of the pa-

rameters, we derive a unified objective function for mini-batch

based optimization, which can be applied to both deep and non-

deep learning models. 2) We propose a derivative reparameteri-

zation approach, which not only facilitate the efficient gradient

descending-based training, but also adapts to parameters with dif-

ferent domains of definition. 3) By further consideration of the

difference between diagnostic parameters and function parame-

ters, we factorize the uncertainty of diagnostic parameters into

data uncertainty and model uncertainty. Through extensive experi-

ments on real-world datasets, we validate the effectiveness of UCD

and provide some useful insights into the uncertainty of cogni-

tive diagnosis models. The codes and public data are available at:

https://anonymous.4open.science/r/UCD-FD2D.

2 RELATEDWORK
Cognitive Diagnosis. Existing cognitive diagnosis methods can

be generally classified into non-deep learning models and deep

learning-based models. Representative non-deep learning cognitive

diagnosis models include continuous latent trait models, such as

Item Response Theory (IRT) [9] and Multidimensional Item Re-

sponse Theory (MIRT) [26]; and discrete classification models, such

as Deterministic Input Noisy “And” Gate model [6], and Higher-

order DINA [7]. By contrast, deep learning-based approaches achieve

state-of-the-art and capture attentions in recent year. Wang et al.

[31] proposed a NeuralCD framework that introduces neural net-

works to learn the interaction between students and questions

while keeping interpretability. Several extensions based on Neu-

ralCD have been proposed, such as [20, 23, 32, 34].

Uncertainty Quantification. Uncertainty quantification plays

a critical role in the process of decision making and optimization

in many fields [14, 21]. In cognitive diagnosis, the uncertainty of

diagnostic parameters has been studied for traditional models. Fully

Bayesian sampling-based methods [25]) and the multiple imputa-

tion method [35] characterize the uncertainty of IRT and MIRT by

the variations of diagnostic results. Frequentist methods [24, 28]

use standard error to reflect the uncertainty. Duck-Mayr et al. [8]

proposed a Gaussian process based method for nonparametric IRT

models. However, the estimation algorithm could be time consum-

ing, and function parameters are not considered. In deep learning,

Bayesian approximation and ensemble learning techniques are two

widely-studied types of methods [1] that quantify the uncertainty.

Bayesian approximation typically uses a probability distribution

to characterize the uncertainty of parameters and model outputs.

Representative methods include the Monte Carlo dropout [33], vari-

ational inference [29], and Bayesian neural network based models

[3]. Ensemble learning approaches [10, 17] train the deep learning

model multiple times and then average the model predictions. Al-

though inspiring, these methods have not been applied to CDMs yet.

It should be noted that in CDMs, the focus is the diagnostic results

(i.e., the estimated parameters) instead of the model predictions,

which is opposite to deep learning models. Moreover, the difference

between diagnostic parameters and function parameters are not

recognized in existing methods.

3 PRELIMINARY
3.1 Task Overview
In the educational area, cognitive diagnosis is essentially a mea-

surement of students’ knowledge states. Through fitting students’

response data by cognitive diagnosis models, the estimated values

of student-related parameters are the diagnostic results, which rep-

resent the students’ levels of knowledge mastery. Suppose there

are students 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑀 }, questions 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑁 }, and
the Q-matrix𝑄 ∈ {0, 1}𝑁×𝐾 which indicates the related knowledge

concepts (KC) of the questions (i.e., 𝑄 𝑗𝑘 = 1 means that question

𝑒 𝑗 involves knowledge concept 𝑐𝑘 ). Then, the cognitive diagnosis

task can be formalized as follows.

Problem Definition. The observed data includes students’ re-

sponse logs 𝑅 = {𝑟𝑖 𝑗 } and the Q-matrix 𝑄 , where 𝑟𝑖 𝑗 ∈ {0, 1}
denotes the student 𝑠𝑖 ’s response to question 𝑒 𝑗 (i.e., incorrect or

correct). Our goal is to estimate the uncertainty of diagnostic results

(e.g., students’ proficiencies on knowledge concepts) provided by

cognitive diagnosis models. Here, the probability distribution is

adopted to depict the uncertainty.

3.2 Representative Cognitive Diagnosis Models
We briefly introduce the basic structure of cognitive diagnosis mod-

els (CDMs) and some representative methods. Generally, a CDM

contains two parts: (1) the diagnostic parameters (Φ), indicating
the proficiency levels of students (𝛼𝑖 ) and properties of questions

(𝛽 𝑗 ); (2) the interaction function about student and question pa-

rameters which outputs the probability of correctly answering the

question, i.e., 𝑝𝑖 𝑗 = 𝐹 (𝛼𝑖 , 𝛽 𝑗 ,Ω), where Ω denotes the parameters

of the interaction function. Figure 2 demonstrates the structures of

two representative cognitive diagnosis models, i.e., IRT and Neu-

ralCDM. After training the CDM to fit responses, the estimated

diagnostic parameters 𝛼𝑖 are diagnostic results.

As a representative traditional model, the IRT estimates the

interaction function 𝑝𝑖 𝑗 = 1/{1 + 𝑒−1.7×𝛽
disc

𝑗
(𝛼𝑖−𝛽diff𝑗

) }, where 𝛽disc
𝑗

and 𝛽diff
𝑗

indicate the discrimination and difficulty of question 𝑒 𝑗

respectively (𝛽 𝑗 = {𝛽disc
𝑗

, 𝛽diff
𝑗
}), and 𝛼𝑖 indicates the ability of

student 𝑠𝑖 . IRT has been extended to Multidimensional IRT (MIRT)

by using multidimensional vectors of student and question traits

[26]. There is no extra functional parameters in these CDMs, i.e.,

Ω = ∅.
As for deep learning-based cognitive diagnosis models, Wang

et al. proposed a general framework as well as a model called Neu-

ralCDM, where the interaction function is learned from data by

neural networks [31]. The formulation is as follows:
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i
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,W b

diff

j

NeuralCDM

Figure 2: The model structures of IRT and NeuralCDM

𝒙𝑖 𝑗 = 𝑸 𝑗 ◦ (𝜶𝑖 − 𝜷diff

𝑗 ) × 𝛽
disc

𝑗 , (1)

𝒇1 = Sigmoid(𝑾1 × 𝒙𝑖 𝑗 + 𝒃1), (2)

𝒇2 = Sigmoid(𝑾2 × 𝒇1 + 𝒃2), (3)

𝑝𝑖 𝑗 = Sigmoid(𝑾3 × 𝒇2 + 𝑏3), (4)

where 𝜶𝑖 indicates student 𝑠𝑖 ’s proficiency on each knowledge

concept; 𝜷diff

𝑗
indicates the difficulty of each knowledge concept

tested by question 𝑒 𝑗 ; 𝛽
disc

𝑗
indicates the discrimination of question

𝑒 𝑗 ; 𝑸 𝑗 is the j-th row of Q-matrix. Ω = {𝑾1,𝑾2,𝑾3, 𝒃1, 𝒃2, 𝑏3}
are network parameters, where each element in𝑾∗ (∗ = 1, 2, 3) is
nonnegative.

4 UNCERTAINTY ESTIMATION FOR
COGNITIVE DIAGNOSIS MODELS

We first introduce an overview of our approach. Then, we provide a

unified objective function for mini-batch based training which can

be applied to different CDMs on large datasets, and the reparame-

terization trick that facilitates the gradient computation of different

parameter distributions. Finally, we introduce decomposition of the

uncertainty to better estimate the parameters.

4.1 Overview
As most continuous latent trait CDMs and existing deep learning-

based CDMs fall under the umbrella of the framework described

in 3.2, we choose to make minor modification of the framework so

that our approach can be applied to a wider range of CDMs and

avoid impairing the diagnosing ability of the original model struc-

tures. Furthermore, in order to obtain the uncertainty of parameters

during model training, we change the point-wise estimations of

parameters into estimating the posterior distributions. The variance

of a posterior distribution directly depicts the uncertainty of the

parameter. Uncertainty intervals can also be obtained as an indi-

cator of the uncertainty, which is adopted by some studies [5, 11].

Consequently, we propose a unified Bayesian approach called UCD.

For convenience, we treat the parameters as random variables

and represent all the variables with Ψ = Φ ∪ Ω, where Φ denotes

the diagnostic variables, including student variables 𝛼 = {𝛼𝑖 , 𝑖 =
1, 2, . . . , 𝑀} and question variables 𝛽 = {𝛽 𝑗 , 𝑗 = 1, 2, . . . , 𝑁 }. The
overall generative process of the responses 𝑅 = {𝑟𝑖 𝑗 } modeled by

UCD is depicted in Figure 3. To directly estimate the posterior

distribution 𝑝 (Ψ|𝑅) is intractable. Instead, we adopt a practical

solution that approximates 𝑝 (Ψ|𝑅) with a parametric distribution

𝑞(Ψ|𝜃 ) which has good statistical properties [3]. Furthermore, by

assuming the independence among the variables, the distribution

can be factorized to:

i
 jQ

ijr
i=1,2, ,M j=1,2, ,N

m

i


d

i


i


Interaction Function

Student Question

i j j
 d

j


m

j


j


 


Unobservable Variable Observable Variable

Figure 3: The graphic model of UCD

𝑝 (Ψ|𝑅) ≃ 𝑞(Ψ|𝜃 ) = 𝑞(Φ|𝜃Φ)𝑞(Ω |𝜃Ω), (5)

where𝜃Φ and𝜃Ω are learnable parameters (notationswithout circles

in Figure 3) that define the distributions of Φ and Ω respectively.

Therefore, the goal of model training changes to finding the optimal

parameters 𝜃 = 𝜃Φ ∪𝜃Ω that make 𝑞(Ψ|𝜃 ) closest to 𝑝 (Ψ|𝑅). Along
this way, we introduce the derivation of the objection function in

the following subsection.

4.2 Objective Function
In this subsection, we derive the objective function for mini-batch

based optimization, which can be used for different CDMs. Primar-

ily, we choose to minimize the Kullback-Leibler divergence (𝐷𝐾𝐿)

[16], which is a widely accepted measurement of the distance be-

tween probability distributions. Therefore, the optimal 𝜃∗ can be

calculated as:

𝜃∗ = argmin𝜃𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ|𝑅)]
= argmin𝜃𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ)] − E𝑞 (Ψ |𝜃 ) log𝑝 (𝑅 |Ψ), (6)

where 𝑝 (Ψ) is the prior distribution of the variables.

𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ)] − E𝑞 (Ψ |𝜃 ) log 𝑝 (𝑅 |Ψ) is not an ideal ob-

jective function yet, as there is the calculation of expectation.

Based on the Monte Carlo approach [3], the expectation can

be approximated with the average of samplings. In addition,

we incorporate the mini-batch based training strategy in order

to facilitate complicated CDMs and large datasets. Specifically,

assuming that there are𝑀𝑏 mini-batches, and for each data sample,

we draw𝑀𝑐 variable samples from the distribution 𝑞(Ψ|𝜃 ). Then
for i-th batch, let 𝐹 ′

𝑖
(𝜃 ) = 𝜋𝑖𝐿𝐴 − 𝐿𝐵 , where:

𝐿𝐴 = 𝐷𝐾𝐿 [𝑞(Ψ|𝜃 ) | |𝑝 (Ψ)], 𝐿𝐵 =
∑︁
𝑗

1

𝑀𝑐

𝑀𝐶∑︁
𝑚=1

log 𝑝 (𝑅 𝑗 |Ψ𝑗𝑚) . (7)

Here, 𝑅 𝑗 is the j-th response in the batch, Ψ𝑗𝑚 is the m-th sample

from 𝑃 (Ψ|𝜃 ) for 𝑅 𝑗 , and
∑𝑀𝑏

𝑖=1
𝜋𝑖 = 1. We can adopt 𝜋𝑖 =

2
𝑀𝑏 −𝑖

2
𝑀𝑏 −1 [3].

Furthermore, we place weights on the KL divergence of diagnostic

variables and function variables to adjust their learning rates:

𝐿′𝐴 = 𝜁0𝐷𝐾𝐿 [𝑞(Φ|𝜃Φ) | |𝑝 (Φ)] + 𝜁1𝐷𝐾𝐿 [𝑞(Ω |𝜃Ω) | |𝑝 (Ω)], (8)

where 𝜁0 and 𝜁1 are hyper-parameters. Finally, the objective func-

tion for the i-th mini-batch is:

𝐹𝑖 (𝜃 ) = 𝜋𝑖𝐿′𝐴 − 𝐿𝐵 . (9)

3
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Minimizing 𝐹𝑖 (𝜃 )means better approximating the prior distribution

(lower 𝐿′
𝐴
) and higher probability of reconstructing the responses

(higher 𝐿𝐵 ).

4.3 Reparameterization
We adopt gradient descent algorithm to optimize the parameters,

as gradient descent can be applied to both deep learning and non-

deep learning models, and is more efficient than EM-based or MH

sampling-based algorithms in traditional approaches. However,

there still exists a problem that, if we directly sample Ψ from the

distribution 𝑞(Ψ|𝜃 ), the gradient of 𝜃 in 𝐿𝐵 will not be able to calcu-

lated. Therefore, reparameterization trick is adopted. To facilitate

variables defined on different domains and simplify the sampling

process, we propose a theorem derived from the proposition in [3]

as follows:

Theorem 4.1. Suppose there is a function ℎ(𝑥) and its inverse
function𝑔(𝑥). Let 𝜖 be a random variable having a probability density
𝜖 ∼ 𝑁 (0, 1), and let Ψ = 𝑔(𝜇 + 𝜎𝜖). Then we have ℎ(Ψ) ∼ 𝑁 (𝜇, 𝜎2),
and for a function 𝑓 (Ψ, 𝜃 ), we have:

𝜕

𝜕𝜃
E𝑞 (Ψ |𝜃 ) [𝑓 (Ψ, 𝜃 )] = E𝑞 (𝜖 ) [

𝜕𝑓 (Ψ, 𝜃 )
𝜕Ψ

𝜕Ψ

𝜃
+ 𝑓 (Ψ, 𝜃 )

𝜕𝜃
] . (10)

Proof. As 𝑔(𝑥) is the inverse function of ℎ(𝑥), it is easy to get

ℎ(Ψ) = (𝜇 + 𝜎𝜖) ∼ 𝑁 (𝜇, 𝜎2).
Then, we prove that 𝑞(Ψ|𝜃 )dΨ = 𝑞(𝜖)d𝜖 .

𝑞(Ψ|𝜃 )dΨ = ℎ′ (Ψ) 𝑓 (ℎ(Ψ))dΨ
= ℎ′ (Ψ) 𝑓 (ℎ(Ψ))d𝑔(ℎ(Ψ))
= ℎ′ (Ψ) 𝑓 (ℎ(Ψ))𝑔′ (ℎ(Ψ))dℎ(Ψ)
= 𝑓 (𝜇 + 𝜎𝜖)d(𝜇 + 𝜎𝜖)

=
1

√
2𝜋𝜎

𝑒
− (𝜇+𝜎𝜖−𝜇)

2

2𝜎2 · 𝜎d𝜖

=
1

√
2𝜋
𝑒−

𝜖2

2 d𝜖

= 𝑞(𝜖)d𝜖.

Therefore, we have:

𝜕

𝜕𝜃
E𝑞 (Ψ |𝜃 ) [𝑓 (Ψ, 𝜃 )] =

𝜕

𝜕𝜃

∫
𝑓 (Ψ, 𝜃 )𝑞(Ψ|𝜃 )dΨ

=
𝜕

𝜕𝜃

∫
𝑓 (Ψ, 𝜃 )𝑞(𝜖)d𝜖

= E𝑞 (𝜖 ) [
𝜕𝑓 (Ψ, 𝜃 )
𝜕Ψ

𝜕Ψ

𝜃
+ 𝑓 (Ψ, 𝜃 )

𝜕𝜃
] .

□

Based on Theorem 4.1, the partial derivative with respect to 𝜃

of an expectation can be calculated as the expectation of a partial

derivative, and the expectation can be further approximated with

MC sampling. If we select a distribution for Ψ that ℎ(Ψ) ∼ 𝑁 (𝜇, 𝜎2),
here 𝜃 = {𝜇, 𝜎}, then an unbiased partial derivative with respect

to 𝜃 of E𝑞 (Ψ |𝜃 ) log 𝑝 (𝑅 |Ψ) (in Eq. (6)) can be calculated with the

following steps: (1) draw samples of 𝜖 from 𝑁 (0, 1); (2) let Ψ =

Ψ(𝜃, 𝜖) = 𝑔(𝜇 + 𝜎𝜖); (3) calculate 𝜕E𝑞 (Ψ |𝜃 ) log𝑝 (𝑅 |Ψ)/𝜕𝜃 = 𝜕𝐿𝐵/𝜃 .

According to the domain of definition of the Ψ, different distribu-
tions 𝑞(Ψ|𝜃 ) can be selected. Using𝜓 to denote any variable in Ψ,
the corresponding distribution can be selected as shown in Table 1.

With the usage of the above probability distributions for each

variable𝜓 , the corresponding parameters that need to be estimated

during training are 𝜃𝜓 = {𝜇𝜓 , 𝜎𝜓 }, where 𝜓 ∈ Ψ = 𝛼 ∪ 𝛽 ∪ Ω.
It should be noted that, with the assumption of variable indepen-

dence, all variables are fully factorized, i.e., the covariance of a

multidimensional variable is 0.

4.4 Decomposition of the Uncertainty
A significant difference between diagnostic variables and function

variables is that: function variables are affected by all the responses

in data, while the diagnostic variables are mainly affected by related

responses. For example, in IRT, the distribution of 𝛼𝑖 is estimated ac-

cording to student 𝑠𝑖 ’s responses; in NeuralCDM, the distribution of

student 𝑠𝑖 ’s proficiency on knowledge concept 𝑐𝑘 (𝛼𝑖𝑘 ) is estimated

according to 𝑠𝑖 ’s responses to questions that involve 𝑐𝑘 . Therefore,

even if the responses to a student/question are highly consistent

(illustrated as 𝑠1 in Figure 1), there still exists relatively high uncer-

tainty if related responses are too few. Accordingly, we decompose

the uncertainty of diagnostic variables into model uncertainty and

data uncertainty.

To be specific, the distribution parameter 𝜎𝜙 are decomposed

into 𝜎𝑚
𝜙

and 𝜎𝑑
𝜙
(𝜙 ∈ 𝛼 ∪ 𝛽), where 𝜎𝑚

𝜙
indicates the uncertainty

learned from the CDM, and 𝜎𝑑
𝜙
is monotonically decreasing with the

amount of related responses. In addition, considering that 𝜎𝑑
𝜙
should

be positive and has a diminishing marginal utility when there are

sufficiently large number of relevant responses, we formulate it as

𝜎𝑑
𝜙
= 𝜆0𝑒

−𝜆1𝝉
, where 𝜏 is the number of responses related to 𝜙 ; 𝜆0

and 𝜆1 are learnable weights that adjust the rate of decreasing (two

sets of 𝜆0 and 𝜆1 can be used for questions and students respectively

when the amount of responses related to a question differs too much

from that to a student). Then, we use 𝜎𝜙 = 𝜎𝑚
𝜙
× 𝜎𝑑

𝜙
.

The whole graphical model of UCD is illustrated in Figure 3, and

the training algorithm is summarized in Algorithm 1, where 𝑙 is the

learning rate. Existing gradient descent algorithms, such as SGD

[4] and Adam [15], can be adopted to update the parameters (line

11-12). (We will release our code after acceptance.)

4.5 Model Complexity
The space complexity of UCD integrated CDMs depends on the

𝑞(Ψ|𝜃 ) we choose. In our case, although UCD doubles the number

of parameters, the space complexity is still O(M + N + U), where

M, N and U are the numbers of students, questions and function

parameters.

The increase of the amount of parameters does not affect the time

cost much, as it does not change the gradient descent algorithm (we

did not observe appreciably more epochs before convergence in our

experiments). The extra time cost mainly comes from the sampling

process, especially the sampling of neural network parameters.

For example, in Eq. (2),𝑾1 is sampled for each data sample in 𝒙𝑖 𝑗 ,
changing the matrix-matrix multiplication (𝑾1 × 𝒙𝑖 𝑗 ) to multiple

matrix-vector multiplications, which is difficult for parallel GPU

computing. Nevertheless, this is an acceptable trade-off in order to

4
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Table 1: Distributions selected for variables defined on different domains.

Domain of𝜓 ℎ𝜓 (𝑥) 𝑔𝜓 (𝑥) Examples

(−∞, +∞) 𝑥 𝑥
The student ability and question difficulty in IRT and MIRT; the net-

work bias in NeuralCDM. We get𝜓 ∼ 𝑁 (𝜇, 𝜎2).

(𝑎, +∞) ln(𝑥 − 𝑎) 𝑒𝑥 + 𝑎 The discrimination in IRT and MIRT; the weights of neural networks

in NeuralCDM. Here, 𝑎 = 0, which means𝜓 ∼ 𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚(𝜇, 𝜎2).

(𝑎, 𝑏) Logit( 𝑥−𝑎
𝑏−𝑎 ) Sigmoid(𝑥) (𝑏 − 𝑎) + 𝑎 the student ability, question difficulty and discrimination in Neural-

CDM. Here, 𝑎 = 0, 𝑏 = 1, which means𝜓 ∼ 𝑙𝑜𝑔𝑖𝑡 − 𝑛𝑜𝑟𝑚(𝜇, 𝜎2).

Algorithm 1 UCD training algorithm

Input: Responses R; Q-matrix Q

Parameter: Parameters of the approximated posterior

distributions, i.e., 𝜃Φ = {𝜇Φ, 𝜎𝑚Φ , 𝜆0, 𝜆1}, 𝜃Ω = {𝜇Ω, 𝜎Ω}
Output: Approximated posterior distributions of diagnostic

variables 𝑞(Φ|𝜃Φ)
1: while not converged do
2: for batch i in R do
3: for variable𝜓 in Φ ∪ Ω do
4: Draw𝑀𝑐 samples of 𝜖 from 𝑁 (0, 1)
5: if 𝜓 is a diagnostic variable in Φ then
6: 𝜎𝑑

𝜓
= 𝜆0𝑒

−𝜆1𝝉
, 𝜎𝜓 = 𝜎𝑑

𝜓
× 𝜎𝑚

𝜓

7: end if
8: Let𝜓 = 𝑔𝜓 (𝜇𝜓 + 𝜎𝜓𝜖) (Table 1)
9: end for
10: Calculate the loss 𝐹𝑖 (𝜃 ) = 𝜋𝑖𝐿′𝐴 − 𝐿𝐵 , where

𝐿′
𝐴
= 𝜁0𝐷𝐾𝐿 [𝑞(Φ|𝜃Φ)]+ 𝜁1𝐷𝐾𝐿 [𝑞(Ω |𝜃Ω)],

𝐿𝐵 =
∑
𝑗

1

𝑀𝑐

∑𝑀𝐶

𝑚=1
log 𝑝 (𝑅 𝑗 |Ψ𝑗𝑚) . Eq. ((7)-(9))

11: for 𝜃 ∈ 𝜃Φ ∪ 𝜃Ω do
12: 𝜃 ← 𝜃 − 𝑙 ▽𝜃 𝐹𝑖 (𝜃 )
13: end for
14: end for
15: end while
16: return 𝑞(Φ|𝜃Φ)

obtain the uncertainty of CDMs, especially in deep learning-based

CDMs where traditional uncertainty estimation methods can not

be applied.

5 EXPERIMENTS
We conduct comprehensive experiments to answer the following

research questions:

RQ1 CanUCDprovide reasonable uncertainty for different CDMs?

RQ2 Whether the captured uncertainty relevant to the decom-

posed sources?

RQ3 Can UCD more efficiently deal with sophisticated CDMs

and large datasets?

RQ4 What personalized diagnostic information can UCD pro-

vide?

RQ5 Does UCD avoid impairing the diagnostic ability of the

CDMs?

Table 2: The statistics of the datasets.

FrcSub Math Eedi

number of students 536 7,756 17,740

number of questions 20 1,993 8,987

number of KCs 8 305 286

number of responses 10,720 637,798 610,032

5.1 Dataset Description
We use three real-world datasets, i.e., FrcSub, Math and Eedi, in

the experiments. FrcSub is a widely used dataset in cognitive diag-

nosis modeling, which consists of students’ responses to fraction-

subtraction questions [22]. Math is a dataset collecting the test

performances of senior-high school students. Eedi is the dataset

released by the NeurIPS 2020 education challenge (track 1), contain-

ing students’ answers to mathematics questions from Eedi
1
. We use

a subset of the original data starting from 04/01/2020 to 05/01/2020.

Table 2 shows some basic statistics.

5.2 Experimental Setup
To evaluate the effectiveness of our method, we applied UCD to two

representative non-deep learning CDMs, i.e., IRT [9] and MIRT [26],

and two representative deep learning based CDMs, i,e, NeuralCDM

[31] and KaNCD [32]. In addition, we also compare our UCD with

the fully Bayesian sampling based method [25] (FB) on IRT and

MIRT, multiple imputation [35] (MI) on IRT
2
, and the nonpara-

metric method GPIRT [8]. As ensemble based method is the only

available baseline that can be directly applied on NeuralCDM and

KaNCD, we compare UCD with deep ensemble [17] (DE).

The fully Bayesian sampling-based approach was implemented

using PyStan
3
of which the underlying implementation is in C

language, and the number of warm up samples is set to 500; GPIRT

is implemented based on the R package provided by the authors
4
;

the other approaches were implemented with Pytorch
5
in Python.

All experiments were run on a Linux server with Intel Xeon Gold

5218 CPU and Tesla V100 GPU.

The responses of each student in the datasets are divided into

train:validate:test = 0.7:0.1:0.2.𝑀𝑐 is set to be 5. 𝜁0 and 𝜁1 are both

1
https://competitions.codalab.org/competitions/25449

2
Frequentist methods are not compared with because they use standard error instead

of probability distribution (or uncertainty interval) to represent the uncertainty of

student proficiency.

3
https://pystan.readthedocs.io/

4
https://github.com/duckmayr/gpirt/blob/main/

5
https://pytorch.org/
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Figure 4: A unidimensional illustration of interval transfor-
mation.

selected from [0.01, 0.1, 1, 1.5]. For all the standard deviation pa-

rameters (𝜎∗), to ensure that they are positive, we instead make

𝜎∗ = Softplus(𝜂∗), and learn 𝜂∗ through training. We select 𝑁 (0, 1),
log-norm(0,1) and logit-norm(0,1) as the prior distributions for

variables defined on (−∞, +∞), (0, +∞) and (0, 1) respectively. To
initialize the network variables, we first initialize a matrix𝑊 with

Kaiming initialization [12], and then let 𝜇𝑊 = ln( |𝑊 |). The Adam
algorithm [15] is used for optimization, and the learning rate is

0.002.

5.3 Evaluation of Uncertainty Intervals (RQ1)
The uncertainty of the diagnostic results (i.e., student variable 𝛼)

is characterized by their estimated posterior distributions, and can

be further concretized with the confidence intervals (uncertainty

intervals) of the distributions. To facilitate the evaluation with

observable responses, we project the intervals of students’ knowl-

edge proficiencies [𝜶 𝑖 ,𝜶 𝑖 ] to the intervals of model predictions

[𝑝
𝑖 𝑗
, 𝑝𝑖 𝑗 ]. This is achieved by taking advantage of the monotonicity

of CDMs. As the monotonicity assumption in CDMs indicates, the

model prediction monotonically increases with any dimension of

knowledge proficiency𝜶𝑖 [26]. Figure 4 illustrates a unidimensional

example, where the curve depicts the predicted probability (that a

student can correctly answer the question 𝑒 𝑗 ) with respect to the

student’s knowledge proficiency. Specifically, we first obtain the

95% confidence interval of the estimated knowledge proficiency

[𝜶 𝑖 ,𝜶 𝑖 ], where 𝜶 𝑖 = 𝑔(𝝁𝛼𝑖 − 1.96𝝈𝛼𝑖 ) and 𝜶 𝑖 = 𝑔(𝝁𝛼𝑖 + 1.96𝝈𝛼𝑖 )].
Here,𝑔(·) is the function discussed in Table 1. Next, we sample ques-

tion variables (𝜷 𝑗 ) and network variables (Ω) 50 times and calculate

their corresponding predictions with 𝜶 𝑖 and the corresponding in-

teraction of the CDM. 𝑝
𝑖 𝑗

= E𝑞 (𝜷 𝑗 ,Ω |𝜃𝛽𝑗 ,𝜃Ω )𝑝 (𝑟𝑖 𝑗 = 1|𝜶 𝑖 ) is finally
approximated with the average of these predictions. Similarly, 𝑝𝑖 𝑗
can be obtained. DE is exceptional, for which [𝜶 𝑖 ,𝜶 𝑖 ] is directly
obtained from the predictions of multiple trained CDM instances.

In order to evaluate whether reasonable uncertainty intervals

are obtained, Prediction Interval Coverage Probability (PICP) and

Prediction Interval Average Width (PIAW) are widely accepted

metrics [1]. PICP calculates the proportion of true values lying in the

interval, while PIAW calculates the average widths of the intervals.

To adapt to binary response labels (0 or 1) in our experiments, we

adjust the formulation as follows:

𝑃𝐼𝐶𝑃 =
1

𝑛

∑︁
𝑖, 𝑗

𝑐𝑖 𝑗 , 𝑃𝐼𝐴𝑊 =
1

𝑛

∑︁
𝑖, 𝑗

(𝑝𝑖 𝑗 − 𝑝𝑖 𝑗 ), (11)

Figure 5: The 𝜎𝛼 of students estimated by U-IRT and U-
NCDM.

where 𝑛 is the number of responses in the test set, and

𝑐𝑖 𝑗 =

{
1, [0.5𝑟𝑖 𝑗 , 0.5(1 + 𝑟𝑖 𝑗 )] ∩ [𝑝

𝑖 𝑗
, 𝑝𝑖 𝑗 ] ≠ ∅,

0, otherwise.
(12)

Well estimated intervals should have a PICP close to the con-

fidence level, and the same PICP with a smaller PIAW indicates

a tighter interval. Furthermore, with a certain confidence level,

a CDM having a smaller PIAW usually indicates more confident

diagnostic results.

The results of the models are presented in Table 3.
6
We have

the following observations. First, UCD achieves PICPs closer to

0.95, which indicates accurate uncertainty estimation. Second, on

IRT, MI tends to underestimate the uncertainty. The uncertainty

estimated by UCD is consistent with the traditional FB method, and

UCD performs better than FB on FrcSub and Math. On MIRT, FB

overestimates the uncertainty (the abnormally high PIAW), while

UCD provides reasonable results. These validate the effectiveness

of UCD on traditional CDMs. On NeuralCDM and KaNCD, UCD

gets better results most time. Moreover, the comparability issue

among the CDMs trained multiple times (i.e., scale linking [18]) is

dismissed in DE.

5.4 Analysis of the Uncertainty Source (RQ2)
As stated in subsection 4.4, the uncertainty diagnostic variables

comes from both data aspect and model aspect. Better insights

into the uncertainty source can be useful in applications, such as

deciding the number of questions or repeats of knowledge concepts

in an examination, and selecting suitable CDMs that have better

balance between diagnosis accuracy and model uncertainty on

the data. For better understanding, we visualize the uncertainty

parameters 𝜎𝛼 estimated on Math in Figure 5. For brevity, we use a

prefix "U-" to identify the CDMs integrated with UCD.

For data aspect, as can be observed in Figure 5, there is a ten-

dency that diagnostic variables with more related responses should

have lower uncertainty. To fully validate whether this tendency is

captured by UCD, we calculate the Spearman rank correlation coef-

ficient [36] between the 𝜎𝛼 of students and the number of responses

related to 𝛼 in training set. The results are presented in Table 4.

As expected, we can observe strong negative correlations, which

6
The results of GPIRT on Math and Eedi were not obtained because the iteration stop

condition is too hard to meet for these large datasets, causing unacceptable running

time.
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Table 3: Experimental results of student performance prediction (uncertainty interval).

Dataset Metric

IRT MIRT NeuralCDM KaCND

FB MI GPIRT UCD FB UCD DE UCD DE UCD

FrcSub

PICP 0.935 0.885 0.933 0.957 1.000 0.922 0.868 0.956 0.899 0.918

PIAW 0.340 0.277 0.335 0.342 0.999 0.264 0.085 0.472 0.191 0.247

Math

PICP 0.867 0.802 - 0.883 1.000 0.940 0.816 0.927 0.875 0.837

PIAW 0.159 0.269 - 0.194 0.990 0.393 0.084 0.468 0.176 0.143

Eedi

PICP 0.898 0.830 - 0.892 1.000 0.941 0.831 0.946 0.864 0.827

PIAW 0.266 0.226 - 0.247 0.999 0.493 0.124 0.471 0.195 0.107

Table 4: The Spearman rank correlations between 𝜎𝛼 and
the number of related questions. The results of U-IRT and
U-MIRT cannot be calculated on FrcSub because all students
answer the same number of questions.

Dataset U-IRT U-MIRT U-NeuralCDM U-KaNCD

FrcSub - - -0.96 -0.92

Math -0.91 -0.89 -0.94 -0.60

Eedi -0.91 -0.69 -0.85 -0.42

validate the tendency. Here we focus on the diagnosed proficiencies

of students (𝛼), which is the goal of CDMs, and same results can be

observed for question parameters (𝛽).

For model aspect, as we can observe from Figure 5, although

there is a decreasing tendency with the number of responses, there

are variances on a certain number of responses, which are cause

by 𝜎𝑚
𝜙
. The estimated 𝜎𝑚

𝜙
has a more complicated relation with the

properties of CDMs, which can be difficult to fully analyze. We here

provide a viewpoint that we observed in experiments. In general,

the distance between model predictions and the true response la-

bels indicates the ability of the model to reconstruct the responses.

Therefore, this distance can be an indicator of the model charac-

teristic, which may be relevant to the model uncertainty. Along

this way, we calculate the Spearman rank correlation between this

distance and the estimated 𝜎𝑚
𝜙

of student variables.

For CDMs diagnosing latent abilities (no corresponding relation-

ship with Q-matrix, e.g., U-IRT, U-MIRT), the overall distance of

student 𝑠𝑖 is:

dist(𝑠𝑖 ) =
∑︁
𝑟𝑖 𝑗 ∈𝑅𝑖

|𝑝𝑖 𝑗 − 𝑟𝑖 𝑗 |, (13)

where 𝑅𝑖 is the set of responses of 𝑠𝑖 in data; 𝑝𝑖 𝑗 is expected predic-

tion of input 𝑠𝑖 and 𝑒 𝑗 ; 𝑟𝑖 𝑗 is the true response. Then, the Spearman

rank correlation between {dist(𝑠𝑖 ), 𝑖 = 1, 2, . . . , 𝑀} and {𝜎𝑚𝛼𝑖 , 𝑖 =
1, 2, . . . , 𝑀} is calculated.

For CDMs diagnosing explicit knowledge proficiencies (having

corresponding relationship with Q-matrix, e.g., U-NeuralCDM, U-

KaNCD), the overall distance of student 𝑠𝑖 ’s proficiency on knowl-

edge concept 𝑐𝑘 is:

dist(𝑠𝑘𝑖 ) =
∑︁

𝑟𝑖 𝑗 ∈𝑅𝑘𝑖

|𝑝𝑖 𝑗 − 𝑟𝑖 𝑗 |, (14)

where 𝑅𝑘
𝑖
is the set of responses of 𝑠𝑖 to the questions requiring

𝑐𝑘 . Then, the Spearman rank correlation between {dist(𝑠𝑘
𝑖
), 𝑖 =

1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝐾} and {𝜎𝑚𝛼𝑖𝑘 , 𝑖 = 1, 2, . . . , 𝑀, 𝑘 = 1, 2, . . . , 𝐾}

Table 5: The Spearman rank correlations between 𝜎𝑚𝛼 and the
fitting ability. The results of U-IRT and U-MIRT cannot be
calculated on FrcSub because all students answer the same
number of questions.

Dataset U-IRT U-MIRT U-NeuralCDM U-KaNCD

FrcSub - - 0.82 0.23

Math 0.73 0.53 0.90 0.05

Eedi 0.60 -0.63 0.99 -0.16

is calculated. The results are presented in Table 5, where we can

observe obvious correlations on most models, which partially ex-

plains the differences of model uncertainty (𝜎𝑚𝛼 ). The relatively

weak correlation presented by U-KaNCD should be caused by that

KaNCD actually models the associations among knowledge con-

cepts, which is not measured by Eq. (14). It should be noticed that

the evaluation here provide a viewpoint to understand 𝜎𝑚𝛼 . The

whole relation between 𝜎𝑚𝛼 and CDMs can be more complicated.

5.5 Comparison of the Efficiency (RQ3)
As stated in the Introduction, one of the limitations of traditional

uncertainty estimation approaches is the limited application range

of training methods, which are inefficient and even inapplicable

to complex cognitive diagnosis models (CDMs) and large datasets.

Here, we provide the training time costs (until convergence) of fully

Bayesian sampling-based approach, multiple imputation approach,

and our UCD in Table 6. We can observe from the table that the

model complexity and data size have significant impact on the

time cost of traditional approaches. Specifically, FB-MIRT requires

much more time cost than FB-IRT, and their time cost increases

dramatically on larger dataset, i.e, Math and Eedi. Similarly, GPIRT

requires unacceptable time cost when applied on Math and Eedi.

In contrast, the time cost increment of UCD is more moderate.

Moreover, UCD can be applied to deep learning-based CDMs (e.g.,

NeuralCDM and KaNCD) where traditional approaches are not

applicable. The ensemble based uncertainty estimation approaches

from deep learning academia are essentially not for CDMs, and

the time cost is N times the original CDM, where N is the number

of trials for CDM training. larger N can provide more accurate

estimation, but also leads to higher time cost.

5.6 Illustration of Diagnostic Information (R4)
Through integrating UCD, a CDM can provide more information

about the diagnostic results. Here we present an example of diagnos-

tic results provided by IRT, U-IRT, NeuralCDM and U-NeuralCDM,
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(a) IRT (b) U-IRT

(c) NeuralCDM (d) U-NeuralCDM

Student 3Student 3

Concept Student 1 Student 2 Student 3

Question 1 A, B, C

Question 2 C, D, E

Question 3 C, E, F

A: Find a common denominator

B: Column borrow to subtract the second numerator 

from the first

C: Subtract numerators

D: Convert a whole number to a fraction

E: Separate a whole number from a fraction

F: Borrow from whole number part

Figure 6: Differences of diagnostic results.

Table 6: Comparison of time cost.

Approach CDM FrcSub Math Eedi

FB

IRT 15s 1h 21min 2h 10min

MIRT 3min 15s >12h >12h

MI IRT 16min 30s >12h >12h

GPIRT IRT 20s - -

UCD

IRT 90s 7min 9min 20s

MIRT 1min 58s 7min 45s 19min 31s

in Figure 6. We randomly select three students from FrcSub, and

present their responses to three questions in the table, and the diag-

nostic reports in the subfigures. (For conciseness, we only present

part of the responses and diagnositc reports.) From the figure, we

can observe that, both IRT and NeuralCDM provides point-wise

proficiencies of students. For U-IRT, similar proficiencies are re-

ported (i.e., Student 2 < Student 1 < Student 3); For U-NeuralCDM,

the modes of the contributions are also close to the results of Neu-

ralCDM (e.g., the proficiency on F is around 0.65). What’s more,

U-IRT and U-NeuralCDM provide the uncertainty of their diag-

nostic results. For example, in Figure 6(d), U-NeuralCDM is quite

confident in C (having the most related responses), but more un-

certain on B. Based on the uncertainty information, users (e.g.,

teachers) can decide whether to assign additional questions for bet-

ter diagnosis; downstream applications, such as learning materials

recommendation, can pay more attention to diagnostic results that

are less uncertain. Reducing uncertainty can also be considered

in the next-question-selection process in computerized adaptive

testing [2].

5.7 Impact on Diagnostic Ability (RQ5)
In algorithm designing, it is common to encounter situations where

it is difficult to simultaneously satisfy different objectives, requiring

a trade-off (e.g, accuracy and efficiency in recommender systems).

Ideally, when estimating the uncertainty of CDMs, we do not expect

negative impacts on the original diagnostic ability of the CDMs.

Therefore, UCD is designed with mild modifications of the original

CDM structures in order to smoothly conduct the uncertainty esti-

mation. To validate it, we evaluate the diagnostic performances of

Table 7: Experimental results of student performance predic-
tion (point-wise/expectation).

Dataset FrcSub Math Eedi

Metric AUC Acc AUC Acc AUC Acc

IRT 0.829 0.778 0.809 0.779 0.796 0.758

U-IRT 0.881 0.805 0.815 0.781 0.808 0.766

MIRT 0.877 0.807 0.810 0.774 0.781 0.744

U-MIRT 0.894 0.822 0.822 0.782 0.806 0.764

NeuralCDM 0.894 0.824 0.808 0.772 0.811 0.768

U-NeuralCDM 0.899 0.826 0.806 0.775 0.810 0.765

KaNCD 0.900 0.835 0.824 0.783 0.809 0.765

U-KaNCD 0.903 0.838 0.822 0.783 0.811 0.764

CDMs before and after integrating UCD. Following [31], we use the

diagnosed results to predict students’ performances on questions in

the test set, and use AUC, accuracy as metrics. The results of differ-

ent models are presented in Table 7. Fortunately, we did not observe

such degradation from our method. Moreover, for non-deep learn-

ing based U-IRT and U-MIRT, there are considerable improvements,

which might benefit from the regularization of prior distributions

of diagnostic variables and the gradient descending algorithm.

6 CONCLUSION
In this paper, we proposed a unified solution to the uncertainty

estimation of cognitive diagnosis models (UCD). Compared to tra-

ditional approaches, UCD follows the Bayesian strategy but pro-

vides better efficiency, and more sufficiently models the differences

among parameters into the uncertainty from both data and model

aspects. Therefore, UCD can not only be applied to traditional non-

deep learning latent trait models but also fill the vacancy for deep

learning-based models.

In UCD, we introduced a unified objective function and derived

a reparameterization approach that can be applied to large-scale

diagnosis model parameters defined on different domains. The

current solution is based on the independence assumption among

model parameters. In future studies, UCD can be further improved

by considering the covariance among diagnostic parameters to

better fit advanced cognitive diagnosis models (e.g., KaNCD).

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Unified Uncertainty Estimation for Cognitive Diagnosis Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu,

Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Ra-

jendra Acharya, et al. 2021. A review of uncertainty quantification in deep

learning: Techniques, applications and challenges. Information Fusion 76 (2021),

243–297.

[2] Haoyang Bi, Haiping Ma, Zhenya Huang, Yu Yin, Qi Liu, Enhong Chen, Yu Su,

and Shijin Wang. 2020. Quality meets diversity: A model-agnostic framework

for computerized adaptive testing. In 2020 IEEE International Conference on Data
Mining (ICDM). IEEE, 42–51.

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and DaanWierstra. 2015.

Weight uncertainty in neural network. In International conference on machine
learning. PMLR, 1613–1622.

[4] Léon Bottou. 2010. Large-scale machine learningwith stochastic gradient descent.

In Proceedings of COMPSTAT’2010. Springer, 177–186.
[5] Yinghao Chu, Mengying Li, Hugo TC Pedro, and Carlos FM Coimbra. 2015.

Real-time prediction intervals for intra-hour DNI forecasts. Renewable energy 83

(2015), 234–244.

[6] Jimmy De La Torre. 2009. DINA model and parameter estimation: A didactic.

Journal of educational and behavioral statistics 34, 1 (2009), 115–130.
[7] Jimmy De La Torre and Jeffrey A Douglas. 2004. Higher-order latent trait models

for cognitive diagnosis. Psychometrika 69, 3 (2004), 333–353.
[8] JBrandon Duck-Mayr, Roman Garnett, and Jacob Montgomery. 2020. Gpirt: A

Gaussian process model for item response theory. In Conference on uncertainty
in artificial intelligence. PMLR, 520–529.

[9] Susan E Embretson and Steven P Reise. 2013. Item response theory. Psychology
Press.

[10] Elisabetta Fersini, Enza Messina, and Federico Alberto Pozzi. 2014. Sentiment

analysis: Bayesian ensemble learning. Decision support systems 68 (2014), 26–38.
[11] EthanGoan andClinton Fookes. 2020. Bayesian neural networks: An introduction

and survey. Case Studies in Applied Bayesian Data Science: CIRM Jean-Morlet
Chair, Fall 2018 (2020), 45–87.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep

into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE international conference on computer vision. 1026–1034.
[13] Junyang Jiang, Deqing Yang, Yanghua Xiao, and Chenlu Shen. 2019. Convolu-

tional Gaussian Embeddings for Personalized Recommendation with Uncertainty.

In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(Macao, China) (IJCAI’19). AAAI Press, 2642–2648.

[14] HM Dipu Kabir, Abbas Khosravi, Mohammad Anwar Hosen, and Saeid Naha-

vandi. 2018. Neural network-based uncertainty quantification: A survey of

methodologies and applications. IEEE access 6 (2018), 36218–36234.
[15] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In International Conference on Learning Representations.
[16] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.

The annals of mathematical statistics 22, 1 (1951), 79–86.
[17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple

and scalable predictive uncertainty estimation using deep ensembles. Advances
in neural information processing systems 30 (2017).

[18] Won-Chan Lee and Guemin Lee. 2018. IRT linking and equating. The Wiley
handbook of psychometric testing: A multidisciplinary reference on survey, scale
and test development (2018), 639–673.

[19] Jacqueline Leighton and Mark Gierl. 2007. Cognitive diagnostic assessment for
education: Theory and applications. Cambridge University Press.

[20] Jiatong Li, Fei Wang, Qi Liu, Mengxiao Zhu, Wei Huang, Zhenya Huang, Enhong

Chen, Yu Su, and Shijin Wang. 2022. HierCDF: A Bayesian Network-based

Hierarchical Cognitive Diagnosis Framework. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 904–913.

[21] I Lira and DGrientschnig. 2010. Bayesian assessment of uncertainty in metrology:

a tutorial. Metrologia 47, 3 (2010), R1.
[22] Qi Liu, Runze Wu, Enhong Chen, Guandong Xu, Yu Su, Zhigang Chen, and Guop-

ing Hu. 2018. Fuzzy cognitive diagnosis for modelling examinee performance.

ACM Transactions on Intelligent Systems and Technology (TIST) 9, 4 (2018), 1–26.
[23] Haiping Ma, Manwei Li, Le Wu, Haifeng Zhang, Yunbo Cao, Xingyi Zhang,

and Xuemin Zhao. 2022. Knowledge-Sensed Cognitive Diagnosis for Intelligent

Education Platforms. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. 1451–1460.

[24] Jeffrey M Patton, Ying Cheng, Ke-Hai Yuan, and Qi Diao. 2014. Bootstrap

standard errors for maximum likelihood ability estimates when item parameters

are unknown. Educational and Psychological Measurement 74, 4 (2014), 697–712.
[25] Richard J Patz and Brian W Junker. 1999. A straightforward approach to Markov

chain Monte Carlo methods for item response models. Journal of educational
and behavioral Statistics 24, 2 (1999), 146–178.

[26] Mark D Reckase. 2009. Multidimensional item response theory models. In

Multidimensional Item Response Theory. Springer, 79–112.
[27] Christine A Reid, Stephanie A Kolakowsky-Hayner, Allen N Lewis, and Amy J

Armstrong. 2007. Modern psychometric methodology: Applications of item

response theory. Rehabilitation Counseling Bulletin 50, 3 (2007), 177–188.

[28] Jason D Rights, Sonya K Sterba, Sun-Joo Cho, and Kristopher J Preacher. 2018.

Addressing model uncertainty in item response theory person scores through

model averaging. Behaviormetrika 45, 2 (2018), 495–503.
[29] Jakub Swiatkowski, Kevin Roth, Bastiaan Veeling, Linh Tran, Joshua Dillon,

Jasper Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, and Sebastian

Nowozin. 2020. The k-tied normal distribution: A compact parameterization of

Gaussian mean field posteriors in Bayesian neural networks. In International
Conference on Machine Learning. PMLR, 9289–9299.

[30] Michael L Thomas. 2011. The value of item response theory in clinical assessment:

a review. Assessment 18, 3 (2011), 291–307.
[31] Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang,

and Shijin Wang. 2020. Neural cognitive diagnosis for intelligent education

systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
6153–6161.

[32] Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yu Yin, Shijin Wang, and Yu

Su. 2022. NeuralCD: A General Framework for Cognitive Diagnosis. IEEE
Transactions on Knowledge and Data Engineering (2022).

[33] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and

Tom Vercauteren. 2019. Aleatoric uncertainty estimation with test-time aug-

mentation for medical image segmentation with convolutional neural networks.

Neurocomputing 338 (2019), 34–45.

[34] Xinping Wang, Caidie Huang, Jinfang Cai, and Liangyu Chen. 2021. Using

Knowledge Concept Aggregation towards Accurate Cognitive Diagnosis. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2010–2019.

[35] Ji Seung Yang, Mark Hansen, and Li Cai. 2012. Characterizing sources of un-

certainty in item response theory scale scores. Educational and psychological
measurement 72, 2 (2012), 264–290.

[36] Jerrold H Zar. 2005. Spearman rank correlation. Encyclopedia of biostatistics 7
(2005).

9


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Task Overview
	3.2 Representative Cognitive Diagnosis Models

	4 Uncertainty Estimation for Cognitive Diagnosis Models
	4.1 Overview
	4.2 Objective Function
	4.3 Reparameterization
	4.4 Decomposition of the Uncertainty
	4.5 Model Complexity

	5 Experiments
	5.1 Dataset Description
	5.2 Experimental Setup
	5.3 Evaluation of Uncertainty Intervals (RQ1)
	5.4 Analysis of the Uncertainty Source (RQ2)
	5.5 Comparison of the Efficiency (RQ3)
	5.6 Illustration of Diagnostic Information (R4)
	5.7 Impact on Diagnostic Ability (RQ5)

	6 Conclusion
	References

