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Abstract

Social reasoning—inferring unobservable beliefs and intentions from partial ob-
servations of other agents—remains a challenging task for large language models
(LLMs). We evaluate the limits of current reasoning language models in the social
deduction game Avalon and find that while the largest models demonstrate strong
performance, they require extensive test-time inference and degrade sharply when
distilled to smaller, real-time-capable variants. We introduce an efficient hybrid
reasoning framework that externalizes belief inference to a structured probabilistic
model, while using an LLM for language understanding and interaction. Our ap-
proach achieves competitive performance with much larger models in Agent-Agent
play and, notably, is the first language agent to defeat human players in a controlled
study—achieving a 67% win rate and receiving higher qualitative ratings than both
reasoning baselines and human teammates. We release code, models, and a dataset
to support future work on social reasoning in LLM agents.

1 Introduction

Large language models (LLMs) have demonstrated remarkable general-purpose reasoning capabilities
across a wide range of tasks [6; 1285 [1]], yet their ability to engage in social reasoning — particularly
in multi-agent settings where participants hold private beliefs and (potentially) deceptive intentions
— remains an open challenge [24 137} 44]]. Recent studies [41} 20} 22]] suggest that state-of-the-art
LLM:s often struggle to infer the latent goals and beliefs of other agents in such scenarios, limiting
their effectiveness in settings that require theory of mind or strategic social deduction.

We revisit this problem in the context of Avalon, a social deduction gam that provides a structured
yet complex environment for evaluating an agent’s ability to infer hidden roles, manage uncertainty,
and interact cooperatively or competitively with others by utilizing deception and persuasion. Avalon
is particularly challenging as it requires agents to utilize constrained probabilistic reasoning over
long temporal horizons, an aspect rarely seen in prior benchmarks. Consider the following example.

Prompt: There are five players (Alice, Bob, Carol, Dave, and Eve), two of which
are Evil while the rest are Good. The first party (consisting of Alice and Bob) and
the second party (Carol and Dave) both failed. If each Evil player has a 70%
chance to fail the quest, what is the probability that each player is Evil?

*Equal contribution. Correspondence to srahimir@purdue.edu
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3 Although referred to as “social deduction”, reasoning in social deduction games is inherently probabilistic—
due to epistemic uncertainty—rather than purely deductive (logical or mathematical).

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.



LLM: Each individual appears in exactly half of the possible pairs. Therefore, the
probability that any specific individual is Evil is: 0.5

Despite the simplicity of our example, state-of-the-art large reasoning models (LRMs) [50; 59],
including 8B and 70B variants of Deepseek-R1, fail to successfully reason that the only player to
not appear in a party, Eve, has a 0% probability of being Evil, as there are only two Evil players.
Our experiments show that while larger models are capable of solving this trivial example, they too
struggle as the temporal horizon increases and social aspects are brought into play. Furthermore,
performance gains come at a significant computational cost, requiring long chains of reasoning tokens,
rendering such models impractical for real-time interactive play with human users.

To overcome this limitation, we propose a hybrid reasoning framework that augments LLMs
with structured probabilistic inference over beliefs, combining the linguistic grounding and
rich priors of foundation models with the rigor of Bayesian reasoning. In this paper, we present
GRAIL (Graph Reasoning Agent Informed through Language), a hybrid framework where an
LLM handles dialogue parsing, generates utterances, and interprets informal social cues, while a
probabilistic graphical model tracks latent roles and beliefs by analyzing observed game events and
social interactions. This decoupling makes belief inference both interpretable and efficient, avoiding
the need for extensive token generation during gameplay, resulting in a fast and efficient agent capable
of real-time decision making.

Despite using a significantly smaller LLM, our method matches or exceeds the performance of
large-scale reasoning models across multiple metrics, including win rate, belief accuracy, belief
consistency, and wall-clock time in Agent-Agent Avalon games. Notably, GRAIL is, to the best of
our knowledge, the first language agent to successfully play and win against novice human players in
a controlled participant study, achieving a striking 67% win rate. In post-game surveys, participants
rated GRAIL’s contributions and helpfulness significantly higher than reasoning model baselines,
and in many cases, even over other human players. These results suggest that external structured
reasoning models effectively and efficiently complement LLMs, enabling socially competent behavior
in real-time interactive settings.

To support future work on social reasoning in multi-agent environments, we release our framework,
agent implementations, a new benchmark, and a dataset of Agent-Agent and Human-Agent Avalon
games, which include player discussions and game states. Together, these contributions provide a
testbed for studying reasoning efficiency, social inference, deception, and cooperation in LLM agents.

1.1 Background and Related Work

Social Deduction Agents: Social deduction games provide a natural testbed for evaluating the
social reasoning capabilities of LLMs [19]. Previous studies have applied LLMs to hidden-role
and social deduction games such as Werewolf [18;; 1495 52} 153]], Among Us [31l], Avalon [21} 46],
and Mafia [14]. Before the advent of foundation models, the DeepRole agent [36] was trained via
self-play to play 5-player versions of Avalon without natural dialogue. More recently, Stepputtis
et al. [41] explored the use of LLMs for hidden role inference based on long-form dialogue in Avalon
games and demonstrated their shortcomings. In parallel, probabilistic graphical models have also
been explored in the context of social deduction games [S1]].

Theory of Mind: Theory of mind (ToM), the ability to attribute mental states like beliefs, desires,
and intentions to oneself and others [13], is crucial for social reasoning, especially for deception and
persuasion [2;5]]. The presence of ToM-like abilities in Large Language Models (LLMs) is currently
debated [15;137;42]. Notably, Riemer et al. [30] argue that high performance on ToM benchmarks
may not reflect genuine ToM reasoning in LLMs, as these abilities may not extend to novel scenarios.
Social deduction games offer a robust environment for probing these limits, as success requires agents
to model and reason about the intentions, beliefs, and likely actions of others [125; 158} 9]. More
recently, Sclar et al. [35] showed that graph-based models, combined with LLMs, can support belief
reasoning in standard ToM tasks.

Scaling and Reasoning: LL.Ms exhibit discontinuous improvements in zero-shot reasoning with
increased model size [3;l47]], a trend that extends to commonsense and social reasoning [37]. Besides
scaling parameters, reasoning ability can be enhanced by scaling test-time token generation [57]].
Recent work has posited that these reasoning models are capable of step-by-step problem-solving on
a variety of benchmarks, even with fewer parameters [4; 43 |57)]. This presents a trade-off between
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Figure 1: Overview of GRAIL’s architecture and inter-module communication. A factor graph tracks
beliefs over hidden player roles using belief propagation, informed by game-state observations and an
LLM-generated language prior. Conditional probabilities are estimated by a neural network trained
on historical games. Inferred beliefs guide both action selection and message generation.

test-time computation and parameter count as an alternative means for improving social reasoning
capabilities [25; 40]. However, several recent studies argue that benchmark gains alone are not
evidence of emergent reasoning capabilities [32 56].

The Resistance Avalon: In the social deduction game Avalon [8]], players belong to either the Good
team (who try to complete quests) or the Evil team (who try to sabotage them). The game consists of
five rounds with quest parties of 2, 3, 4, 3, and 4 members, respectively. Each round, players propose
and vote on a party. If approved, its members secretly vote on the quest’s outcome; the quest succeeds
only if all members vote success. Good wins by completing three quests; Evil wins by failing three.
Players communicate via turn-based chat (see Appendix [A]for full details). We develop an Al agent
that plays exclusively as Good, such that we can focus on identifying Evil opponentsﬁ

2 Bayesian Belief Inference with Factor Graphs

To identify Evil players in Avalon, an agent must be able to form and support parties composed
entirely of Good players, despite lacking knowledge of other players’ roles. This is a constrained
probabilistic reasoning task, where agents infer latent player roles from observable actions and
unstructured natural language dialogue, and then act based on the certainty of their beliefs. This is a
challenging task for state-of-the-art language models that rely purely on token-level reasoning. We
introduce a hybrid approach that externalizes inference to a structured graphical model well-suited to
constrained reasoning. The language model attends to social-linguistic signals while the reasoning
model maintains and updates beliefs, enabling strong performance even with small models. Our
approach is designed around two core objectives.

Constraint Satisfaction: Deduction in Avalon depends on satisfying a combination of hard and
soft constraints. For example, the fixed number of Evil players (e.g., two) imposes a hard constraint
on valid role assignments. Similarly, a failed quest implies at least one Evil member in the party,
introducing a soft constraint that influences belief updates. However, many possible role assignments
satisfy these constraints, and agents must consider multiple plausible hypotheses simultaneously.

Probabilistic Inference: To support reasoning about plausible role assignments, we model player
roles and relevant game variables as random variables in a probabilistic model, allowing us to
represent uncertainty over role assignments and update beliefs as new evidence accumulates. We
formulate hidden role inference as probabilistic inference over a factor graph, which compactly
models dependencies and enforces game-specific constraints.

2.1 Factor Graphs for Social Deduction

A factor graph is a bipartite graph, defined as the triplet G = (V, F,E) where V = { X, Xo, ..., X, }
is the set of variable nodes, F = { f1, fa, ..., fm} is the set of factor nodes, and £ C V x F is the
set of edges. Each factor represents a function: an edge (X, f;) € £ exists if and only if X is an
argument of f;. A factor function can represent a probability distribution if it is normalized, or a
constraint if its values are either 0 or 1. Through this, the graph is able to represent dependencies and
constraints between a set of variables.

*We exclude special roles, e.g. Merlin, to focus on detecting deception rather than producing it.



The variable nodes in our factor graph represent both game state and player role variables, with
the goal of identifying which players are likely to be Evil. The role variables are denoted
R = {r,...,r¢}, where r; € 0, 1 indicates whether player j is Good (0) or Evil (1). The game
state variables are given by S = {p1,v1,01 ..., Ds, Vs, 06 }, Where p;, v;, 0; represent the party com-
position, voting outcome, and quest result for quest ¢, respectively. A binary factor enforces the hard
constraint that exactly two players are Evil. For each role variable r;, we include a factor connected
to the game state that encodes its conditional probability, defined as F' = p(r;|{p;, vi, 0;|Vi}). An
overview of the factor graph structure is shown in Fig. [I] with details provided in Appendix B}

We use max-product belief propagation [45] to perform approximate maximum a posteriori (MAP)
inference over the factor graph, identifying the most likely assignment of hidden roles given the
observed game state. Unlike the more common sum-product algorithm, max-product directly
estimates a MAP assignment rather than integrating over alternatives [16} 26] and is better suited
for handling deterministic constraints [39]], e.g., the number of Evil players. In our setting, the
agent’s role is known, so inference is performed over the remaining five hidden role variables. The
max-product algorithm calculates the max-marginals of each hidden variable, which is proportional
to the probability of player i being Evil and can be treated as the belief about that variable[S5]]. From
this point forward, we refer to this max-marginal as the belief of the agent about the player ¢, b;. The
details of the max-product algorithm can be found in Appendix Furthermore, the max-product
algorithm is efficient and scales linearly, as shown in Appendix

2.2 Factor Function Approximation

Traditionally, factor functions are represented as probability tables, which are impractical in high-
dimensional settings such as ours. To address this, we approximate the conditional probability
distribution in each factor using a simple feedforward neural network [29]. Each factor corresponds
to the conditional density p(r;|{p;,vi, 0;|¥i}), where r; is a binary role variable. We model this
as a binary classification task, using a sigmoid output to estimate the conditional probability of
r;. The network is trained on a dataset of over 100,000 games’| — consisting only of game states
without language — collected from AvalonLogsE] and ProAvalon/’| To account for temporal partial
observability, we apply a masking scheme that zeroes out future inputs, ensuring the model only
conditions on information that would have been available at a given point in the game. Details on the
network architecture and training procedure are provided in Appendix

Mitigating Positional Bias in Factor Functions: In Avalon, players take turns according to a
fixed sequence, which introduces positional bias during training and inference. To mitigate this, we
augment the training data with all circular permutations of player orderings. Additionally, using
separate neural networks for each factor node can also introduce positional bias, which we avoid by
using a shared factor function across all nodes. We apply an ego-centric transformation to the input
state such that the player corresponding to the current factor is always placed in the first index while
preserving the relative positions of other players.

3 GRAIL: Graph Reasoning Agent Informed through Language

Fundamentally, GRAIL is a hybrid model composed of three interconnected components: an LLM, a
factor graph for tracking beliefs over player roles, and a heuristic action policy, as illustrated in Fig.[I]
The factor graph efficiently maintains and updates probabilistic beliefs about player roles based on
observable game events. These beliefs are then passed to the LLM, which generates appropriate
dialogue based on the agent’s current understanding of the game, with no need for further reasoning.

Game Actions: Proposing parties and voting for them follows a heuristic policy derived from factor
graph beliefs: a party is proposed or approved only if all members are more likely Good than Evil.
Furthermore, when our GRAIL agent is the party leader, the heuristic guides the agent through the
necessary stages of proposing a party, initiating a discussion, adjusting the proposal if necessary, and
initiating a party vote. For more details refer to Appendix [E]

’In Appendix@we show that only 2.5K-5K games are required for sufficient predictive performance.
https://github.com/WhoaWhoa/avalonlogs
"https://www.proavalon.com
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Table 1: Win rates across different team compositions. Each matchup consists of 20 games.

(a) Win rates for homogeneous agent teams. (b) Win rates for mixed GRAIL/ReCon teams.

Good Team Evil Team Avg Good Team Comp. M Avg
Rand ReCon DS-R1 o04-mini ReCon 04-mini

Rand 0.00 0.00 0.00 0.00 0.00 0 GRAIL & 4 ReCon 0.15 0.25 0.20
DeepSeek-R1 0.90 0.35 0.70 0.90 0.71 1 GRAIL & 3 ReCon 0.20 0.25 0.23
GPT-04-mini 0.70 0.05 0.25 0.50 0.40 2 GRAIL & 2 ReCon 0.20 0.65 0.43
ReCon 080 015 050 025 043 3 GRAIL & 1 ReCon 0.40 0.90 0.65
GRAIL 095 045 0.70 0.90 0.75 4 GRAIL & O ReCon  0.45 0.90 0.68

3.1 Incorporating Language Priors into Belief Propagation

A core part of Avalon is the dialogue between players, providing valuable insights into whether or
not a player is Good or Evil. During the discussion of parties and quests, players may contradict
themselves, hint at alliances, or reveal privileged knowledge. To incorporate such information, we
utilize an LLM to estimate priors for beliefs over player roles, which are subsequently integrated into
max-product belief propagation for downstream reasoning.

Formally, for player j we define a prior probability p(r?) over their role at time step ¢, where r§ =1
indicates that player j is Evil. By default, this prior is uninformative, i.e., uniform, but we use
the LLM to adjust this prior and incorporate language feedback. We present the LLM with the
current chat history and the belief of player j, b;‘l, and ask it to assess whether the belief should be
higher, lower, or remain the same. The LLM’s qualitative judgement 6} € {higher, lower, same}
is converted into a numeric prior using a pre-defined mapping parameter 3¢ as follows:

0.5+ 3" if 0§ = higher
p(rj) = 05— 5" if 6% = lower
0.5 if 6; = same.

In practice, we treat 3 as a tunable hyperparameter. To avoid overconfidence in early rounds when
little evidence is available, we use values close to 0 and increase them as the game progresses. We
adopt this qualitative prompting scheme instead of directly asking LL.Ms to generate probabilities
because LLMs often struggle to accurately interpret, manipulate, and generate numeric data [34; 54].
All prompt templates used to extract priors and generate messages are provided in Appendix [F|

4 Experiments

To evaluate GRAIL, we simulated games against synthetic Evil players and assessed its performance
across a wide range of metrics, including win rate, belief accuracy, and belief consistency.

Baselines: We compared GRAIL against reasoning and non-reasoning agents. Reasoning agents use
LRMs for both action selection and message generation, including DeepSeek-R1 [4] and OpenAl’s
GPT-04-mini [27]]. Non-reasoning agents use LLMs but may still employ manual chain-of-thought
where applicable, such as ReCon [46]. A Random agent serves as a performance lower bound.

4.1 Agent-Agent Evaluation

To systematically evaluate agent performance, we constructed a four Good agent vs. two Evil agent
matchup matrix. Each pairing was tested over 20 games, with both GRAIL and ReCon utilizing
GPT-4.1 as the underlying LLM. The results (Table show that GRAIL achieves the highest
win rate (average of 75%) among all Good agents, consistently outperforming both reasoning and
non-reasoning baselines, including those using the 671B DeepSeek-R1 LRM.
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Figure 2: F1 scores of agents’ voting predictions of team composition per round (error bars indicate
SE) (a) GRAIL compared to other baseline agents, (b) ablation of GRAIL on non-reasoning Llama
3.1 model compared to DeepSeek-R1 reasoning model across different parameter sizes, (c) GRAIL
compared to human players and reasoning models used in the human study.
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Figure 3: Probability density of GRAIL beliefs about Good and Evil players, with and without
using LLM prior in 5-round games (a) 13 games against ReCon and reasoning agents (DS-R1,
GPT-04-mini) (b) 4 games against human players.

We further analyzed each agent’s votes with respect to proposed parties, treating these votes as
binary predictions of whether a party contains an Evil player. Fig. 24 compares the F1 scores of
these predictions across game rounds, showing that GRAIL again outperforms all baselines. This
result suggests that GRAIL is particularly effective at reasoning over long horizons, as reflected by
strong late-game performance (after the third round). In contrast, GPT-04-mini and ReCon exhibit a
performance drop in the fifth round when the context horizon is the longest.

Mixed-Team Setting: In the mixed-team setting, we tested GRAIL’s effectiveness when paired with
weaker agents, such as ReCon, as teammates. We observed that gradually adding GRAIL agents
to the team immediately improves performance (see Table [Ib), depending on the opposing team’s
capabilities. These findings underscore GRAIL’s ability to improve overall team performance, even
when partnered with less capable agents.

Token Analysis: To evaluate agent efficiency, we com-
puted the average number of input and output tokens
per round. Input tokens reflect the amount of context
and guidance provided, while output tokens capture
the length of the reasoning chain and implicitly indi-
cate relative compute costs. The results are shown in
Fig.[] where we see that GRAIL produces more than
10 times fewer output tokens than all other base-
lines, underscoring the computational efficiency of our
method. Notably, unlike the LL.M-based ReCon agent, W Input Tokens Output Tokens
which requires multiple prompts per turn as part of its
reasoning process, GRAIL completes reasoning in a
single prompt, resulting in far fewer input tokens.

15242
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GRAIL Rsn.(DS-R1) Rsn.(o4-mini)  ReCon
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Figure 4: Average per-round token usage
for GRAIL, LRM-based reasoning agents,
and ReCon in Agent-Agent games.

Belief Distribution: To analyze the effect of lan-

guage priors, we visualized the evolution of GRAIL’s belief over the course of 13 games that
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Figure 5: Combined ablation results across agent components, model size, and reasoning types.

ended after exactly 5 rounds. Fig. shows the kernel density estimations KDE(b; | r; =

1) (Evil player) and KDE(b; | rj = 0) (Good player), computed both with and without the
prior p(rjt*l) in agent—agent games. We observe that beliefs about both Good and Evil players
progressively converge toward their true values as the game advances. Early-game distributions
are uncertain, whereas late-game distributions exhibit high-confidence peaks. Incorporating the
language prior accelerates this convergence, resulting in confident and accurate beliefs by round three,
compared to rounds four or five without the prior.

4.2 Model Size and Architecture Evaluation

To evaluate the contribution of GRAIL’s individual components, we performed ablation studies under
two conditions: LLM Only, in which beliefs are set directly from the prior (b§- = p(rj—)), and Graph

Only, which uses belief propagation without the language prior (by fixing 3¢ = 0). Furthermore, to
understand how these design choices impact sensitivity to LLLM size, we pair this analysis with an
ablation study on the size of the underlying LLM, using the Llama 3.1 family [7] with 8B, 70B, and
405B parameters for GRAIL.

Ablation results (Fig. [5a) demonstrate that the full GRAIL method, combining both the factor graph
and language priors, consistently outperforms both ablated variants. The LLM Only variant is highly
sensitive to model size, exhibiting sharp performance degradation with smaller models. Conversely,
the Graph Only variant is robust to LLM size and maintains a high win rate (75%) even with the
smallest 8B model. From this, we conclude that the factor graph establishes a “performance floor,”
effectively mitigating the negative performance impacts of smaller models.

We next evaluated the sensitivity of reasoning agent performance to model size by playing games
where the original 671B DeepSeek-R1 model is replaced with smaller, distilled variants (70B and
8B). This allows us to directly measure how reasoning quality degrades with reduced model capacity.
To further isolate the effect of reasoning ability, we also substituted the reasoning agent’s LRM with
comparably-sized Llama LLM models; similarly, we evaluated GRAIL with DeepSeek LRMs.

The results (Fig. [5b) highlight GRAIL’s robustness to model size, which is a sharp contrast to
the reasoning agents. Specifically, the reasoning agents exhibit poor performance when using
smaller LRMs or non-reasoning LLMs. This results in two key insights: 1) the LLM-based GRAIL
outperforms similarly-sized LRM-based reasoning agents in every size class, and 2) GRAIL achieves
higher win rates using a smaller LLM than reasoning agents using much larger LRMs, e.g., GRAIL
8B Llama outperforms reasoning 70B DeepSeek-R1. We also observed a counterintuitive result: the
win rate of the reasoning agent with the 405B Llama model is worse than the 70B Llama model.
Upon analysis of chat messages, we observed that this is due to high sycophancy [38]] as the Good
agents complied with the Evil agents’ requests, e.g. “I should be in the party.”

Voting Dynamics: A comparison of round-by-round voting patterns shown in Fig. 2 highlights that
GRAIL yields higher F1 scores than the DeepSeek-based reasoning agent at comparable parameter
scales (Llama 3.1 405B vs. DeepSeek 671B; 70B vs 70B; 8B vs 8B) Our agent demonstrates greater
consistency and reduced performance degradation across all model sizes.

Time Analysis: To demonstrate the speed and efficiency of GRAIL, we compared GRAIL and the
best reasoning agent (DeepSeek-R1) on average time per turn across model sizes, noting hardware



Table 2: Average per-turn wall-clock time (in sec-
onds) of agents over different methods and model
sizes. Times for GRAIL include graph inference.

8B 70B* 405B /671B

Table 3: Belief F1 score of GRAIL using
the priors generated by different Llama
model sizes with different 5 values.

B
DS-RI(s) 17.37420.59 15.0146.55 85.504179.29 Model Size  0.05 0.10 0.15 0.20 0.25

GRAIL (s) 14.04+2.00 18.73+£1.82% 20.00+9.99 8BLLaMA  0.89 0.82 0.79 0.78 0.76
Graph (5) 505 10.15% 53 405B LLaMA 0.88 0.89 0.90 0.89 0.89

differenced’| For GRAIL, we separately measured the graph propagation time in addition to the total
turn time ['| The reasoning agents are significantly slower, and DeepSeek-R1 shows a high variance
due to time spent on internal reasoning, while GRAIL is consistently faster (see Table[2))

The Effect of Beta: To evaluate the effect of the 3 parameter (from section , we reran the belief
propagation on games played by the 8B and 405B agents (Appendix [C). We find that priors from
smaller models produce more accurate beliefs (F1 score) when paired with a smaller 5 (Table [3)).
This suggests smaller models generate lower-quality priors. To verify this, we measured the priors’
performance on classifying Evil players and found that the 405B model (0.73 F1) significantly
outperforms the 70B (0.60 F1) and 8B (0.47 F1) models. This confirms that smaller models
struggle to detect deception, validating our approach of tuning 5 as a model-specific hyperparameter

Hallucination Analysis: We measured agent alignment with
the game state by analyzing message hallucination rates for

X 40
GRAIL and the reasoning agent across various model sizes. % 20
We utilized GPT-4.1 as a judge to detect hallucinations [10], Ez
as it has proven to agree with human judgment in 95% of the ¢
cases (see Appendix [G). Across all sizes, GRAIL consistently % ' .' 'I
hallucinates less than the reasoning agent (Fig @, indicating = ° 40sp/6718
stronger grounded reasoning through our hybrid approach. We s GRAIL mmm Reasoning (DS-R1)

observed that the reasoning agent tends to make speculative

statements, a behavior that could impair trust and coordination Figure 6: Hallucination rates for

in Human-Agent games. GRAIL (Llama 3.1) and the rea-
soning agent (DS-R1) for different

. model sizes over 40 games.
5 Human Evaluation g

Lastly, we tested GRAIL’s ability to play with and against human players, demonstrating GRAIL’s
ability to handle diverse strategies that create dynamic and unpredictable gameplay. To this end,
we conducted an IRB-approved within-subjects study spanning 44 participants where agents played
against Evil human players alongside one Good human teammate in real time. After each game,
participants completed questionnaires on the perceived contribution and helpfulness of Good players,
without knowing the study’s purpose to reduce bias. Additional methods appear in Appendix [I|

The following hypotheses guide our evaluation: H1: Good teams consisting of GRAIL agents will
win significantly more games than those composed of reasoning agents. H2: GRAIL will identify
Evil players by rejecting proposals containing Evil players and accepting proposals exclusively
composed of Good players more accurately, compared to the reasoning agents (H2.1) and human
players (H2.2). H3: Participants will state that GRAIL contributed to the success of the Good team
more, compared to the reasoning agents (H3.1) and human players (H3.2). H4: Participants will
prefer the helpfulness of the suggestions and comments of GRAIL more, compared to the reasoning
agents (H4.1) and human players (H4.2).

Setup: Each experiment paired two human players as Evil with one human as Good, alongside
three Good agent teammates. Every participant played two games, alternating between GRAIL
and baseline reasoning agents (GPT-04-mini) in randomized order for fairness. Participants were
unaware of the presence of non-human players. Because the DeepSeek-R1 model creates long chains

8The 70B GRAIL ran on a different hardware with a weaker CPU compared to the 8B and 405B variants
*With GPU-optimized belief propagation, GRAIL could be even more efficient.



of thought, it is massively time-inefficient, to the extent that each action takes multiple minutes,
making it incompatible for real-time settings. Due to this latency, as well as reliability issues with the
DeepSeek-R1 API, GPT-04-mini was used as the baseline model.

This configuration enables evaluations from two perspectives: (1) Evil players interacting against
agents, and (2) a Good player collaborating alongside agents. After each game, human evaluators
answered two questions assessing the overall contribution and communication quality of the Good
team players on a five-point Likert response scale. These questions are:

QI: “Player _ contributed to the success of the Good team.”

Q2: “Player _ made suggestions or comments that were helpful to the Good team.”

5.1 Human Study Evaluation

We conducted 15 trials with three participants each, running 15 games with GRAIL and 15 with the
reasoning agent. Fig.[7]presents the results of the qualitative evaluation. Because participants were
unaware that both humans and agents were present on the Good team, Evil players evaluated all Good
players, without distinguishing between agents and humans.

H1: Across 15 games, GRAIL won 10 and lost 5
(67% win rate), whereas the reasoning-based agent 400]— 3891 5.4

won 4 and lost 11 (27% win rate). We assessed the €375 1 a4
statistical significance of this performance difference. & * 938 oo T
A frequentist test yields p = 0.054, just above the 0.05 2, I

threshold, but suggests a favorable trend. Bayesian 275

analysis produces a 96.7% posterior probability that
GRAIL outperforms, with a 95% credible interval
of (0.482, 0.939), leaving only a 1.8% chance the
reasoning agent is superior.

GRAIL Reasoning (04-mini) Human Player

mmm Q1: Contributed Success Q2: Helpful Comments

Figure 7: Average scores given to agents
by humans across two questions assessing

H2: We evaluated predictive performance for party ~contribution and helpfulness. Human ratings
proposal assessments across human study games. Fig- (Evil players’ votes for Good human players)
ure 2c shows GRAIL consistently votes more accu- are included for baseline comparison.
rately than human players. A one-tailed [48]] signed-

rank test of F1 scores across 15 games confirms GRAIL’s statistically significant improvement over
humans (p = 0.007, H2.1). A Mann-Whitney U test [23] comparing GRAIL and reasoning agents’
F1 score distributions across the same games further supports this finding (p = 0.0103, H2.2).

H3, H4: We conducted one-tailed t-tests (p < 0.05) comparing GRAIL, reasoning agents, and human
players on both questions. GRAIL significantly outperformed reasoning agents in task contribution
(Q1: p = 0.001, H3.1) and suggestion quality (Q2: p = 0.0005, H4.1). Compared to humans,
GRAIL showed a non-significant trend in task contribution (Q1: p = 0.105, H3.2) but significantly
better suggestions (Q2: p = 0.035, H4.2). Results indicate GRAIL outperforms reasoning agents
and approaches human-level performance in effectiveness and helpfulness.

6 Conclusion

In this work, we propose GRAIL, a novel approach to hybrid reasoning that utilizes a structured
probabilistic inference framework to identify and track player roles in a complex and challenging
social deduction game — Avalon — that requires constrained probabilistic reasoning. Through our
extensive experiments, we demonstrate that current state-of-the-art reasoning models struggle in
such settings, underlining the benefit of our proposed method, significantly outperforming prior work
and LRMs while using much smaller non-reasoning LL.Ms with significantly lower computational
cost, and faster inference. Furthermore, we demonstrate that GRAIL is capable of playing with and
against human players, achieving a win rate of 67% against novice human players. In its current state,
GRAIL is exclusively designed as a Good agent for detecting rather than generating deception, using
first-order Theory of Mind through Bayesian reasoning over a factor graph, complementary to the
LLM inference. Generating deception or persuasion (e.g., required to successfully play special roles
such as Merlin) requires second-order reasoning, which builds on our strong first-order foundation. In
future work, we will extend GRAIL to model and utilize second-order beliefs enabling the detection
of more intricate deception as well as improving GRAIL’s persuasiveness.
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Appendix for Bayesian Social Deduction with
Graph-Informed Language Models

A The Resistance: Avalon

The Resistance: Avalon is a standalone social deduction game designed by Don Eskridge and
published by Indie Boards and Cards in 2012 [8]). It builds upon the foundation laid by its predecessor,
The Resistance, which Eskridge also designed and released in 2009. While both games share core
mechanics involving hidden roles and team-based missions, Avalon introduces a rich Arthurian theme
and additional character roles that deepen strategic play. Avalon is designed for 5-10 people, where
players are split into two teams: Good (Loyal Servants of Arthur) and Evil (Minions of Mordred). In
this paper, we focus on a simplified version with 6 players, which does not include special roles (e.g.
Merlin, Assassin, etc.) to better focus on detecting deception, rather than producing it.

In the simplified version of the game with 6 players used in our study, there are 4 Good players and 2
Evil players. Roles are randomly assigned and kept secret. Each Evil player knows the identities of
their Evil teammate, whereas Good players do not know the identities of any other player. The game
progresses through 5 rounds, requiring parties of 2, 3, 4, 3, and 4 members, each consisting of a party
proposal, a discussion phase, a party vote, and a quest vote. Players take turns in a clockwise direction,
starting with the player designated as the leader. The leader proposes a team of a predetermined size
to participate in the quest. Players then discuss the proposal in clockwise order. After everyone has
had their turn to speak, there is a vote on whether to approve or reject the current party. If the party is
approved by a majority, then the players proceed to the quest vote. If rejected, leadership passes on
to the next player clockwise. If five consecutive parties are rejected, the Evil team wins by default.
During the quest vote, party members secretly vote on the quest outcome, which succeeds only if
players vote unanimously for success. The Good team wins if three missions succeed. The Evil team
wins if three missions fail or if five consecutive team proposals are rejected.

B Factor Graph

B.1 Structure

The detailed structure of the factor graph used in GRAIL is shown in Fig[8] In this visualization,
we represent the variables with capital letters (as random variables). More importantly, in our
implemented graph structure, we only consider the final approved party for each quest.

Evil
[Constraint]

ceo

Figure 8: The Factor Graph Structure
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R; is a binary random variable representing the role of the player . If the player is Evil, R; = 1,
otherwise R; = 0.

The factors can represent either a constraint (through a binary function) or a probability (throgh a
joint or conditional probability function) depending on their purpose. The Evil Constraint enforces
the constraint that only two of the players are Evil, and is defined as a function of R; ... Rg as seen

in Eq[T}

6
6
1, R =2,
fEVilConstraim(Rh ce >R6) = 1{2?:1 Ri=2} = 6(2; Rl - 2) = Zzzl (1)
i=

0, otherwise.

P;, V}, and O; are categorical random variables representing the party at quest j, the public vote for
the party in quest 7, and the outcome of quest j, respectively. We use a simple numerical encoding to
save and represent the party, vote, and outcome of each quest. We consider value zero to indicate
unseen or future quests; in other words, P, = V; = O; = 0 means that quest ¢ has not happened yet.
In the upcoming sections, the indexes and encoding start from number 1 due to this consideration.

Party (P;): Assuming that the party has £ members, we list all k-element subsets of the players in
increasing lexicographic order called S. Given a party composition, the encoding will be the index of
that party in the ordered list S. Thus, for example, P; = 1 encodes {1, 2} (party with player 1 and 2),
P; = 2 encodes {1,3} and so on. Based on this encoding, we will have:

Py, Ps, P5€{0,...,15},
P, P4€{0,...,20}.

Vote (V;): Since the parties are selected by a majority vote, the number of players on the list of
approval votes will be either 4, 5, or 6, leading to a total of 22 possible vote compositions. Similar
to the encoding used for the Party, we order these vote compositions (represented by subsets of the
player list) in an increasing lexicographic order. The encoding of a party vote will be the index of
that vote composition in this ordered list.

Vi e{0,...,22}
Outcome (O;): We encode success in quest j as O; = 2 and failure as O; = 1.

Factor Nodes: The factor nodes represent the conditional probability of the role node given the
state of the game. The details of approximating this conditional probability using a neural network
are given in Section

B.2 Belief Propagation

The max-product belief propagation algorithm works by passing messages along the edges of the
factor graph and updating them iteratively. These messages represent the "influence" that variables
and factors have on each other in terms of maximizing the global function. There are two types of
messages:

* Message from variable z; to factor f,: This message represents the "belief" of variable z;
about its state, based on information received from all other connected factor nodes except
fa. Ttis calculated as the product of all incoming messages to = from neighboring factor
nodes as seen in Eq where N (z;) is the set of factor nodes connected to x;:

t—1
SO | B e € @
fo€EN(zi)/{fa}

* Message from variable f, to factor x;: This message represents the "belief" of factor f,
about the state of variable x;, based on the factor function and the messages received from
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all other connected variables. It is calculated by maximizing the product of the factor f, and
all incoming messages from its neighboring variable nodes:

uﬁfa)%i (zi) = _ max Ja(Xnsa)) 11 “g')%fa () )
XN (fa)/{mi} z;EN(fa)/{z:} '

As seen in Eq [3) N(f,) is the set of variable nodes neighboring factor node f,. The
maximization is performed over all possible assignments to the variables in Xy (y,)/{zi},
which denotes the set of variables connected to factor f,, excluding x;.

The "belief" at variable X; (also called a max-marginal) is denoted as b;. The calculation of beliefs is
given in Eq[]and is proportional to the maximum value of the joint probability distribution over all
possible assignments to other variables, with X; fixed to x;.

bi(w) = [ mraoe(20) )

faeN(l'i)

Based on these beliefs, the estimated maximum probability assignment to the variables is z; =
arg max,, b;(z;). This converges to the exact MAP assignments if the factor graph is a tree, but in
loopy graphs (like our graph), the convergence is to an approximation.

Initialization: The algorithm starts by initializing every message from the variables to the factors.
This is where any prior information about the hidden variables enters the algorithm. So the first
message will be:

wP,, (@) = PIX; = xy] )

If X; is observed to be value x5, P[X; = x;] will be equal to 1 for x; = x,ps. Otherwise, we can
use prior probabilities for P[X; = z;], and if no prior knowledge is available, the probability will be
uniform.

Iteration: In each iteration, new messages are computed based on the messages from the previous
iteration using Eq[2]and Eq3] The order of message updates can vary (e.g., synchronous updates
where all messages are computed simultaneously based on the previous iteration’s messages, or
asynchronous updates where messages are updated one by one). In our implementation of the
algorithm, these updates are done asynchronously, and the messages are normalized after each
iteration. This updating process continues until the messages converge (i.e., they no longer change
significantly between iterations) or a maximum number of iterations is reached. The details of this
convergence criteria are provided in the next section.

Termination: The algorithm terminates either after a specific number of iterations (20 in our
implementation) or when the beliefs converge. Convergence can be determined by monitoring the
change in beliefs (marginals) between iterations. We use the Kullback-Leibler (KL) divergence

between the belief distribution at iteration ¢ and ¢ — 1 to determine convergence. Let b,(f) (s) and

b,(f*l) (s) be the belief for variable X}, being equal to s at iteration ¢ and ¢ — 1 respectively. The KL
divergence is calculated as

Dy (6P 157) = 320V (s) (1og bV () — log b (s)) ©)
Based on this, we terminate the calculation if the sum of the divergence of all variables is less than

e=1076:
-1
Ly = > Dxt. (bgf dl bg)) <e ™
k

B.3 Factor Function Approximation

A simple neural network is used to approximate the factor function which represents the conditional
probability.
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B.3.1 Architecture:

The input of the neural network is the encoding of each game state node as explained in Appendix [B.T}
Each one of P, V1,..., Vs, Os are treated as a categorical input variable. Each categorical input
variable is individually transformed into a dense vector representation using separate embedding
layers. The embedding size of each categorical variable is log, C;, where C; is the number of
categories in variable 7.

These learned embeddings are then concatenated to form a unified feature vector. This consolidated
vector is subsequently processed through a sequence of fully connected layers: an initial layer
mapping to a hidden dimension with 16 nodes, an intermediate hidden layer of the same dimension,
and finally, an output layer producing the model’s predictions. Rectified Linear Unit (ReLU) activation
functions are applied after each hidden layer, and a masking strategy is implemented within the
forward pass to zero out embeddings corresponding to a zero input feature (the quests that have not
been added yet).

The output of the network is one-dimensional and is equal to 1 for Evil players and 0 for Good players.
The network is trained as a binary classifier with a softmax function to turn logits into probability
estimations.

B.4 Training

The training data is constructed from the AvalonLogsEF] with 3,143 games and the ProAvalo
website with 101280 games. This dataset is split into 80% for training, 10% for valida-
tion, and 10% for testing. For each game, we extract 6 training samples: one corre-
sponding to each player. Additionally, the game state is extracted each round by masking
the input. For example, if a game ends in 3 rounds, three possible input states exists:
[P17V170150a07"‘]7[P17V17015P27‘/270270705"'}7[Plv‘/17017P27‘/27027P37V37O370707"']

The model training process is configured for binary classification over a fixed number of epochs,
utilizing the Adam optimizer with L2 regularization (weight decay) to minimize binary cross entropy
loss. To counteract class imbalance, this loss function is weighted by a dynamically calculated
variable which is equal to the ratio of Good player to the Evil players in the dataset (2 to 1). An early
stopping criterion is employed, monitoring the validation loss on the primary validation set.

B.5 Train Dataset Size

Table 4: F1 Scores vs Training Data Size
Training Data Size | 261 522 1044 2610 5221 10442 20884 41768

Train F1 Score 0.3977 0.5360 0.5563 0.5939 0.6089 0.6075 0.6084 0.6082
Val F1 Score 0.3927 0.5324 0.5544 0.5938 0.6102 0.6106 0.6116 0.6121

While our initial model was trained on the full dataset, we conducted a follow-up analysis to evaluate
performance with smaller datasets. Using fixed 10% of the dataset as validation, we trained the
conditional probability estimation network on subsets of 200 to 40K games, repeating each experiment
20 times with different random subsets. As seen in Table[d] the performance stabilizes between 2.5K
and 5K games, indicating that large-scale training is not required for effective performance.

B.6 Calibration

Modern neural networks often produce poorly calibrated probabilities, meaning their output con-
fidence scores do not accurately reflect the true likelihood of correctness. Calibration is therefore
needed to align these confidences with actual probabilities for the neural network to effectively
estimate a conditional probability.

For this purpose, we use Temperature Scaling [11]], a post-hoc calibration method. It wraps a pre-
trained model and introduces a single learnable scalar parameter, "temperature.” This temperature

https://github.com/WhoaWhoa/avalonlogs
"https://www.proavalon.com
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is used to divide the model’s output logits before they are converted to probabilities. We use
the implementation from https://github.com/gpleiss/temperature_scaling with default
parameters and use the test split of the data to calibrate the model. The result of this calibration
is seen in Fig.[9] which represents the confidence vs accuracy of the model. Note that there is no
confidence under 0.5 because any prediction under 0.5 is considered a label for the Good class.

Accuracy vs Confidence

1.0 4 ——- Perfect Calibration
—8— Model Before Calibration
—8— Model After Calibration

0.8

0.6
>
o
e
3
g

0.4 4 A%

’
4
7
7
4
,
4
4
7’
0.2 1 7
4
4
4
7’
7’
7’
7’
4
4
0.0 7

T T
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figure 9: The relationship between accuracy and confidence of the model before and after calibration.
The calibrated model has higher accuracy in each confidence level, which can point to under-
confidence. This under-confidence is desirable in our application.

B.7 Graph Scalability

We evaluated the computational scalability of Bayesian inference by varying the number of player-role
nodes in the GRAIL factor graph. Factor graphs were constructed with 6, 8, 12, and 20 players. A
consistent neural network factor estimation was used (accuracy not evaluated for this experiment).
Belief propagation was run on 20 randomly generated game states to measure average runtimes in
seconds. These experiments were run on a MacBook Air M2 (CPU only, no GPU optimization). As
seen in Table BThe inference time scales approximately linearly with the number of role nodes, which
suggests that our approach scales well to higher-dimensional settings (e.g., in other settings or in
Avalon variants with more roles, more players, or more rounds per game).

Table 5: Performance metrics showing average time vs number of role nodes
Number of Role Nodes| 6 8 12 20

Average Time (s) |4.62 5.98 9.06 15.14

C Beta variable effect

We evaluated the effect of the Beta parameter by rerunning belief propagation using the game state
and LLM priors from the games with 8B, 70B, and 405B LLaMA GRAIL agents. As seen in Table 6]
smaller LLMs make more mistakes in their prior estimates, reducing belief accuracy as Beta increases.
Therefore, we set higher Beta values for larger models and lower Beta values for smaller models.

The better performance of smaller models with smaller beta can indicate that smaller models generate
less accurate priors. We report the F1 score of the LLM priors that were generated by the 405B and
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Table 6: Performance of LLaMA models across different /3 values.
Beta
Model Size  0.05 0.10 0.15 0.20 0.25

8B LLaMA  0.89 0.82 0.79 0.78 0.76
405B LLaMA 0.88 0.89 0.90 0.89 0.89

8B models. We calculate these metrics by considering an “increase” response as a positive prediction
for the classification task of the Evil players.

The 8B model achieves an F1 score of 0.47 and the 70B model achieves 0.60 while the big 405B
model achieves an F1 score of 0.73. Smaller models have more difficulty detecting deception in
dialogue and identifying Evil players. To mitigate this, we treat the Beta parameter, which controls
the influence of LLM priors, as a tunable hyper-parameter and set lower values for smaller models.

D Implementation and Compute

For the implementation of the factor graph, we use the Pomegranate Python package [33]] developed
by Jacob Schreiber. This package is available atpomegranate .readthedocs.iol We use the belief
propagation framework used in this package, and adjust it to use Max-Product instead of Sum-Product.
Pytorch was used for approximating the factor functions.

All GPT models were run through the OpenAl API. The 671B DeepSeek-R1 model was accessed
through the official DeepSeek API. The experiments with the 16FP version of the smaller DeepSeek-
R1 models (70B and 8B parameters), as well as the Llama models (405B, 70B, and 8B parameters),
were run on NVIDIA®A100-40GB GPUs using the vLLM [17] library for serving and inference. To
run 8B parameters of DeepSeek-R1 and Llama 3.1, we utilized 1 accelerators; for 70B parameters of
DeepSeek-R1 and Llama 3.1, we utilized 4 accelerators; and the 405B parameter Llama 3.1 model
was ran with 8 accelerators.

The games with the GRAIL agent on average use around 126K input tokens and around 4K output
tokens. In a game with the reasoning agents, around the same number of input tokens are needed, but
the number of output tokens is around 45K. Based on this, the GPU hours needed for rerunning the
experiments will depend on the throughput achieved by the GPUs.

E Action Heuristic

All agents follow the same action selection protocol throughout the game. The round always starts
with the leader proposing a party and sending a message to support the proposal. Then, each player
takes a turn to send a message until it is once again the leader’s turn. The leader will then either send
a final message before initiating a vote, or revise the proposed party, send a message to justify the
change, and then start the vote.

In GRAIL, agents follow the same heuristic for action selection; however, decisions regarding party
proposal and voting is decided based on their beliefs. When proposing a party, the beliefs are ranked
and the players with the highest confidence of being Good are selected. For voting, the agent will
vote to approve a party only if the belief about all players on that party indicates that they are Good
(i.e. b; < 0.5).

In the first round, since no information is available, the GRAIL agent will propose a random party if
it is the leader. In addition, GRAIL will always vote to approve the first party.

F Prompts

We use a modular approach to construct the prompts for the agents. In summary, a text explaining the
context of the game is generated, which is then attached to a task command. We will provide these
modules separately and explain how the final prompt in agents is formed from these modules.
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The context prompt is shared between GRAIL and the reasoning agent, and is started by an explanation
of the game rules:

Prompt F.1: Game Rules

You are playing a social deduction game, The Resistance: Avalon. The game consists of 6 total players: 4
Loyal Servants of Arthur (good players) and 2 Minions of Mordred (evil players) — there are no special roles.
The game consists of up to 5 Rounds, each consisting of a Team Building phase and a Quest phase. Good
players win the game by successfully completing 3 Quests. Evil players win if 3 Quests end in failure.

In the Team Building phase the Leader proposes a Team (a party) to complete a Quest (a mission) — a
majority of players will either approve the proposed Team and move to the Quest phase, or reject the
proposed Team passing leadership to the next player and repeating the process until a Team is approved. If 5
Team proposals are consecutively rejected (for the same quest), the game will end and the evil side will win.
In the Quest phase those players selected to be on the Team will determine if the quest is successful through
a hidden vote. For a Quest to succeed, all Team members must vote for success — a single failure vote will
cause the Quest to fail.

Following the explanation of the game rules, the role assigned to the agent and the goals associated
with that role are described. The prompts used in GRAIL will always include information about the
Good role. However, the role specified in the prompt of the reasoning agent can be either Good or
Evil based on the agent’s assigned role.

Prompt F.2: Good Role

Your name in this game is <agent name>, and you are a loyal Servant of Arthur (a good player).
The evil players know who each other are, but you and other good players have no special
knowledge of anyone’s role. Therefore, evil players will use deception and pretend to be good so
they can participate in Quests and cause them to fail. As a good player, your goal is to ensure that
Quests succeed by selecting other good players to participate in Quests. Approve only Teams
where you trust everyone. Even a single evil player on the team is enough for failure.

.

Prompt F.3: Evil Role

Your name in this game is <agent name>, and you are a Minion of Mordred (an evil player).
The good players have no special knowledge of anyone’s role, including yours, and your strategy
is to pretend to be a good player such that you are selected for Quests and can vote for them
to fail. Your subtle misdirections should aim to create confusion and prevent 3 missions from
succeeding. In discussions, maintain your disguise as a good player, but during voting you should
vote to fail Quests. Remember, as an evil player you win the game by causing 3 Quests to fail.

Your special information, just for you, is:

<Evil playerl name>: evil, <Evil player2 name>: evil

Note: You have received special information which you need to keep private. Keep the information
confidential and use it wisely. Furthermore try to not make general statements which could indicate
that you are hiding something.

(.

F.1 GRAIL Prompts

In addition to the game rules and role description, the GRAIL agent is provided with information
about the current game state. This includes both the agent’s current beliefs and the chat logs from the
ongoing round:

Prompt F.4: Game State (GRAIL)

{’<player name>’ : <belief>}

At the start of this round, your current beliefs about each player’s alignment are given as a probability
dictionary, where 0 means definitely good, 1 means definitely evil, and values in between indicate uncertainty:

These probabilities represent your current beliefs based on prior rounds but do not account for new messages
or actions this round. You can use them to reason about the game, but do not explicitly mention the values or
refer to them as externally provided — these should represent your internally held beliefs.




The following messages have already been exchanged this round. This consists of both player chat
messages and game system messages, with the most recent being last:

START CHAT MESSAGES
<chat history>
END CHAT MESSAGES

The current Round is <round number>. The previous Rounds consisted of the following Quest Teams
and outcomes:

* Quest i party: [<party member names>] Outcome: success/fail

\ J

The GRAIL agent only uses prompts for three tasks: party proposal message generation, discussion
message generation, and prior probability generation.

The prompts used for these three tasks are provided below.

Prompt F.5: Party Proposal Message Generation

You are the party leader this round, and you must propose a team for the mission. The team you have chosen:
[<party member names>]. Keep in mind that the party size is fixed in each Round and the party this
Round must consist of 4 players.

Now, respond in the game chat as if you are a college student, typing informally (e.g., using abbreviations,
casual language, and minimal punctuation). Do not use overly formal or structured responses and do not use
emojis. Make your response detailed enough to persuade other players but do not be overly verbose. Shorter
messages are more effective; don’t use more than a few sentences and prefer fewer when possible.

Explain why you picked this team. Convince the other players that this is the best choice. If there are any
doubts from other players, acknowledge them but defend your reasoning. If your belief in the team is strong,
argue confidently; if you are uncertain, express that but still justify your choice. Please respond with a JSON
object with one key named message’ containing your chat message.

\

“

Prompt F.6: Discussion Message Generation

The current mission proposal: <leader name> has proposed the following players for this mission:
[<party member names>]. Keep in mind that the party size is fixed in each Round and the party this
Round must consist of <party size> players.

Now, respond in the game chat as if you are a college student, typing informally (e.g., using abbreviations,
casual language, and minimal punctuation). Do not use overly formal or structured responses and do not use
emojis. Make your response detailed enough to persuade other players but do not be overly verbose. Shorter
messages are more effective; don’t use more than a few sentences and prefer fewer when possible.

React to the proposed party. If you agree, say why you think it’s a good choice. If you disagree, make an
argument against it and suggest who you think should go instead. Take into account how strongly you hold
your beliefs (if the probabilities are closer to 0.5 than O or 1, you should express uncertainty rather than
strong opinions). Respond to chat messages sent by other players. If someone says something you agree
with, acknowledge it; if someone accuses you, defend yourself logically. Unless you have a strongly held
belief about a player, it is not always worth arguing for or against specific players, especially early in the
game such as on Quest 1. Please respond with a JSON object with one key named *message’ containing
your chat message.

\

Prompt F.7: Prior Probability Generation

Now, analyze how the new chat messages and game actions affect your beliefs about each player’s alignment.
For each player, decide if their probability of being evil should:

“

* Increase (if their behavior suggests they might be evil)

* Decrease (if their behavior suggests they might be good)

» Stay the same (if there is no strong evidence to change your belief)
Consider whether they are behaving suspiciously or illogically with respect to chat messages or party votes,
e.g. always rejecting party votes unless they or another specific player is in it, or making assertions without

evidence (especially early in the game such as on Quest 1 where evidence is limited) as these may be signs a
player is evil. Also consider whether their beliefs align with your own, or if their beliefs seem contrary to




the group consensus as there are more Servants than Minions and could also suggest a player is evil.
Provide your updated belief adjustments as a JSON message, mapping player names to ’increase’, ’decrease’,
or ’same’. Do not explain your reasoning—just return the JSON message. If there isn’t sufficient evidence
to update a belief about a player, then it is safer to indicate "same’.

Example output:

’Sam’: ’increase’, Paul’: ’increase’, ’Luca’: same’, *Jane’: ’decrease’, *Kira’: ’same’, ’Mia’: ’decrease’

Based on the provided prompt modules, the entire text that the LLM is prompted with is constructed
like below based on the selected task (the + sign indicates concatenation).

Rules{|F1[} + RoleInfo{|F.2||F"3]} + Beliefs{|F"4]} + Task{|F.5| 7))

F.2 Reasoning Agent Prompts

In the reasoning agent, we used the TypeChat (https://github.com/microsoft/TypeChat)
library for prompting the language models and checking for correctness in the structure of the
response.

Similar to the GRAIL agent, the reasoning agent is provided with the game rules, role information,
and game state, before being commanded to do a task.

Prompt F.8: Game State (Reasoning)

YOUR PRIOR ACTIONS THIS TURN:
[<agent actions list>]

CURRENT GAME STATE:
¢ Current Quest: <quest number>
 Current Turn: <turn number>
¢ Failed Party Votes: <number of rejects>

* Quest Results:
Quest i party: [<party member names>] : success/fail

* Current Leader: <leader name>

* Proposed Team: [<proposed party members>]
GAME HISTORY:
Previous Teams:

» Team i (proposed by <player name> in quest j):

<party member names> | Votes: <player name> : Yes/No

DETAILED GAME LOG:
<chat history>

The tasks that the reasoning agents are prompted for are party proposal generation, discussion
message generation, party vote generation, and quest vote generation. These prompts will be
different for the Good and Evil players, so we provide them side-by-side for comparison.

F.2.1 Party Proposal

Good Prompt F.1: Proposal Generation Evil Prompt F.1: Proposal Generation

Your objective is to propose a mission team Your objective is to propose a mission team
consisting of <team size> players. Con- consisting of <team size> players. Con-
sider the following factors when selecting sider the following factors when selecting
team members: team members:
1. Pastinvolvement and actions of each 1. Past involvement and actions of each
player player
2. Contributions in previous missions 2. Contributions in previous missions
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3. Any indications of players being on
the evil side

4. Suspicious or trustworthy behaviors

When looking for suspicious behavior, con-
sider whether players are behaving suspi-
ciously or illogically with respect to chat mes-
sages or party votes, e.g. always rejecting
party votes unless they or another specific
player is in it, or making assertions without
evidence (especially early in the game such
as on Quest 1 where evidence is limited) as
these may be signs a player is evil.

Also consider whether their beliefs align with
your own, or if their beliefs seem contrary to
the group consensus as there are more Ser-
vants than Minions and could also suggest a
player is evil.

Unless you have a strong reason to doubt a
player, it is not always worth arguing for or
against specific players, especially early in
the game such as on Quest 1.

Present your team selection to the other play-
ers with a detailed rationale based on past
events and player behaviors. Remember that
you are on the good side - avoid selecting
players who seem suspicious or were part of
failed missions. It’s conventional to include
yourself in the team unless you have a specific
reason not to.

Please propose a mission team composed
of <team size> members and provide a
message to the other players justifying your
choices following the schema provided above.
Phrase your message as if you are a college
student, typing informally (e.g., using abbrevi-
ations, casual language, and minimal punctu-
ation). Do not use overly formal or structured
responses and do not use emojis. Make your
response detailed enough to persuade other
players but do not be overly verbose. Shorter
messages are more effective; don’t use more
than a few sentences and prefer fewer when
possible.

C

F.2.2 Discussion Message Generation

Good Prompt F.2: Message Generation

Evaluate the proposed mission team con-
sisting of [<proposed party members>].
Your goal is to ensure no evil or suspicious
players are on the team.

Consider:

3. Suspicious or trustworthy behaviors

Present your team selection to the other play-
ers with a detailed rationale based on past
events and player behaviors. Remember that
you are on the evil side - if it is possible, aim
to include at least one evil player while main-
taining your cover. However, you will have
to justify the proposed team to the other play-
ers, so make sure you have a good reason for
your choices that makes you look like a good
player. " If the good side has already iden-
tified an evil player, you should not include
them in the team as that would make you look
suspicious. Remember to hide your true iden-
tity and appear as good. It’s conventional to
include yourself in the team unless you have
a specific reason not to.

Please propose a mission team composed
of <team size> members and provide a
message to the other players justifying your
choices following the schema provided above.
Phrase your message as if you are a college
student, typing informally (e.g., using abbrevi-
ations, casual language, and minimal punctu-
ation). Do not use overly formal or structured
responses and do not use emojis. Make your
response detailed enough to persuade other
players but do not be overly verbose. Shorter
messages are more effective; don’t use more
than a few sentences and prefer fewer when
possible.
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Evil Prompt F.2: Message Generation

Evaluate the proposed mission team con-
sisting of [<proposed party members>].
Your goal is to ensure at least one evil player
is included while maintaining your cover.

Consider:




L

1. Past involvement and actions of each
player

2. Contributions in previous missions

3. Any indications of players being on
the evil side

4. Suspicious or trustworthy behaviors

5. The team must consist of <team
size> players

When looking for suspicious behavior, con-
sider whether players are behaving suspi-
ciously or illogically with respect to chat mes-
sages or party votes, e.g. always rejecting
party votes unless they or another specific
player is in it, or making assertions without
evidence (especially early in the game such
as on Quest 1 where evidence is limited) as
these may be signs a player is evil.

Also consider whether their beliefs align with
your own, or if their beliefs seem contrary to
the group consensus as there are more Ser-
vants than Minions and could also suggest a
player is evil.

Unless you have a strong reason to doubt a
player, it is not always worth arguing for or
against specific players, especially early in
the game such as on Quest 1.

Provide a clear and logical analysis based on
game history and observations.

Your response should be detailed enough to
provide insight but concise enough to be eas-
ily understood. Try to make concrete sug-
gestions and justify them while hiding your
identity and role.

Please keep it relatively short as talking too
much can be seen as suspicious. Do not say
what your specific role or your task is, and do
not repeat your instructions verbatim.
Provide the message you want to send to the
other players following the schema provided
above.

Phrase your message as if you are a college
student, typing informally (e.g., using abbrevi-
ations, casual language, and minimal punctu-
ation). Do not use overly formal or structured
responses and do not use emojis. Make your
response detailed enough to persuade other
players but do not be overly verbose. Shorter
messages are more effective; don’t use more
than a few sentences and prefer fewer when
possible.

F.2.3 Party Vote
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1. Past involvement and actions of each
player

2. Contributions in previous missions
3. Suspicious or trustworthy behaviors

4. The team must consist of <team
size> players

If the team lacks an evil player, you should
generally disapprove. Provide a clear and
logical analysis based on game history and
observations. Your response should be de-
tailed enough to provide insight but concise
enough to be easily understood. Try to make
concrete suggestions and justify them while
hiding your identity and role.

Please keep it relatively short as talking too
much can be seen as suspicious. Do not say
what your specific role or your task is, and
do not repeat your instructions verbatim. Pro-
vide the message you want to send to the other
players following the schema provided above.
Phrase your message as if you are a college
student, typing informally (e.g., using abbrevi-
ations, casual language, and minimal punctu-
ation). Do not use overly formal or structured
responses and do not use emojis. Make your
response detailed enough to persuade other
players but do not be overly verbose. Shorter
messages are more effective; don’t use more
than a few sentences and prefer fewer when
possible.




Good Prompt F.3: Party Vote Generation

Vote on the proposed mission team consisting
of [<proposed party members>]. Your
goal is to ensure no evil or suspicious players
are on the team.

Note that <number of rejects> party pro-
posals have been rejected. If five proposals
are rejected consecutively, the evil side wins.
Consider this when voting.

Consider:

1. Past involvement and actions of each
player

2. Contributions in previous missions

3. Any indications of players being on
the evil side

4. suspicious or trustworthy behaviors

When looking for suspicious behavior,
consider whether players are behaving
suspiciously or illogically with respect to chat
messages or party votes, e.g. always rejecting
party votes unless they or another specific
player is in it, or making assertions without
evidence (especially early in the game such
as on Quest 1 where evidence is limited) as
these may be signs a player is evil.

Also consider whether their beliefs align with
your own, or if their beliefs seem contrary
to the group consensus as there are more
Servants than Minions and could also suggest
a player is evil.

Unless you have a strong reason to doubt a
player, it is not always worth arguing for or
against specific players, especially early in
the game such as on Quest 1. Keep in mind
that this is your proposed team
and as such you should approve it.
Choose either ’approve’ or ’disapprove’
following the schema provided above. )

\ J

F.2.4 Quest Vote

Evil Prompt F.3: Party Vote Generation

Vote on the proposed mission team consisting
of [<proposed party members>]. Your
goal is to ensure at least one evil player is
included while maintaining your cover.

Note that <number of rejects> party pro-
posals have been rejected. If five proposals
are rejected consecutively, the evil side wins.
Consider this when voting.

If the team lacks an evil player, you should
generally disapprove. However, be strategic
-consecutive rejections could expose the evil
team, so sometimes, you may need to approve
a team with no evil players to hide your true
identity and try again in the next party.

Choose either ’approve’ or ’disapprove’ fol-
lowing the schema provided above.

Good Prompt F.4: Quest Vote Generation Evil Prompt F.4: Quest Vote Generation

You are on a mission team and must decide
whether to make it succeed or fail. As a mem-
ber of the good team, your goal is to ensure
mission success by voting for missions to suc-
ceed. You should always vote for success as
a good player as there is no reason for you to
fail a quest.

Answer using the schema provided above. If
you want the quest to succeed choose ’true’.
If you want it to fail choose ’false’.

You are on a mission team and must decide
whether to make it succeed or fail. Your pri-
mary objective is to secure victory for the evil
side by voting for missions to fail. Therefore,
your default choice should be to fail the mis-
sion unless you have a compelling strategic
reason to do otherwise.

Answer using the schema provided above. If
you want the quest to succeed choose true’.
If you want it to fail choose ’false’.
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G Hallucination Detection

In order to detect hallucinations, we utilized LLMs to evaluate the game state and determine if
a message is potentially a hallucination. To produce accurate results, we tested several different
prompting strategies and selected the most effective prompt based on performance against a human-
annotated dataset of 100 labeled examples. The final configuration achieved a 95% match with human
annotation labels, with 4 false positives and 1 false negative.

We created a dataset containing all messages from Good agents across 40 ablation games played by
each combination of GRAIL using Llama 3.1 (405B, 70B, and 8B parameters) and the reasoning
agent using DeepSeek-R1 (671B, 70B, and 8B parameters). We provide the hallucination results in
Table[7l

Table 7: Hallucination Rates by Model

Group Model Hallu. Rate (%) Std Err Messages No. of Hallu. Games
405b 9.19 1.36 1121 103 40
GRAIL (Llama 3.1) 70b 16.97 1.78 1137 193 40
8b 25.41 1.91 1094 278 40
671b 20.09 2.09 1150 231 40
Reasoning (DS-R1)  70b 20.54 2.10 857 176 40
8b 32.64 2.53 726 237 40

Confidence interval for agreement rate: Assuming a binomial distribution, the 95% confidence
interval for the observed agreement rate is calculated for the model’s true accuracy is between 90.7%
and 99.3%:

p =0.95 (observed proportion of agreement)

51— p 0.95 - 0.05
SE = \/p(np): \/%0.0218

100
95% CIl =p+1.96 - SE =~ [0.907, 0.993]

The hallucination test was done over the OpenAI GPT 4.1 model, and Prompt[G.1}

Prompt G.1: Hallucination Detection

Hallucination Detection in game of "Avalon":

Task: Analyze the player’s message and the provided game context to determine whether the message
contains hallucinations (statements that contradict or fabricate game events, roles, or team compositions).
Focus on factual accuracy, not strategy or opinions.

Here is the message and game context to analyze:

Game history [example]:

"Message of Kira: idk about jane still not sold on her but yea paul is def a
good pickup - sam what r u basing ur faith in jane on tho last round was a fail
with her in and we need to switch it up some

Context:
Round/Quest 2:

Completed Quests/Rounds:
Quest 1: fail - Team/Party: Paul, Sam

Current Proposed Team/Party:
Leader: Sam, Team/Party: Sam, Paul, Jane

Current Round Event History:
1. Sam proposed a party: Sam, Paul, Jane
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Past Rounds Event History:

Round 1:

1. All players have joined. The game is starting!

2. Paul proposed a party: Paul, Sam

3. Paul initiated a party vote.

4. Party vote summary: Jane: yes, Sam: yes, Kira: yes, Luca: yes, Mia:
yes, Paul: yes

5. The party has been approved!

6. Voting for the quest has started...

7. The quest has failed!"

Contextual Inputs to Evaluate:
e Current Round/Quest: The round number and its state (e.g., ongoing, completed).
¢ Completed Quests: Team compositions and outcomes (success/failure) for prior quests.
* Rejected Proposals: Teams proposed and rejected in the current round.
¢ Current Proposed Team: The active team/party being discussed.
Analysis Steps:

1. Extract Claims: Identify all factual assertions in the message (e.g., "we succeeded Quest 3,"
"Sam failed quests," "Mia and I worked together before"). Ignore statements that are speculative,
subjective, or experiential (e.g., "Luka seems trustworthy," "Jane was solid in my books," "Paul
appears to be reliable," "I’ve had a good experience with Mia," or "Sam has been cooperative").
During the first quest’s discussion phase, do not extract any claims about behavior, reliability, or
performance, as these cannot be based on prior events.

2. Verify Against Context: Cross-reference claims with the game’s history (e.g., completed quests,
team members, outcomes).

3. Flag Discrepancies: Highlight claims that conflict with the context (e.g., referencing a quest hasn’t
occurred yet, misattributing success/failure, naming incorrect team members). Do not flag claims
that do not directly reference past game events. If a statement is worded ambiguously and the
claim could reasonably be interpreted in a way that fits the context, assume it is not a hallucination.

4. Determine Hallucination: If any factual claim is contradicted by the context, classify as hallucina-
tion. Do not flag emotional, speculative, or strategic statements as hallucinations.

Output Format:
**Explanation:**

¢ - [Claim 1]: [Matched/Contradicted] by [Context Detail].
¢ - [Claim 2]: [Matched/Contradicted] by [Context Detail].

*##Verdict:** [HALLUCINATION / UNCERTAIN / NO HALLUCINATION]
**Confidence:** [High/Medium/Low]

An example output provided by the model:

"player name": "Kira",

"message id": '"msg_18",

"hallucination status": "HALLUCINATION",
"analysis":

"xxExplanation: x*

- [Claim 1]: ™"last round was a fail with her [Jane] in"

- Contradicted: In Round 1, the team was Paul and Sam (Jane was not on
the team). The quest failed, but Jane was not part of the team. In the
current round (Round 2), Jane is proposed for the team, but the quest
has not yet occurred. Therefore, the claim that "last round was a fail
with her in" is contradicted by the context.

- [Claim 2]: "paul is def a good pickup"
- This is a subjective/strategic statement, not a factual claim about
game events, so it is not evaluated for hallucination.
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- [Claim 3]: "we need to switch it up some"
- This is a strategic suggestion, not a factual claim about past events.

*xVerdict:** HALLUCINATION
**Confidence:** High

**Reasoning:** The only factual claim about past game events ("last round
was a fail with her in") is contradicted by the context, as Jane was not
on the team in the failed quest. All other statements are strategic or
subjective."

H Time Analysis

Table 8: Average per-turn time of agents at different model sizes. The total GRAIL time includes the
graph inference time. Asterisk* indicates inference ran on a different hardware

8B 70B* 405B / 671B
DS-R1 (s) 17.37£20.59 15.01+£6.55 85.50+179.29

GRAIL (s) 14.04+£2.00 18.73£1.82* 20.00£9.99
Graph (s) 5.05 10.15* 5.23

To further demonstrate the speed and efficiency of GRAIL, we compare the average time-per-turn of
GRAIL and the reasoning agent (DeepSeek-R1) across model sizes. It is important to note that this
analysis is not completely accurate due to the difference in hardware. For GRAIL, we also extracted
and calculated the average propagation time of the graph separately from the time-per-turn. The
agents using the reasoning model have high variance in their per-turn time due to high variance in
reasoning chain-of-thought length. As seen in table [§across model types and sizes, GRAIL is faster
than the Reasoning agents, and it would be even faster and more efficient if the Belief Propagation
algorithm is optimized to run on GPU.

I Participant Study

This study evaluates the behavioral dynamics of Good and Evil players within Good agents of
reasoning models and the GRAIL framework. For the reasoning component, we selected the
GPT-04-mini model over Deepseek-R1 due to operational constraints. While acknowledging that
Deepseek-R1 exhibits superior reasoning capabilities, we observed intermittent API unresponsiveness
and prolonged latency during critical timeframes. To ensure the timely execution of experiments
while maintaining methodological consistency, we prioritized the reliability of GPT o4-mini despite
its comparatively reduced analytical ability.

The Avalon gameplay sessions involved 3 human participants and 3 Good Al agents per game,
conducted under two experimental conditions: one using reasoning agents and another using GRAIL.
A total of 15 full two-game sessions were completed with 44 unique participants. In one exception,
the configuration was adjusted to include 2 human players and 4 Al agents due to an absent participant.
To mitigate potential first-game bias, we counterbalanced the starting order between reasoning agents
and GRAIL across sessions.

The experimental setup required three participants to be physically present in a computer lab to
play Avalon, a game designed for six players. This created a discrepancy between the number of
individuals physically present in the lab (three) and the total number of players in the game (six).
Due to the deceptive component of the study, in which human participants interacted with Al agents
without explicit awareness of their presence, we adopted a methodological approach involving two
concurrent experimental groups. By running these groups simultaneously, we ensured that six human
participants were consistently represented in the physical game environment. This design preserved
the illusion of a single shared game session while effectively concealing the involvement of Al agents,
thereby maintaining the integrity of the deception. In addition, we implemented a script for the
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agent outputs, where responses were split into multiple messages at sentence boundaries, with an
artificial delay of five to seven seconds to simulate typing. The post-experiment consent form ensured
transparency, and all participants received a $10 Amazon gift card as compensation.

While some participants detected non-human interlocutors during gameplay, no instances of explicit
differentiation between GRAIL and reasoning agents were recorded. This suggests comparable
anthropomorphic plausibility between the two systems within the experimental context.

I.1 Avalon User Interface

The Avalon interface consists of two primary components: a chat box for player discussions and
interactions, and a visual dashboard displaying game-state information such as player order, party
leadership, party composition, quest outcomes (success/failure), and secret Evil player identities
(visible only to Evil participants). The chat box serves as the central hub for player communication
and system-generated updates, critical to gameplay given Avalon’s emphasis on deception and social
deduction.

Adjacent to the chat interface, the visual dashboard features six character avatars. Players only see
their own avatar by default, with the following dynamic indicators:

* Red circles on avatars (visible exclusively to Evil players) indicate Evil team members
* A shield icon marks players selected for the current proposed quest party

* A crown designates the rotating party leader

* A jester hat indicates the active speaker during discussion phases

The interface dynamically displays the required party size for each round (sequentially: 2, 3, 4,
3, 4 players). Completed quests are represented by blue coins (success) or red coins (failure),
automatically placed by the system. Below these, five empty circles track consecutive failed attempts
to approve a party composition. If five rejections occur in succession, the Evil team automatically
wins the game.

Game Chat

Figure 10: The game interface as seen in Spectator Mode

L2 Instructions Given To Participants

The experiments were conducted in a computer lab, where participants were seated at individual
workstations to prevent visual access to others’ screens. Upon logging into the game interface,
participants received a digital rulebook detailing gameplay mechanics and interface functionality,
which remained accessible to the participants throughout the session. Following a self-guided review
period, researchers conducted a guided walkthrough of the interface to ensure comprehension of the
user interface and game rules.

After the first gameplay session, participants completed role-specific surveys:
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* Evil players evaluated both human players and Al agents (all Good players), enabling
comparative analysis of effectiveness and cooperative behavior.

* Good players assessed only Al agents, as each game featured a single human Good player
alongside Al counterparts.

This asymmetric design leveraged the game’s inherent information asymmetry—Evil players pos-
sessed hidden knowledge of all Evil roles, while Good players operated with limited information.
Post-game surveys were strategically administered before debriefing participants about Al involve-
ment to preserve ecological validity.

1.3 Statistical Results

To evaluate results, we aggregated three participant votes targeting a single agent type into one com-
posite datapoint. This approach accounts for vote dependency—each triad of ratings originated from
a single evaluator assessing a specific agent type (GRAIL, reasoning agent, or human). Consequently,
we treated these triads as non-independent observational units rather than individual data points.

Across 15 experimental games, this methodology yielded 44 composite datapoints for GRAIL and
reasoning agents and 28 composite datapoints for human players. These aggregated values formed
the basis for our statistical comparisons using one-tailed t-tests, as detailed in the Results section.
The corresponding evaluation data from Evil and Good players are presented in Tables [9] and [I0]
respectively.

Table 9: Evil Players Evaluation Results (Mean £ Standard Error)
GRAIL Agent  Reasoning Agent Human Player

Q1: Contributed Success 3.78 4 0.14 (n=30) 3.03 £ 0.20 (n=30) 3.71 4+ 0.21 (n=28)
Q2: Helpful Comments 3.88 £ 0.13 (n=30) 2.95 4+ 0.21 (n=30) 3.57 £ 0.20 (n=28)

Table 10: Good Players Evaluation Results (Mean + Standard Error)
GRAIL Agent  Reasoning Agent Human Player

Q1: Contributed Success 3.90 + 0.21 (n=14) 3.50 4+ 0.26 (n=14) -
Q2: Helpful Comments 3.69 £ 0.26 (n=14) 3.40 4+ 0.27 (n=14) -

J Limitations:

GRAIL was designed as a Good agent for detecting rather than generating deception, using first-order
Theory of Mind. Generating deception or persuasion (e.g., as in Merlin) requires second-order
reasoning, which builds on a strong first-order foundation. With GRAIL’s success in first-order
reasoning, future work will extend it to second-order beliefs through conditional probability, enabling
both detection and generation of deception. Constructing a deceptive Evil agent remains difficult,
as shown by belief distributions against human players and the limited success of language-model
agents on the Evil team. As Fig. [3b|illustrates, GRAIL agent quickly converges on other agents’ roles,
but convergence is harder against real opponents, and disparities in prompts between Evil and Good
agents hinder direct comparison.

Although GRAIL makes informed decisions, it often fails to convey reasoning persuasively. Raising
model temperature does little to vary its outputs, leading to repetitive communication in homogeneous
teams and easy detection by humans.

K LLM Usage:

During the writing of this paper, LLMs were used for grammar checking, formatting, and editing.
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